1
|
Van Mulders L, Locquet L, Kaandorp C, Janssens GPJ. An overview of nutritional factors in the aetiopathogenesis of myocardial fibrosis in great apes. Nutr Res Rev 2025; 38:37-52. [PMID: 38343129 DOI: 10.1017/s0954422424000076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The main cause of mortality in great apes in zoological settings is cardiovascular disease (CVD), affecting all four taxa: chimpanzee (Pan troglodytes), bonobo (Pan paniscus), gorilla (Gorilla spp.) and orangutan (Pongo spp.). Myocardial fibrosis, the most typical histological characterisation of CVD in great apes, is non-specific, making it challenging to understand the aetiopathogenesis. A multifactorial origin of disease is assumed whereby many potential causative factors are directly or indirectly related to the diet, which in wild-living great apes mainly consists of high-fibre, low-carbohydrate and very low-sodium components. Diets of great apes housed in zoological settings are often different compared with the situation in the wild. Moreover, low circulating vitamin D levels have recently been recognised in great apes housed in more northern regions. Evaluation of current supplementation guidelines shows that, despite implementation of different dietary strategies, animals stay vitamin D insufficient. Therefore, recent hypotheses designate vitamin D deficiency as a potential underlying factor in the pathogenesis of myocardial fibrosis. The aim of this literature review is to: (i) examine important differences in nutritional factors between zoological and wild great ape populations; (ii) explain the potential detrimental effects of the highlighted dietary discrepancies on cardiovascular function in great apes; and (iii) elucidate specific nutrition-related pathophysiological mechanisms that may underlie the development of myocardial fibrosis. This information may contribute to understanding the aetiopathogenesis of myocardial fibrosis in great apes and pave the way for future clinical studies and a more preventive approach to great ape CVD management.
Collapse
Affiliation(s)
- Laurens Van Mulders
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Royal Zoological Society of Antwerp (KMDA), Antwerpen, Belgium
| | - Laurent Locquet
- Department of Veterinary Medicine and Sciences, University of Notingham, Nottingham, UK
- Dick White Referrals, Cambridgeshire, UK
| | - Christine Kaandorp
- Safari Park Beekse Bergen, Hilvarenbeek, The Netherlands
- Gaia zoo, Kerkrade, The Netherlands
- Zooparc Overloon, Overloon, The Netherlands
- Dierenrijk, Mierlo, The Netherlands
| | | |
Collapse
|
2
|
Schneider-Crease IA, Moya IL, Chiou KL, Baniel A, Haile AA, Kebede F, Abebe B, Lu A, Bergman TJ, Snyder-Mackler N, Varsani A. Intestivirid Acquisition Increases Across Infancy in a Wild Primate Population. Mol Ecol 2025:e17801. [PMID: 40401745 DOI: 10.1111/mec.17801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/11/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025]
Abstract
Intestivirids (order Crassvirales, family Intestiviridae), viruses that infect Bacteroidales bacteria in the mammalian gastrointestinal tract, have been identified as a highly abundant component of the healthy human virome that may shape patterns of human health and disease through direct action on the microbiome. While double-stranded DNA bacteriophages called crAssphages (Carjivirus communis) that infect bacteria in the Bacteroidales order have been identified in humans within the first month of life, the enormous variation in post-parturition infant environments and diets has inhibited a robust understanding of the physiological and environmental factors that govern acquisition patterns. We turned to a wild population of graminivorous nonhuman primates (geladas, Theropithecus gelada) under long-term study in the Simien Mountains National Park, Ethiopia, analysing faecal samples from infants and mothers in this population across the infancy period for richness and presence of crAssphage-like viruses (family Intestiviridae). Eight intestivirid genomes were identified based on terminal redundancy representing six unique variants (< 98% intergenomic similarity) closely related to the human crAssphage. The prevalence of intestivirids in gelada faecal samples begins to rise at about 10 months of age, peaks in the months surrounding weaning (~18 months), and somewhat decreases but maintains high levels into adulthood. We found a strong association between cumulative rainfall and intestivirid detection, with a higher likelihood accompanying wetter seasons with higher grass availability. In this population, the months prior to weaning have been found to be accompanied by a shift in the microbiome characterised by a decrease in glycan degrader Bacteroidales taxa and an increase in fermentative Bacteroidales taxa, and wetter seasons when the vast majority of the gelada diet comprises grasses are associated with an increase in fermentative Bacteroidales taxa. In the context of these microbiome shifts, our results suggest that the intestivirid-bacterial host relationship may interact with major developmental and seasonal dietary shifts in the mammalian host.
Collapse
Affiliation(s)
- India A Schneider-Crease
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Department of Anthropology, Wollo University, Dessie, Ethiopia
| | - Isabella L Moya
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Alice Baniel
- Institut Des Sciences de L'évolution de Montpellier UMR5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | | | - Fanuel Kebede
- Ethiopian Wildlife Conservation Authority, Addis Ababa, Ethiopia
| | | | - Amy Lu
- Department of Anthropology, Stony Brook University, New York, USA
| | - Thore J Bergman
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Arvind Varsani
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Center of Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Purse C, Parker A, James SA, Baker DJ, Moss CJ, Evans R, Durham J, Funnell SGP, Carding SR. Intestinal microbiota profiles of captive-bred cynomolgus macaques reveal influence of biogeography and age. Anim Microbiome 2025; 7:47. [PMID: 40369669 PMCID: PMC12080069 DOI: 10.1186/s42523-025-00409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/12/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Age-associated changes to the intestinal microbiome may be linked to inflammageing and the development of age-related chronic diseases. Cynomolgus macaques, a common animal model in biomedical research, have strong genetic physiological similarities to humans and may serve as beneficial models for the effect of age on the human microbiome. However, age-associated changes to their intestinal microbiome have previously only been investigated in faecal samples. Here, we have characterised and investigated the effects of age in the cynomolgus macaque intestinal tract in luminal samples from both the small and large intestine. RESULTS Whole metagenomic shotgun sequencing was used to analyse the microbial communities in intestinal content obtained from six different intestinal regions, covering the duodenum to distal colon, of 24 healthy, captive-bred cynomolgus macaques, ranging in age from 4 to 20 years. Both reference-based and assembly-based computational profiling approaches were used to analyse changes to intestinal microbiota composition and metabolic potential associated with intestinal biogeography and age. Reference-based computational profiling revealed a significant and progressive increase in both species richness and evenness along the intestinal tract. The microbial community composition also significantly differed between the small intestine, caecum, and colon. Notably, no significant changes in the taxonomic abundance of individual taxa with age were found except when sex was included as a covariate. Additionally, using an assembly-based computational profiling approach, 156 putative novel bacterial and archaeal species were identified. CONCLUSIONS We observed limited effects of age on the composition of the luminal microbiota in the profiled regions of the intestinal tract except when sex was included as a covariate. The enteric microbial communities of the small and the large intestine were, however, distinct, highlighting the limitations of frequently used faecal microbial profiling as a proxy for the intestinal microbiota. The identification of a number of putative novel microbial taxa contributes to knowledge of the full diversity of the cynomolgus macaque intestinal microbiome.
Collapse
Affiliation(s)
- C Purse
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - A Parker
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - S A James
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - D J Baker
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - C J Moss
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - R Evans
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - J Durham
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - S G P Funnell
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - S R Carding
- Food, Microbiome and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
4
|
Greene LK, Andriatiavina T, Foss ED, Andriantsalohimisantatra A, Rivoharison TV, Rakotoarison F, Randriamboavonjy T, Yoder AD, Ratsoavina F, Blanco MB. The gut microbiome of Madagascar's lemurs from forest fragments in the central highlands. Primates 2025; 66:313-325. [PMID: 39976822 DOI: 10.1007/s10329-025-01182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/03/2025] [Indexed: 04/23/2025]
Abstract
The gut microbiome is now understood to play essential roles in host nutrition and health and has become a dominant research focus in primatology. Over the past decade, research has clarified the evolutionary traits that govern gut microbiome structure across species and the ecological traits that further influence consortia within them. Nevertheless, we stand to gain resolution by sampling hosts in understudied habitats. We focus on the lemurs of Madagascar's central highlands. Madagascar's highlands have a deep history as heterogeneous grassland-forest mosaics, but due to significant anthropogenic modification, have long been overlooked as lemur habitat. We collected fecal samples from Verreaux's sifakas (Propithecus verreauxi), common brown lemurs (Eulemur fulvus), and Goodman's mouse lemurs (Microcebus lehilahytsara) inhabiting two protected areas in the highlands and used amplicon sequencing to determine gut microbiome diversity and membership. As expected, the lemurs harbored distinct gut consortia tuned to their feeding strategies. Mouse lemurs harbored abundant Bifidobacterium and Alloprevotella that are implicated in gum metabolism, sifakas harbored abundant Lachnospiraceae that are implicated in leaf-fiber metabolism, and brown lemurs harbored diverse consortia with abundant WCBH1-41 that could be associated with frugivory in harsh seasons and habitats. Within brown lemurs, a suite of bacteria varied between seed-packed and leaf-packed feces, a proxy for dietary intakes, collected from the same group over days. Our results underscore the evolutionary and ecological factors that govern primate gut microbiomes. More broadly, we showcase the forests of Madagascar's central highlands as rich habitat for future research of lemur ecology and evolution.
Collapse
Affiliation(s)
- Lydia K Greene
- Department of Biology, Duke University, Durham, NC, USA.
- Duke Lemur Center, Duke University, Durham, NC, USA.
| | - Tsinjo Andriatiavina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Elissa D Foss
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | | | | | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| | - Fanomezana Ratsoavina
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Marina B Blanco
- Department of Biology, Duke University, Durham, NC, USA
- Duke Lemur Center, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Dasari MR, Roche KE, Jansen D, Anderson J, Alberts SC, Tung J, Gilbert JA, Blekhman R, Mukherjee S, Archie EA. Social and environmental predictors of gut microbiome age in wild baboons. eLife 2025; 13:RP102166. [PMID: 40244653 PMCID: PMC12005720 DOI: 10.7554/elife.102166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting 'microbiome clock' predicts host chronological age. Deviations from the clock's predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual's 'microbiome age' does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.
Collapse
Affiliation(s)
- Mauna R Dasari
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
- California Academy of SciencesSan FranciscoUnited States
| | - Kimberly E Roche
- Program in Computational Biology and Bioinformatics, Duke UniversityDurhamUnited States
| | - David Jansen
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Jordan Anderson
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| | - Susan C Alberts
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Department of Biology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Department of Biology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Canadian Institute for Advanced ResearchTorontoCanada
- Faculty of Life Sciences, Institute of Biology, Leipzig UniversityLeipzigGermany
| | - Jack A Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San DiegoSan DiegoUnited States
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Sayan Mukherjee
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics and Biostatistics, Duke UniversityDurhamUnited States
- Center for Scalable Data Analytics and Artificial Intelligence, University of LeipzigLeipzigGermany
- Max Planck Institute for Mathematics in the Natural SciencesLeipzigGermany
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| |
Collapse
|
6
|
Amato KR, Back JP, Sardaro MLS, Bicca‐Marques JC. Supplementation With Human Foods Affects the Gut Microbiota of Wild Howler Monkeys. Am J Primatol 2025; 87:e70029. [PMID: 40159691 PMCID: PMC11955745 DOI: 10.1002/ajp.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025]
Abstract
Wild primates face a wide range of anthropogenic influences globally that impact their health, fitness, and survival. One area of potential impact that has been particularly understudied is the supplementation of wild primate diets with human foods. Although the consumption of human foods represents a substantial dietary change for wild primates, knowledge of how it impacts their physiology and behavior is limited. Here we explore how human food supplementation impacts wild primates by comparing the gut microbiomes of free-ranging brown howler monkeys (Alouatta guariba) in periurban Brazil that do or do not have access to human foods. We found that howler monkeys consuming human foods had reduced gut microbial diversity and reduced relative abundances of fiber degrading microbial taxa, which has been associated with negative health consequences in other animals, including humans. However, the effect size of these differences was relatively small and varied over time. Additionally, the composition of the gut microbiome varied significantly across months, regardless of the access to human foods. We suggest that the biology of this howler monkey population is minimally impacted by human foods. Further empirical research will help clarify the relationship between human food supplementation and health across primate populations, facilitating conservation applications.
Collapse
Affiliation(s)
| | - Janaína P. Back
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
| | - Maria Luisa Savo Sardaro
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
- Department of Human Science and Promotion of the Quality of LifeUniversity of San RaffaeleRomeItaly
| | - Júlio César Bicca‐Marques
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
| |
Collapse
|
7
|
Shi H, Guo P, Wang Z, Zhou J, He M, Shi L, Huang X, Guo P, Guo Z, Zhang Y, Hou F. Cellulase enhancing rumen microbiome of Tan sheep indicates plastic responses to seasonal variations of diet in the typical steppe. BMC Microbiol 2025; 25:154. [PMID: 40102775 PMCID: PMC11917088 DOI: 10.1186/s12866-025-03799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Climate and geographical changes significantly influence food availability and nutrient composition over time and space, Which in turn affects the selection of microbial communities essential for maintaining gastrointestinal homeostasis and facilitating dietary adaptation. Therefore, it is essential to understand the specific responses of the gut microbiota to dietary and seasonal variations in order to improve animal conservation strategies based on solid scientific knowledge. RESULTS In summer, due to the higher nutritional quality of forage, Tan sheep exhibited enhanced forage degradation and fermentation. This was reflected by increased populations of key rumen bacteria, including Bacteroidetes, Prevotella_1, Prevotellaceae_UCG-003, Ruminococcus_1, Saccharofermentans, and Ruminococcaceae_UCG-014. Supplementation with cellulase further facilitated these processes, optimizing the utilization of available nutrients. In contrast, during winter, when the nutritional quality of forage decline, we observed lower indicators of forage degradation and fermentation in Tan sheep. Additionally, there was a significant increase in the Firmicutes/Bacteroidetes ratio, microbial diversity, microbial interactions, and metabolic activity. CONCLUSIONS The rumen microbiota adapts to enhance the breakdown of forage biomass and maintain energy balance during periods of inadequate nutritional value. Supplementing the diet with cellulase during these times can help mitigate the reduced digestibility associated with low-quality forage. This study highlights the dynamic adaptation of the rumen microbiota to seasonal variations in forage quality and emphasizes the potential benefits of cellulase supplementation in supporting rumen function and improving animal performance under varying environmental conditions.
Collapse
Affiliation(s)
- Hairen Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Pei Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Zhen Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Jieyan Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Meiyue He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Liyuan Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Xiaojuan Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Penghui Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Zhaoxia Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Yuwen Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, College of Pastoral Agriculture Science and Technology, National Forestry and Grassland Administration, Lanzhou University, Lanzhou, 730020, China.
- College of Pastoral Agricultural Science and Technology, Lanzhou University, No.768, Jiayuguan West Road, Chengguan District, Lanzhou, Gansu Province, P.R. China.
| |
Collapse
|
8
|
Liu J, Zou Q, Li D, Wang T, Han J. Gut bacterial and fungal communities of François' langur ( Trachypithecus francoisi) changed coordinate to different seasons. Front Microbiol 2025; 16:1547955. [PMID: 40109980 PMCID: PMC11920163 DOI: 10.3389/fmicb.2025.1547955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction François' langur (Trachypithecus francoisi), an endangered primate endemic to limestone forests in Vietnam and China, relies on gut microbiota to maintain gastrointestinal stability and adapt to dietary shifts. While gut microbial communities are dynamic and sensitive to seasonal and resource variations, their specific responses in François' langurs remain poorly characterized. This study investigates seasonal variations in the composition and diversity of gut bacterial and fungal communities in this species to enhance understanding of its ecological adaptations. Methods Fresh fecal samples from 22 François' langurs in Mayanghe National Nature Reserve, China, were collected across four seasons. Bacterial and fungal communities were analyzed using high-throughput sequencing to assess taxonomic composition and α-diversity. Statistical comparisons were conducted to evaluate seasonal differences at phylum and genus levels. Results Significant seasonal shifts occurred in both bacterial and fungal communities. Bacterial α-diversity peaked in warmer seasons, whereas fungal diversity was higher in colder months. At the genus level, Akkermansia (1.3% relative abundance in summer), a mucin-degrading bacterium linked to gut health, dominated warmer seasons. In contrast, the fungal genus Cercophora, associated with plant biomass degradation, was enriched during colder seasons. Seasonal factors strongly influenced microbial structure, with distinct community assemblages observed across all seasons. Discussion The inverse diversity patterns of bacterial and fungal communities suggest complementary roles in nutrient extraction under seasonal dietary constraints. Akkermansia's summer prevalence may reflect enhanced mucin utilization during fruit-rich periods, while Cercophora's cold-season dominance likely aids cellulose breakdown in leaf-heavy diets. These dynamics highlight the microbiota's role in optimizing energy harvest from seasonally variable diets. By elucidating microbial seasonal plasticity, this study provides critical insights for developing conservation strategies tailored to the nutritional ecology of François' langurs.
Collapse
Affiliation(s)
- Jinyuan Liu
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qixian Zou
- Mayanghe National Nature Reserve Administration, Tongren, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Tao Wang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Jialiang Han
- Office of Academic Affairs, Chengdu University, Chengdu, China
| |
Collapse
|
9
|
Amato KR, Lake BR, Ozminkowski S, Jiang H, Moy M, Sardaro MLS, Fultz A, Hopper LM. Exploring the Utility of the Gut Microbiome as a Longitudinal Health Monitoring Tool in Sanctuary Chimpanzees (Pan troglodytes). Am J Primatol 2025; 87:e70004. [PMID: 40089976 PMCID: PMC11910989 DOI: 10.1002/ajp.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/20/2024] [Accepted: 01/03/2025] [Indexed: 03/18/2025]
Abstract
The primary goal of captive primate management is to ensure optimal health and welfare of the animals in our care. Given that the gut microbiome interacts closely with host metabolism, immunity, and even cognition, it represents a potentially powerful tool for identifying subtle changes in health status across a range of body systems simultaneously. However, thus far, it has not been widely tested or implemented as a monitoring tool. In this study, we used longitudinal microbiome sampling of newly arrived chimpanzees at Chimp Haven to explore the feasibility of using the gut microbiome as a health and welfare biomarker in a sanctuary environment. We also tested the hypothesis that a transition to a new living environment, and integration into new social groupings, would result in temporal changes in chimpanzee gut microbiome composition. The collection of longitudinal microbiome data at Chimp Haven was feasible, and it revealed temporal shifts that were unique to each individual and, in some cases, correlated to other known impacts on health and behavior. We found limited evidence for microbial change over time after arrival at Chimp Haven that was consistent across individuals. In contrast, social group and enclosure, and to a lesser extent, age and sex, were associated with differences in gut microbiome composition. Microbiome composition was also associated with overall health status categories. However, many of the effects we detected were most apparent when using longitudinal data, as opposed to single time point samples. Additionally, we found important effects of technical factors, specifically outdoor temperature and time to collection, on our data. Overall, we demonstrate that the gut microbiome has the potential to be effectively deployed as a tool for health and environmental monitoring in a population of sanctuary chimpanzees, but the design must be carefully considered. We encourage other institutions to apply these approaches and integrate health and physiology data to build on the utility of gut microbiome analysis for ensuring the welfare of captive primates in a range of contexts.
Collapse
Affiliation(s)
| | - Benjamin R. Lake
- Chimp HavenKeithvilleLouisianaUSA
- Ecology & Evolutionary Biology ProgramTexas A&M UniversityCollege StationTexasUSA
| | - Samuel Ozminkowski
- Department of Statistics and Data ScienceNorthwestern UniversityEvanstonIllinoisUSA
| | - Hongmei Jiang
- Department of Statistics and Data ScienceNorthwestern UniversityEvanstonIllinoisUSA
| | - Madelyn Moy
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Maria Luisa Savo Sardaro
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
- Department of Human Science and Promotion of the Quality of LifeUniversity of San RaffaeleRomeItaly
| | | | - Lydia M. Hopper
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park ZooChicagoIllinoisUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
10
|
Adair MG, Tolley KA, van Vuuren BJ, da Silva JM. Anthropogenic reverberations on the gut microbiome of dwarf chameleons ( Bradypodion). PeerJ 2025; 13:e18811. [PMID: 40034670 PMCID: PMC11874949 DOI: 10.7717/peerj.18811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/12/2024] [Indexed: 03/05/2025] Open
Abstract
Exploration of the microbiome has been referred to as a final frontier in biological research. This is due to its precedence for generating insights on the holistic functioning of organismal biology by exploring the interactions between hosts and their associated symbiotic organisms. The microbiomes of many vertebrate groups still require exploration to advance current knowledge and fill previous knowledge gaps. This study generated initial descriptions of the bacterial microbiomes of three species of dwarf chameleon (Bradypodion) from the 16S rRNA gene region targeting the V3 and V4 hypervariable regions. This led to the successful identification of 1,073 and 4,502 independent amplicon sequence variants from buccal swab and faecal material samples, respectively. This newly acquired information is intended as a baseline for future work incorporating holobiont information. The diversity of microbial taxa suggests that the total dwarf chameleon microbiome is similar to other squamates investigated to date, as well as chelonians (Testudines). Microbial frequency differences were noted in comparison to crocodilians (Archosauria) and mammalian groups. Furthermore, this study aimed to examine the influence of habitat transformation on the composition of the microbiome in dwarf chameleons as each of the study species occupy both urban and natural habitats. Given that most urban habitats are highly transformed, the expectation was that microbial assemblages of the gastro-intestinal tracts of all three Bradypodion species would show significant differences between populations (i.e., natural, or urban). It was found, however, that the level of effect was contingent on species: B. melanocephalum populations showed noticeable microbiome differences between urban and natural populations; B. thamnobates showed variations in microbial community dispersions between populations; and B. setaroi showed no significant microbiome differences based on diversity metrics although some frequency differences, in microbiome composition, were observed between populations. We suggest that the magnitude of difference between the habitats occupied by the populations is a factor, given the apparent disparity between the natural and urban habitats for B. melanocephalum as compared to the other two species.
Collapse
Affiliation(s)
- Matthew G. Adair
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, Newlands, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, Gauteng, South Africa
| | - Krystal A. Tolley
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, Newlands, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, Gauteng, South Africa
| | - Bettine Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, Gauteng, South Africa
| | - Jessica Marie da Silva
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, Newlands, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, Gauteng, South Africa
| |
Collapse
|
11
|
Lan LY, Liu TC, Gao SM, Li Q, Yang L, Fei HL, Zhong XK, Wang YX, Zhu CY, Abel C, Kappeler PM, Huang LN, Fan PF. Comparative study of gut microbiota reveals the adaptive strategies of gibbons living in suboptimal habitats. NPJ Biofilms Microbiomes 2025; 11:29. [PMID: 39953051 PMCID: PMC11828964 DOI: 10.1038/s41522-025-00653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/06/2025] [Indexed: 02/17/2025] Open
Abstract
Wild animals face numerous challenges in less ideal habitats, including the lack of food as well as changes in diet. Understanding how the gut microbiomes of wild animals adapt to changes in food resources within suboptimal habitats is critical for their survival. Therefore, we conducted a longitudinal sampling of three gibbon species living in high-quality (Nomascus hainanus) and suboptimal (Nomascus concolor and Hoolock tianxing) habitats to address the dynamics of gut microbiome assembly over one year. The three gibbon species exhibited significantly different gut microbial diversity and composition. N. hainanus showed the lowest alpha diversity and highest nestedness, suggesting a more specialized and potentially stable microbial community in terms of composition, while H. tianxing displayed high species turnover and low nestedness, reflecting a more dynamic microbial ecosystem, which may indicate greater sensitivity to environmental changes or a flexible response to habitat variability. The gut microbial community of N. concolor was influenced by homogeneous selection in the deterministic process, primarily driven by Prevotellaceae. In contrast, the gut microbial communities of H. tianxing and N. hainanus were influenced by dispersal limitation in the stochastic process, driven by Acholeplasmataceae and Fibrobacterota, respectively. Further, the microbial response patterns to leaf feeding in N. hainanus differed from those of the other two gibbon species. In conclusion, this first cross-species comparative study provides initial insights into the different ecological adaptive strategies of gut microbiomes from a point of community assembly, which could contribute to the long-term conservation of wild primates. In this study, we conducted longitudinal sampling of three gibbon species living in high-quality (Nomascus hainanus) and suboptimal (Nomascus concolor and Hoolock tianxing) habitats to address the dynamics of gut microbiome (composition, alpha diversity, beta diversity and assembly process) over one year.
Collapse
Affiliation(s)
- Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Tai-Cong Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Li Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Han-Lan Fei
- College of Life Sciences, China West Normal University, Nanchong, P.R. China
| | - Xu-Kai Zhong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yu-Xin Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chang-Yue Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Christoph Abel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
12
|
Zeng S, Huang Z, Kriengkrai S, Zhou R, Yuan D, Tuấn NV, Zhu Z, Zheng L, Hou Q, Li X, Chen Q, Zhang L, Hou D, Deng Z, Bao S, Wang W, Khoruamkid S, Goh SL, Weng S, He J. Warming-driven migration of enterotypes mediates host health and disease statuses in ectotherm Litopenaeus vannamei. Commun Biol 2025; 8:126. [PMID: 39865129 PMCID: PMC11770195 DOI: 10.1038/s42003-025-07558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
Global warming has threatened all-rounded hierarchical biosphere by reconstructing eco-structure and bringing biodiversity variations. Pacific white shrimp, a successful model of worldwide utilizing marine ectothermic resources, is facing huge losses due to multiple diseases relevant to intestinal microbiota (IM) dysbiosis during temperature fluctuation. However, how warming mediates shrimp health remains poorly understood. Herein, a global shrimp IM catalogue was conducted via 1,369 shrimp IM data from nine countries, including 918 samples from previously published data and 451 generated in the study. Shrimp IMs were stratified into three enterotypes with distinctive compositions and functions, dominated by Vibrio, Shewanella and Candidatus Bacilloplasma, which showed an obvious distribution bias between enterotypes and diseases. The ratio of Vibrio and Candidatus Bacilloplasma was a crucial indicator for shrimp health. Moreover, temperature was the most driving factor for microbial composition, which potentially led to the migration of enterotypes, and high probability of white feces syndrome and low risk of hepatopancreas necrosis syndrome. Collectively, the warming-driven enterotypes mediated shrimp health, which exemplified the causal relationship between temperature rising and ectothermic animals' health. These findings enlarged the cognition of shrimp health culture management from a microecological perspective, and alerted the inevitable challenge of global warming to ectothermic animals.
Collapse
Affiliation(s)
- Shenzheng Zeng
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China.
| | | | - Renjun Zhou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Derun Yuan
- Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand
| | - Nguyễn Văn Tuấn
- Fisheries and Technical, Economic College, Bac Ninh, Vietnam
| | - Zhiming Zhu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Luwei Zheng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qilu Hou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuanting Li
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Chen
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lingyu Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhixuan Deng
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shicheng Bao
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Wang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Soo Loon Goh
- Goh Siong Tee Marine Product Sdn.Bhd, Penang, Malaysia
| | - Shaoping Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Yu W, Yang J, Teng LW, Zhao XL, Zhu ZY, Cui S, Du WG, Liu ZS, Zeng ZG. Reciprocal translocation experiments reveal gut microbiome plasticity and host specificity in a Qinghai-Xizang Plateau lizard. Zool Res 2025; 46:139-151. [PMID: 39846192 PMCID: PMC11891006 DOI: 10.24272/j.issn.2095-8137.2024.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025] Open
Abstract
Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition. The gut microbiome, highly responsive to external environmental factors, plays a crucial role in host adaptability and may facilitate local adaptation within species. Concurrently, the genetic background of host populations influences gut microbiome composition, highlighting the bidirectional relationship between host and microbiome. Despite this, our understanding of gut microbiome plasticity and its role in host adaptability remains limited, particularly in reptiles. To clarify this issue, we conducted a reciprocal translocation experiment with gravid females of the Qinghai toad-headed lizards ( Phrynocephalus vlangalii) between high-altitude (2 600 m a.s.l.) and superhigh-altitude (3 600 m a.s.l.) environments on Dangjin Mountain of the Qinghai-Xizang Plateau, China. One year later, we assessed the phenotypes and gut microbiomes of their offspring. Results revealed significant plasticity in gut microbiome diversity and structure in response to contrasting elevations. High-altitude conditions increased diversity, and maternal effects appeared to enable high-altitude lizards to maintain elevated diversity when exposed to superhigh-altitude environments. Additionally, superhigh-altitude lizards displayed distinct gut microbiome structures with notable host specificity, potentially linked to their lower growth rates. Overall, these findings underscore the importance of the gut microbiome in facilitating reptilian adaptation to rapid environmental changes across altitudinal gradients. Furthermore, this study provides critical insights into microbial mechanisms underpinning local adaptation and adaptative plasticity, offering a foundation for future research on host-microbiome interactions in evolutionary and ecological contexts.
Collapse
Affiliation(s)
- Wei Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Wei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China
| | - Xiao-Long Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Ecological and Environmental Sciences, Institute of Eco-Chongming, Shanghai Institute of Wildlife Epidemics, East China Normal University, Shanghai 200241, China
| | - Ze-Yu Zhu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Cui
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen-Sheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, Heilongjiang 150040, China. E-mail:
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| |
Collapse
|
14
|
Du J, Zheng P, Gao W, Liang Q, Leng L, Shi L. All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama ( Phrynocephalus axillaris) to different altitudes. Front Microbiol 2025; 15:1501684. [PMID: 39845039 PMCID: PMC11751238 DOI: 10.3389/fmicb.2024.1501684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama (Phrynocephalus axillaris) at different altitudes (-80 m to 2000 m). The results demonstrated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phylum, Lachnospiraceae and Oscillospiraceae were the most abundant family, and the low-altitude populations had higher richness than high-altitude populations; Akkermansiaceae appeared to be enriched in high-altitude populations and the relative abundance tended to increase with altitude. The gut microbiome of three populations of P. axillaris at different altitudes was clustered into two different enterotypes, low-altitude populations and high-altitude populations shared an enterotype dominated by Akkermansia, Kineothrix, Phocaeicola; intermediate-altitude populations had an enterotype dominated by Mesorhizobium, Bradyrhizobium. Metabolites involved in amino acid and lipid metabolism differed significantly at different altitudes. The above results suggest that gut microbiome plasticity drives the extensive adaptation of P. axillaris to multi-stress caused by different altitudes. With global warming, recognizing the adaptive capacity of wide-ranging species to altitude can help plan future conservation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
15
|
Moeller AH. Partner fidelity, not geography, drives co-diversification of gut microbiota with hominids. Biol Lett 2025; 21:20240454. [PMID: 39875095 PMCID: PMC11774583 DOI: 10.1098/rsbl.2024.0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
Bacterial strains that inhabit the gastrointestinal tracts of hominids have diversified in parallel (co-diversified) with their host species. The extent to which co-diversification has been mediated by partner fidelity between strains and hosts or by geographical distance between hosts is not clear due to a lack of strain-level data from clades of hosts with unconfounded phylogenetic relationships and geographical distributions. Here, I tested these competing hypotheses through meta-analyses of 7121 gut bacterial genomes assembled from wild-living ape species and subspecies sampled throughout their ranges in equatorial Africa. Across the gut bacterial phylogeny, strain diversification was more strongly associated with host phylogeny than with geography. In total, approximately 14% of the branch length of the gut bacterial phylogeny showed significant evidence of co-diversification independent of geography, whereas only approximately 4% showed significant evidence of diversification associated with geography independent of host phylogeny. Geographically co-occurring heterospecific hosts (Pan and Gorilla) universally maintained distinct co-diversified bacterial strains. Strains whose diversification was associated with geography independent of host phylogeny included clades of Proteobacteria known to adopt free-living lifestyles (e.g. Escherichia). These results show that co-diversification of gut bacterial strains with hominids has been driven primarily by fidelity of strains to host lineages rather than geography.
Collapse
Affiliation(s)
- Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| |
Collapse
|
16
|
Cai TG, Zhang JD, Lu L, Wang YF, Zhu D. Captivity increased the abundance of high-risk antibiotic resistance genes in the giant panda gut microbiome. ENVIRONMENTAL RESEARCH 2024; 263:120220. [PMID: 39448015 DOI: 10.1016/j.envres.2024.120220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Captivity is a key strategy for protecting endangered species, but research has primarily focused on artificial breeding and reintroduction to bolster wild populations, often overlooking the environmental and health risks associated with antibiotic resistance genes (ARGs). Here, we conducted a comprehensive analysis of the microbiome and ARG profiles in the gut of wild giant pandas across five representative populations, as well as one captive population, utilizing 16S rRNA gene sequencing and High-Throughput Quantitative PCR. Our findings revealed that both geographic location and captivity significantly influenced the gut microbial community and ARG composition in the gut of giant pandas. Additionally, we identified core microbiomes with essential ecological functions, particularly those related to food utilization, were identified in the giant panda gut across different regions. The gut ARGs in giant pandas exhibited a broad range of subtypes, with multidrug resistance genes being the most prevalent. Notably, the captive population harbored the highest abundance of high-risk ARGs, especially those conferring tetracycline resistance. High-risk multidrug ARGs (e.g., tolC, mepA, and mdtA) were found to be strongly correlated with the potential pathogens, such as Escherichia_Shigellina and Pseudomonas. Furthermore, bamboo-associated ARGs and mobile genetic elements (MGEs) contributed significantly to the ARG abundance in the giant panda gut, indicating that diet plays a crucial role in shaping gut resistome. Collectively, our study provides a detailed mapping of giant panda gut microbiomes and ARG distribution, offering valuable insights for conservation efforts and advancing our understanding of ARG dynamics in giant panda populations.
Collapse
Affiliation(s)
- Tian-Gui Cai
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan Province 637009, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Dong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan Province 637009, China.
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
17
|
Sabey KA, Castro A, Song SJ, Knight R, Ezenwa VO. Anthelmintic Treatment Reveals Sex-Dependent Worm-Gut Microbiota Interactions. Parasite Immunol 2024; 46:e70000. [PMID: 39707820 DOI: 10.1111/pim.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Gastrointestinal helminths interact with the gut microbiota in ways that shape microbiota structure and function, but these effects are highly inconsistent across studies. One factor that may help explain variation in parasite-microbiota interactions is host sex since helminths can induce sex-specific changes in feeding behaviour and diet that might cascade to shape gut microbial communities. We tested this idea using an anthelmintic treatment experiment in wild Grant's gazelles (Nanger granti). We found that in males, anthelmintic treatment induced short-term shifts in microbial diversity and structure within ~40-70 days, but in females, treatment had effects on microbiota structure that emerged over a longer period of ~500 days. Long-term effects of treatment on the microbiota of females were potentially due to sex-specific changes in feeding behaviour since deworming nearly doubled the time females spent feeding, but did not affect feeding time in males. In support of this idea, anthelmintic treatment eliminated associations between microbial diversity and diet in females, and treated females maintained a more stable abundance of microbial taxa and predicted functions. Together, these findings suggest that accounting for host traits can help uncover mechanisms, such as changes in diet, by which helminths interact with the microbiota.
Collapse
Affiliation(s)
- Kate A Sabey
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Avina Castro
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA
| | - Se Jin Song
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Vanessa O Ezenwa
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Manus MB, Lucore J, Kuthyar S, Moy M, Savo Sardaro ML, Amato KR. Technical note: A biological anthropologist's guide for applying microbiome science to studies of human and non-human primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25020. [PMID: 39222382 DOI: 10.1002/ajpa.25020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
A central goal of biological anthropology is connecting environmental variation to differences in host physiology, biology, health, and evolution. The microbiome represents a valuable pathway for studying how variation in host environments impacts health outcomes. While there are many resources for learning about methods related to microbiome sample collection, laboratory analyses, and genetic sequencing, there are fewer dedicated to helping researchers navigate the dense portfolio of bioinformatics and statistical approaches for analyzing microbiome data. Those that do exist are rarely related to questions in biological anthropology and instead are often focused on human biomedicine. To address this gap, we expand on existing tutorials and provide a "road map" to aid biological anthropologists in understanding, selecting, and deploying the data analysis and visualization methods that are most appropriate for their specific research questions. Leveraging an existing dataset of fecal samples and survey data collected from wild geladas living in Simien Mountains National Park in Ethiopia (Baniel et al., 2021), this paper guides researchers toward answering three questions related to variation in the gut microbiome across host and environmental factors. By providing explanations, examples, and a reproducible workflow for different analytic methods, we move beyond the theoretical benefits of considering the microbiome within anthropological research and instead present researchers with a guide for applying microbiome science to their work. This paper makes microbiome science more accessible to biological anthropologists and paves the way for continued research into the microbiome's role in the ecology, evolution, and health of human and non-human primates.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Jordan Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Madelyn Moy
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Human Science and Promotion of the Quality of Life, University of San Raffaele, Rome, Italy
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
19
|
Yang J, Xu Z, Wan D, Wang X, Zhang X, Zhu Y, Guo J. Pollution characteristics of heavy metals, antibiotic and antibiotic resistance genes in the crested ibis and their habitat across different lifestyle and geography. ENVIRONMENTAL RESEARCH 2024; 261:119701. [PMID: 39094899 DOI: 10.1016/j.envres.2024.119701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Antibacterial resistance in wild animals has been increasingly reported worldwide, even though they are usually not directly exposed to clinically relevant antibiotics. Crested ibis, one of the rarest birds in the world, usually forages in paddy fields and prefer to nest and breed near villages that is greatly influenced by anthropogenic activities. We sampled the feces of crested ibises, as well as their habitat environment samples, to explore the pollution characteristics of heavy metals, antibiotics and antibiotic resistance genes (ARGs). Results showed that the pollution characteristics of heavy metals, antibiotic, ARGs and gut microbiota of crested ibis were more related by host lifestyle and habitats. Captive ibises had higher relative abundances of the total ARGs and tetracycline concentrations compared with feralization and wild ibises, while the heavy metal contents had shown the opposite result. The Characteristics of pollutants in the corresponding environmental samples also exhibited high similarity with the results of fecal samples. The relative abundances of Proteobacteria and Actinobacteria were significantly different between captive and wild individuals, while the abundance of majority bacterial genera was generally higher in wild populations. The concentrations of heavy metals in soil (Cd, Cu and Zn) and water (Cd, Cu, Zn and Cr) were both exceeded the background soil levels or surface water quality standards, suggesting multi-element contamination in the habitat. Ecological risk assessments of soils by Igeo and Er showed that the habitats of wild ibises were heavily and moderately contaminated by Cd, which would possibly pose a threat to the health of ibises. PLS-PM analysis indicated that microbial compositions and residual antibiotics had the most substantial impact on the dynamic changes in ARGs of ibis. Overall, this work provides a comprehensive understanding of the characteristics, risks of those contaminations, and their effects on the ARGs in the habitat of crested ibis.
Collapse
Affiliation(s)
- Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Zekun Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Dandan Wan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xueyan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xuan Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yimeng Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
20
|
Guo J, Li Z, Liu X, Jin Y, Sun Y, Yuan Z, Zhang W, Wang J, Zhang M. Response of the gut microbiota to changes in the nutritional status of red deer during winter. Sci Rep 2024; 14:24961. [PMID: 39438539 PMCID: PMC11496518 DOI: 10.1038/s41598-024-76142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Unravelling abrupt alterations in the gut microbiota of wild species associated with nutritional stress is imperative but challenging for wildlife conservation. This study assessed the nutritional status of wild red deer during winter on the basis of changes in faecal nitrogen (FN) and urea nitrogen/creatinine (UN: C) levels and identified gut microbes associated with nutritional status via nutritional control experiments and metagenomic sequencing. The FN of wild red deer in winter 2022 was significantly lower than that in winter 2021 (p < 0.05, winter 2021: 1.37 ± 0.16% and winter 2022: 1.26 ± 0.22%), and the UN: C ratio increased (winter 2021: 2.19 ± 1.65 and winter 2022: 3.05 ± 3.50). Similar trends were found in late winter, which indicated greater nutritional pressure in winter (2022) and late winter. Compared with winter 2021, abundances of Ructibacterium and Butyrivibrio significantly increased, and Acetatifactor and Cuneatibacter significantly decreased during winter 2022 (p < 0.05). Compared with early winter, the cell growth and death pathways increased and lipid metabolism and its subpathway of secondary bile acid synthesis (ko00121) significantly decreased during late winter (p < 0.05), which was similar to the changes in malnourished experimental red deer. Abrupt alterations in the gut microbiota should receive increased attention when monitoring the nutritional health of wild ungulates. This study provides new insights and critical implications for the conservation of wild ungulate populations.
Collapse
Affiliation(s)
- Jinhao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Zheng Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinxin Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Yongchao Jin
- Forestry and Grassland College, Jilin Agricultural University, Changchun, 130118, China
- World Wild Fund for Nature, Beijing, 100009, China
| | - Yue Sun
- School of Biological Sciences, Guizhou Education University, Guiyang, 550018, China
| | - Ziao Yuan
- College of Life Science and Technology, Harbin Normal University, Harbin, 150040, China
| | - Weiqi Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Jialong Wang
- Institute of Applied Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China.
| | - Minghai Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
21
|
Kim N, Do KH, Cho CU, Seo KW, Jeong DH. Insights into the Gut Microbial Diversity of Wild Siberian Musk Deer ( Moschus moschiferus) in Republic of Korea. Animals (Basel) 2024; 14:3000. [PMID: 39457930 PMCID: PMC11503724 DOI: 10.3390/ani14203000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiota plays a crucial role in the health and well-being of wildlife. However, its composition and diversity remain unexplored, particularly in threatened species such as the Siberian musk deer (SMD). This study aimed to elucidate the gut microbiota composition within different wild SMD communities for assessing their health status. We conducted the first comprehensive fecal microbiome analysis of wild SMD inhabiting three distinct locations in Gangwon Province, Republic of Korea (Korea). Fecal samples were collected non-invasively and 16S rRNA gene sequencing was performed for gut microbiota characterization. Consistent with previous research, Firmicutes and Bacteroidetes were the dominant phyla in the gut microbiota of wild SMD. Planctomycetota was a prevalent phylum in wild SMD gut microbiota, warranting further investigation of its ecological significance. While significant differences were observed in the gut microbiota richness among the three groups, no significant disparities were detected in the beta diversity. Additionally, certain genera exhibited distinct relative abundances among the groups, suggesting potential associations with geographic factors, gut disorders, and dietary habits. Our findings provide valuable insights into the gut microbiome of wild SMD and offer a foundation for future microbiome-based conservation efforts for this vulnerable species.
Collapse
Affiliation(s)
- Nari Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (K.-H.D.); (K.-W.S.)
| | - Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (K.-H.D.); (K.-W.S.)
| | - Chea-Un Cho
- Yanggu Goral/Musk Deer Conservation Center, Yanggu 24506, Republic of Korea;
| | - Kwang-Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (K.-H.D.); (K.-W.S.)
| | - Dong-Hyuk Jeong
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (K.-H.D.); (K.-W.S.)
- Wildlife Center of Chungbuk, Cheongju 28116, Republic of Korea
| |
Collapse
|
22
|
Whitney TL, Mallott EK, Diakiw LO, Christie DM, Ting N, Amato KR, Tecot SR, Baden AL. Ecological and genetic variables co-vary with social group identity to shape the gut microbiome of a pair-living primate. Am J Primatol 2024; 86:e23657. [PMID: 38967215 DOI: 10.1002/ajp.23657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024]
Abstract
Primates exhibit diverse social systems that are intricately linked to their biology, behavior, and evolution, all of which influence the acquisition and maintenance of their gut microbiomes (GMs). However, most studies of wild primate populations focus on taxa with relatively large group sizes, and few consider pair-living species. To address this gap, we investigate how a primate's social system interacts with key environmental, social, and genetic variables to shape the GM in pair-living, red-bellied lemurs (Eulemur rubriventer). Previous research on this species suggests that social interactions within groups influence interindividual microbiome similarity; however, the impacts of other nonsocial variables and their relative contributions to gut microbial variation remain unclear. We sequenced the 16S ribosomal RNA hypervariable V4-V5 region to characterize the GM from 26 genotyped individuals across 11 social groups residing in Ranomafana National Park, Madagascar. We estimated the degree to which sex, social group identity, genetic relatedness, dietary diversity, and home range proximity were associated with variation in the gut microbial communities residing in red-bellied lemurs. All variables except sex played a significant role in predicting GM composition. Our model had high levels of variance inflation, inhibiting our ability to determine which variables were most predictive of gut microbial composition. This inflation is likely due to red-bellied lemurs' pair-living, pair-bonded social system that leads to covariation among environmental, social, and genetic variables. Our findings highlight some of the factors that predict GM composition in a tightly bonded, pair-living species and identify variables that require further study. We propose that future primate microbiome studies should simultaneously consider environmental, social, and genetic factors to improve our understanding of the relationships among sociality, the microbiome, and primate ecology and evolution.
Collapse
Affiliation(s)
- Tabor L Whitney
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Laura O Diakiw
- Department of Ecology, University of Wyoming, Laramie, Wyoming, USA
| | - Diana M Christie
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Nelson Ting
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, Arizona, USA
| | - Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, New York City, New York, USA
- Department of Anthropology, The Graduate Center of the City University of New York, New York City, New York, USA
- The New York Consortium in Evolutionary Primatology, New York City, New York, USA
| |
Collapse
|
23
|
Liu Z, Guo Y, Qin C, Mu X, Zhang J. High-Throughput Sequencing Analysis Revealed a Preference for Animal-Based Food in Purple Sea Urchins. BIOLOGY 2024; 13:623. [PMID: 39194561 DOI: 10.3390/biology13080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Sea urchins play an important role in marine ecosystems. Owing to limitations in previous research methods, there has been insufficient understanding of the food sources and ecological functional value of purple sea urchins, leading to considerable controversy regarding their functional positioning. We focused on Daya Bay as the research area, utilizing stable isotope technology and high-throughput sequencing of 16S rDNA and 18S rDNA to analyze sea urchins and their potential food sources in stone and algae areas. The results showed that the δ13C range of purple sea urchins in the stone area is -11.42~-8.17‱, and the δ15N range is 9.15~10.31‱. However, in the algal area, the δ13C range is -13.97~-12.44‱, and the δ15N range is 8.75~10.14‱. There was a significant difference in δ13C between the two areas (p < 0.05), but there was no significant difference in δ15N (p > 0.05). The main food source for purple sea urchins in both areas is sediment. The sequencing results of 18S rDNA revealed that, in the algal area, the highest proportion in the sea urchin gut was Molluska (57.37%). In the stone area, the highest proportion was Arthropoda (76.71%). The sequencing results of 16S rDNA revealed that, in the algal area, Bacteroidetes was the dominant group in the sea urchin gut (28.87%), whereas, in the stone area, Proteobacteria was the dominant group (37.83%). Diversity detection revealed a significant difference in the number of gut microbes and eukaryotes between the stone and algal areas (p < 0.05). The results revealed that the main food source of purple sea urchins in both areas is sediment, but the organic nutritional value is greater in the algal area, and the richness of microbiota and eukaryotes in the gut of purple sea urchins in the stone area is greater. These results indicated that purple sea urchins are likely omnivores and that the area where they occur impacts their growth and development. The results of this study provide a theoretical basis for the restoration of wild purple sea urchin resources and the selection of areas for restocking and release.
Collapse
Affiliation(s)
- Zerui Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chuanxin Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Xiaohui Mu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Jia Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
24
|
Guo W, Liu T, Wang W, Yu Y, Neves ALA, Zhou M, Chen X. Survey of the fecal microbiota of indigenous small ruminants living in different areas of Guizhou. Front Microbiol 2024; 15:1415230. [PMID: 39176283 PMCID: PMC11340823 DOI: 10.3389/fmicb.2024.1415230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Gut microbiota are associated with the health and performance of ruminant species, and they are affected by altitude, host genetics, and sex. However, there has been little research on comparing the fecal microbiota of indigenous small ruminants such as sheep and goats in Guizhou province, China. In the present study, we revealed the effect of altitude, genetics, and sex on fecal microbiota profiles and enterotypes in indigenous small ruminants of Guizhou province, China. Methods Fecal samples were collected from Hei and Qianbei Ma goats and Weining sheep in the Chinese province of Guizhou. 16S rRNA gene sequencing targeting the V3-V4 region was performed using the Illumina MiSeq platform. Sequences were processed using QIIME2, and the qualified sequences were processed using the plugin DADA2 to generate amplicon sequence variants (ASVs). The statistical analysis was performed using R studio. Results The fecal microbial profile was found to vary by herd (influenced by genetics/altitude) and sex. All samples were categorized into two enterotypes. The first enterotype is dominated by UCG-005, and the second enterotype is dominated by the Christensenellaceae_R-7_group, which may be highly driven by the host's genetics (breed). The predicted functional profiles of the fecal microbiota were also assigned to two clusters that corresponded exactly to the enterotypes. Cluster 1 of the functional profiling was characterized by biosynthesis pathways, and cluster 2 was characterized by energy metabolism pathways. Discussion Our findings may provide new insights into the fecal microbial community and enterotypes in small ruminants by herds, offering clues for understanding the mechanisms by which the fecal microbiota contribute to divergent host phenotypes in indigenous small ruminants in Guizhou.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tingmei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Weiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Yinshu Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
25
|
Finnegan PM, Garber PA, McKenney AC, Bicca-Marques JC, De la Fuente MF, Abreu F, Souto A, Schiel N, Amato KR, Mallott EK. Group membership, not diet, structures the composition and functional potential of the gut microbiome in a wild primate. mSphere 2024; 9:e0023324. [PMID: 38940510 PMCID: PMC11288025 DOI: 10.1128/msphere.00233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
The gut microbiome has the potential to buffer temporal variations in resource availability and consumption, which may play a key role in the ability of animals to adapt to a broad range of habitats. We investigated the temporal composition and function of the gut microbiomes of wild common marmosets (Callithrix jacchus) exploiting a hot, dry environment-Caatinga-in northeastern Brazil. We collected fecal samples during two time periods (July-August and February-March) for 2 years from marmosets belonging to eight social groups. We used 16S rRNA gene amplicon sequencing, metagenomic sequencing, and butyrate RT-qPCR to assess changes in the composition and potential function of their gut microbiomes. Additionally, we identified the plant, invertebrate, and vertebrate components of the marmosets' diet via DNA metabarcoding. Invertebrate, but not plant or vertebrate, consumption varied across the year. However, gut microbiome composition and potential function did not markedly vary across study periods or as a function of diet composition. Instead, the gut microbiome differed markedly in both composition and potential function across marmosets residing in different social groups. We highlight the likely role of factors, such as behavior, residence, and environmental heterogeneity, in modulating the structure of the gut microbiome. IMPORTANCE In a highly socially cohesive and cooperative primate, group membership more strongly predicts gut microbiome composition and function than diet.
Collapse
Affiliation(s)
- Peter M. Finnegan
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Paul A. Garber
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Anna C. McKenney
- Department of Natural Sciences, Parkland College, Champaign, Illinois, USA
| | - Júlio César Bicca-Marques
- Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católicado Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Filipa Abreu
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Nicola Schiel
- Laboratório de Etologia Teórica e Aplicada, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Katherine R. Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Elizabeth K. Mallott
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
26
|
Sun Q, Zhou Q, Ge S, Liu L, Li P, Gu Q. Effects of Maternal Diet on Infant Health: A Review Based on Entero-Mammary Pathway of Intestinal Microbiota. Mol Nutr Food Res 2024; 68:e2400077. [PMID: 39059011 DOI: 10.1002/mnfr.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Indexed: 07/28/2024]
Abstract
SCOPE The microbes in breast milk are critical for the early establishment of infant gut microbiota and have important implications for infant health. Breast milk microbes primarily derive from the migration of maternal intestinal microbiota. This review suggests that the regulation of maternal diet on gut microbiota may be an effective strategy to improve infant health. METHODS AND RESULTS This article reviews the impact of breast milk microbiota on infant development and intestinal health. The close relationship between the microbiota in the maternal gut and breast through the entero-mammary pathway is discussed. Based on the effect of diet on gut microbiota, it is proposed that changing the maternal dietary structure is a new strategy for regulating breast milk microbiota and infant intestinal microbiota, which would have a positive impact on infant health. CONCLUSION Breast milk microbes have beneficial effects on infant development and regulation of the immune system. The mother's gut and breast can undergo certain bacterial migration through the entero-mammary pathway. Research has shown that intervening in a mother's diet during breastfeeding can affect the composition of the mother's gut microbiota, thereby regulating the microbiota of breast milk and infant intestines, and is closely related to infant health.
Collapse
Affiliation(s)
- Qiaoyu Sun
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Sitong Ge
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Lingli Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| |
Collapse
|
27
|
Zeng S, He J, Huang Z. The intestine microbiota of shrimp and its impact on cultivation. Appl Microbiol Biotechnol 2024; 108:362. [PMID: 38842702 PMCID: PMC11156720 DOI: 10.1007/s00253-024-13213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Intestinal microbiome contains several times of functional genes compared to the host and mediates the generation of multiple metabolic products, and therefore it is called "second genome" for host. Crustaceans rank second among the largest subphylum of aquaculture animals that are considered potentially satisfy global substantial food and nutrition security, among which the Pacific white shrimp (Litopenaeus vannamei) ranks the first in the production. Currently, increasing evidences show that outbreaks of some most devastating diseases in shrimp, including white feces syndrome (WFS) and acute hepatopancreatic necrosis disease (AHPND), are related to intestinal microbiota dysbiosis. Importantly, the intestine microbial composition can be altered by environmental stress, diet, and age. In this review, we overview the progress of intestinal microbiota dysbiosis and WFS or ANPHD in shrimp, and how the microbial composition is altered by external factors. Hence, developing suitable microbial micro-ecological prevention and control strategy to maintain intestinal balance may be a feasible solution to reduce the risk of disease outbreaks. Moreover, we highlight that defining the "healthy intestine microbiota" and evaluating the causality of intestinal microbiota dysbiosis and diseases following the logic of "Microecological Koch's postulates" should be the key goal in future shrimp intestinal field, which help to guide disease diagnosis and prevent disease outbreaks in shrimp farming. KEY POINTS: • Intestinal microbiota dysbiosis is relevant to multiple shrimp diseases. • Microecological Koch's postulates help to evaluate the causality of shrimp diseases.
Collapse
Affiliation(s)
- Shenzheng Zeng
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China.
| |
Collapse
|
28
|
Wu Y, Zhou T, Yang S, Yin B, Wu R, Wei W. Distinct Gut Microbial Enterotypes and Functional Dynamics in Wild Striped Field Mice ( Apodemus agrarius) across Diverse Populations. Microorganisms 2024; 12:671. [PMID: 38674615 PMCID: PMC11052172 DOI: 10.3390/microorganisms12040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Rodents, including the striped field mouse (Apodemus agrarius), play vital roles in ecosystem functioning, with their gut microbiota contributing significantly to various ecological processes. Here, we investigated the structure and function of 94 wild A. agrarius individuals from 7 geographic populations (45°57' N, 126°48' E; 45°87' N, 126°37' E; 45°50' N, 125°31' E; 45°59' N, 124°37' E; 46°01' N, 124°88' E; 46°01' N, 124°88' E; 46°01' N, 124°88' E), revealing two distinct enterotypes (Type1 and Type2) for the first time. Each enterotype showed unique microbial diversity, functions, and assembly processes. Firmicutes and Bacteroidetes dominated, with a significant presence of Lactobacillus and Muribaculaceae. Functional analysis highlighted metabolic differences, with Type1 emphasizing nutrient processing and Type2 showing higher energy production capacity. The analysis of the neutral model and the null model revealed a mix of stochastic (drift and homogenizing dispersal) and deterministic processes (homogenous selection) that shape the assembly of the microbiota, with subtle differences in the assembly processes between the two enterotypes. Correlation analysis showed that elevation and BMI were associated with the phylogenetic turnover of microbial communities, suggesting that variations in these factors may influence the composition and diversity of the gut microbiota in A. agrarius. Our study sheds light on gut microbial dynamics in wild A. agrarius populations, highlighting the importance of considering ecological and physiological factors in understanding host-microbiota interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Wanhong Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (T.Z.); (S.Y.); (B.Y.); (R.W.)
| |
Collapse
|
29
|
Tannock GW. Understanding the gut microbiota by considering human evolution: a story of fire, cereals, cooking, molecular ingenuity, and functional cooperation. Microbiol Mol Biol Rev 2024; 88:e0012722. [PMID: 38126754 PMCID: PMC10966955 DOI: 10.1128/mmbr.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
SUMMARYThe microbial community inhabiting the human colon, referred to as the gut microbiota, is mostly composed of bacterial species that, through extensive metabolic networking, degrade and ferment components of food and human secretions. The taxonomic composition of the microbiota has been extensively investigated in metagenomic studies that have also revealed details of molecular processes by which common components of the human diet are metabolized by specific members of the microbiota. Most studies of the gut microbiota aim to detect deviations in microbiota composition in patients relative to controls in the hope of showing that some diseases and conditions are due to or exacerbated by alterations to the gut microbiota. The aim of this review is to consider the gut microbiota in relation to the evolution of Homo sapiens which was heavily influenced by the consumption of a nutrient-dense non-arboreal diet, limited gut storage capacity, and acquisition of skills relating to mastering fire, cooking, and cultivation of cereal crops. The review delves into the past to gain an appreciation of what is important in the present. A holistic view of "healthy" microbiota function is proposed based on the evolutionary pathway shared by humans and gut microbes.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Argiroff WA, Carrell AA, Klingeman DM, Dove NC, Muchero W, Veach AM, Wahl T, Lebreux SJ, Webb AB, Peyton K, Schadt CW, Cregger MA. Seasonality and longer-term development generate temporal dynamics in the Populus microbiome. mSystems 2024; 9:e0088623. [PMID: 38421171 PMCID: PMC10949431 DOI: 10.1128/msystems.00886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Temporal variation in community composition is central to our understanding of the assembly and functioning of microbial communities, yet the controls over temporal dynamics for microbiomes of long-lived plants, such as trees, remain unclear. Temporal variation in tree microbiomes could arise primarily from seasonal (i.e., intra-annual) fluctuations in community composition or from longer-term changes across years as host plants age. To test these alternatives, we experimentally isolated temporal variation in plant microbiome composition using a common garden and clonally propagated plants, and we used amplicon sequencing to characterize bacterial/archaeal and fungal communities in the leaf endosphere, root endosphere, and rhizosphere of two Populus spp. over four seasons across two consecutive years. Microbial community composition differed among seasons and years (which accounted for up to 21% of the variation in microbial community composition) and was correlated with seasonal dissimilarity in climatic conditions. However, microbial community dissimilarity was also positively correlated with time, reflecting longer-term compositional shifts as host trees aged. Together, our findings demonstrate that temporal patterns in tree microbiomes arise from both seasonal fluctuations and longer-term changes, which interact to generate unique seasonal patterns each year. In addition to shedding light on two important controls over the assembly of plant microbiomes, our results also suggest future studies of tree microbiomes should account for background temporal dynamics when testing the drivers of spatial patterns in microbial community composition and temporal responses of plant microbiomes to environmental change.IMPORTANCEMicrobiomes are integral to the health of host plants, but we have a limited understanding of the factors that control how the composition of plant microbiomes changes over time. Especially little is known about the microbiome of long-lived trees, relative to annual and non-woody plants. We tested how tree microbiomes changed between seasons and years in poplar (genus Populus), which are widespread and ecologically important tree species that also serve as important biofuel feedstocks. We found the composition of bacterial, archaeal, and fungal communities differed among seasons, but these seasonal differences depended on year. This dependence was driven by longer-term changes in microbial composition as host trees developed across consecutive years. Our findings suggest that temporal variation in tree microbiomes is driven by both seasonal fluctuations and longer-term (i.e., multiyear) development.
Collapse
Affiliation(s)
- William A. Argiroff
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Nicholas C. Dove
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Allison M. Veach
- Department of Integrative Biology, The University of Texas, San Antonio, Texas, USA
| | - Toni Wahl
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Steven J. Lebreux
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Amber B. Webb
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kellie Peyton
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Christopher W. Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Melissa A. Cregger
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
31
|
Moraïs S, Winkler S, Zorea A, Levin L, Nagies FSP, Kapust N, Lamed E, Artan-Furman A, Bolam DN, Yadav MP, Bayer EA, Martin WF, Mizrahi I. Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans. Science 2024; 383:eadj9223. [PMID: 38484069 PMCID: PMC7615765 DOI: 10.1126/science.adj9223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.
Collapse
Affiliation(s)
- Sarah Moraïs
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sarah Winkler
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alvah Zorea
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Falk S. P. Nagies
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Nils Kapust
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Eva Lamed
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - Avital Artan-Furman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - David N. Bolam
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Madhav P. Yadav
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Edward A. Bayer
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - William F. Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Itzhak Mizrahi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
32
|
Gao H, Chi X, Song P, Gu H, Xu B, Cai Z, Jiang F, Li B, Zhang T. Maintaining the native gut microbiota of bharal ( Pseudois nayaur) is crucial in ex situ conservation. Front Microbiol 2024; 15:1357415. [PMID: 38533336 PMCID: PMC10963425 DOI: 10.3389/fmicb.2024.1357415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
As wildlife protection continue to strengthen, research on the gut microbiota of wildlife is increasing. Carrying out conservation and research on endangered species in the Qinghai Tibet Plateau plays an important role in global biodiversity conservation. This study utilized 16S rRNA sequencing of fecal samples to investigate the composition, function, and changes of the gut microbiota of bharal in different environments, seasons, and genders. The results showed that Firmicutes and Bacteroidota were the dominant phyla and UCG-005, Bacteroides, UCG-010 were the dominant genera of bharal. In the wild, the abundance of Firmicutes increased which was conducive to the decomposition and utilization of cellulose, hemicellulose, and carbohydrate. Due to the variety of food types and nutrition in different seasons, the composition and function of gut microbiota were obviously different between genders. Compared with zoo, higher alpha diversity, a more complex gut microbiota network structure, and stronger metabolic function were conducive bharal to adapting to the wild environment. In the zoo, captive bharals were fed foods rich in high fat and protein, which increased the abundance of Bacteroidota and reduced the alpha diversity of gut microbiota. A fixed diet unified the gut microbiota between genders of bharal. It is very important to pay attention to the impact of captive environments and maintain the native gut microbiota of wildlife.
Collapse
Affiliation(s)
- Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| | - Xiangwen Chi
- Students’ Affairs Division, Qinghai University, Xining, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haifeng Gu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| | - Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenyuan Cai
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| | - Bin Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| |
Collapse
|
33
|
Oganov AC, Seddon I, Zein M, Yazdanpanah G, Fonoudi H, Jabbehdari S. Composition of the gut microbiome, role of diet, lifestyle, and antioxidant therapies in diabetes mellitus and diabetic retinopathy. Eur J Ophthalmol 2024; 34:367-383. [PMID: 37150930 DOI: 10.1177/11206721231174490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The gut microbiome is a complex ecosystem in the gastrointestinal tract composed of trillions of bacteria, viruses, fungi, and protozoa. Disruption of this delicate ecosystem, formally called "dysbiosis", has been linked to a variety of metabolic and inflammatory pathologies. Several studies have focused on abnormal microbiome composition and correlated these findings with the development of type 2 diabetes mellitus (T2DM) and diabetic retinopathy (DR). However, given the complexity of this ecosystem, the current studies are narrow in design and present variable findings. Composition of the gut microbiome in patients with DR significantly differs from patients with diabetes without retinopathy as well as from healthy controls. Additionally, the gut microbiome has been shown to modify effects of medication, diet, exercise, and antioxidant use on the development and progression of DR. In this paper, we present a comprehensive review of literature on the effect of oxidative stress, antioxidant therapies, and dysbiosis on DR.
Collapse
Affiliation(s)
- Anthony C Oganov
- Department of Ophthalmology, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Ian Seddon
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mike Zein
- Department of Ophthalmology, Cook County Health, Chicago, IL, USA
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Hossein Fonoudi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Sayena Jabbehdari
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
34
|
Gao SM, Fei HL, Li Q, Lan LY, Huang LN, Fan PF. Eco-evolutionary dynamics of gut phageome in wild gibbons (Hoolock tianxing) with seasonal diet variations. Nat Commun 2024; 15:1254. [PMID: 38341424 PMCID: PMC10858875 DOI: 10.1038/s41467-024-45663-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Han-Lan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
- College of Life Science, China West Normal University, Nanchong, 637002, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
35
|
Hu R, Li F, Chen Y, Liu C, Li J, Ma Z, Wang Y, Cui C, Luo C, Zhou P, Ni W, Yang QY, Hu S. AnimalMetaOmics: a multi-omics data resources for exploring animal microbial genomes and microbiomes. Nucleic Acids Res 2024; 52:D690-D700. [PMID: 37897361 PMCID: PMC10768125 DOI: 10.1093/nar/gkad931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
The Animal Meta-omics landscape database (AnimalMetaOmics, https://yanglab.hzau.edu.cn/animalmetaomics#/) is a comprehensive and freely available resource that includes metagenomic, metatranscriptomic, and metaproteomic data from various non-human animal species and provides abundant information on animal microbiomes, including cluster analysis of microbial cognate genes, functional gene annotations, active microbiota composition, gene expression abundance, and microbial protein identification. In this work, 55 898 microbial genomes were annotated from 581 animal species, including 42 924 bacterial genomes, 12 336 virus genomes, 496 archaea genomes and 142 fungi genomes. Moreover, 321 metatranscriptomic datasets were analyzed from 31 animal species and 326 metaproteomic datasets from four animal species, as well as the pan-genomic dynamics and compositional characteristics of 679 bacterial species and 13 archaea species from animal hosts. Researchers can efficiently access and acquire the information of cross-host microbiota through a user-friendly interface, such as species, genomes, activity levels, expressed protein sequences and functions, and pan-genome composition. These valuable resources provide an important reference for better exploring the classification, functional diversity, biological process diversity and functional genes of animal microbiota.
Collapse
Affiliation(s)
- Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Fulin Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yifan Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuyang Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jiawei Li
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yue Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chaowen Cui
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chengfang Luo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Qing-Yong Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
36
|
Tang X, Zhang L, Ren S, Zhao Y, Zhang Y. Temporal and geographic distribution of gut microbial enterotypes associated with host thermogenesis characteristics in plateau pikas. Microbiol Spectr 2023; 11:e0002023. [PMID: 37815332 PMCID: PMC10715161 DOI: 10.1128/spectrum.00020-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The gut microbiotas of small mammals play an important role in host energy homeostasis. However, it is still unknown whether small mammals with different enterotypes show differences in thermogenesis characteristics. Our study confirmed that plateau pikas with different bacterial enterotypes harbored distinct thermogenesis capabilities and employed various strategies against cold environments. Additionally, we also found that pikas with different fungal enterotypes may display differences in coprophagy.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Shi'en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
37
|
Zhang B, Shi M, Xu S, Zhang H, Li Y, Hu D. Analysis on Changes and Influencing Factors of the Intestinal Microbiota of Alpine Musk Deer between the Place of Origin and Migration. Animals (Basel) 2023; 13:3791. [PMID: 38136828 PMCID: PMC10740494 DOI: 10.3390/ani13243791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In China, the population of wild musk deer, belonging to the family Moschidae, has drastically decreased in recent years owing to human activities and environmental changes. During the 1990s, artificial breeding of Alpine musk deer was conducted in Xinglong Mountain, Gansu Province, China, and their ex situ conservation was explored for over a decade. Ex situ protection is beneficial for expanding the population of animals and maintaining their genetic diversity; however, it can also induce metabolic diseases and parasitic infections and reduce reproductive capacity. The gut microbiota of animals has a considerable impact on host energy metabolism and immune regulation, thereby playing a crucial role in the overall health and reproductive success of the host. In this study, by comparing the differences in the intestinal microbiome of the musk deer according to their place of origin and migration, the changes in their gut microbiota and the influencing factors were explored to provide a theoretical basis for monitoring the health status of the musk deer. We used 16S rRNA high-throughput sequencing technology to analyze the structure and diversity of the gut microbiota of Alpine musk deer in Gansu (G, place of origin) and Sichuan (S, place of migration). The results showed that the dominant bacteria and genera in the intestinal microbiome of captive musk deer were similar in the places of origin and migration, but significant differences were observed in their relative abundance (p < 0.05). Regarding Firmicutes and Actinobacteria, which are related to plant cellulose digestion, the relative abundance in group G was higher than that in group S; regarding Proteobacteria and Verrucomicrobia, which are related to fat and starch intake, the relative abundance in group S was higher than that in group G; the relative abundance of Bacillus and Clostridium sensu stricto, which are related to fiber digestibility, was higher in group G than in group S; the relative abundance of conditional pathogens Acinetobacter and Escherichia-Shigella was higher in group S than in group G. The results of α and β diversity analysis also showed significant differences between the two groups (p < 0.05). The ACE and Shannon indices of musk deer in group G were considerably higher than those in group S, and the Simpson index of musk deer in group S was greater than that in group G, indicating that the abundance and diversity of intestinal microbiome were higher in musk deer of Gansu than those of Sichuan. Comparison of the changes in the intestinal microbiome of the musk deer according to the place of origin and migration showed that the plant cellulose content in the food of the musk deer, the fat content in the concentrated feed, and changes in the feeding environment have an impact on the intestinal microbiome. Effective monitoring of the health and immunity of the musk deer is crucial for ensuring their overall health, which in turn will aid in formulating a scientific and reasonable management plan for their conservation.
Collapse
Affiliation(s)
- Baofeng Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Minghui Shi
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shanghua Xu
- Guangxi Forestry Research Institute, Nanning 530002, China
| | - Haonan Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yimeng Li
- Department of Life Sciences, National Natural History Museum of China, Beijing 100050, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
38
|
Lee W, Hayakawa T, Kiyono M, Yamabata N, Enari H, Enari HS, Fujita S, Kawazoe T, Asai T, Oi T, Kondo T, Uno T, Seki K, Shimada M, Tsuji Y, Langgeng A, MacIntosh A, Suzuki K, Yamada K, Onishi K, Ueno M, Kubo K, Hanya G. Diet-related factors strongly shaped the gut microbiota of Japanese macaques. Am J Primatol 2023; 85:e23555. [PMID: 37766673 DOI: 10.1002/ajp.23555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/08/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Although knowledge of the functions of the gut microbiome has increased greatly over the past few decades, our understanding of the mechanisms governing its ecology and evolution remains obscure. While host genetic distance is a strong predictor of the gut microbiome in large-scale studies and captive settings, its influence has not always been evident at finer taxonomic scales, especially when considering among the recently diverged animals in natural settings. Comparing the gut microbiome of 19 populations of Japanese macaques Macaca fuscata across the Japanese archipelago, we assessed the relative roles of host genetic distance, geographic distance and dietary factors in influencing the macaque gut microbiome. Our results suggested that the macaques may maintain a core gut microbiome, while each population may have acquired some microbes from its specific habitat/diet. Diet-related factors such as season, forest, and reliance on anthropogenic foods played a stronger role in shaping the macaque gut microbiome. Among closely related mammalian hosts, host genetics may have limited effects on the gut microbiome since the hosts generally have smaller physiological differences. This study contributes to our understanding of the relative roles of host phylogeography and dietary factors in shaping the gut microbiome of closely related mammalian hosts.
Collapse
Affiliation(s)
- Wanyi Lee
- Center for Ecological Research, Kyoto University, Inuyama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mieko Kiyono
- Graduate School of Human Development and Environment, Kobe University, Kobe, Hyogo, Japan
| | - Naoto Yamabata
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Hyogo, Japan
| | - Hiroto Enari
- Faculty of Agriculture, Yamagata University, Wakabamachi, Tsuruoka, Yamagata, Japan
| | - Haruka S Enari
- Faculty of Agriculture, Yamagata University, Wakabamachi, Tsuruoka, Yamagata, Japan
| | - Shiho Fujita
- Department of Behavioral Physiology and Ecology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsuro Kawazoe
- Research Institute for Languages and Cultures of Asia and Africa, Tokyo University of Foreign Studies, Tokyo, Japan
| | - Takayuki Asai
- South Kyushu Wildlife Management Center, Kagoshima, Japan
| | - Toru Oi
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | | | - Takeharu Uno
- Tohoku Monkey and Mammal Management Center, Sendai, Miyagi, Japan
| | - Kentaro Seki
- Tohoku Monkey and Mammal Management Center, Sendai, Miyagi, Japan
| | - Masaki Shimada
- Department of Animal Sciences, Teikyo University of Science, Uenohara, Yamanashi, Japan
| | - Yamato Tsuji
- Department of Science and Engineering, Ishinomaki Senshu University, Ishinomaki, Miyagi, Japan
| | - Abdullah Langgeng
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Wildlife Research Center, Kyoto University, Kanrin, Inuyama, Japan
| | - Andrew MacIntosh
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Wildlife Research Center, Kyoto University, Kanrin, Inuyama, Japan
| | | | - Kazunori Yamada
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
| | - Kenji Onishi
- Department of Early Childhood Education, Nara University of Education, Nara, Japan
| | - Masataka Ueno
- Faculty of Applied Sociology, Kindai University, Higashiosaka, Osaka, Japan
| | - Kentaro Kubo
- Cultural Asset Management Division, Board of Education, Oita-City, Japan
| | - Goro Hanya
- Center for Ecological Research, Kyoto University, Inuyama, Japan
- Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
39
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
40
|
Guerrini M, Tanini D, Vannini C, Barbanera F. Wild Avian Gut Microbiome at a Small Spatial Scale: A Study from a Mediterranean Island Population of Alectoris rufa. Animals (Basel) 2023; 13:3341. [PMID: 37958097 PMCID: PMC10648672 DOI: 10.3390/ani13213341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
This research is one of the few comparative descriptions at an intraspecific level of wild non-passerine microbiomes. We investigated for the first time the gut microbiome of red-legged partridges (Alectoris rufa) using fecal pellets in order to provide a more informed management. We focused on a small Italian population consisting of two demes (WEST, EAST) separated by about 20 km on the opposite sides of Elba Island. Given the small spatial scale, we set up a sampling protocol to minimize contamination from environmental bacteria, as well as differences due to variations in-among others-habitat, season, and age of feces, that could possibly affect the investigation of the three Elban sites. We found a significant divergence between the WEST and EAST Elban subpopulations in terms of microbial composition and alpha diversity. Although most represented bacterial phyla were the same in all the sites (Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes), microbiomes displayed a much higher diversity in western than in eastern partridges. This result might be related to locally diverging individual physiological needs and/or to different intensities in past releases of captive-bred birds between the two sides of Elba. We suggest that the two subpopulations should be treated as distinct management units.
Collapse
Affiliation(s)
| | | | - Claudia Vannini
- Department of Biology, University of Pisa, Via A. Volta 4, 56126 Pisa, Italy (F.B.)
| | | |
Collapse
|
41
|
Klure DM, Dearing MD. Seasonal restructuring facilitates compositional convergence of gut microbiota in free-ranging rodents. FEMS Microbiol Ecol 2023; 99:fiad127. [PMID: 37838471 PMCID: PMC10622585 DOI: 10.1093/femsec/fiad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Gut microbes provide essential services to their host and shifts in their composition can impact host fitness. However, despite advances in our understanding of how microbes are assembled in the gut, we understand little about the stability of these communities within individuals, nor what factors influence its composition over the life of an animal. For this reason, we conducted a longitudinal survey of the gut microbial communities of individual free-ranging woodrats (Neotoma spp.) across a hybrid zone in the Mojave Desert, USA, using amplicon sequencing approaches to characterize gut microbial profiles and diet. We found that gut microbial communities were individualized and experienced compositional restructuring as a result of seasonal transitions and changes in diet. Turnover of gut microbiota was highest amongst bacterial subspecies and was much lower at the rank of Family, suggesting there may be selection for conservation of core microbial functions in the woodrat gut. Lastly, we identified an abundant core gut bacterial community that may aid woodrats in metabolizing a diet of plants and their specialized metabolites. These results demonstrate that the gut microbial communities of woodrats are highly dynamic and experience seasonal restructuring which may facilitate adaptive plasticity in response to changes in diet.
Collapse
Affiliation(s)
- Dylan M Klure
- School of Biological Sciences, University of Utah, 257 S 1400 E rm 201, Salt Lake City, UT, 84112, United States
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 S 1400 E rm 201, Salt Lake City, UT, 84112, United States
| |
Collapse
|
42
|
Li D, Xia W, Cui X, Zhao M, Huang K, Wang X, Shen J, Chen H, Zhu L. The putatively high-altitude adaptation of macaque monkeys: Evidence from the fecal metabolome and gut microbiome. Evol Appl 2023; 16:1708-1720. [PMID: 38020871 PMCID: PMC10660799 DOI: 10.1111/eva.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
Animals living in high-altitude environments, such as the Tibetan Plateau, must face harsh environmental conditions (e.g., hypoxia, cold, and strong UV radiation). These animals' physiological adaptations (e.g., increased red cell production and turnover rate) might also be associated with the gut microbial response. Bilirubin is a component of red blood cell turnover or destruction and is excreted into the intestine and reduced to urobilinoids and/or urobilinogen by gut bacteria. Here, we found that the feces of macaques living in high-altitude regions look significantly browner (with a high concentration of stercobilin, a component from urobilinoids) than those living in low-altitude regions. We also found that gut microbes involved in urobilinogen reduction (e.g., beta-glucuronidase) were enriched in the high-altitude mammal population compared to the low-altitude population. Moreover, the spatial-temporal change in gut microbial function was more profound in the low-altitude macaques than in the high-altitude population, which might be attributed to profound changes in food resources in the low-altitude regions. Therefore, we conclude that a high-altitude environment's stress influences living animals and their symbiotic microbiota.
Collapse
Affiliation(s)
- Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Wancai Xia
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Xinyuan Cui
- College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Mei Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Kai Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | - Xueyu Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province)China West Normal UniversityNanchongChina
| | | | - Hua Chen
- Mingke BiotechnologyHangzhouChina
| | - Lifeng Zhu
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
43
|
Muhammad R, Klomkliew P, Chanchaem P, Sawaswong V, Kaikaew T, Payungporn S, Malaivijitnond S. Comparative analysis of gut microbiota between common (Macaca fascicularis fascicularis) and Burmese (M. f. aurea) long-tailed macaques in different habitats. Sci Rep 2023; 13:14950. [PMID: 37696929 PMCID: PMC10495367 DOI: 10.1038/s41598-023-42220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The environment has an important effect on the gut microbiota-an essential part of the host's health-and is strongly influenced by the dietary pattern of the host as these together shape the composition and functionality of the gut microbiota in humans and other animals. This study compared the gut microbiota of Macaca fascicularis fascicularis and M. f. aurea in mangrove and island populations using 16S rRNA gene sequencing on a nanopore platform to investigate the effect of the environment and/or diet. The results revealed that the M. f. fascicularis populations that received anthropogenic food exhibited a higher richness and evenness of gut microbiota than the M. f. aurea populations in different habitats. Firmicutes and Bacteroidetes were the two most abundant bacterial phyla in the gut microbiota of both these subspecies; however, the relative abundance of these phyla was significantly higher in M. f. aurea than in M. f. fascicularis. This variation in the gut microbiota between the two subspecies in different habitats mostly resulted from the differences in their diets. Moreover, the specific adaptation of M. f. aurea to different environments with a different food availability had a significant effect on their microbial composition.
Collapse
Affiliation(s)
- Raza Muhammad
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pavit Klomkliew
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Titiporn Kaikaew
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand.
| |
Collapse
|
44
|
Williams CE, Williams CL, Logan ML. Climate change is not just global warming: Multidimensional impacts on animal gut microbiota. Microb Biotechnol 2023; 16:1736-1744. [PMID: 37247194 PMCID: PMC10443335 DOI: 10.1111/1751-7915.14276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023] Open
Abstract
Climate change has rapidly altered many ecosystems, with detrimental effects for biodiversity across the globe. In recent years, it has become increasingly apparent that the microorganisms that live in and on animals can substantially affect host health and physiology, and the structure and function of these microbial communities can be highly sensitive to environmental variables. To date, most studies have focused on the effects of increasing mean temperature on gut microbiota, yet other aspects of climate are also shifting, including temperature variation, seasonal dynamics, precipitation and the frequency of severe weather events. This array of environmental pressures might interact in complex and non-intuitive ways to impact gut microbiota and consequently alter animal fitness. Therefore, understanding the impacts of climate change on animals requires a consideration of multiple types of environmental stressors and their interactive effects on gut microbiota. Here, we present an overview of some of the major findings in research on climatic effects on microbial communities in the animal gut. Although ample evidence has now accumulated that shifts in mean temperature can have important effects on gut microbiota and their hosts, much less work has been conducted on the effects of other climatic variables and their interactions. We provide recommendations for additional research needed to mechanistically link climate change with shifts in animal gut microbiota and host fitness.
Collapse
|
45
|
Yuan S, Wang KS, Meng H, Hou XT, Xue JC, Liu BH, Cheng WW, Li J, Zhang HM, Nan JX, Zhang QG. The gut microbes in inflammatory bowel disease: Future novel target option for pharmacotherapy. Biomed Pharmacother 2023; 165:114893. [PMID: 37352702 DOI: 10.1016/j.biopha.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/25/2023] Open
Abstract
Gut microbes constitute the main microbiota in the human body, which can regulate biological processes such as immunity, cell proliferation, and differentiation, hence playing a specific function in intestinal diseases. In recent years, gut microbes have become a research hotspot in the pharmaceutical field. Because of their enormous number, diversity, and functional complexity, gut microbes have essential functions in the development of many digestive diseases. Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory disease with a complex etiology, the exact cause and pathogenesis are unclear. There are no medicines that can cure IBD, and more research on therapeutic drugs is urgently needed. It has been reported that gut microbes play a critical role in pathogenesis, and there is a tight and complex association between gut microbes and IBD. The dysregulation of gut microbes may be a predisposing factor for IBD, and at the same time, IBD may exacerbate gut microbes' disorders, but the mechanism of interaction between the two is still not well defined. The study of the relationship between gut microbes and IBD is not only important to elucidate the pathogenesis but also has a positive effect on the treatment based on the regimen of regulating gut microbes. This review describes the latest research progress on the functions of gut microbes and their relationship with IBD, which can provide reference and assistance for further research. It may provide a theoretical basis for the application of probiotics, fecal microbiota transplantation, and other therapeutic methods to regulate gut microbes in IBD.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ke-Si Wang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Huan Meng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Xiao-Ting Hou
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jia-Chen Xue
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China; Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, 116001, China
| | - Bao-Hong Liu
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Wen-Wen Cheng
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Jiao Li
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Hua-Min Zhang
- Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Chronic diseases research center, Dalian University College of Medicine, Dalian, Liaoning, 116622, China.
| |
Collapse
|
46
|
Zhai J, Sun X, Lu R, Hu X, Huang Z. Bibliometric Analysis of Global Trends in Research on Seasonal Variations in Gut Microbiota from 2012 to 2022. Microorganisms 2023; 11:2125. [PMID: 37630685 PMCID: PMC10458723 DOI: 10.3390/microorganisms11082125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Seasons are the important influencing factor for gut microbiota, which in turn affects the ecology and evolution of the host. The seasonal variation in gut microbiota has increasingly attracted the attention of researchers and professionals worldwide. However, studies of seasonal variations in gut microbiota have not been systematically analyzed by bibliometrics or visual analysis. This study is based on 271 publications from 2012 to 2022 in the Web of Science Core Collection database (WOSCC) to analyze hot spots and trends in this field. The collaborations between different countries, institutions, authors, journals, and keywords were bibliometrically analyzed using Excel, CiteSpace (Version 6.2. R4), and VOSviewer (version 1.6.19) software. The number of publications has been increasing rapidly and shows a general upward trend. China and the Chinese Academy of Sciences are the country and institution contributing the most, respectively. The research hotspots and trends mainly include the diversity of gut microbiota communities in different seasons, the relationship between diet and gut microbiota in seasonal changes, and the relationship between gut microbiota and evolutionary adaptation in seasonal changes. This is the first bibliometric and visualization analysis of seasonal variations in gut microbiota, which may advance this field and lay the foundation for future research.
Collapse
Affiliation(s)
- Jiancheng Zhai
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Xiao Sun
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330029, China
| | - Rui Lu
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Xueqin Hu
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Zhiqiang Huang
- Natural Reserve Planning and Research Institute, East China University of Technology, Nanchang 330013, China
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
47
|
Liu H, Li Y, Liang J, Nong D, Li Y, Huang Z. Evaluation of Gut Microbiota Stability and Flexibility as a Response to Seasonal Variation in the Wild François' Langurs (Trachypithecus francoisi) in Limestone Forest. Microbiol Spectr 2023; 11:e0509122. [PMID: 37404157 PMCID: PMC10433995 DOI: 10.1128/spectrum.05091-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
The coevolution between gut microbiota and the host markedly influences the digestive strategies of animals to cope with changes in food sources. We have explored the compositional structure and seasonal variation in the gut microbiota of François' langur in a limestone forest in Guangxi, southwest China, using 16S rRNA sequencing. Our results demonstrated that Firmicutes and Bacteroidetes were the dominant phyla in langurs, followed by Oscillospiraceae, Christensenellaceae, and Lachnospiraceae at the family level. The top five dominant phyla did not show significant seasonal variations, and only 21 bacterial taxa differed at the family level, indicating stability in gut the microbiota possibly with respect to foraging for several dominant plants and high-leaf feeding by the langurs. Moreover, rainfall and minimum humidity are important factors affecting the gut microbiota of the langurs, but they explain few changes in bacterial taxa. The activity budget and thyroid hormone levels of the langurs did not differ significantly between seasons, indicating that these langurs did not respond to seasonal changes in food by regulating behavior or reducing metabolism. The present study indicates that the gut microbiota's structure is related to digestion and energy absorption of these langurs, providing new perspectives on their adaptation to limestone forests. IMPORTANCE François' langur is a primate that particularly lives in karst regions. The adaptation of wild animals to karst habitats has been a hot topic in behavioral ecology and conservation biology. In this study, gut microbiota, behavior, and thyroid hormone data were integrated to understand the interaction of the langurs and limestone forests from the physiological response, providing basic data for assessing the adaptation of the langurs to the habitats. The responses of the langurs to environmental changes were explored from the seasonal variations in gut microbiota, which would help to further understand the adaptive strategies of species to environmental changes.
Collapse
Affiliation(s)
- Hongying Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Jipeng Liang
- Administration Center of Guangxi Chongzuo White-Headed Langur National Nature Reserve, Chongzuo, China
| | - Dengpan Nong
- Administration Center of Guangxi Chongzuo White-Headed Langur National Nature Reserve, Chongzuo, China
| | - Youbang Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| | - Zhonghao Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- College of Life Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
48
|
Houtkamp IM, van Zijll Langhout M, Bessem M, Pirovano W, Kort R. Multiomics characterisation of the zoo-housed gorilla gut microbiome reveals bacterial community compositions shifts, fungal cellulose-degrading, and archaeal methanogenic activity. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e12. [PMID: 39295898 PMCID: PMC11406404 DOI: 10.1017/gmb.2023.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 09/21/2024]
Abstract
We carried out a comparative analysis between the bacterial microbiota composition of zoo-housed western lowland gorillas and their wild counterparts through 16S rRNA gene amplicon sequencing. In addition, we characterised the carbohydrate-active and methanogenic potential of the zoo-housed gorilla (ZHG) microbiome through shotgun metagenomics and RNA sequencing. The ZHG microbiota showed increased alpha diversity in terms of bacterial species richness and a distinct composition from that of the wild gorilla microbiota, including a loss of abundant fibre-degrading and hydrogenic Chloroflexi. Metagenomic analysis of the CAZyome indicated predominant oligosaccharide-degrading activity, while RNA sequencing revealed diverse cellulase and hemi-cellulase activities in the ZHG gut, contributing to a total of 268 identified carbohydrate-active enzymes. Metatranscriptome analysis revealed a substantial contribution of 38% of the transcripts from anaerobic fungi and archaea to the gorilla microbiome. This activity originates from cellulose-degrading and hydrogenic fungal species belonging to the class Neocallimastigomycetes, as well as from methylotrophic and hydrogenotrophic methanogenic archaea belonging to the classes Thermoplasmata and Methanobacteria, respectively. Our study shows the added value of RNA sequencing in a multiomics approach and highlights the contribution of eukaryotic and archaeal activities to the gut microbiome of gorillas.
Collapse
Affiliation(s)
- Isabel M Houtkamp
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Mark Bessem
- Bioinformatics Department, BaseClear, Leiden, The Netherlands
| | - Walter Pirovano
- Bioinformatics Department, BaseClear, Leiden, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- ARTIS Amsterdam Royal Zoo, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Tang K, Tao L, Wang Y, Wang Q, Fu C, Chen B, Zhang Z, Fu Y. Temporal Variations in the Gut Microbiota of the Globally Endangered Sichuan Partridge (Arborophila rufipectus): Implications for Adaptation to Seasonal Dietary Change and Conservation. Appl Environ Microbiol 2023; 89:e0074723. [PMID: 37272815 PMCID: PMC10305732 DOI: 10.1128/aem.00747-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Host-associated microbiotas are known to influence host health by aiding digestion, metabolism, nutrition, physiology, immune function, and pathogen resistance. Although an increasing number of studies have investigated the avian microbiome, there is a lack of research on the gut microbiotas of wild birds, especially endangered pheasants. Owing to the difficulty of characterizing the dynamics of dietary composition, especially in omnivores, how the gut microbiotas of birds respond to seasonal dietary changes remains poorly understood. The Sichuan partridge (Arborophila rufipectus) is an endangered pheasant species with a small population endemic to the mountains of southwest China. Here, 16S rRNA sequencing and Tax4Fun were used to characterize and compare community structure and functions of the gut microbiota in the Sichuan partridges across three critical periods of their annual life cycle (breeding, postbreeding wandering, and overwintering). We found that the microbial communities were dominated by Firmicutes, Proteobacteria, Actinobacteria, and Cyanobacteria throughout the year. Diversity of the gut microbiotas was highest during postbreeding wandering and lowest during the overwintering periods. Seasonal dietary changes and reassembly of the gut microbial community occurred consistently. Composition, diversity, and functions of the gut microbiota exhibited diet-associated variations, which might facilitate host adaptation to diverse diets in response to environmental shifts. Moreover, 28 potential pathogenic genera were detected, and their composition differed significantly between the three periods. Investigation of the wild bird gut microbiota dynamics has enhanced our understanding of diet-microbiota associations over the annual life cycle of birds, aiding in the integrative conservation of this endangered bird. IMPORTANCE Characterizing the gut microbiotas of wild birds across seasons will shed light on their annual life cycle. Due to sampling difficulties and the lack of detailed dietary information, studies on how the gut microbiota adapts to seasonal dietary changes of wild birds are scarce. Based on more detailed dietary composition, we found a seasonal reshaping pattern of the gut microbiota of Sichuan partridges corresponding to their seasonal dietary changes. The variation in diet and gut microbiota potentially facilitated the diversity of dietary niches of this endangered pheasant, revealing a seasonal diet-microbiota association across the three periods of the annual cycle. In addition, identifying a variety of potentially pathogenic bacterial genera aids in managing the health and improving survival of Sichuan partridges. Incorporation of microbiome research in the conservation of endangered species contributes to our comprehensive understanding the diet-host-microbiota relationship in wild birds and refinement of conservation practices.
Collapse
Affiliation(s)
- Keyi Tang
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Ling Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yufeng Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Qiong Wang
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Changkun Fu
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Benping Chen
- Laojunshan National Nature Reserve Administration, Pingshan, Sichuan, China
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yiqiang Fu
- Ministry of Education Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
50
|
Dopico XC, Mandolesi M, Hedestam GBK. Untangling immunoglobulin genotype-function associations. Immunol Lett 2023:S0165-2478(23)00073-1. [PMID: 37209913 DOI: 10.1016/j.imlet.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Immunoglobulin (IG) genes, encoding B cell receptors (BCRs), are fundamental components of the mammalian immune system, which evolved to recognize the diverse antigenic universe present in nature. To handle these myriad inputs, BCRs are generated through combinatorial recombination of a set of highly polymorphic germline genes, resulting in a vast repertoire of antigen receptors that initiate responses to pathogens and regulate commensals. Following antigen recognition and B cell activation, memory B cells and plasma cells form, allowing for the development of anamnestic antibody (Ab) responses. How inherited variation in IG genes impacts host traits, disease susceptibility, and Ab recall responses is a topic of great interest. Here, we consider approaches to translate emerging knowledge about IG genetic diversity and expressed repertoires to inform our understanding of Ab function in health and disease etiology. As our understanding of IG genetics grows, so will our need for tools to decipher preferences for IG gene or allele usage in different contexts, to better understand antibody responses at the population level.
Collapse
Affiliation(s)
- Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden.
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | | |
Collapse
|