1
|
Antoneli F, Golubitsky M, Jin J, Stewart I. Homeostasis in input-output networks: Structure, Classification and Applications. Math Biosci 2025; 384:109435. [PMID: 40222590 DOI: 10.1016/j.mbs.2025.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 02/10/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
Homeostasis is concerned with regulatory mechanisms, present in biological systems, where some specific variable is kept close to a set value as some external disturbance affects the system. Many biological systems, from gene networks to signaling pathways to whole tissue/organism physiology, exhibit homeostatic mechanisms. In all these cases there are homeostatic regions where the variable is relatively to insensitive external stimulus, flanked by regions where it is sensitive. Mathematically, the notion of homeostasis can be formalized in terms of an input-output function that maps the parameter representing the external disturbance to the output variable that must be kept within a fairly narrow range. This observation inspired the introduction of the notion of infinitesimal homeostasis, namely, the derivative of the input-output function is zero at an isolated point. This point of view allows for the application of methods from singularity theory to characterize infinitesimal homeostasis points (i.e. critical points of the input-output function). In this paper we review the infinitesimal approach to the study of homeostasis in input-output networks. An input-output network is a network with two distinguished nodes 'input' and 'output', and the dynamics of the network determines the corresponding input-output function of the system. This class of dynamical systems provides an appropriate framework to study homeostasis and several important biological systems can be formulated in this context. Moreover, this approach, coupled to graph-theoretic ideas from combinatorial matrix theory, provides a systematic way for classifying different types of homeostasis (homeostatic mechanisms) in input-output networks, in terms of the network topology. In turn, this leads to new mathematical concepts, such as, homeostasis subnetworks, homeostasis patterns, homeostasis mode interaction. We illustrate the usefulness of this theory with several biological examples: biochemical networks, chemical reaction networks (CRN), gene regulatory networks (GRN), Intracellular metal ion regulation and so on.
Collapse
Affiliation(s)
- Fernando Antoneli
- Centro de Bioinformática Médica, Universidade Federal de São Paulo, Edifício de Pesquisas 2, São Paulo, 04039-032, SP, Brazil.
| | - Martin Golubitsky
- Department of Mathematics, The Ohio State University, 231 W 18th Ave, Columbus, 43210, OH, USA.
| | - Jiaxin Jin
- Department of Mathematics, University of Louisiana at Lafayette, 217 Maxim Doucet Hall, Lafayette, 43210, LA, USA.
| | - Ian Stewart
- Mathematics Institute, University of Warwick, Zeeman Building, Coventry CV4 7AL, UK.
| |
Collapse
|
2
|
Alexis E, Espinel-Ríos S, Kevrekidis IG, Avalos JL. Biochemical implementation of acceleration sensing and PIDA control. NPJ Syst Biol Appl 2025; 11:39. [PMID: 40287428 PMCID: PMC12033284 DOI: 10.1038/s41540-025-00514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
This work introduces a realization of a proportional-integral-derivative-acceleration control scheme as a chemical reaction network governed by mass action kinetics. A central feature of this architecture is a speed and acceleration biosensing mechanism integrated into a feedback configuration. Our control scheme provides enhanced dynamic performance and robust steady-state tracking. In addition to our theoretical analysis, this is practically highlighted in-silico in both the deterministic and stochastic settings.
Collapse
Affiliation(s)
- Emmanouil Alexis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| | - Sebastián Espinel-Ríos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
| | - Ioannis G Kevrekidis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
- Medical School, Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Mallozzi A, Fusco V, Ragazzini F, di Bernardo D. A Biomolecular Circuit for Automatic Gene Regulation in Mammalian Cells with CRISPR Technology. ACS Synth Biol 2024; 13:3917-3925. [PMID: 39622625 DOI: 10.1021/acssynbio.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
We introduce a biomolecular circuit for precise control of gene expression in mammalian cells. The circuit leverages the stochiometric interaction between the artificial transcription factor VPR-dCas9 and the anti-CRISPR protein AcrIIA4, enhanced with synthetic coiled-coil domains to boost their interaction, to maintain the expression of a reporter protein constant across diverse experimental conditions, including fluctuations in protein degradation rates and plasmid concentrations, by automatically adjusting its mRNA level. This capability, known as robust perfect adaptation (RPA), is crucial for the stable functioning of biological systems and has wide-ranging implications for biotechnological applications. This system belongs to a class of biomolecular circuits named antithetic integral controllers, and it can be easily adapted to regulate any endogenous transcription factor thanks to the versatility of the CRISPR-Cas system. Finally, we show that RPA also holds in cells genomically integrated with the circuit, thus paving the way for practical applications in biotechnology that require stable cell lines.
Collapse
Affiliation(s)
- Alessio Mallozzi
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Virginia Fusco
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80121 Naples, Italy
| | - Francesco Ragazzini
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School for Advanced Studies, Scuola Superiore Meridionale, 80138 Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- Department of Chemical Materials and Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
4
|
Hu Q, Tang R, He X, Wang R. General relationship of local topologies, global dynamics, and bifurcation in cellular networks. NPJ Syst Biol Appl 2024; 10:135. [PMID: 39557967 PMCID: PMC11573990 DOI: 10.1038/s41540-024-00470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Cellular networks realize their functions by integrating intricate information embedded within local structures such as regulatory paths and feedback loops. However, the precise mechanisms of how local topologies determine global network dynamics and induce bifurcations remain unidentified. A critical step in unraveling the integration is to identify the governing principles, which underlie the mechanisms of information flow. Here, we develop the cumulative linearized approximation (CLA) algorithm to address this issue. Based on perturbation analysis and network decomposition, we theoretically demonstrate how perturbations affect the equilibrium variations through the integration of all regulatory paths and how stability of the equilibria is determined by distinct feedback loops. Two illustrative examples, i.e., a three-variable bistable system and a more intricate epithelial-mesenchymal transition (EMT) network, are chosen to validate the feasibility of this approach. These results establish a solid foundation for understanding information flow across cellular networks, highlighting the critical roles of local topologies in determining global network dynamics and the emergence of bifurcations within these networks. This work introduces a novel framework for investigating the general relationship between local topologies and global dynamics of cellular networks under perturbations.
Collapse
Affiliation(s)
- Qing Hu
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruoyu Tang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Xinyu He
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Scheepers R, Levi NL, Araujo RP. A distributed integral control mechanism for regulation of cholesterol concentration in the human retina. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240432. [PMID: 39479233 PMCID: PMC11521609 DOI: 10.1098/rsos.240432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 08/11/2024] [Indexed: 11/02/2024]
Abstract
Tight homeostatic control of cholesterol concentration within the complex tissue microenvironment of the retina is the hallmark of a healthy eye. By contrast, dysregulation of biochemical mechanisms governing retinal cholesterol homeostasis likely contributes to the aetiology and progression of age-related macular degeneration (AMD). While the signalling mechanisms maintaining cellular cholesterol homeostasis are well-studied, a systems-level description of molecular interactions regulating cholesterol balance within the human retina remains elusive. Here, we provide a comprehensive overview of all currently-known molecular-level interactions involved in cholesterol regulation across the major compartments of the human retina, encompassing the retinal pigment epithelium (RPE), photoreceptor cell layer, Müller cell layer and Bruch's membrane. We develop a comprehensive chemical reaction network (CRN) of these interactions, involving 71 molecular species, partitioned into 10 independent subnetworks. These subnetworks collectively ensure robust homeostasis of 14 forms of cholesterol across distinct retinal cellular compartments. We provide mathematical evidence that three independent antithetic integral feedback controllers tightly regulate ER cholesterol in retinal cells, with additional independent mechanisms extending this regulation to other forms of cholesterol throughout the retina. Our novel mathematical model of retinal cholesterol regulation provides a framework for understanding the mechanisms of cholesterol dysregulation in diseased eyes and for exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- Ronél Scheepers
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane4000, Australia
| | - Noa L. Levi
- School of Mathematics and Statistics, University of Melbourne, Victoria3010, Australia
| | - Robyn P. Araujo
- School of Mathematics and Statistics, University of Melbourne, Victoria3010, Australia
| |
Collapse
|
6
|
Jeynes-Smith C, Bode M, Araujo RP. Identifying and explaining resilience in ecological networks. Ecol Lett 2024; 27:e14484. [PMID: 39090988 DOI: 10.1111/ele.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024]
Abstract
Resilient ecological systems are more likely to persist and function in the Anthropocene. Current methods for estimating an ecosystem's resilience rely on accurately parameterized ecosystem models, which is a significant empirical challenge. In this paper, we adapt tools from biochemical kinetics to identify ecological networks that exhibit 'structural resilience', a strong form of resilience that is solely a property of the network structure and is independent of model parameters. We undertake an exhaustive search for structural resilience across all three-species ecological networks, under a generalized Lotka-Volterra modelling framework. Out of 20,000 possible network structures, approximately 2% display structural resilience. The properties of these networks provide important insights into the mechanisms that could promote resilience in ecosystems, provide new theoretical avenues for qualitative modelling approaches and provide a foundation for identifying robust forms of ecological resilience in large, realistic ecological networks.
Collapse
Affiliation(s)
- Cailan Jeynes-Smith
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Bode
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Securing Antartica's Environmental Future, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Robyn P Araujo
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Bhattacharya P, Raman K, Tangirala AK. Design Principles for Perfect Adaptation in Biological Networks with Nonlinear Dynamics. Bull Math Biol 2024; 86:100. [PMID: 38958824 DOI: 10.1007/s11538-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Establishing a mapping between the emergent biological properties and the repository of network structures has been of great relevance in systems and synthetic biology. Adaptation is one such biological property of paramount importance that promotes regulation in the presence of environmental disturbances. This paper presents a nonlinear systems theory-driven framework to identify the design principles for perfect adaptation with respect to external disturbances of arbitrary magnitude. Based on the prior information about the network, we frame precise mathematical conditions for adaptation using nonlinear systems theory. We first deduce the mathematical conditions for perfect adaptation for constant input disturbances. Subsequently, we translate these conditions to specific necessary structural requirements for adaptation in networks of small size and then extend to argue that there exist only two classes of architectures for a network of any size that can provide local adaptation in the entire state space, namely, incoherent feed-forward (IFF) structure and negative feedback loop with buffer node (NFB). The additional positiveness constraints further narrow the admissible set of network structures. This also aids in establishing the global asymptotic stability for the steady state given a constant input disturbance. The proposed method does not assume any explicit knowledge of the underlying rate kinetics, barring some minimal assumptions. Finally, we also discuss the infeasibility of certain IFF networks in providing adaptation in the presence of downstream connections. Moreover, we propose a generic and novel algorithm based on non-linear systems theory to unravel the design principles for global adaptation. Detailed and extensive simulation studies corroborate the theoretical findings.
Collapse
Affiliation(s)
- Priyan Bhattacharya
- Department of Chemical Engineering, IIT Madras, Chennai, Tamil Nadu, 600036, India
| | - Karthik Raman
- Department of Data Science and AI, Wadhwani School of Data Science and AI, IIT Madras, Chennai, Tamil Nadu, 600036, India.
| | - Arun K Tangirala
- Department of Chemical Engineering, IIT Madras, Chennai, Tamil Nadu, 600036, India.
- Department of Data Science and AI, Wadhwani School of Data Science and AI, IIT Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
8
|
Chee FT, Harun S, Mohd Daud K, Sulaiman S, Nor Muhammad NA. Exploring gene regulation and biological processes in insects: Insights from omics data using gene regulatory network models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 189:1-12. [PMID: 38604435 DOI: 10.1016/j.pbiomolbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Gene regulatory network (GRN) comprises complicated yet intertwined gene-regulator relationships. Understanding the GRN dynamics will unravel the complexity behind the observed gene expressions. Insect gene regulation is often complicated due to their complex life cycles and diverse ecological adaptations. The main interest of this review is to have an update on the current mathematical modelling methods of GRNs to explain insect science. Several popular GRN architecture models are discussed, together with examples of applications in insect science. In the last part of this review, each model is compared from different aspects, including network scalability, computation complexity, robustness to noise and biological relevancy.
Collapse
Affiliation(s)
- Fong Ting Chee
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Kauthar Mohd Daud
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Suhaila Sulaiman
- FGV R&D Sdn Bhd, FGV Innovation Center, PT23417 Lengkuk Teknologi, Bandar Baru Enstek, 71760 Nilai, Negeri Sembilan, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
9
|
de Oliveira Madeira JL, Antoneli F. Homeostasis in networks with multiple inputs. J Math Biol 2024; 89:17. [PMID: 38902549 PMCID: PMC11190020 DOI: 10.1007/s00285-024-02117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Homeostasis, also known as adaptation, refers to the ability of a system to counteract persistent external disturbances and tightly control the output of a key observable. Existing studies on homeostasis in network dynamics have mainly focused on 'perfect adaptation' in deterministic single-input single-output networks where the disturbances are scalar and affect the network dynamics via a pre-specified input node. In this paper we provide a full classification of all possible network topologies capable of generating infinitesimal homeostasis in arbitrarily large and complex multiple inputs networks. Working in the framework of 'infinitesimal homeostasis' allows us to make no assumption about how the components are interconnected and the functional form of the associated differential equations, apart from being compatible with the network architecture. Remarkably, we show that there are just three distinct 'mechanisms' that generate infinitesimal homeostasis. Each of these three mechanisms generates a rich class of well-defined network topologies-called homeostasis subnetworks. More importantly, we show that these classes of homeostasis subnetworks provides a topological basis for the classification of 'homeostasis types': the full set of all possible multiple inputs networks can be uniquely decomposed into these special homeostasis subnetworks. We illustrate our results with some simple abstract examples and a biologically realistic model for the co-regulation of calcium ( Ca ) and phosphate ( PO 4 ) in the rat. Furthermore, we identify a new phenomenon that occurs in the multiple input setting, that we call homeostasis mode interaction, in analogy with the well-known characteristic of multiparameter bifurcation theory.
Collapse
Affiliation(s)
| | - Fernando Antoneli
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| |
Collapse
|
10
|
Fang W. Design principles as minimal models. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 105:50-58. [PMID: 38754358 DOI: 10.1016/j.shpsa.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/18/2024]
Abstract
In this essay I suggest that we view design principles in systems biology as minimal models, for a design principle usually exhibits universal behaviors that are common to a whole range of heterogeneous (living and nonliving) systems with different underlying mechanisms. A well-known design principle in systems biology, integral feedback control, is discussed, showing that it satisfies all the conditions for a model to be a minimal model. This approach has significant philosophical implications: it not only accounts for how design principles explain, but also helps clarify one dispute over design principles, e.g., whether design principles provide mechanistic explanations or a distinct kind of explanations called design explanations.
Collapse
Affiliation(s)
- Wei Fang
- Research Center for Philosophy of Science and Technology, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, China.
| |
Collapse
|
11
|
Andrews SS, Wiley HS, Sauro HM. Design patterns of biological cells. Bioessays 2024; 46:e2300188. [PMID: 38247191 PMCID: PMC10922931 DOI: 10.1002/bies.202300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Design patterns are generalized solutions to frequently recurring problems. They were initially developed by architects and computer scientists to create a higher level of abstraction for their designs. Here, we extend these concepts to cell biology to lend a new perspective on the evolved designs of cells' underlying reaction networks. We present a catalog of 21 design patterns divided into three categories: creational patterns describe processes that build the cell, structural patterns describe the layouts of reaction networks, and behavioral patterns describe reaction network function. Applying this pattern language to the E. coli central metabolic reaction network, the yeast pheromone response signaling network, and other examples lends new insights into these systems.
Collapse
Affiliation(s)
- Steven S. Andrews
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Herbert M. Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Bhattacharya P, Raman K, Tangirala AK. Design Principles for Biological Adaptation: A Systems and Control-Theoretic Treatment. Methods Mol Biol 2024; 2760:35-56. [PMID: 38468081 DOI: 10.1007/978-1-0716-3658-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Establishing a mapping between (from and to) the functionality of interest and the underlying network structure (design principles) remains a crucial step toward understanding and design of bio-systems. Perfect adaptation is one such crucial functionality that enables every living organism to regulate its essential activities in the presence of external disturbances. Previous approaches to deducing the design principles for adaptation have either relied on computationally burdensome brute-force methods or rule-based design strategies detecting only a subset of all possible adaptive network structures. This chapter outlines a scalable and generalizable method inspired by systems theory that unravels an exhaustive set of adaptation-capable structures. We first use the well-known performance parameters to characterize perfect adaptation. These performance parameters are then mapped back to a few parameters (poles, zeros, gain) characteristic of the underlying dynamical system constituted by the rate equations. Therefore, the performance parameters evaluated for the scenario of perfect adaptation can be expressed as a set of precise mathematical conditions involving the system parameters. Finally, we use algebraic graph theory to translate these abstract mathematical conditions to certain structural requirements for adaptation. The proposed algorithm does not assume any particular dynamics and is applicable to networks of any size. Moreover, the results offer a significant advancement in the realm of understanding and designing complex biochemical networks.
Collapse
Affiliation(s)
- Priyan Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology, Madras (IIT Madras), Chennai, India
- Robert Bosch Centre of Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
- Initiative for Biological Science and Systems mEdicine (IBSE), IIT Madras, Chennai, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
- Robert Bosch Centre of Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
- Initiative for Biological Science and Systems mEdicine (IBSE), IIT Madras, Chennai, India.
| | - Arun K Tangirala
- Robert Bosch Centre of Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
- Initiative for Biological Science and Systems mEdicine (IBSE), IIT Madras, Chennai, India.
| |
Collapse
|
13
|
Araujo RP, Liotta LA. Only a topological method can identify all possible network structures capable of Robust Perfect Adaptation. PLoS Comput Biol 2023; 19:e1011638. [PMID: 37992051 PMCID: PMC10664938 DOI: 10.1371/journal.pcbi.1011638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023] Open
Affiliation(s)
- Robyn P. Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
14
|
Scheepers R, Araujo RP. Robust homeostasis of cellular cholesterol is a consequence of endogenous antithetic integral control. Front Cell Dev Biol 2023; 11:1244297. [PMID: 37842086 PMCID: PMC10570530 DOI: 10.3389/fcell.2023.1244297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Although cholesterol is essential for cellular viability and proliferation, it is highly toxic in excess. The concentration of cellular cholesterol must therefore be maintained within tight tolerances, and is thought to be subject to a stringent form of homeostasis known as Robust Perfect Adaptation (RPA). While much is known about the cellular signalling interactions involved in cholesterol regulation, the specific chemical reaction network structures that might be responsible for the robust homeostatic regulation of cellular cholesterol have been entirely unclear until now. In particular, the molecular mechanisms responsible for sensing excess whole-cell cholesterol levels have not been identified previously, and no mathematical models to date have been able to capture an integral control implementation that could impose RPA on cellular cholesterol. Here we provide a detailed mathematical description of cholesterol regulation pathways in terms of biochemical reactions, based on an extensive review of experimental and clinical literature. We are able to decompose the associated chemical reaction network structures into several independent subnetworks, one of which is responsible for conferring RPA on several intracellular forms of cholesterol. Remarkably, our analysis reveals that RPA in the cholesterol concentration in the endoplasmic reticulum (ER) is almost certainly due to a well-characterised control strategy known as antithetic integral control which, in this case, involves the high-affinity binding of a multi-molecular transcription factor complex with cholesterol molecules that are excluded from the ER membrane. Our model provides a detailed framework for exploring the necessary biochemical conditions for robust homeostatic control of essential and tightly regulated cellular molecules such as cholesterol.
Collapse
Affiliation(s)
| | - Robyn P. Araujo
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
15
|
Alexis E, Schulte CCM, Cardelli L, Papachristodoulou A. Regulation strategies for two-output biomolecular networks. J R Soc Interface 2023; 20:20230174. [PMID: 37528680 PMCID: PMC10394417 DOI: 10.1098/rsif.2023.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023] Open
Abstract
Feedback control theory facilitates the development of self-regulating systems with desired performance which are predictable and insensitive to disturbances. Feedback regulatory topologies are found in many natural systems and have been of key importance in the design of reliable synthetic bio-devices operating in complex biological environments. Here, we study control schemes for biomolecular processes with two outputs of interest, expanding previously described concepts based on single-output systems. Regulation of such processes may unlock new design possibilities but can be challenging due to coupling interactions; also potential disturbances applied on one of the outputs may affect both. We therefore propose architectures for robustly manipulating the ratio/product and linear combinations of the outputs as well as each of the outputs independently. To demonstrate their characteristics, we apply these architectures to a simple process of two mutually activated biomolecular species. We also highlight the potential for experimental implementation by exploring synthetic realizations both in vivo and in vitro. This work presents an important step forward in building bio-devices capable of sophisticated functions.
Collapse
Affiliation(s)
- Emmanouil Alexis
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Carolin C. M. Schulte
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Luca Cardelli
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | | |
Collapse
|
16
|
Gawthrop PJ, Pan M. Sensitivity analysis of biochemical systems using bond graphs. J R Soc Interface 2023; 20:20230192. [PMID: 37464805 DOI: 10.1098/rsif.2023.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
The sensitivity of systems biology models to parameter variation can give insights into which parameters are most important for physiological function, and also direct efforts to estimate parameters. However, in general, kinetic models of biochemical systems do not remain thermodynamically consistent after perturbing parameters. To address this issue, we analyse the sensitivity of biological reaction networks in the context of a bond graph representation. We find that the parameter sensitivities can themselves be represented as bond graph components, mirroring potential mechanisms for controlling biochemistry. In particular, a sensitivity system is derived which re-expresses parameter variation as additional system inputs. The sensitivity system is then linearized with respect to these new inputs to derive a linear system which can be used to give local sensitivity to parameters in terms of linear system properties such as gain and time constant. This linear system can also be used to find so-called sloppy parameters in biological models. We verify our approach using a model of the Pentose Phosphate Pathway, confirming the reactions and metabolites most essential to maintaining the function of the pathway.
Collapse
Affiliation(s)
- Peter J Gawthrop
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Michael Pan
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
17
|
Merzbacher C, Mac Aodha O, Oyarzún DA. Bayesian Optimization for Design of Multiscale Biological Circuits. ACS Synth Biol 2023. [PMID: 37339382 PMCID: PMC10367132 DOI: 10.1021/acssynbio.3c00120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Recent advances in synthetic biology have enabled the construction of molecular circuits that operate across multiple scales of cellular organization, such as gene regulation, signaling pathways, and cellular metabolism. Computational optimization can effectively aid the design process, but current methods are generally unsuited for systems with multiple temporal or concentration scales, as these are slow to simulate due to their numerical stiffness. Here, we present a machine learning method for the efficient optimization of biological circuits across scales. The method relies on Bayesian optimization, a technique commonly used to fine-tune deep neural networks, to learn the shape of a performance landscape and iteratively navigate the design space toward an optimal circuit. This strategy allows the joint optimization of both circuit architecture and parameters, and provides a feasible approach to solve a highly nonconvex optimization problem in a mixed-integer input space. We illustrate the applicability of the method on several gene circuits for controlling biosynthetic pathways with strong nonlinearities, multiple interacting scales, and using various performance objectives. The method efficiently handles large multiscale problems and enables parametric sweeps to assess circuit robustness to perturbations, serving as an efficient in silico screening method prior to experimental implementation.
Collapse
Affiliation(s)
| | - Oisin Mac Aodha
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, U.K
- The Alan Turing Institute, London NW1 2DB, U.K
| | - Diego A Oyarzún
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, U.K
- The Alan Turing Institute, London NW1 2DB, U.K
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, U.K
| |
Collapse
|
18
|
Araujo RP, Liotta LA. Universal structures for adaptation in biochemical reaction networks. Nat Commun 2023; 14:2251. [PMID: 37081018 PMCID: PMC10119132 DOI: 10.1038/s41467-023-38011-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
At the molecular level, the evolution of life is driven by the generation and diversification of adaptation mechanisms. A universal description of adaptation-capable chemical reaction network (CRN) structures has remained elusive until now, since currently-known criteria for adaptation apply only to a tiny subset of possible CRNs. Here we identify the definitive structural requirements that characterize all adaptation-capable collections of interacting molecules, however large or complex. We show that these network structures implement a form of integral control in which multiple independent integrals can collaborate to confer the capacity for adaptation on specific molecules. Using an algebraic algorithm informed by these findings, we demonstrate the existence of embedded integrals in a variety of biologically important CRNs that have eluded previous methods, and for which adaptation has been observed experimentally. This definitive picture of biological adaptation at the level of intermolecular interactions represents a blueprint for adaptation-capable signaling networks across all domains of life, and for the design of synthetic biosystems.
Collapse
Affiliation(s)
- Robyn P Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| |
Collapse
|
19
|
Araujo R, Brumley D, Cursons J, Day K, Faria M, Flegg JA, Germano D, Hunt H, Hunter P, Jenner A, Johnston S, McCaw JM, Maini P, Miller C, Muskovic W, Osborne J, Pan M, Rajagopal V, Shahidi N, Siekmann I, Stumpf M, Zanca A. Frontiers of Mathematical Biology: A workshop honouring Professor Edmund Crampin. Math Biosci 2023; 359:109007. [PMID: 37062447 DOI: 10.1016/j.mbs.2023.109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/18/2023]
Affiliation(s)
- Robyn Araujo
- School of Mathematical Sciences, Queensland University of Technology, Australia
| | - Douglas Brumley
- School of Mathematics and Statistics, The University of Melbourne, Australia
| | | | - Karen Day
- Bio21 Institute, The University of Melbourne, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Australia
| | - Domenic Germano
- School of Mathematics and Statistics, The University of Melbourne, Australia
| | - Hilary Hunt
- Department of Biology, University of Oxford, United Kingdom
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Adrianne Jenner
- School of Mathematical Sciences, Queensland University of Technology, Australia
| | - Stuart Johnston
- School of Mathematics and Statistics, The University of Melbourne, Australia
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Australia.
| | - Philip Maini
- Mathematical Institute, University of Oxford, United Kingdom
| | - Claire Miller
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | | | - James Osborne
- School of Mathematics and Statistics, The University of Melbourne, Australia
| | - Michael Pan
- School of Mathematics and Statistics, The University of Melbourne, Australia
| | - Vijay Rajagopal
- Department of Biomedical Engineering, The University of Melbourne, Australia
| | - Niloofar Shahidi
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Ivo Siekmann
- School of Computer Science and Mathematics, Liverpool John Moores University, United Kingdom
| | - Michael Stumpf
- School of Mathematics and Statistics, The University of Melbourne, Australia; Melbourne Integrative Genomics, The University of Melbourne, Australia
| | - Adriana Zanca
- School of Mathematics and Statistics, The University of Melbourne, Australia
| |
Collapse
|
20
|
Jeynes-Smith C, Araujo RP. Protein-protein complexes can undermine ultrasensitivity-dependent biological adaptation. J R Soc Interface 2023; 20:20220553. [PMID: 36596458 PMCID: PMC9810431 DOI: 10.1098/rsif.2022.0553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Robust perfect adaptation (RPA) is a ubiquitously observed signalling response across all scales of biological organization. A major class of network architectures that drive RPA in complex networks is the Opposer module-a feedback-regulated network into which specialized integral-computing 'opposer node(s)' are embedded. Although ultrasensitivity-generating chemical reactions have long been considered a possible mechanism for such adaptation-conferring opposer nodes, this hypothesis has relied on simplified Michaelian models, which neglect the presence of protein-protein complexes. Here we develop complex-complete models of interlinked covalent-modification cycles with embedded ultrasensitivity, explicitly capturing all molecular interactions and protein complexes. Strikingly, we demonstrate that the presence of protein-protein complexes thwarts the network's capacity for RPA in any 'free' active protein form, conferring RPA capacity instead on the concentration of a larger protein pool consisting of two distinct forms of a single protein. We further show that the presence of enzyme-substrate complexes, even at comparatively low concentrations, play a crucial and previously unrecognized role in controlling the RPA response-significantly reducing the range of network inputs for which RPA can obtain, and imposing greater parametric requirements on the RPA response. These surprising results raise fundamental new questions as to the biochemical requirements for adaptation-conferring Opposer modules within complex cellular networks.
Collapse
Affiliation(s)
- C. Jeynes-Smith
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - R. P. Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
21
|
Araujo RP, Liotta LA. Design Principles Underlying Robust Adaptation of Complex Biochemical Networks. Methods Mol Biol 2023; 2634:3-32. [PMID: 37074572 DOI: 10.1007/978-1-0716-3008-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Biochemical networks are often characterized by tremendous complexity-both in terms of the sheer number of interacting molecules ("nodes") and in terms of the varied and incompletely understood interactions among these molecules ("interconnections" or "edges"). Strikingly, the vast and intricate networks of interacting proteins that exist within each living cell have the capacity to perform remarkably robustly, and reproducibly, despite significant variations in concentrations of the interacting components from one cell to the next and despite mutability over time of biochemical parameters. Here we consider the ubiquitously observed and fundamentally important signalling response known as robust perfect adaptation (RPA). We have recently shown that all RPA-capable networks, even the most complex ones, must satisfy an extremely rigid set of design principles, and are modular, being decomposable into just two types of network building-blocks-opposer modules and balancer modules. Here we present an overview of the design principles that characterize all RPA-capable network topologies through a detailed examination of a collection of simple examples. We also introduce a diagrammatic method for studying the potential of a network to exhibit RPA, which may be applied without a detailed knowledge of the complex mathematical principles governing RPA.
Collapse
Affiliation(s)
- Robyn P Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
- Institute of Health and Biomedical Innovation (IHBI), Kelvin Grove, QLD, Australia.
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
22
|
Vittadello ST, Stumpf MPH. Open problems in mathematical biology. Math Biosci 2022; 354:108926. [PMID: 36377100 DOI: 10.1016/j.mbs.2022.108926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Biology is data-rich, and it is equally rich in concepts and hypotheses. Part of trying to understand biological processes and systems is therefore to confront our ideas and hypotheses with data using statistical methods to determine the extent to which our hypotheses agree with reality. But doing so in a systematic way is becoming increasingly challenging as our hypotheses become more detailed, and our data becomes more complex. Mathematical methods are therefore gaining in importance across the life- and biomedical sciences. Mathematical models allow us to test our understanding, make testable predictions about future behaviour, and gain insights into how we can control the behaviour of biological systems. It has been argued that mathematical methods can be of great benefit to biologists to make sense of data. But mathematics and mathematicians are set to benefit equally from considering the often bewildering complexity inherent to living systems. Here we present a small selection of open problems and challenges in mathematical biology. We have chosen these open problems because they are of both biological and mathematical interest.
Collapse
Affiliation(s)
- Sean T Vittadello
- Melbourne Integrative Genomics, University of Melbourne, Australia; School of BioSciences, University of Melbourne, Australia
| | - Michael P H Stumpf
- Melbourne Integrative Genomics, University of Melbourne, Australia; School of BioSciences, University of Melbourne, Australia; School of Mathematics and Statistics, University of Melbourne, Australia.
| |
Collapse
|
23
|
A group theoretic approach to model comparison with simplicial representations. J Math Biol 2022; 85:48. [PMID: 36209430 PMCID: PMC9548478 DOI: 10.1007/s00285-022-01807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 10/28/2022]
Abstract
AbstractThe complexity of biological systems, and the increasingly large amount of associated experimental data, necessitates that we develop mathematical models to further our understanding of these systems. Because biological systems are generally not well understood, most mathematical models of these systems are based on experimental data, resulting in a seemingly heterogeneous collection of models that ostensibly represent the same system. To understand the system we therefore need to understand how the different models are related to each other, with a view to obtaining a unified mathematical description. This goal is complicated by the fact that a number of distinct mathematical formalisms may be employed to represent the same system, making direct comparison of the models very difficult. A methodology for comparing mathematical models based on their underlying conceptual structure is therefore required. In previous work we developed an appropriate framework for model comparison where we represent models, specifically the conceptual structure of the models, as labelled simplicial complexes and compare them with the two general methodologies of comparison by distance and comparison by equivalence. In this article we continue the development of our model comparison methodology in two directions. First, we present a rigorous and automatable methodology for the core process of comparison by equivalence, namely determining the vertices in a simplicial representation, corresponding to model components, that are conceptually related and the identification of these vertices via simplicial operations. Our methodology is based on considerations of vertex symmetry in the simplicial representation, for which we develop the required mathematical theory of group actions on simplicial complexes. This methodology greatly simplifies and expedites the process of determining model equivalence. Second, we provide an alternative mathematical framework for our model-comparison methodology by representing models as groups, which allows for the direct application of group-theoretic techniques within our model-comparison methodology.
Collapse
|
24
|
Gupta A, Khammash M. Universal structural requirements for maximal robust perfect adaptation in biomolecular networks. Proc Natl Acad Sci U S A 2022; 119:e2207802119. [PMID: 36256812 PMCID: PMC9618122 DOI: 10.1073/pnas.2207802119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022] Open
Abstract
Adaptation is a running theme in biology. It allows a living system to survive and thrive in the face of unpredictable environments by maintaining key physiological variables at their desired levels through tight regulation. When one such variable is maintained at a certain value at the steady state despite perturbations to a single input, this property is called robust perfect adaptation (RPA). Here we address and solve the fundamental problem of maximal RPA (maxRPA), whereby, for a designated output variable, RPA is achieved with respect to perturbations in virtually all network parameters. In particular, we show that the maxRPA property imposes certain structural constraints on the network. We then prove that these constraints are fully characterized by simple linear algebraic stoichiometric conditions which differ between deterministic and stochastic descriptions of the dynamics. We use our results to derive a new internal model principle (IMP) for biomolecular maxRPA networks, akin to the celebrated IMP in control theory. We exemplify our results through several known biological examples of robustly adapting networks and construct examples of such networks with the aid of our linear algebraic characterization. Our results reveal the universal requirements for maxRPA in all biological systems, and establish a foundation for studying adaptation in general biomolecular networks, with important implications for both systems and synthetic biology.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, 4058 Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, 4058 Basel, Switzerland
| |
Collapse
|
25
|
Mogilner A, Miles CE. Mechanosensation: Capping actin filaments for robustness. Curr Biol 2022; 32:R1033-R1035. [DOI: 10.1016/j.cub.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Discovering design principles for biological functionalities: Perspectives from systems biology. J Biosci 2022. [DOI: 10.1007/s12038-022-00293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
A genetic mammalian proportional-integral feedback control circuit for robust and precise gene regulation. Proc Natl Acad Sci U S A 2022; 119:e2122132119. [PMID: 35687671 PMCID: PMC9214505 DOI: 10.1073/pnas.2122132119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To survive in the harsh environments they inhabit, cells have evolved sophisticated regulatory mechanisms that can maintain a steady internal milieu or homeostasis. This robustness, however, does not generally translate to engineered genetic circuits, such as the ones studied by synthetic biology. Here, we introduce an implementation of a minimal and universal gene regulatory motif that produces robust perfect adaptation for mammalian cells, and we improve on it by enhancing the precision of its regulation. The processes that keep a cell alive are constantly challenged by unpredictable changes in its environment. Cells manage to counteract these changes by employing sophisticated regulatory strategies that maintain a steady internal milieu. Recently, the antithetic integral feedback motif has been demonstrated to be a minimal and universal biological regulatory strategy that can guarantee robust perfect adaptation for noisy gene regulatory networks in Escherichia coli. Here, we present a realization of the antithetic integral feedback motif in a synthetic gene circuit in mammalian cells. We show that the motif robustly maintains the expression of a synthetic transcription factor at tunable levels even when it is perturbed by increased degradation or its interaction network structure is perturbed by a negative feedback loop with an RNA-binding protein. We further demonstrate an improved regulatory strategy by augmenting the antithetic integral motif with additional negative feedback to realize antithetic proportional–integral control. We show that this motif produces robust perfect adaptation while also reducing the variance of the regulated synthetic transcription factor. We demonstrate that the integral and proportional–integral feedback motifs can mitigate the impact of gene expression burden, and we computationally explore their use in cell therapy. We believe that the engineering of precise and robust perfect adaptation will enable substantial advances in industrial biotechnology and cell-based therapeutics.
Collapse
|
28
|
Chakraborty D, Rengaswamy R, Raman K. Designing Biological Circuits: From Principles to Applications. ACS Synth Biol 2022; 11:1377-1388. [PMID: 35320676 DOI: 10.1021/acssynbio.1c00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic circuit design is a well-studied problem in synthetic biology. Ever since the first genetic circuits─the repressilator and the toggle switch─were designed and implemented, many advances have been made in this area of research. The current review systematically organizes a number of key works in this domain by employing the versatile framework of generalized morphological analysis. Literature in the area has been mapped on the basis of (a) the design methodologies used, ranging from brute-force searches to control-theoretic approaches, (b) the modeling techniques employed, (c) various circuit functionalities implemented, (d) key design characteristics, and (e) the strategies used for the robust design of genetic circuits. We conclude our review with an outlook on multiple exciting areas for future research, based on the systematic assessment of key research gaps that have been readily unravelled by our analysis framework.
Collapse
Affiliation(s)
- Debomita Chakraborty
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems medicinE (IBSE), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Articial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
| | - Raghunathan Rengaswamy
- Centre for Integrative Biology and Systems medicinE (IBSE), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Articial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
| | - Karthik Raman
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems medicinE (IBSE), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Articial Intelligence (RBCDSAI), Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
| |
Collapse
|
29
|
Bhattacharya P, Raman K, Tangirala AK. Discovering adaptation-capable biological network structures using control-theoretic approaches. PLoS Comput Biol 2022; 18:e1009769. [PMID: 35061660 PMCID: PMC8809615 DOI: 10.1371/journal.pcbi.1009769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 02/02/2022] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Constructing biological networks capable of performing specific biological functionalities has been of sustained interest in synthetic biology. Adaptation is one such ubiquitous functional property, which enables every living organism to sense a change in its surroundings and return to its operating condition prior to the disturbance. In this paper, we present a generic systems theory-driven method for designing adaptive protein networks. First, we translate the necessary qualitative conditions for adaptation to mathematical constraints using the language of systems theory, which we then map back as ‘design requirements’ for the underlying networks. We go on to prove that a protein network with different input–output nodes (proteins) needs to be at least of third-order in order to provide adaptation. Next, we show that the necessary design principles obtained for a three-node network in adaptation consist of negative feedback or a feed-forward realization. We argue that presence of a particular class of negative feedback or feed-forward realization is necessary for a network of any size to provide adaptation. Further, we claim that the necessary structural conditions derived in this work are the strictest among the ones hitherto existed in the literature. Finally, we prove that the capability of producing adaptation is retained for the admissible motifs even when the output node is connected with a downstream system in a feedback fashion. This result explains how complex biological networks achieve robustness while keeping the core motifs unchanged in the context of a particular functionality. We corroborate our theoretical results with detailed and thorough numerical simulations. Overall, our results present a generic, systematic and robust framework for designing various kinds of biological networks. Biological systems display a remarkable diversity of functionalities, many of which can be conceived as the response of a large network composed of small interconnecting modules. Unravelling the connection pattern, i.e. design principles, behind important biological functionalities is one of the most challenging problems in systems biology. One such phenomenon is perfect adaptation, which merits special attention owing to its universal presence ranging from chemotaxis in bacterial cells to calcium homeostasis in mammalian cells. The present work focuses on finding the design principles for perfect adaptation in the presence of a stair-case type disturbance. To this end, the current work proposes a systems-theoretic approach to deduce precise mathematical (hence structural) conditions that comply with the key performance parameters for adaptation. The approach is agnostic to the particularities of the reaction kinetics, underlining the dominant role of the topological structure on the response of the network. Notably, the design principles obtained in this work serve as the most strict necessary structural conditions for a network of any size to provide perfect adaptation.
Collapse
Affiliation(s)
- Priyan Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
- Initiative for Biological Systems Engineering (IBSE), IIT Madras, Chennai, India
| | - Karthik Raman
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
- Initiative for Biological Systems Engineering (IBSE), IIT Madras, Chennai, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India
- * E-mail: (KR); (AKT)
| | - Arun K. Tangirala
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
- Initiative for Biological Systems Engineering (IBSE), IIT Madras, Chennai, India
- * E-mail: (KR); (AKT)
| |
Collapse
|
30
|
Jeynes-Smith C, Araujo RP. Ultrasensitivity and bistability in covalent-modification cycles with positive autoregulation. Proc Math Phys Eng Sci 2021; 477:20210069. [PMID: 35153570 PMCID: PMC8331239 DOI: 10.1098/rspa.2021.0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Switch-like behaviours in biochemical networks are of fundamental significance in biological signal processing, and exist as two distinct types: ultra-sensitivity and bistability. Here we propose two new models of a reversible covalent-modification cycle with positive autoregulation (PAR), a motif structure that is thought to be capable of both ultrasensitivity and bistability in different parameter regimes. These new models appeal to a modelling framework that we call complex-complete, which accounts fully for the molecular complexities of the underlying signalling mechanisms. Each of the two new models encodes a specific molecular mechanism for PAR. We demonstrate that the modelling simplifications for PAR models that have been used in previous work, which rely on Michaelian approximations, are unable to accurately recapitulate the qualitative signalling responses supported by our detailed models. Strikingly, we show that complex-complete PAR models are capable of new qualitative responses such as one-way switches and a 'prozone' effect, depending on the specific PAR-encoding mechanism, which are not supported by Michaelian simplifications. Our results highlight the critical importance of accurately representing the molecular details of biochemical signalling mechanisms, and strongly suggest that the Michaelian approximation is inadequate for predictive models of enzyme-mediated chemical reactions with added regulations such as PAR.
Collapse
Affiliation(s)
- Cailan Jeynes-Smith
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation (IHBI), Brisbane, Australia
| | - Robyn P. Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation (IHBI), Brisbane, Australia
| |
Collapse
|
31
|
Shakiba N, Jones RD, Weiss R, Del Vecchio D. Context-aware synthetic biology by controller design: Engineering the mammalian cell. Cell Syst 2021; 12:561-592. [PMID: 34139166 PMCID: PMC8261833 DOI: 10.1016/j.cels.2021.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
The rise of systems biology has ushered a new paradigm: the view of the cell as a system that processes environmental inputs to drive phenotypic outputs. Synthetic biology provides a complementary approach, allowing us to program cell behavior through the addition of synthetic genetic devices into the cellular processor. These devices, and the complex genetic circuits they compose, are engineered using a design-prototype-test cycle, allowing for predictable device performance to be achieved in a context-dependent manner. Within mammalian cells, context effects impact device performance at multiple scales, including the genetic, cellular, and extracellular levels. In order for synthetic genetic devices to achieve predictable behaviors, approaches to overcome context dependence are necessary. Here, we describe control systems approaches for achieving context-aware devices that are robust to context effects. We then consider cell fate programing as a case study to explore the potential impact of context-aware devices for regenerative medicine applications.
Collapse
Affiliation(s)
- Nika Shakiba
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ross D Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Domitilla Del Vecchio
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
|
33
|
Khammash MH. Perfect adaptation in biology. Cell Syst 2021; 12:509-521. [PMID: 34139163 DOI: 10.1016/j.cels.2021.05.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022]
Abstract
A distinctive feature of many biological systems is their ability to adapt to persistent stimuli or disturbances that would otherwise drive them away from a desirable steady state. The resulting stasis enables organisms to function reliably while being subjected to very different external environments. This perspective concerns a stringent type of biological adaptation, robust perfect adaptation (RPA), that is resilient to certain network and parameter perturbations. As in engineered control systems, RPA requires that the regulating network satisfy certain structural constraints that cannot be avoided. We elucidate these ideas using biological examples from systems and synthetic biology. We then argue that understanding the structural constraints underlying RPA allows us to look past implementation details and offers a compelling means to unravel regulatory biological complexity.
Collapse
Affiliation(s)
- Mustafa H Khammash
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
34
|
Wang Y, Huang Z, Antoneli F, Golubitsky M. The structure of infinitesimal homeostasis in input-output networks. J Math Biol 2021; 82:62. [PMID: 34021398 PMCID: PMC8139887 DOI: 10.1007/s00285-021-01614-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/23/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Homeostasis refers to a phenomenon whereby the output [Formula: see text] of a system is approximately constant on variation of an input [Formula: see text]. Homeostasis occurs frequently in biochemical networks and in other networks of interacting elements where mathematical models are based on differential equations associated to the network. These networks can be abstracted as digraphs [Formula: see text] with a distinguished input node [Formula: see text], a different distinguished output node o, and a number of regulatory nodes [Formula: see text]. In these models the input-output map [Formula: see text] is defined by a stable equilibrium [Formula: see text] at [Formula: see text]. Stability implies that there is a stable equilibrium [Formula: see text] for each [Formula: see text] near [Formula: see text] and infinitesimal homeostasis occurs at [Formula: see text] when [Formula: see text]. We show that there is an [Formula: see text] homeostasis matrix [Formula: see text] for which [Formula: see text] if and only if [Formula: see text]. We note that the entries in H are linearized couplings and [Formula: see text] is a homogeneous polynomial of degree [Formula: see text] in these entries. We use combinatorial matrix theory to factor the polynomial [Formula: see text] and thereby determine a menu of different types of possible homeostasis associated with each digraph [Formula: see text]. Specifically, we prove that each factor corresponds to a subnetwork of [Formula: see text]. The factors divide into two combinatorially defined classes: structural and appendage. Structural factors correspond to feedforward motifs and appendage factors correspond to feedback motifs. Finally, we discover an algorithm for determining the homeostasis subnetwork motif corresponding to each factor of [Formula: see text] without performing numerical simulations on model equations. The algorithm allows us to classify low degree factors of [Formula: see text]. There are two types of degree 1 homeostasis (negative feedback loops and kinetic or Haldane motifs) and there are two types of degree 2 homeostasis (feedforward loops and a degree two appendage motif).
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Mathematics, The University of Iowa, Iowa City, IA 52242 USA
| | | | - Fernando Antoneli
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04039-032 Brazil
| | - Martin Golubitsky
- Department of Mathematics, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
35
|
Bhattacharya P, Raman K, Tangirala AK. Systems-Theoretic Approaches to Design Biological Networks with Desired Functionalities. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2189:133-155. [PMID: 33180299 DOI: 10.1007/978-1-0716-0822-7_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The deduction of design principles for complex biological functionalities has been a source of constant interest in the fields of systems and synthetic biology. A number of approaches have been adopted, to identify the space of network structures or topologies that can demonstrate a specific desired functionality, ranging from brute force to systems theory-based methodologies. The former approach involves performing a search among all possible combinations of network structures, as well as the parameters underlying the rate kinetics for a given form of network. In contrast to the search-oriented approach in brute force studies, the present chapter introduces a generic approach inspired by systems theory to deduce the network structures for a particular biological functionality. As a first step, depending on the functionality and the type of network in consideration, a measure of goodness of attainment is deduced by defining performance parameters. These parameters are computed for the most ideal case to obtain the necessary condition for the given functionality. The necessary conditions are then mapped as specific requirements on the parameters of the dynamical system underlying the network. Following this, admissible minimal structures are deduced. The proposed methodology does not assume any particular rate kinetics in this case for deducing the admissible network structures notwithstanding a minimum set of assumptions on the rate kinetics. The problem of computing the ideal set of parameter/s or rate constants, unlike the problem of topology identification, depends on the particular rate kinetics assumed for the given network. In this case, instead of a computationally exhaustive brute force search of the parameter space, a topology-functionality specific optimization problem can be solved. The objective function along with the feasible region bounded by the motif specific constraints amounts to solving a non-convex optimization program leading to non-unique parameter sets. To exemplify our approach, we adopt the functionality of adaptation, and demonstrate how network topologies that can achieve adaptation can be identified using such a systems-theoretic approach. The outcomes, in this case, i.e., minimum network structures for adaptation, are in agreement with the brute force results and other studies in literature.
Collapse
Affiliation(s)
- Priyan Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India. .,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India. .,Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India.
| | - Arun K Tangirala
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India. .,Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
36
|
Goekoop R, de Kleijn R. How higher goals are constructed and collapse under stress: A hierarchical Bayesian control systems perspective. Neurosci Biobehav Rev 2021; 123:257-285. [PMID: 33497783 DOI: 10.1016/j.neubiorev.2020.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/19/2020] [Accepted: 12/19/2020] [Indexed: 01/26/2023]
Abstract
In this paper, we show that organisms can be modeled as hierarchical Bayesian control systems with small world and information bottleneck (bow-tie) network structure. Such systems combine hierarchical perception with hierarchical goal setting and hierarchical action control. We argue that hierarchical Bayesian control systems produce deep hierarchies of goal states, from which it follows that organisms must have some form of 'highest goals'. For all organisms, these involve internal (self) models, external (social) models and overarching (normative) models. We show that goal hierarchies tend to decompose in a top-down manner under severe and prolonged levels of stress. This produces behavior that favors short-term and self-referential goals over long term, social and/or normative goals. The collapse of goal hierarchies is universally accompanied by an increase in entropy (disorder) in control systems that can serve as an early warning sign for tipping points (disease or death of the organism). In humans, learning goal hierarchies corresponds to personality development (maturation). The failure of goal hierarchies to mature properly corresponds to personality deficits. A top-down collapse of such hierarchies under stress is identified as a common factor in all forms of episodic mental disorders (psychopathology). The paper concludes by discussing ways of testing these hypotheses empirically.
Collapse
Affiliation(s)
- Rutger Goekoop
- Parnassia Group, PsyQ, Department of Anxiety Disorders, Early Detection and Intervention Team (EDIT), Netherlands.
| | - Roy de Kleijn
- Cognitive Psychology Unit, Leiden University, Netherlands
| |
Collapse
|
37
|
A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 2019; 570:533-537. [PMID: 31217585 DOI: 10.1038/s41586-019-1321-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/22/2019] [Indexed: 11/09/2022]
Abstract
Homeostasis is a recurring theme in biology that ensures that regulated variables robustly-and in some systems, completely-adapt to environmental perturbations. This robust perfect adaptation feature is achieved in natural circuits by using integral control, a negative feedback strategy that performs mathematical integration to achieve structurally robust regulation1,2. Despite its benefits, the synthetic realization of integral feedback in living cells has remained elusive owing to the complexity of the required biological computations. Here we prove mathematically that there is a single fundamental biomolecular controller topology3 that realizes integral feedback and achieves robust perfect adaptation in arbitrary intracellular networks with noisy dynamics. This adaptation property is guaranteed both for the population-average and for the time-average of single cells. On the basis of this concept, we genetically engineer a synthetic integral feedback controller in living cells4 and demonstrate its tunability and adaptation properties. A growth-rate control application in Escherichia coli shows the intrinsic capacity of our integral controller to deliver robustness and highlights its potential use as a versatile controller for regulation of biological variables in uncertain networks. Our results provide conceptual and practical tools in the area of cybergenetics3,5, for engineering synthetic controllers that steer the dynamics of living systems3-9.
Collapse
|
38
|
Liu H, Yang Q, Peng R, Kuai H, Lyu Y, Pan X, Liu Q, Tan W. Artificial Signal Feedback Network Mimicking Cellular Adaptivity. J Am Chem Soc 2019; 141:6458-6461. [DOI: 10.1021/jacs.8b13816] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hui Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha Hunan, 410082, China
| | - Qiuxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha Hunan, 410082, China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha Hunan, 410082, China
| | - Hailan Kuai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha Hunan, 410082, China
| | - Yifan Lyu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoshu Pan
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha Hunan, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha Hunan, 410082, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|