1
|
Fang Z, Zhang K, Li J, Ma J, Ye C. Construction of a Membrane Yeast Two-Hybrid Library and Screening of MsPYR1-Like Interacting Proteins in Malus sieversii. Mol Biotechnol 2025; 67:2319-2338. [PMID: 38824489 DOI: 10.1007/s12033-024-01199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
To investigate the biological effects of the ABA receptor pyrabactin resistance 1-like (PYR1-like) in Malus sieversii seeds, the proteins interacting with MsPYR1-like were screened by the membrane yeast two-hybrid library based on the split-ubiquitin system, and to construct the bait vector pBT3-SUC-PYR1 for Malus sieversii cDNA library, which had no self-activating effect on the yeast cells of the pPR3-N membrane yeast two-hybrid library. The library titer assay showed that it could meet the requirements for membrane yeast two-hybrid library screening. After sequencing, GenBank database blast, and yeast rotary validation, 28 candidate proteins interacting with MsPYR1-like were obtained, including ribosomal proteins, late embryogenesis abundant proteins, F-actin-capping proteins, phytochrome-interacting proteins, low-temperature-inducible 65 kDa protein-like, senescence-associated, PP2C and SnRK2 family members, and unknown proteins. Gene ontology analysis of the interaction proteins was related to plant hormone response and negative regulation of seed germination, overexpression of MsPYR1-like in Arabidopsis negatively regulates seed germination, and the study of the biological roles of MsPYR1-like interacting proteins lays the foundation for revealing the lifting of seed dormancy in Malus sieversii.
Collapse
Affiliation(s)
- Zhen Fang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Kai Zhang
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Jing Li
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Juan Ma
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Chunxiu Ye
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| |
Collapse
|
2
|
Kasera M, Ceciliato PHO, Lopez BNK, Hauser F, Gendron JM, Schroeder JI. Identification of F-box proteins in ABA- and GA-regulated seed germination: interaction of GASA1 signalling peptide and ABA-induced ubiquitination. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240233. [PMID: 40439299 PMCID: PMC12121378 DOI: 10.1098/rstb.2024.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 06/02/2025] Open
Abstract
Large gene families and the frequent overlapping functions of homologous genes remain a major challenge for functional forward genetic screens in plants. The recent development of homology-based gene silencing using computationally generated artificial microRNAs (amiRNAs) has been demonstrated to be a promising tool for unbiased functional genomics in plants by circumventing redundancies and lethality. In this study, through a forward genetics screen, we isolated an abscisic acid (ABA)-insensitive amiRNA line targeting five previously uncharacterized F-box Insensitive to ABA (FIA) genes. Notably, a triple mutant in the identified FIA genes FIA1, FIA3 and FIA4 (f1/f3/f4), that are expressed in germinating seeds, exhibited insensitivity in ABA inhibition of seed germination. In contrast, this ABA insensitivity was not observed in a double mutant of two FIA genes FIA1 and FIA4. Further investigation of the FIA1 interactome using F-box decoy lines revealed the gibberellin (GA)-responsive GASA1 protein that has been reported to encode a small stress signalling peptide as an interacting partner. We found that ABA promoted the ubiquitination of GASA1 in Arabidopsis, leading to its degradation via the 26S proteasome pathway. Together, our study reveals that ABA represses seed germination through FIA proteins and regulates the FIA interactor, GA-responsive GASA1.This article is part of the theme issue 'Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the 'Resilience Revolution'?'.
Collapse
Affiliation(s)
- Mritunjay Kasera
- Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA, USA
| | - Paulo H. O. Ceciliato
- Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA, USA
| | - Bryn N. K. Lopez
- Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA, USA
| | - Felix Hauser
- Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA, USA
| | - Joshua M. Gendron
- Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA
| | - Julian I. Schroeder
- Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Zhang Q, Yu X, Wang R, Wu Y, Shi F, Zhang Y, Zhao H, Xu H, Pan J, Wang Y, Tu M, Chang J, Zhu Z, He G, Chen M, Chen L, Yang G, Li Y. TaPP2C-a6 interacts with TaDOG1Ls and regulates seed dormancy and germination in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40418648 DOI: 10.1111/pbi.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/22/2024] [Accepted: 05/10/2025] [Indexed: 05/28/2025]
Abstract
Modern wheat cultivation requires seed to germinate rapidly and uniformly with weak dormancy. However, such varieties tend to undergo pre-harvest sprouting (PHS) if the harvest overlaps with the rainy season, causing substantial yield losses. Knowledge regarding the mechanisms of seed dormancy in wheat (Triticum aestivum L.) is limited, with only a few causal genes of the many PHS quantitative trait loci (QTLs) characterized. Here, we emphasize the involvement of ABA signalling core components in regulating seed dormancy and germination in wheat. TaPP2C-a6 was identified as the likely causal gene of wheat PHS-QTLs QPhs.wsu-1A/1B and QPhs1D.1_nwafu loci. Both TaPP2C-a6 and TaPP2C-a7 were highly expressed at embryonic developmental stages and germinating seeds, whereas TaPP2C-a6 was up-regulated during embryo maturation and seed germination. TaPP2C-a6 and TaPP2C-a7 were clade-A PP2Cs that interacted with TaPYLs and class III TaSnRK2s; however, TaPP2C-a6 showed stronger interactions with TaDOG1L members than those of TaPP2C-a7. TaPP2C-a6 overexpression in transgenic Arabidopsis thaliana caused a more severe reduction in ABA sensitivity than TaPP2C-a7 overexpression. Overexpression of TaPP2C-a6 in transgenic A. thaliana and wheat increased PHS levels, whereas TaPP2C-a7 transgenic A. thaliana did not affect PHS levels, confirming that TaPP2C-a6 is a novel regulator of wheat seed dormancy and germination. In summary, we demonstrated that leveraging the knowledge of seed dormancy and germination from model species could rapidly identify the causal genes of PHS-QTLs in wheat. Significantly, we showed that the TaPP2C-TaDOG1L interactions, particularly the interaction strength, could be a new aspect in the regulation of seed dormancy and germination.
Collapse
Affiliation(s)
- Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yufan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huazhen Xu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Pan
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Min Tu
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanwang Zhu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Yuan QS, Yang P, Liu YK, Tabl KM, Guo MW, Zhang JB, Wu AB, Liao YC, Huang T, He WJ. Iturin and fengycin lipopeptides inhibit pathogenic Fusarium by targeting multiple components of the cell membrane and their regulative effects in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40396538 DOI: 10.1111/jipb.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
Biocontrol microorganisms and their derived metabolites with antagonistic activity represent promising alternatives to chemical fungicides in managing plant pathogens. The lipopeptides (LPs) iturin and fengycin derived from Bacillus amyloliquefaciens S76-3 exhibit highly inhibitory effects against pathogenic fungi, especially Fusarium graminearum (Fg), the primary pathogen causing Fusarium head blight (FHB) in cereals. However, the specific target of iturin and fengycin in Fg and the underlying mechanism of antagonistic activity remain unclear. Here, global transcriptome sequencing, combined with both genetic and chemical approaches, demonstrates that the LPs exhibit antagonism toward Fg by binding to multiple components in the cell membrane of Fg cells, including ergosterol, phospholipids, glycosylphosphatidylinositol, and ankyrin. Lipopeptides result in cell swelling by inducing cell wall remodeling and osmotic substance glycerol synthesis mediated by cell wall integrity and high-osmolarity glycerol signaling pathways. Furthermore, we found that LPs can activate the induced systemic resistance in wheat against FHB and deoxynivalenol accumulation. Additionally, LPs were able to promote wheat growth by regulating auxin, cytokinin, and gibberellin signaling pathways while also delaying seed germination through the stimulation of abscisic acid and ethylene signaling pathways. These findings advance knowledge on the underlying mechanism of iturin and fengycin antagonistic activity and provide a new avenue for developing agricultural and clinical broad-spectrum antifungal agents and identifying plant growth regulators in the future.
Collapse
Affiliation(s)
- Qing-Song Yuan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Peng Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Jiangsu Ruihua Agricultural Science and Technology Co. Ltd., Suqian, 223800, China
| | - Yi-Ke Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Karim M Tabl
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mao-Wei Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, 010000, China
| | - Jing-Bo Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ai-Bo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Cai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei-Jie He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Zhang Q, Yu X, Wu Y, Wang R, Zhang Y, Shi F, Zhao H, Yu P, Wang Y, Chen M, Chang J, Li Y, He G, Yang G. TaPP2C-a5 fine-tunes wheat seed dormancy and germination with a Triticeae-specific, alternatively spliced transcript. J Adv Res 2025:S2090-1232(25)00300-5. [PMID: 40345647 DOI: 10.1016/j.jare.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
INTRODUCTION The sessile plants often experience environmental conditions not ideal for growth, and therefore have evolved strategies to survive and adapt to stress conditions. Abscisic acid (ABA) regulates plant development and abiotic stress response. Clade A type 2C protein phosphatases (PP2Cs), act as co-receptors of ABA, negatively regulate ABA signalling. However, the biological function and detailed molecular mechanism of clade A PP2Cs in ABA signalling pathway remain to be elucidated in wheat. OBJECTIVES To analyze the mechanisms of stress response and development mediated by ABA signal precisely regulated by TaPP2C-a5 at the post-transcriptional level in wheat, providing candidate genes for wheat improvement. METHODS Based on our previous results of TaPP2Cs gene family analysis, the function and detailed regulation mechanisms of TaPP2C-a5 gene in seed dormancy and germination as well as drought response mediated by ABA signaling pathway were explored through reverse genetics technology. RESULTS We found that class A TaPP2C-a5 underwent alternative splicing (AS) to produce two transcripts encoding TaPP2C-a5.1 and TaPP2C-a5.2, respectively. Both TaPP2C-a5.1 and TaPP2C-a5.2 were highly expressed in mature seeds, and were upregulated by exogenous ABA in seedlings. Overexpression of TaPP2C-a5.1 and TaPP2C-a5.2 coordinately negatively regulated seed dormancy and ABA-mediated seed germination as well as post-germination developmental arrest in wheat. TaPP2C-a5.1 negatively regulated drought stress response, while TaPP2C-a5.2 did not participate in drought stress response. The homologous genes of TaPP2C-a5 underwent the same AS as TaPP2C-a5 in tetraploid wheat, but not in rice. CONCLUSION Our results revealed that TaPP2C-a5 gene underwent AS and was involved in the regulation of seed dormancy and germination, as well as drought stress response mediated by the ABA signaling at the post-transcriptional level. Our work not only provide a potential target gene to improve PHS resistance, but also emphasize alternative splicing as a strategy with evolution contexts to fine-tune ABA signaling and its involvement in certain biological process.
Collapse
Affiliation(s)
- Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yufan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Puju Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
6
|
Yaseen M, Tariq N, Kanwal R, Farooq A, Wang H, Yuan H. Rice grain size: current regulatory mechanisms and future perspectives. JOURNAL OF PLANT RESEARCH 2025; 138:403-417. [PMID: 40056359 DOI: 10.1007/s10265-025-01626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/12/2025] [Indexed: 03/10/2025]
Abstract
Rice is a staple food for over half of the world's population. To feed the growing population, molecular breeders aim to increase grain yield. Grain size is an important factor for crop productivity, and it has been extensively studied. However, molecular breeders face a major challenge in further improving crop productivity in terms of grain yield and quality. Grain size is a complex trait controlled by multiple genes. Over the past few decades, genetic studies have identified various gene families involved in grain size development. The list of molecular mechanisms, and key regulators involved in grain size development is constantly expanding, making it difficult to understand the main regulators that play crucial roles in grain development. In this review, we focus on the major regulators of grain size, including G-protein signaling, the mitogen-activated protein kinase (MAPK) pathway, transcriptional regulation, the ubiquitin-proteasome degradation (UPD) pathway, and phytohormone signaling. These molecular mechanisms directly or indirectly regulate grain size. We provided a comprehensive understanding of the genes involved in these mechanisms and cross discussions about how these mechanisms are interlinked. This review serves as a valuable resource for understanding the molecular mechanisms that govern grain development and can aid in the development of molecular breeding strategies.
Collapse
Affiliation(s)
- Muhammad Yaseen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Naveed Tariq
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rida Kanwal
- College of Resource and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Akasha Farooq
- College of Resource and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
7
|
Lepri A, Kazmi H, Bertolotti G, Longo C, Occhigrossi S, Quattrocchi L, De Vivo M, Scintu D, Svolacchia N, Tarkowska D, Tureckova V, Strnad M, Del Bianco M, Di Mambro R, Costantino P, Sabatini S, Dello Ioio R, Vittorioso P. A DOF transcriptional repressor-gibberellin feedback loop plays a crucial role in modulating light-independent seed germination. PLANT COMMUNICATIONS 2025; 6:101262. [PMID: 39876558 PMCID: PMC12010397 DOI: 10.1016/j.xplc.2025.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/29/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Plants have evolved several strategies to cope with the ever-changing environment. One example of this is given by seed germination, which must occur when environmental conditions are suitable for plant life. In the model system Arabidopsis thaliana seed germination is induced by light; however, in nature, seeds of several plant species can germinate regardless of this stimulus. While the molecular mechanisms underlying light-induced seed germination are well understood, those governing germination in the dark are still vague, mostly due to the lack of suitable model systems. Here, we employ Cardamine hirsuta, a close relative of Arabidopsis, as a powerful model system to uncover the molecular mechanisms underlying light-independent germination. By comparing Cardamine and Arabidopsis, we show that maintenance of the pro-germination hormone gibberellin (GA) levels prompt Cardamine seeds to germinate under both dark and light conditions. Using genetic and molecular biology experiments, we show that the Cardamine DOF transcriptional repressor DOF AFFECTING GERMINATION 1 (ChDAG1), homologous to the Arabidopsis transcription factor DAG1, is involved in this process functioning to mitigate GA levels by negatively regulating GA biosynthetic genes ChGA3OX1 and ChGA3OX2, independently of light conditions. We also demonstrate that this mechanism is likely conserved in other Brassicaceae species capable of germinating in dark conditions, such as Lepidium sativum and Camelina sativa. Our data support Cardamine as a new model system suitable for studying light-independent germination studies. Exploiting this system, we have also resolved a long-standing question about the mechanisms controlling light-independent germination in plants, opening new frontiers for future research.
Collapse
Affiliation(s)
- Andrea Lepri
- Department of Biology and Biotechnology Charles Darwin, University of Rome, Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Hira Kazmi
- Department of Biology and Biotechnology Charles Darwin, University of Rome, Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Gaia Bertolotti
- Department of Biology and Biotechnology Charles Darwin, Sapienza, via dei Sardi, 70, 00185 Rome, Italy
| | - Chiara Longo
- Department of Biology and Biotechnology Charles Darwin, University of Rome, Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Sara Occhigrossi
- Department of Biology and Biotechnology Charles Darwin, University of Rome, Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Luca Quattrocchi
- Department of Biology and Biotechnology Charles Darwin, University of Rome, Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Mirko De Vivo
- Department of Biology and Biotechnology Charles Darwin, Sapienza, via dei Sardi, 70, 00185 Rome, Italy
| | - Daria Scintu
- Department of Biology and Biotechnology Charles Darwin, Sapienza, via dei Sardi, 70, 00185 Rome, Italy; Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy
| | - Noemi Svolacchia
- Department of Biology and Biotechnology Charles Darwin, Sapienza, via dei Sardi, 70, 00185 Rome, Italy
| | - Danuse Tarkowska
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, & Faculty of Science, Palacky University Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Veronika Tureckova
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, & Faculty of Science, Palacky University Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, & Faculty of Science, Palacky University Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | | | - Riccardo Di Mambro
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology Charles Darwin, University of Rome, Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Sabrina Sabatini
- Department of Biology and Biotechnology Charles Darwin, Sapienza, via dei Sardi, 70, 00185 Rome, Italy
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnology Charles Darwin, Sapienza, via dei Sardi, 70, 00185 Rome, Italy.
| | - Paola Vittorioso
- Department of Biology and Biotechnology Charles Darwin, University of Rome, Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
8
|
Nishimura N, Tsuchiya W, Suzuki N, Hirayama T, Yamazaki T. Identification and characterization of functional DOG1 residues regulating the abscisic acid response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70180. [PMID: 40287965 DOI: 10.1111/tpj.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/31/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Abscisic acid (ABA) is an important phytohormone regulating seed dormancy and germination. DELAY OF GERMINATION 1 (DOG1) is a pivotal regulator of seed dormancy and regulates the ABA response by binding with ABA HYPERSENSITIVE GERMINATION 1 (AHG1) and heme. However, to date, the molecular function and regulatory mechanisms of DOG1 remain unclear, including the relationship between DOG1 and the ABA response. Here, we investigate the mechanism of DOG1 in the ABA response using RNA sequencing, genetics, and biochemistry experiments. Our data suggest that DOG1 and AHG1 regulate the expression of many common genes, including seed maturation and ABA response. Moreover, DOG1 acts upstream of ABA INSENSITIVE 5 (ABI5) and regulates ABI5 target genes including LATE EMBRYOGENESIS ABUNDANT 1 (EM1) and EM6. We therefore performed a genetic screen to isolate mutants that suppress the ABA hypersensitive phenotype of YFP-DOG1-overexpressing transgenic plants. Ten mutant alleles caused mutations in the DOG1 transgene region, including three premature stop codon mutations and seven single amino acid substitutions. One of these mutants, P178L, which contains an amino acid substitution, abolished the interaction with AHG1 and promoted the dimerization of DOG1. Furthermore, we identify a heme-binding residue, Cys96, that plays an important role in ABA response. Overall, these data suggest that DOG1 and AHG1 regulate ABA response via ABI5 and that the association between heme and AHG1 is critical for the function of DOG1 during the regulation of seed germination.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-8602, Ibaraki, Japan
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, 319-2293, Ibaraki, Japan
| | - Wataru Tsuchiya
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-8518, Ibaraki, Japan
| | - Nahomi Suzuki
- Radiation Breeding Division, Institute of Crop Science, National Agriculture and Food Research Organization, 2425 Kamimurata, Hitachiohmiya, 319-2293, Ibaraki, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Advanced Research Field, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Okayama, Japan
| | - Toshimasa Yamazaki
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-8518, Ibaraki, Japan
| |
Collapse
|
9
|
Xu S, He Y, Zhou Z, Chen H, Zhao C, Mao H. Transcriptome analysis reveals the key roles of TaSMP1 and ABA signaling pathway in wheat seed dormancy and germination. PLANTA 2025; 261:91. [PMID: 40090975 DOI: 10.1007/s00425-025-04667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
MAIN CONCLUSION This study analyzed dynamic transcriptome profiles to reveal differential expression patterns of ABA related and LEA protein family genes and verified that TaSMP1 affects seed germination by interacting with TaABI5. Seed dormancy is a crucial survival strategy for plants to cope with environmental stresses. High levels of seed dormancy result in uneven germination, while low levels of seed dormancy increase the risk of pre-harvest sprouting (PHS), which threatens crop yield and quality. Therefore, achieving the optimal balance between seed dormancy and germination is vital for maximum potential crop yield and quality. This study constructed dynamic transcriptome expression profiles of the germination process for the weakly dormant wheat variety Jing 411 (J411) and the strongly dormant landrace variety Hongsuibai (HSB), revealing the temporal expression of differentially expressed genes. Plant hormone-related genes played a crucial role in the early germination response, particularly the abscisic acid (ABA) signaling gene TaABI5 and the ABA catabolism gene TaCYP707A1. The late embryogenesis abundant (LEA) protein family genes exhibited differential expression patterns during the germination of seeds with varying levels of dormancy. The TaSMP1 gene, a member of the LEA protein family, was identified as a negative regulator of seed dormancy, interacting directly with the key transcription factor TaABI5 in the ABA signaling pathway and influencing the expression of the seed germination gene TaDOG1L1. This study provides essential insights into the molecular mechanisms balancing seed dormancy and germination, offering potential targets for enhancing wheat resistance to PHS.
Collapse
Affiliation(s)
- Shuhao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yuqin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ziru Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Chunjie Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Zhang N, Bai B, Zuo S, Zhang H, Ren J, Lv Z, Zhou D, Yu H. Comparative physiological and co-expression network analysis reveals potential hub genes and adaptive mechanisms responsive to NaCl stress in peanut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2025; 25:294. [PMID: 40050719 PMCID: PMC11883931 DOI: 10.1186/s12870-025-06311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Salt stress has become a major threat to peanut yield and quality, and salt stress is particularly detrimental to seedling growth. Combined analysis of the physiology and transcriptomics of salt-tolerant variety (NH5) and salt-sensitive variety (FH23) under 200 mM NaCl stress was conducted to identify the key factors influencing the differences in salt tolerance and to investigate the potential regulatory mechanisms and hub genes associated with salt tolerance in peanuts. RESULTS Malondialdehyde (MDA) content and electrolyte leakage rate were significantly increased under prolonged NaCl stress, with the increase in FH23 being even more pronounced. NH5 maintained intracellular osmotic homeostasis by accumulating free proline and soluble protein content. In addition, NH5 exhibited higher antioxidant enzyme activity. The net photosynthetic rate (Pn) of NH5 and FH23 decreased by 64.24% and 94.49% after 96 h of stress. The intercellular CO2 concentration (Ci) of NH5 significantly decreased by 7.82%, while that of FH23 increased by 42.74%. This suggests that non-stomatal limiting factors were the primary cause of the decline in photosynthesis observed in FH23. Transcriptome analysis revealed the presence of 12,612 differentially expressed genes (DEGs) in response to salt stress, with FH23 exhibiting a greater number than NH5. The number of upregulated genes was significantly higher than that of downregulated genes at 24 h of salt stress, whereas the number of downregulated genes exceeded that of upregulated genes at 48 h. Subsequently, Weighted Gene Co-expression Network Analysis (WGCNA) was performed in conjunction with physiological data. Twenty-four hub genes of salt response were identified, which encoded delta-1-pyrroline-5-carboxylate synthase, aldehyde dehydrogenase, SNF1-related protein kinase, magnesium transporter, temperature-induced lipocalin-1, and ERF transcription factors. CONCLUSION A regulatory network for potential salt tolerance in peanuts has been constructed. The findings revealed distinct mechanisms of response to salt tolerance and identified candidate genes for further investigation.
Collapse
Affiliation(s)
- Nan Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110161, China
| | - Baiyi Bai
- School of Agriculture and Horticulture, Liaoning Agricultural Vocational and Technical College, Yingkou, 115009, China
| | - Shiyu Zuo
- School of Agriculture and Horticulture, Liaoning Agricultural Vocational and Technical College, Yingkou, 115009, China
| | - He Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jingyao Ren
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110161, China
| | - Zhenghao Lv
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110161, China
| | - Dongying Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110161, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110161, China.
- School of Agriculture and Horticulture, Liaoning Agricultural Vocational and Technical College, Yingkou, 115009, China.
| |
Collapse
|
11
|
Yang Y, Feng T, Zheng X, Zheng H, Tang H, Yu X. Integrated analyses provide insights into the seed dormancy mechanisms of the endangered plant Sinojackia sarcocarpa. Genomics 2025; 117:110991. [PMID: 39848477 DOI: 10.1016/j.ygeno.2025.110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Sinojackia sarcocarpa, an endangered ornamental plant endemic to China, faces germination challenges that contribute to its endangered status. The mechanisms of its seed dormancy are not well understood. This study used morphological, physiological, transcriptomic, and gene function analyses to investigate these mechanisms. Our research shows that seed dormancy in Sinojackia sarcocarpa involves both physical and physiological factors. We found that removing the hard endocarp and applying gibberellic acid can effectively break dormancy. Transcriptomic analysis identified 2218 up-regulated and 374 down-regulated genes during germination. Notably, DOG1-domain genes SsDOGL4, SsTGA9, and SsTGA10 were significantly downregulated, while SsDOG1 was not. Additionally, overexpression of SsDOGL4 in Arabidopsis endosperm was found to enhance seed dormancy. Collectively, these findings offer significant insights into the mechanisms underlying seed dormancy in this endangered plant species.
Collapse
Affiliation(s)
- Yao Yang
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Tingting Feng
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Xianzhe Zheng
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Huifang Zheng
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Hao Tang
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Xiaobo Yu
- Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China.
| |
Collapse
|
12
|
Bykova NV, Igamberdiev AU. Redox Control of Seed Germination is Mediated by the Crosstalk of Nitric Oxide and Reactive Oxygen Species. Antioxid Redox Signal 2025; 42:442-461. [PMID: 39602281 DOI: 10.1089/ars.2024.0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Significance: Seed germination and seedling establishment are characterized by changes in the intracellular redox state modulated by accelerated production of nitric oxide (NO) and reactive oxygen species (ROS). Redox regulation and enhanced accumulation of NO and ROS, approaching excessively high levels during seed imbibition, are critically important for breaking endodormancy and inducing germination. Recent Advances: Upon depletion of oxygen under the seed coat, NO is produced anaerobically in the reductive pathway associated mainly with mitochondria, and it participates in the energy metabolism of the seed until radicle protrusion. NO turnover involves nitrate reduction to nitrite in the cytosol, nitrite reduction to NO in mitochondria, and NO oxygenation in the cytosol in the reaction involving the hypoxically induced class 1 phytoglobin. In postgerminative degradation of seed tissues, NO and ROS are involved in redox signaling via post-translational modification of proteins and mediation of phytohormonal responses. Critical Issues: The crosstalk between the cellular redox potential, NO, ROS, and phytohormones integrates major physiological processes related to seed germination. Intensive accumulation of NO and ROS during imbibition is critically important for breaking seed dormancy. Upon oxygen depletion, NO and other nitrous oxides (NOx) are produced anaerobically and support energy metabolism prior to radicle protrusion. Future Directions: The turnover of NOx and ROS is determined by the intracellular redox balance, and it self-controls redox and energy levels upon germination. The particular details, regulation of this process, and its physiological significance remain to be established. Antioxid. Redox Signal. 42, 442-461.
Collapse
Affiliation(s)
- Natalia V Bykova
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
13
|
Krüger T, Brandt D, Sodenkamp J, Gasper M, Romera-Branchat M, Ahloumessou F, Gehring E, Drotleff J, Bell C, Kramer K, Eirich J, Soppe WJJ, Finkemeier I, Née G. DOG1 controls dormancy independently of ABA core signaling kinases regulation by preventing AFP dephosphorylation through AHG1. SCIENCE ADVANCES 2025; 11:eadr8502. [PMID: 40020062 PMCID: PMC11870083 DOI: 10.1126/sciadv.adr8502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Seed dormancy determines germination timing, influencing seed plant adaptation and overall fitness. DELAY OF GERMINATION 1 (DOG1) is a conserved central regulator of dormancy cooperating with the phytohormone abscisic acid (ABA) through negative regulation of ABA HYPERSENSITIVE GERMINATION (AHG) 1 and AHG3 phosphatases. The current molecular mechanism of DOG1 signaling proposes it regulates the activation of central ABA-related SnRK2 kinases. Here, we unveil DOG1's functional autonomy from the regulation of ABA core signaling components and unravel its pivotal control over the activation of ABSCISIC ACID INSENSITIVE FIVE BINDING PROTEINs (AFPs). Our data revealed a molecular relay in which AFPs' genuine activation by AHG1 is contained by DOG1 to prevent the breakdown of maturation-imposed ABA responses independently of ABA-related kinase activation status. This work offers a molecular understanding of how plants fine-tune germination timing, while preserving seed responsiveness to adverse environmental cues, and thus represents a milestone in the realm of conservation and breeding programs.
Collapse
Affiliation(s)
- Thorben Krüger
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Dennis Brandt
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Johanna Sodenkamp
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Michael Gasper
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Maida Romera-Branchat
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Florian Ahloumessou
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
- West Africa Centre for Crop Improvement, University of Ghana, Legon, Ghana
| | - Elena Gehring
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Julia Drotleff
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Christopher Bell
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
| | - Wim J. J. Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Rijk Zwaan, De Lier, 2678 ZG, Netherlands
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Guillaume Née
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, 48149, Germany
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
14
|
Rachappanavar V. Utilizing CRISPR-based genetic modification for precise control of seed dormancy: progress, obstacles, and potential directions. Mol Biol Rep 2025; 52:204. [PMID: 39907946 DOI: 10.1007/s11033-025-10285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Seed dormancy, a complex trait that is influenced by both nuclear and cytoplasmic factors, poses a significant challenge to agricultural productivity. Conventional dormancy-breaking techniques, including mechanical, physiological, and chemical methods, often yield inconsistent results, impair seed quality, and lack precision. This has necessitated exploration of more targeted and efficient approaches. CRISPR-based gene editing has emerged as a promising tool for the precise regulation of seed dormancy without compromising seed viability or sustainability. Although CRISPR has been successfully applied to modify genes that govern physiological traits in various crops, its use in dormancy regulation remains in the early stages. This review examines recent advancements in CRISPR-based approaches for modulating seed dormancy and discusses key gene targets, modification techniques, and the resulting effects. We also consider the future potential of CRISPR to enhance dormancy control across diverse crop species.
Collapse
Affiliation(s)
- Vinaykumar Rachappanavar
- MS Swaminathan School of Agriculture, Shoolini University, Solan, Himachal Pradesh, 173230, India.
| |
Collapse
|
15
|
Li GJ, Chen K, Sun S, Zhao Y. Osmotic signaling releases PP2C-mediated inhibition of Arabidopsis SnRK2s via the receptor-like cytoplasmic kinase BIK1. EMBO J 2024; 43:6076-6103. [PMID: 39433899 PMCID: PMC11612456 DOI: 10.1038/s44318-024-00277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Osmotic stress and abscisic acid (ABA) signaling are important for plant growth and abiotic stress resistance. Activation of osmotic and ABA signaling downstream of the PYL-type ABA receptors requires the release of SnRK2 protein kinases from the inhibition imposed by PP2Cs. PP2Cs are core negative regulators that constantly interact with and inhibit SnRK2s, but how osmotic signaling breaks the PP2C inhibition of SnRK2s remains unclear. Here, we report that an Arabidopsis receptor-like cytoplasmic kinase, BIK1, releases PP2C-mediated inhibition of SnRK2.6 via phosphorylation regulation. The dominant abi1-1 ABA-signaling mutation (G180D) disrupts PYL-PP2C interactions and disables PYL-initiated release of SnRK2s; in contrast, BIK1 releases abi1-1-mediated inhibition of SnRK2.6. BIK1 interacts with and phosphorylates SnRK2.6 at two tyrosine residues, which are critical for SnRK2.6 activation and function. Phosphorylation of the two tyrosine residues may affect the docking of the tryptophan "lock" of PP2C into SnRK2.6. Moreover, the bik1 mutant is defective in SnRK2 activation, stress-responsive gene expression, ABA accumulation, growth maintenance, and water loss under osmotic stress. Our findings uncover the critical role of BIK1 in releasing PP2C-mediated inhibition of SnRK2s under osmotic stress.
Collapse
Affiliation(s)
- Guo-Jun Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Kong Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Shujing Sun
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
16
|
Pucciariello C, Perata P. Plant quiescence strategy and seed dormancy under hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6047-6055. [PMID: 38622943 DOI: 10.1093/jxb/erae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Plant quiescence and seed dormancy can be triggered by reduced oxygen availability. Under water, oxygen depletion caused by flooding can culminate in a quiescent state, which is a plant strategy for energy preservation and survival. In adult plants, a quiescent state can be activated by sugar starvation, leading to metabolic depression. In seeds, secondary dormancy can be activated by reduced oxygen availability, which creates an unfavourable state for germination. The physical dormancy of some seeds and buds includes barriers to external conditions, which indirectly results in hypoxia. The molecular processes that support seed dormancy and plant survival through quiescence under hypoxia include the N-degron pathway, which enables the modulation of ethylene-responsive factors of group VII and downstream targets. This oxygen- and nitric oxide-dependent mechanism interacts with phytohormone-related pathways to control growth.
Collapse
Affiliation(s)
- Chiara Pucciariello
- Institute of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- NanoPlant Center @NEST, Institute of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
17
|
Nemati I, Hamzelou S, Gholizadeh S, Kamath KS, Haynes PA, Sedghi M, Afshari RT, Salekdeh GH. Proteomic analysis during seed development provides insight into the early establishment of seed dormancy in Xanthium strumarium. PHYSIOLOGIA PLANTARUM 2024; 176:e14546. [PMID: 39415749 DOI: 10.1111/ppl.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 10/19/2024]
Abstract
This experiment was carried out to provide a comprehensive insight into the protein activities involved in dormancy establishment in seeds of common cocklebur (Xanthium strumarium), an annual plant with two dimorphic seeds contained in one casing known as a burr. These consist of a smaller dormant seed and a larger non-dormant seed. The proteome profile was compared between developing dormant and non-dormant seeds of Xanthium strumarium at five consecutive stages including three, 10, 20, 30, and 45 days after burr emergence (stages 1 to 5). We identified 6524 proteins in total, and approximately 3.6% of these were differentially abundant proteins (DAPs) between the two seed types. Both seed types showed fundamental changes in developmental programs during the examined stages. More than 38% of all DAPs were observed at the first stage, supporting the importance of the early developmental stage in seed fate determination. The detected DAPs at stage 1 were mainly associated with the cell division phase, which showed a delay in the dormant seeds. Over-representation of proteins responsible for cell wall biosynthesis, cytokinesis, and seed development were detected for non-dormant seeds at the first stage, while dormancy-associated proteins showed less abundance. Stage 3 was the critical stage for switching processes toward seed maturation and abscisic acid (ABA) signaling. Interestingly, higher abundance proteins in the mature non-dormant seed were mainly involved in the facilitation of seed germination. Taken together, the temporal pattern of the accumulated proteins in developing dormant seeds demonstrated a delay in the initiation of active cell division, enriched response to ABA, and defects in seed maturation. Moreover, stored proteins in the mature dormant seed delay germination but not dormancy induction. Finally, our results suggest that dormancy may be established at a stage of seed development earlier than previously thought.
Collapse
Affiliation(s)
- Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sara Hamzelou
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
- CSIRO Health and Biosecurity, Adelaide, SA, Australia
| | - Somayeh Gholizadeh
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Karthik Shantharam Kamath
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Mohammad Sedghi
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Reza Tavakkol Afshari
- Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| | | |
Collapse
|
18
|
Hong J, Han S, Geem KR, Bae W, Kim J, Jee MG, Lee JW, Kim JU, Lee G, Joo Y, Shim D, Ryu H. Identification of a key signaling network regulating perennating bud dormancy in Panax ginseng. J Ginseng Res 2024; 48:511-519. [PMID: 39263311 PMCID: PMC11385393 DOI: 10.1016/j.jgr.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background The cycle of seasonal dormancy of perennating buds is an essential adaptation of perennial plants to unfavorable winter conditions. Plant hormones are key regulators of this critical biological process, which is intricately connected with diverse internal and external factors. Recently, global warming has increased the frequency of aberrant temperature events that negatively affect the dormancy cycle of perennials. Although many studies have been conducted on the perennating organs of Panax ginseng, the molecular aspects of bud dormancy in this species remain largely unknown. Methods In this study, the molecular physiological responses of three P. ginseng cultivars with different dormancy break phenotypes in the spring were dissected using comparative genome-wide RNA-seq and network analyses. These analyses identified a key role for abscisic acid (ABA) activity in the regulation of bud dormancy. Gene set enrichment analysis revealed that a transcriptional network comprising stress-related hormone responses made a major contribution to the maintenance of dormancy. Results Increased expression levels of cold response and photosynthesis-related genes were associated with the transition from dormancy to active growth in perennating buds. Finally, the expression patterns of genes encoding ABA transporters, receptors (PYRs/PYLs), PROTEIN PHOSPHATASE 2Cs (PP2Cs), and DELLAs were highly correlated with different dormancy states in three P. ginseng cultivars. Conclusion This study provides evidence that ABA and stress signaling outputs are intricately connected with a key signaling network to regulate bud dormancy under seasonal conditions in the perennial plant P. ginseng.
Collapse
Affiliation(s)
- Jeoungeui Hong
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Soeun Han
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyoung Rok Geem
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Wonsil Bae
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jiyong Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Moo-Geun Jee
- Ginseng & Medicinal Plant Research Institute, Chungnam Agricultural Research & Extention Service, Keumsan, Republic of Korea
| | - Jung-Woo Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Jang-Uk Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, Republic of Korea
| | - Youngsung Joo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
19
|
Qiao H, Zhou X, Yi Y, Wei L, Xu X, Jin P, Su W, Weng Y, Yu D, He S, Fu M, Hou C, Pan X, Wang W, Zhang YY, Ming R, Ye C, Li QQ, Shen Y. Molecular mechanism of vivipary as revealed by the genomes of viviparous mangroves and non-viviparous relatives. Curr Biol 2024; 34:3707-3721.e7. [PMID: 39079534 DOI: 10.1016/j.cub.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Vivipary is a prominent feature of mangroves, allowing seeds to complete germination while attached to the mother plant, and equips propagules to endure and flourish in challenging coastal intertidal wetlands. However, vivipary-associated genetic mechanisms remain largely elusive. Genomes of two viviparous mangrove species and a non-viviparous inland relative were sequenced and assembled at the chromosome level. Comparative genomic analyses between viviparous and non-viviparous genomes revealed that DELAY OF GERMINATION 1 (DOG1) family genes (DFGs), the proteins from which are crucial for seed dormancy, germination, and reserve accumulation, are either lost or dysfunctional in the entire lineage of true viviparous mangroves but are present and functional in their inland, non-viviparous relatives. Transcriptome dynamics at key stages of vivipary further highlighted the roles of phytohormonal homeostasis, proteins stored in mature seeds, and proanthocyanidins in vivipary under conditions lacking DFGs. Population genomic analyses elucidate dynamics of syntenic regions surrounding the missing DFGs. Our findings demonstrated the genetic foundation of constitutive vivipary in Rhizophoraceae mangroves.
Collapse
Affiliation(s)
- Hongmei Qiao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaoxuan Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuchong Yi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Liufeng Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Pengfei Jin
- Novogene Co. Ltd, Building 301, Zone A10 Jiuxianqiao North Road, Chaoyang District, Beijing 100006, China
| | - Wenyue Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yulin Weng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Dingtian Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Meiping Fu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Chengcheng Hou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaobao Pan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China; Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
20
|
Zhang D, He T, Wang X, Zhou C, Chen Y, Wang X, Wang S, He S, Guo Y, Liu Z, Chen M. Transcription factor DIVARICATA1 positively modulates seed germination in response to salinity stress. PLANT PHYSIOLOGY 2024; 195:2997-3009. [PMID: 38687890 DOI: 10.1093/plphys/kiae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Seed germination is a critical checkpoint for plant growth under unfavorable environmental conditions. In Arabidopsis (Arabidopsis thaliana), the abscisic acid (ABA) and gibberellic acid (GA) signaling pathways play important roles in modulating seed germination. However, the molecular links between salinity stress and ABA/GA signaling are not well understood. Herein, we showed that the expression of DIVARICATA1 (DIV1), which encodes a MYB-like transcription factor, was induced by GA and repressed by ABA, salinity, and osmotic stress in germinating seeds. DIV1 positively regulated seed germination in response to salinity stress by directly regulating the expression of DELAY OF GERMINATION 1-LIKE 3 (DOGL3) and GA-STIMULATED ARABIDOPSIS 4 (GASA4) and indirectly regulating the expression of several germination-associated genes. Moreover, NUCLEAR FACTOR-YC9 (NF-YC9) directly repressed the expression of DIV1 in germinating seeds in response to salinity stress. These results help reveal the function of the NF-YC9-DIV1 module and provide insights into the regulation of ABA and GA signaling in response to salinity stress during seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Da Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tan He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xumin Wang
- Ningxia Agricultural Technology Extension Station, Yinchuan 750001, Ningxia, China
| | - Chenchen Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youpeng Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shixiang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Ren Y, Fu W, Gao Y, Chen Y, Kong D, Cao M, Pang X, Bo W. Identification of Key Genes of Fruit Shape Variation in Jujube with Integrating Elliptic Fourier Descriptors and Transcriptome. PLANTS (BASEL, SWITZERLAND) 2024; 13:1273. [PMID: 38732489 PMCID: PMC11085141 DOI: 10.3390/plants13091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Jujube (Ziziphus jujuba) exhibits a rich diversity in fruit shape, with natural occurrences of gourd-like, flattened, and other special shapes. Despite the ongoing research into fruit shape, studies integrating elliptical Fourier descriptors (EFDs) with both Short Time-series Expression Miner (STEM) and weighted gene co-expression network analysis (WGCNA) for gene discovery remain scarce. In this study, six cultivars of jujube fruits with distinct shapes were selected, and samples were collected from the fruit set period to the white mature stage across five time points for shape analysis and transcriptome studies. By combining EFDs with WGCNA and STEM, the study aimed to identify the critical periods and key genes involved in the formation of jujube fruit shape. The findings indicated that the D25 (25 days after flowering) is crucial for the development of jujube fruit shape. Moreover, ZjAGL80, ZjABI3, and eight other genes have been implicated to regulate the shape development of jujubes at different periods of fruit development, through seed development and fruit development pathway. In this research, EFDs were employed to precisely delineate the shape of jujube fruits. This approach, in conjunction with transcriptome, enhanced the precision of gene identification, and offered an innovative methodology for fruit shape analysis. This integration facilitates the advancement of research into the morphological characteristics of plant fruits, underpinning the development of a refined framework for the genetic underpinnings of fruit shape variation.
Collapse
Affiliation(s)
- Yue Ren
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| | - Wenqing Fu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| | - Yi Gao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| | - Yuhan Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| | - Decang Kong
- National Foundation for Improved Cultivar of Chinese Jujube, Cangzhou 061000, China; (D.K.); (M.C.)
| | - Ming Cao
- National Foundation for Improved Cultivar of Chinese Jujube, Cangzhou 061000, China; (D.K.); (M.C.)
| | - Xiaoming Pang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| |
Collapse
|
22
|
Sajeev N, Koornneef M, Bentsink L. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination. THE PLANT CELL 2024; 36:1358-1376. [PMID: 38215009 PMCID: PMC11062444 DOI: 10.1093/plcell/koad328] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Seeds are unique time capsules that can switch between 2 complex and highly interlinked stages: seed dormancy and germination. Dormancy contributes to the survival of plants because it allows to delay germination to optimal conditions. The switch between dormancy and germination occurs in response to developmental and environmental cues. In this review we provide a comprehensive overview of studies that have helped to unravel the molecular mechanisms underlying dormancy and germination over the last decades. Genetic and physiological studies provided a strong foundation for this field of research and revealed the critical role of the plant hormones abscisic acid and gibberellins in the regulation of dormancy and germination, and later natural variation studies together with quantitative genetics identified previously unknown genetic components that control these processes. Omics technologies like transcriptome, proteome, and translatomics analysis allowed us to mechanistically dissect these processes and identify new components in the regulation of seed dormancy and germination.
Collapse
Affiliation(s)
- Nikita Sajeev
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, 6708PB Wageningen, the Netherlands
- Max Planck Institute for Plant Breeding Research, Former Department of Plant Breeding and Genetics, Koeln 50829, Germany
| | - Leónie Bentsink
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| |
Collapse
|
23
|
Kim JS, Kidokoro S, Yamaguchi-Shinozaki K, Shinozaki K. Regulatory networks in plant responses to drought and cold stress. PLANT PHYSIOLOGY 2024; 195:170-189. [PMID: 38514098 PMCID: PMC11060690 DOI: 10.1093/plphys/kiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Drought and cold represent distinct types of abiotic stress, each initiating unique primary signaling pathways in response to dehydration and temperature changes, respectively. However, a convergence at the gene regulatory level is observed where a common set of stress-responsive genes is activated to mitigate the impacts of both stresses. In this review, we explore these intricate regulatory networks, illustrating how plants coordinate distinct stress signals into a collective transcriptional strategy. We delve into the molecular mechanisms of stress perception, stress signaling, and the activation of gene regulatory pathways, with a focus on insights gained from model species. By elucidating both the shared and distinct aspects of plant responses to drought and cold, we provide insight into the adaptive strategies of plants, paving the way for the engineering of stress-resilient crop varieties that can withstand a changing climate.
Collapse
Affiliation(s)
- June-Sik Kim
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046Japan
| | - Satoshi Kidokoro
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502Japan
| | - Kazuko Yamaguchi-Shinozaki
- Research Institute for Agriculture and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502Japan
- Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601Japan
| |
Collapse
|
24
|
Abley K, Goswami R, Locke JCW. Bet-hedging and variability in plant development: seed germination and beyond. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230048. [PMID: 38432313 PMCID: PMC10909506 DOI: 10.1098/rstb.2023.0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/28/2023] [Indexed: 03/05/2024] Open
Abstract
When future conditions are unpredictable, bet-hedging strategies can be advantageous. This can involve isogenic individuals producing different phenotypes, under the same environmental conditions. Ecological studies provide evidence that variability in seed germination time has been selected for as a bet-hedging strategy. We demonstrate how variability in germination time found in Arabidopsis could function as a bet-hedging strategy in the face of unpredictable lethal stresses. Despite a body of knowledge on how the degree of seed dormancy versus germination is controlled, relatively little is known about how differences between isogenic seeds in a batch are generated. We review proposed mechanisms for generating variability in germination time and the current limitations and new possibilities for testing the model predictions. We then look beyond germination to the role of variability in seedling and adult plant growth and review new technologies for quantification of noisy gene expression dynamics. We discuss evidence for phenotypic variability in plant traits beyond germination being under genetic control and propose that variability in stress response gene expression could function as a bet-hedging strategy. We discuss open questions about how noisy gene expression could lead to between-plant heterogeneity in gene expression and phenotypes. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Katie Abley
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| | - Rituparna Goswami
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| | - James C. W. Locke
- The Sainsbury Laboratory, University of Cambridge, Cambridge, Cambridgeshire CB2 1LR, UK
| |
Collapse
|
25
|
Xu S, Shao S, Feng X, Li S, Zhang L, Wu W, Liu M, Tracy ME, Zhong C, Guo Z, Wu CI, Shi S, He Z. Adaptation in Unstable Environments and Global Gene Losses: Small but Stable Gene Networks by the May-Wigner Theory. Mol Biol Evol 2024; 41:msae059. [PMID: 38507653 PMCID: PMC10991078 DOI: 10.1093/molbev/msae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species. A great majority of gene losses are concentrated on environmental interaction processes, presumably to cope with the constant fluctuations in the tidal environments. Genes of the general processes for woody plants are largely retained. In particular, fewer gene losses are found in physiological traits such as viviparous seeds, high salinity, and high tannin content. Given the broad and continual genome reductions, we propose the May-Wigner theory (MWT) of system stability as a possible mechanism. In MWT, the most effective solution for buffering continual perturbations is to reduce the size of the system (or to weaken the total genic interactions). Mangroves are unique as immovable inhabitants of the compound environments in the land-sea interface, where environmental gradients (such as salinity) fluctuate constantly, often drastically. Extending MWT to gene regulatory network (GRN), computer simulations and transcriptome analyses support the stabilizing effects of smaller gene sets in mangroves vis-à-vis inland plants. In summary, we show the adaptive significance of gene losses in mangrove plants, including the specific role of promoting phenotype innovation and a general role in stabilizing GRN in unstable environments as predicted by MWT.
Collapse
Affiliation(s)
- Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Sen Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Lingjie Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Cairong Zhong
- Institute of Wetland Research, Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Huang Y, Mei G, Zhu K, Ruan X, Wu H, Cao D. Shading treatment during late stage of seed development promotes subsequent seed germination and seedlings establishment in sunflower. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111996. [PMID: 38272070 DOI: 10.1016/j.plantsci.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
During the sunflower seed production process, the role of artificial shading treatment (ST) in seed development and subsequent seed germination remains largely unknown. In the present study, sunflower mother plants were artificially shaded during 1-34 (full period-ST, FST), 1-22 (early period-ST, EST), and 22-34 (late period-ST, LST) days after pollination (DAP), to examine the effects of parental shading on subsequent seed germination. Both FST and EST significantly reduced the photosynthetic efficiency of sunflower, manifested as decreased seed dry weight and unfavorable seed germination. On the contrary, LST remarkably increased seed dry weight and promoted subsequent seed germination and seedling establishment. LST enhanced the activities of several key enzymes involved in triglyceride anabolism and corresponding-genes expression, which in turn increased the total fatty acid contents and altered the fatty acid composition. During early germination, the key enzyme activities involved in triglyceride disintegration and corresponding-gene expressions in LST seeds were apparently higher than those in seeds without the shading treatment (WST). Consistently, LST seeds had significant higher contents of ATP and soluble sugar. Moreover, enzyme activities related to abscisic acid (ABA) biosynthesis and corresponding gene expressions decreased within LST seeds, whereas the enzyme activities and corresponding gene expressions associated with gibberellin (GA) biosynthesis were increased. These results were also evidenced by the reduced ABA content but elevated GA level within LST seeds, giving rise to higher GA/ABA ratio. Our findings suggested that LST could promote sunflower seed development and subsequent seed germination as well as seedling establishment through modulating the dynamic metabolism of triglycerides, fatty acid and GA/ABA balance.
Collapse
Affiliation(s)
- Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Gaofu Mei
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Kehua Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Xiaoli Ruan
- Zhejiang Nongke Seed Co.Ltd, 310021 Hangzhou, China
| | - Huaping Wu
- Huzhou Keao Seed Co.Ltd, 313000 Huzhou 313000, China
| | - Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.
| |
Collapse
|
27
|
Xu H, Wang F, Rebecca Njeri Damari, Chen X, Lin Z. Molecular mechanisms underlying the signal perception and transduction during seed germination. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:27. [PMID: 38525006 PMCID: PMC10954596 DOI: 10.1007/s11032-024-01465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
QuerySeed germination is a vital step in the life cycle of a plant, playing a significant role in seedling establishment and crop yield potential. It is also an important factor in the conservation of plant germplasm resources. This complex process is influenced by a myriad of factors, including environmental conditions, the genetic makeup of the seed, and endogenous hormones. The perception of these environmental signals triggers a cascade of intricate signal transduction events that determine whether a seed germinates or remains dormant. Despite considerable progress in uncovering the molecular mechanisms governing these processes, many questions remain unanswered. In this review, we summarize the current progress in the molecular mechanisms underlying the perception of environmental signals and consequent signal transduction during seed germination, and discuss questions that need to be addressed to better understand the process of seed germination and develop novel strategies for germplasm improvement.
Collapse
Affiliation(s)
- Huibin Xu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108 China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou, 350108 China
| | - Fuxiang Wang
- National Rice Engineering Laboratory of China, Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 China
| | | | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108 China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou, 350108 China
| | - Zhongyuan Lin
- Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108 China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou, 350108 China
| |
Collapse
|
28
|
Yu J, Lee H, Cho SM, Lee Y, Kim D, Hong SG, Park SJ, Kim SG, Jin H, Lee J. Life under the snow: A year-round transcriptome analysis of Antarctic mosses in natural habitats provides insight into the molecular adaptation of plants under extreme environment. PLANT, CELL & ENVIRONMENT 2024; 47:976-991. [PMID: 38164069 DOI: 10.1111/pce.14793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Mosses are vital components of ecosystems, exhibiting remarkable adaptability across diverse habitats from deserts to polar ice caps. Sanionia uncinata (Hedw.) Loeske, a dominant Antarctic moss survives extreme environmental condition through perennial lifecycles involving growth and dormancy alternation. This study explores genetic controls and molecular mechanisms enabling S. uncinata to cope with seasonality of the Antarctic environment. We analysed the seasonal transcriptome dynamics of S. uncinata collected monthly from February 2015 to January 2016 in King George Island, Antarctica. Findings indicate that genes involved in plant growth were predominantly upregulated in Antarctic summer, while those associated with protein synthesis and cell cycle showed marked expression during the winter-to-summer transition. Genes implicated in cellular stress and abscisic acid signalling were highly expressed in winter. Further, validation included a comparison of the Antarctic field transcriptome data with controlled environment simulation of Antarctic summer and winter temperatures, which revealed consistent gene expression patterns in both datasets. This proposes a seasonal gene regulatory model of S. uncinate to understand moss adaptation to extreme environments. Additionally, this data set is a valuable resource for predicting genetic responses to climatic fluctuations, enhancing our knowledge of Antarctic flora's resilience to global climate change.
Collapse
Affiliation(s)
- Jihyeon Yu
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science and Technology, Incheon, South Korea
| | - Sung Mi Cho
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science and Technology, Incheon, South Korea
| | - Yelim Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Soon Gyu Hong
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science and Technology, Incheon, South Korea
| | - Sang-Jong Park
- Division of Atmospheric Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, Korea
| | - Hongshi Jin
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Jungeun Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| |
Collapse
|
29
|
Zhang N, Zhang H, Lv Z, Bai B, Ren J, Shi X, Kang S, Zhao X, Yu H, Zhao T. Integrative multi-omics analysis reveals the crucial biological pathways involved in the adaptive response to NaCl stress in peanut seedlings. PHYSIOLOGIA PLANTARUM 2024; 176:e14266. [PMID: 38558467 DOI: 10.1111/ppl.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Plant growth is restricted by salt stress, which is a significant abiotic factor, particularly during the seedling stage. The aim of this study was to investigate the mechanisms underlying peanut adaptation to salt stress by transcriptomic and metabolomic analysis during the seedling stage. In this study, phenotypic variations of FH23 and NH5, two peanut varieties with contrasting tolerance to salt, changed obviously, with the strongest differences observed at 24 h. FH23 leaves wilted and the membrane system was seriously damaged. A total of 1470 metabolites were identified, with flavonoids being the most common (21.22%). Multi-omics analyses demonstrated that flavonoid biosynthesis (ko00941), isoflavones biosynthesis (ko00943), and plant hormone signal transduction (ko04075) were key metabolic pathways. The comparison of metabolites in isoflavone biosynthesis pathways of peanut varieties with different salt tolerant levels demonstrated that the accumulation of naringenin and formononetin may be the key metabolite leading to their different tolerance. Using our transcriptomic data, we identified three possible reasons for the difference in salt tolerance between the two varieties: (1) differential expression of LOC112715558 (HIDH) and LOC112709716 (HCT), (2) differential expression of LOC112719763 (PYR/PYL) and LOC112764051 (ABF) in the abscisic acid (ABA) signal transduction pathway, then (3) differential expression of genes encoding JAZ proteins (LOC112696383 and LOC112790545). Key metabolites and candidate genes related to improving the salt tolerance in peanuts were screened to promote the study of the responses of peanuts to NaCl stress and guide their genetic improvement.
Collapse
Affiliation(s)
- Nan Zhang
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - He Zhang
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhenghao Lv
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Baiyi Bai
- School of Agriculture and Horticulture, Liaoning Agriculture Vocational and Technical College, Yingkou, Liaoning, China
| | - Jingyao Ren
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaolong Shi
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shuli Kang
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xinhua Zhao
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haiqiu Yu
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
- School of Agriculture and Horticulture, Liaoning Agriculture Vocational and Technical College, Yingkou, Liaoning, China
| | - Tianhong Zhao
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Guo Z, Wei M, Xu C, Wang L, Li J, Liu J, Zhong Y, Chi B, Song S, Zhang L, Song L, Ma D, Zheng HL. Genome-wide identification of Avicennia marina aquaporins reveals their role in adaptation to intertidal habitats and their relevance to salt secretion and vivipary. PLANT, CELL & ENVIRONMENT 2024; 47:832-853. [PMID: 37984066 DOI: 10.1111/pce.14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Aquaporins (AQPs) regulate the transport of water and other substrates, aiding plants in adapting to stressful environments. However, the knowledge of AQPs in salt-secreting and viviparous Avicennia marina is limited. In this study, 46 AmAQPs were identified in A. marina genome, and their subcellular localisation and function in transporting H2 O2 and boron were assessed through bioinformatics analysis and yeast transformation. Through analysing their expression patterns via RNAseq and real-time quantitative polymerase chain reaction, we found that most AmAQPs were downregulated in response to salt and tidal flooding. AmPIP (1;1, 1;7, 2;8, 2;9) and AmTIP (1;5, 1;6) as salt-tolerant candidate genes may contribute to salt secretion together with Na+ /H+ antiporters. AmPIP2;1 and AmTIP1;5 were upregulated during tidal flooding and may be regulated by anaerobic-responsive element and ethylene-responsive element cis-elements, aiding in adaptation to tidal inundation. Additionally, we found that the loss of the seed desiccation and dormancy-related TIP3 gene, and the loss of the seed dormancy regulator DOG1 gene, or DOG1 protein lack heme-binding capacity, may be genetic factors contributing to vivipary. Our findings shed light on the role of AQPs in A. marina adaptation to intertidal environments and their relevance to salt secretion and vivipary.
Collapse
Affiliation(s)
- Zejun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, China
| | - Mingyue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jingwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Youhui Zhong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Bingjie Chi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shiwei Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ludan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lingyu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
31
|
Vollmeister E, Phokas A, Meyberg R, Böhm CV, Peter M, Kohnert E, Yuan J, Grosche C, Göttig M, Ullrich KK, Perroud PF, Hiltbrunner A, Kreutz C, Coates JC, Rensing SA. A DELAY OF GERMINATION 1 (DOG1)-like protein regulates spore germination in the moss Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:909-923. [PMID: 37953711 DOI: 10.1111/tpj.16537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.
Collapse
Affiliation(s)
- Evelyn Vollmeister
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Alexandros Phokas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Clemens V Böhm
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marlies Peter
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Jinhong Yuan
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christopher Grosche
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Marco Göttig
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | | | - Andreas Hiltbrunner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Ko CS, Kim JB, Kim DY, Seo YW, Hong MJ. Unveiling differential expression profiles of the wheat DOG1 gene family and functional analysis of the association between TaDOG1-1 and heat stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108325. [PMID: 38176188 DOI: 10.1016/j.plaphy.2023.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
High temperatures can significantly impact wheat growth and grain yields during the grain-filling stage. In this study, we identified genes that respond to high-temperature stress during the grain-filling stage. We also identified and characterized 24 novel genes of the DOG1 gene family in hexaploid wheat. Motif analysis and conserved domain search revealed substantial similarities among TaDOG1 family members. Phylogenetic analysis demonstrated the evolutionary conservation of the TaDOG1 family across various plant species. Tissue-specific expression profiling indicated consistent patterns, with TaDOG1 genes predominantly expressed in stem tissues. Only TaDOG1-1 exhibited enhanced expression, particularly during hard dough and ripening stages. TaDOG1-1 and TaDOG1-7 exhibited increased expression under heat stress during the grain-filling stage, indicating their heat-responsive nature. Cis-element analysis revealed potential regulatory motifs, suggesting the involvement of TaDOG1-1 and TaDOG1-7 in stress tolerance mechanisms. Yeast two-hybrid screening revealed interacting proteins, including stress-responsive and grain development-associated proteins. To understand the biological function, we overexpressed TaDOG1-1 in Arabidopsis plants and observed enhanced thermotolerance under basal heat stress. Under heat stress, the transgenic plants exhibited increased biomass and elevated expression levels of heat-responsive genes. Furthermore, TaDOG1-1-overexpressing plants showed improved survival rates under soil heat stress, along with a greater accumulation of antioxidant enzymes in leaves. In this study, the identification and functions of the DOG1 gene family provide valuable insights for developing genetic engineering strategies aimed at improving wheat yield under high-temperature stress.
Collapse
Affiliation(s)
- Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-ro, Yesan, 32439, Republic of Korea
| | - Yong Weon Seo
- Ojeong Plant Breeding Research Center, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Plant Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
33
|
Ong WD, Makita Y, Miyazaki T, Matsui M, Shin R. Arabidopsis transcriptomic analysis reveals cesium inhibition of root growth involves abscisic acid signaling. PLANTA 2024; 259:36. [PMID: 38221596 DOI: 10.1007/s00425-023-04304-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/26/2023] [Indexed: 01/16/2024]
Abstract
MAIN CONCLUSION This is the first report on the involvement of abscisic acid signaling in regulating post-germination growth under Cs stress, not related to potassium deficiency. Cesium (Cs) is known to exert toxicity in plants by competition and interference with the transport of potassium (K). However, the precise mechanism of how Cs mediates its damaging effect is still unclear. This fact is mainly attributed to the large effects of lower K uptake in the presence of Cs that shadow other crucial effects by Cs that were not related to K. RNA-seq was conducted on Arabidopsis roots grown to identify putative genes that are functionally involved to investigate the difference between Cs stress and low K stress. Our transcriptome data demonstrated Cs-regulated genes only partially overlap to low K-regulated genes. In addition, the divergent expression trend of High-affinity K+ Transporter (HAK5) from D4 to D7 growth stage suggested participation of other molecular events besides low K uptake under Cs stress. Potassium deficiency triggers expression level change of the extracellular matrix, transfer/carrier, cell adhesion, calcium-binding, and DNA metabolism genes. Under Cs stress, genes encoding translational proteins, chromatin regulatory proteins, membrane trafficking proteins and defense immunity proteins were found to be primarily regulated. Pathway enrichment and protein network analyses of transcriptome data exhibit that Cs availability are associated with alteration of abscisic acid (ABA) signaling, photosynthesis activities and nitrogen metabolism. The phenotype response of ABA signaling mutants supported the observation and revealed Cs inhibition of root growth involved in ABA signaling pathway. The rather contrary response of loss-of-function mutant of Late Embryogenesis Abundant 7 (LEA7) and Translocator Protein (TSPO) further suggested low K stress and Cs stress may activate different salt tolerance responses. Further investigation on the crosstalk between K transport, signaling, and salt stress-responsive signal transduction will provide a deeper understanding of the mechanisms and molecular regulation underlying Cs toxicity.
Collapse
Affiliation(s)
- Wen-Dee Ong
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuko Makita
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
- Faculty of Engineering, Maebashi Institute of Technology, Kamisadori 460-1, Maebashi, Gunma, 371-0816, Japan
| | - Takae Miyazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryoung Shin
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
34
|
Otani M, Zheng L, Kawakami N. Genetic, Epigenetic, and Environmental Control of Seed Dormancy and Germination. Methods Mol Biol 2024; 2830:3-12. [PMID: 38977563 DOI: 10.1007/978-1-0716-3965-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Seed germination is controlled by a combination of the seed dormancy level and environmental conditions such as light, temperature, moisture, and nitrate levels. Seed dormancy is programed genetically, but it is also sensitive to maternal environmental conditions before and after anthesis. Recent developments in molecular genetics and bioinformatics have greatly enhanced our understanding of the molecular mechanisms of seed dormancy and germination in model plants and economically important crop species. This chapter focuses on temperature as an environmental factor and discusses the genetic and epigenetic mechanisms of dormancy and germination.
Collapse
Affiliation(s)
- Masahiko Otani
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki, Japan
| | - Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan.
| |
Collapse
|
35
|
Liu S, Li L, Wang W, Xia G, Liu S. TaSRO1 interacts with TaVP1 to modulate seed dormancy and pre-harvest sprouting resistance in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:36-53. [PMID: 38108123 DOI: 10.1111/jipb.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Dormancy is an adaptive trait which prevents seeds from germinating under unfavorable environmental conditions. Seeds with weak dormancy undergo pre-harvest sprouting (PHS) which decreases grain yield and quality. Understanding the genetic mechanisms that regulate seed dormancy and resistance to PHS is crucial for ensuring global food security. In this study, we illustrated the function and molecular mechanism of TaSRO1 in the regulation of seed dormancy and PHS resistance by suppressing TaVP1. The tasro1 mutants exhibited strong seed dormancy and enhanced resistance to PHS, whereas the mutants of tavp1 displayed weak dormancy. Genetic evidence has shown that TaVP1 is epistatic to TaSRO1. Biochemical evidence has shown that TaSRO1 interacts with TaVP1 and represses the transcriptional activation of the PHS resistance genes TaPHS1 and TaSdr. Furthermore, TaSRO1 undermines the synergistic activation of TaVP1 and TaABI5 in PHS resistance genes. Finally, we highlight the great potential of tasro1 alleles for breeding elite wheat cultivars that are resistant to PHS.
Collapse
Affiliation(s)
- Shupeng Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Li Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wenlong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
36
|
Liu Q, Qin B, Zhang D, Liang X, Yang Y, Wang L, Wang M, Zhang Y. Identification and Characterization of the HbPP2C Gene Family and Its Expression in Response to Biotic and Abiotic Stresses in Rubber Tree. Int J Mol Sci 2023; 24:16061. [PMID: 38003251 PMCID: PMC10671201 DOI: 10.3390/ijms242216061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Plant PP2C genes are crucial for various biological processes. To elucidate the potential functions of these genes in rubber tree (Hevea brasiliensis), we conducted a comprehensive analysis of these genes using bioinformatics methods. The 60 members of the PP2C family in rubber tree were identified and categorized into 13 subfamilies. The PP2C proteins were conserved across different plant species. The results revealed that the HbPP2C genes contained multiple elements responsive to phytohormones and stresses in their promoters, suggesting their involvement in these pathways. Expression analysis indicated that 40 HbPP2C genes exhibited the highest expression levels in branches and the lowest expression in latex. Additionally, the expression of A subfamily members significantly increased in response to abscisic acid, drought, and glyphosate treatments, whereas the expression of A, B, D, and F1 subfamily members notably increased under temperature stress conditions. Furthermore, the expression of A and F1 subfamily members was significantly upregulated upon powdery mildew infection, with the expression of the HbPP2C6 gene displaying a remarkable 33-fold increase. These findings suggest that different HbPP2C subgroups may have distinct roles in the regulation of phytohormones and the response to abiotic and biotic stresses in rubber tree. This study provides a valuable reference for further investigations into the functions of the HbPP2C gene family in rubber tree.
Collapse
Affiliation(s)
- Qifeng Liu
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| | - Bi Qin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (B.Q.); (L.W.)
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Danzhou 571737, China
| | - Dong Zhang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| | - Xiaoyu Liang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| | - Ye Yang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| | - Lifeng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (B.Q.); (L.W.)
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Danzhou 571737, China
| | - Meng Wang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| | - Yu Zhang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Q.L.); (D.Z.); (X.L.); (Y.Y.)
| |
Collapse
|
37
|
Bizouerne E, Ly Vu J, Ly Vu B, Diouf I, Bitton F, Causse M, Verdier J, Buitink J, Leprince O. Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:3632. [PMID: 37896095 PMCID: PMC10610530 DOI: 10.3390/plants12203632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The stable production of high vigorous seeds is pivotal to crop yield. Also, a high longevity is essential to avoid progressive loss of seed vigour during storage. Both seed traits are strongly influenced by the environment during seed development. Here, we investigated the impact of heat stress (HS) during fruit ripening on tomato seed lifespan during storage at moderate relative humidity, speed (t50) and homogeneity of germination, using a MAGIC population that was produced under optimal and HS conditions. A plasticity index was used to assess the extent of the impact of HS for each trait. HS reduced the average longevity and germination homogeneity by 50% within the parents and MAGIC population. However, there was a high genetic variability in the seed response to heat stress. A total of 39 QTLs were identified, including six longevity QTLs for seeds from control (3) and HS (3) conditions, and six plasticity QTLs for longevity, with only one overlapping with a longevity QTL under HS. Four out of the six longevity QTL co-located with t50 QTL, revealing hotspots for seed quality traits. Twenty-one QTLs with intervals below 3 cM were analyzed using previous transcriptome and gene network data to propose candidate genes for seed vigour and longevity traits.
Collapse
Affiliation(s)
- Elise Bizouerne
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Joseph Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Benoît Ly Vu
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Isidore Diouf
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Frédérique Bitton
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Mathilde Causse
- Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, INRAE, UR1052, CS60094, 84143 Avignon, France (F.B.); (M.C.)
| | - Jérôme Verdier
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Julia Buitink
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| | - Olivier Leprince
- Institut Agro, INRAE, University Angers, IRHS, SFR QUASAV, 49000 Angers, France; (E.B.); (J.L.V.); (B.L.V.); (J.V.); (J.B.)
| |
Collapse
|
38
|
Née G, Krüger T. Dry side of the core: a meta-analysis addressing the original nature of the ABA signalosome at the onset of seed imbibition. FRONTIERS IN PLANT SCIENCE 2023; 14:1192652. [PMID: 37476171 PMCID: PMC10354442 DOI: 10.3389/fpls.2023.1192652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
The timing of seedling emergence is a major agricultural and ecological fitness trait, and seed germination is controlled by a complex molecular network including phytohormone signalling. One such phytohormone, abscisic acid (ABA), controls a large array of stress and developmental processes, and researchers have long known it plays a crucial role in repressing germination. Although the main molecular components of the ABA signalling pathway have now been identified, the molecular mechanisms through which ABA elicits specific responses in distinct organs is still enigmatic. To address the fundamental characteristics of ABA signalling during germination, we performed a meta-analysis focusing on the Arabidopsis dry seed proteome as a reflexion basis. We combined cutting-edge proteome studies, comparative functional analyses, and protein interaction information with genetic and physiological data to redefine the singular composition and operation of the ABA core signalosome from the onset of seed imbibition. In addition, we performed a literature survey to integrate peripheral regulators present in seeds that directly regulate core component function. Although this may only be the tip of the iceberg, this extended model of ABA signalling in seeds already depicts a highly flexible system able to integrate a multitude of information to fine-tune the progression of germination.
Collapse
|
39
|
Li Y, Chen F, Yang Y, Han Y, Ren Z, Li X, Soppe WJJ, Cao H, Liu Y. The Arabidopsis pre-mRNA 3' end processing related protein FIP1 promotes seed dormancy via the DOG1 and ABA pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37035898 DOI: 10.1111/tpj.16239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Seed dormancy is an important adaptive trait to prevent germination occurring at an inappropriate time. The mechanisms governing seed dormancy and germination are complex. Here, we report that FACTOR INTERACTING WITH POLY(A) POLYMERASE 1 (FIP1), a component of the pre-mRNA 3' end processing machinery, is involved in seed dormancy and germination processes in Arabidopsis thaliana. FIP1 is mainly expressed in seeds and the knockout of FIP1 causes reduced seed dormancy, indicating that FIP1 positively influences seed dormancy. Meanwhile, fip1 mutants are insensitive to exogenous ABA during seed germination and early seedling establishment. The terms 'seed maturation' and 'response to ABA stimulus' are significantly enriched in a gene ontology analysis based on genes differentially expressed between fip1-1 and the wild type. Several of these genes, including ABI5, DOG1 and PYL12, show significantly decreased transcript levels in fip1. Genetic analysis showed that either cyp707a2 or dog1-5 partially, but in combination completely, represses the reduced seed dormancy of fip1, indicating that the double mutant cyp707a2 dog1-5 is epistatic to fip1. Moreover, FIP1 is required for CFIM59, another component of pre-mRNA 3' end processing machinery, to govern seed dormancy and germination. Overall, we identified FIP1 as a regulator of seed dormancy and germination that plays a crucial role in governing these processes through the DOG1 and ABA pathways.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Yue Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Yi Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, China
| | - Ziyun Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wim J J Soppe
- Rijk Zwaan Breeding B.V., De Lier, 2678 ZG, the Netherlands
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100094, China
| |
Collapse
|
40
|
Deng G, Sun H, Hu Y, Yang Y, Li P, Chen Y, Zhu Y, Zhou Y, Huang J, Neill SJ, Hu X. A transcription factor WRKY36 interacts with AFP2 to break primary seed dormancy by progressively silencing DOG1 in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:688-704. [PMID: 36653950 DOI: 10.1111/nph.18750] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The phytohormones abscisic acid (ABA) and gibberellic acid (GA) antagonistically control the shift between seed dormancy and its alleviation. DELAY OF GERMINATION1 (DOG1) is a critical regulator that determines the intensity of primary seed dormancy, but its underlying regulatory mechanism is unclear. In this study, we combined physiological, biochemical, and genetic approaches to reveal that a bHLH transcriptional factor WRKY36 progressively silenced DOG1 expression to break seed dormancy through ABI5-BINDING PROTEIN 2 (AFP2) as the negative regulator of ABA signal. AFP2 interacted with WRKY36, which recognizes the W-BOX in the DOG1 promoter to suppress its expression; Overexpressing WRKY36 broke primary seed dormancy, whereas wrky36 mutants showed strong primary seed dormancy. In addition, AFP2 recruited the transcriptional corepressor TOPLESS-RELATED PROTEIN2 (TPR2) to reduce histone acetylation at the DOG1 locus, ultimately mediating WRKY36-dependent inhibition of DOG1 expression to break primary seed dormancy. Our result proposes that the WRKY36-AFP2-TPR2 module progressively silences DOG1 expression epigenetically, thereby fine-tuning primary seed dormancy.
Collapse
Affiliation(s)
- Guoli Deng
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Haiqing Sun
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yulan Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yaru Yang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Yilin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, Zhejiang, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jinling Huang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Steven J Neill
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
41
|
Sybilska E, Daszkowska-Golec A. Alternative splicing in ABA signaling during seed germination. FRONTIERS IN PLANT SCIENCE 2023; 14:1144990. [PMID: 37008485 PMCID: PMC10060653 DOI: 10.3389/fpls.2023.1144990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Seed germination is an essential step in a plant's life cycle. It is controlled by complex physiological, biochemical, and molecular mechanisms and external factors. Alternative splicing (AS) is a co-transcriptional mechanism that regulates gene expression and produces multiple mRNA variants from a single gene to modulate transcriptome diversity. However, little is known about the effect of AS on the function of generated protein isoforms. The latest reports indicate that alternative splicing (AS), the relevant mechanism controlling gene expression, plays a significant role in abscisic acid (ABA) signaling. In this review, we present the current state of the art about the identified AS regulators and the ABA-related changes in AS during seed germination. We show how they are connected with the ABA signaling and the seed germination process. We also discuss changes in the structure of the generated AS isoforms and their impact on the functionality of the generated proteins. Also, we point out that the advances in sequencing technology allow for a better explanation of the role of AS in gene regulation by more accurate detection of AS events and identification of full-length splicing isoforms.
Collapse
Affiliation(s)
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
42
|
Baud S, Corso M, Debeaujon I, Dubreucq B, Job D, Marion-Poll A, Miquel M, North H, Rajjou L, Lepiniec L. Recent progress in molecular genetics and omics-driven research in seed biology. C R Biol 2023; 345:61-110. [PMID: 36847120 DOI: 10.5802/crbiol.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.
Collapse
|
43
|
Guo G, Xu S, Chen H, Hao Y, Mao H. QTL Mapping for Wheat Seed Dormancy in a Yangmai16/Zhongmai895 Double Haploid Population. PLANTS (BASEL, SWITZERLAND) 2023; 12:759. [PMID: 36840107 PMCID: PMC9967201 DOI: 10.3390/plants12040759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Pre-harvest sprouting (PHS) of wheat reduces grain yield and quality, and it is strongly affected by seed dormancy. Therefore, identification of quantitative trait loci (QTL) for seed dormancy is essential for PHS resistance breeding. A doubled haploid (DH) population, consisting of 174 lines from the cross between Yangmai16 (YM16) and Zhongmai895 (ZM895) was used to detect QTLs for seed dormancy and grain color. For seed dormancy, a total of seven QTLs were detected on chromosomes 2A, 3A, 3D, 4D, 5B and 5D over four environments, among which Qdor.hzau-3A, Qdor.hzau-3D.1 and Qdor.hzau-3D.2 were stably detected in more than two environments. For grain color, only two QTLs, Qgc.hzau-3A and Qgc.hzau-3D were detected on chromosomes 3A and 3D, which physically overlapped with Qdor.hzau-3A and Qdor.hzau-3D.1, respectively. Qdor.hzau-3D.2 has never been reported elsewhere and is probably a novel locus with allelic effect of seed dormancy contributed by weakly dormant parent ZM895, and a KASP marker was developed and validated in a wheat natural population. This study provides new information on the genetic dissection of seed dormancy, which may aid in further improvement for marker-assisted wheat breeding for PHS resistance.
Collapse
Affiliation(s)
- Gang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
DELAY OF GERMINATION 1, the Master Regulator of Seed Dormancy, Integrates the Regulatory Network of Phytohormones at the Transcriptional Level to Control Seed Dormancy. Curr Issues Mol Biol 2022; 44:6205-6217. [PMID: 36547084 PMCID: PMC9777134 DOI: 10.3390/cimb44120423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Seed dormancy, an important adaptive trait that governs germination timing, is endogenously controlled by phytohormones and genetic factors. DELAY OF GERMINATION 1 (DOG1) is the vital genetic regulator of dormancy, significantly affecting the expression of numerous ABA and GA metabolic genes. However, whether DOG1 could influence the expression of other phytohormone-related genes is still unknown. Here, we comprehensively investigated all well-documented hormone-related genes which might be affected in dog1-2 dry or imbibed seeds by using whole-transcriptome sequencing (RNA-seq). We found that DOG1 could systematically control the expression of phytohormone-related genes. An evident decrease was observed in the endogenous signal intensity of abscisic acid (ABA) and indole-3-acetic acid (IAA), while a dramatic increase appeared in that of gibberellins (GA), brassinosteroids (BR), and cytokinin (CK) in the dog1-2 background, which may contribute considerably to its dormancy-deficient phenotype. Collectively, our data highlight the role of DOG1 in balancing the expression of phytohormone-related genes and provide inspirational evidence that DOG1 may integrate the phytohormones network to control seed dormancy.
Collapse
|
45
|
Zheng L, Otani M, Kanno Y, Seo M, Yoshitake Y, Yoshimoto K, Sugimoto K, Kawakami N. Seed dormancy 4 like1 of Arabidopsis is a key regulator of phase transition from embryo to vegetative development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:460-475. [PMID: 36036886 DOI: 10.1111/tpj.15959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy is an adaptive trait that enables plants to survive adverse conditions and restart growth in a season and location suitable for vegetative and reproductive growth. Control of seed dormancy is also important for crop production and food quality because it can help induce uniform germination and prevent preharvest sprouting. Rice preharvest sprouting quantitative trait locus analysis has identified Seed dormancy 4 (Sdr4) as a positive regulator of dormancy development. Here, we analyzed the loss-of-function mutant of the Arabidopsis ortholog, Sdr4 Like1 (SFL1), and found that the sfl1-1 seeds showed precocious germination at the mid- to late-maturation stage similar to rice sdr4 mutant, but converted to become more dormant than the wild type during maturation drying. Coordinated with the dormancy levels, expression levels of the seed maturation and dormancy master regulator genes, ABI3, FUS3, and DOG1 in sfl1-1 seeds were lower than in wild type at early- and mid-maturation stages, but higher at the late-maturation stage. In addition to the seed dormancy phenotype, sfl1-1 seedlings showed a growth arrest phenotype and heterochronic expression of LAFL (LEC1, ABI3, FUS3, LEC2) and DOG1 in the seedlings. These data suggest that SFL1 is a positive regulator of initiation and termination of the seed dormancy program. We also found genetic interaction between SFL1 and the SFL2, SFL3, and SFL4 paralogs of SFL1, which impacts on the timing of the phase transition from embryo maturation to seedling growth.
Collapse
Affiliation(s)
- Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Masahiko Otani
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yushi Yoshitake
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kazuhiko Sugimoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
46
|
Yang QX, Chen D, Zhao Y, Zhang XY, Zhao M, Peng R, Sun NX, Baldwin TC, Yang SC, Liang YL. RNA-seq analysis reveals key genes associated with seed germination of Fritillaria taipaiensis P.Y.Li by cold stratification. FRONTIERS IN PLANT SCIENCE 2022; 13:1021572. [PMID: 36247582 PMCID: PMC9555243 DOI: 10.3389/fpls.2022.1021572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Seed dormancy is an adaptive strategy for environmental evolution. However, the molecular mechanism of the breaking of seed dormancy at cold temperatures is still unclear, and the genetic regulation of germination initiated by exposure to cold temperature requires further investigation. In the initial phase of the current study, the seed coat characteristics and embryo development of Fritillaria taipaiensis P.Y.Li at different temperatures (0°C, 4°C, 10°C & 25°C) was recorded. The results obtained demonstrated that embryo elongation and the dormancy-breaking was most significantly affected at 4°C. Subsequently, transcriptome analyses of seeds in different states of dormancy, at two stratification temperatures (4°C and 25°C) was performed, combined with weighted gene coexpression network analysis (WGCNA) and metabolomics, to explore the transcriptional regulation of seed germination in F. taipaiensis at the two selected stratification temperatures. The results showed that stratification at the colder temperature (4°C) induced an up-regulation of gene expression involved in gibberellic acid (GA) and auxin biosynthesis and the down-regulation of genes related to the abscisic acid (ABA) biosynthetic pathway. Thereby promoting embryo development and the stimulation of seed germination. Collectively, these data constitute a significant advance in our understanding of the role of cold temperatures in the regulation of seed germination in F. taipaiensis and also provide valuable transcriptomic data for seed dormancy for other non-model plant species.
Collapse
Affiliation(s)
- Qiu-Xiong Yang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Dan Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Yan Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xiao-Yu Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Min Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Rui Peng
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Nian-Xi Sun
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Sheng-Chao Yang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Yan-Li Liang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
47
|
Rehmani MS, Aziz U, Xian B, Shu K. Seed Dormancy and Longevity: A Mutual Dependence or a Trade-Off? PLANT & CELL PHYSIOLOGY 2022; 63:1029-1037. [PMID: 35594901 DOI: 10.1093/pcp/pcac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy is an important agronomic trait in cereals and leguminous crops as low levels of seed dormancy during harvest season, coupled with high humidity, can cause preharvest sprouting. Seed longevity is another critical trait for commercial crop propagation and production, directly influencing seed germination and early seedling establishment. Both traits are precisely regulated by the integration of genetic and environmental cues. Despite the significance of these two traits in crop production, the relationship between them at the molecular level is still elusive, even with contradictory conclusions being reported. Some studies have proposed a positive correlation between seed dormancy and longevity in association with differences in seed coat permeability or seed reserve accumulation, whereas an increasing number of studies have highlighted a negative relationship, largely with respect to phytohormone-dependent pathways. In this review paper, we try to provide some insights into the interactions between regulatory mechanisms of genetic and environmental cues, which result in positive or negative relationships between seed dormancy and longevity. Finally, we conclude that further dissection of the molecular mechanism responsible for this apparently contradictory relationship between them is needed.
Collapse
Affiliation(s)
- Muhammad Saad Rehmani
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - Usman Aziz
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - BaoShan Xian
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
| | - Kai Shu
- School of Environment and Ecology, Northwestern Polytechnical University, No. 1, Dongxiang Road, Xi'an 710129, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45, Gaoxin South 9 Road, Shenzhen 518057, China
| |
Collapse
|
48
|
Liu S, Lu C, Jiang G, Zhou R, Chang Y, Wang S, Wang D, Niu J, Wang Z. Comprehensive functional analysis of the PYL-PP2C-SnRK2s family in Bletilla striata reveals that BsPP2C22 and BsPP2C38 interact with BsPYLs and BsSnRK2s in response to multiple abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:963069. [PMID: 36035678 PMCID: PMC9404246 DOI: 10.3389/fpls.2022.963069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
As the core regulation network for the abscisic acid (ABA) signaling pathway, the PYL-PP2C-SnRK2s family commonly exists in many species. For this study, a total of 9 BsPYLs, 66 BsPP2Cs, and 7 BsSnRK2s genes were identified based on the genomic databases of Bletilla striata, which were classified into 3, 10, and 3 subgroups, respectively. Basic bioinformatics analysis completed, including the physicochemical properties of proteins, gene structures, protein motifs and conserved domains. Multiple cis-acting elements related to stress responses and plant growth were found in promoter regions. Further, 73 genes were localized on 16 pseudochromosomes and 29 pairs of paralogous genes were found via intraspecific collinearity analysis. Furthermore, tissue-specific expression was found in different tissues and germination stages. There were two BsPYLs, 10 BsPP2Cs, and four BsSnRK2 genes that exhibited a difference in response to multiple abiotic stresses. Moreover, subcellular localization analysis revealed six important proteins BsPP2C22, BsPP2C38, BsPP2C64, BsPYL2, BsPYL8, and BsSnRK2.4 which were localized in the nucleus and plasma membrane. Finally, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays suggested that BsPP2C22 and BsPP2C38 could interact with multiple BsPYLs and BsSnRK2s proteins. This study systematically reported on the identification and characterization of the PYL-PP2C-SnRK2s family in B. striata, which provided a conceptual basis for deep insights into the functionality of ABA core signal pathways in Orchidaceae.
Collapse
|
49
|
Tomaž Š, Gruden K, Coll A. TGA transcription factors-Structural characteristics as basis for functional variability. FRONTIERS IN PLANT SCIENCE 2022; 13:935819. [PMID: 35958211 PMCID: PMC9360754 DOI: 10.3389/fpls.2022.935819] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
TGA transcription factors are essential regulators of various cellular processes, their activity connected to different hormonal pathways, interacting proteins and regulatory elements. Belonging to the basic region leucine zipper (bZIP) family, TGAs operate by binding to their target DNA sequence as dimers through a conserved bZIP domain. Despite sharing the core DNA-binding sequence, the TGA paralogues exert somewhat different DNA-binding preferences. Sequence variability of their N- and C-terminal protein parts indicates their importance in defining TGA functional specificity through interactions with diverse proteins, affecting their DNA-binding properties. In this review, we provide a short and concise summary on plant TGA transcription factors from a structural point of view, including the relation of their structural characteristics to their functional roles in transcription regulation.
Collapse
Affiliation(s)
- Špela Tomaž
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
50
|
Liu Q, Ding J, Huang W, Yu H, Wu S, Li W, Mao X, Chen W, Xing J, Li C, Yan S. OsPP65 Negatively Regulates Osmotic and Salt Stress Responses Through Regulating Phytohormone and Raffinose Family Oligosaccharide Metabolic Pathways in Rice. RICE (NEW YORK, N.Y.) 2022; 15:34. [PMID: 35779169 PMCID: PMC9250576 DOI: 10.1186/s12284-022-00581-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Although type 2C protein phosphatases (PP2Cs) have been demonstrated to play important roles in regulating plant development and various stress responses, their specific roles in rice abiotic stress tolerance are still largely unknown. In this study, the functions of OsPP65 in rice osmotic and salt stress tolerance were investigated. Here, we report that OsPP65 is responsive to multiple stresses and is remarkably induced by osmotic and salt stress treatments. OsPP65 was highly expressed in rice seedlings and leaves and localized in the nucleus and cytoplasm. OsPP65 knockout rice plants showed enhanced tolerance to osmotic and salt stresses. Significantly higher induction of genes involved in jasmonic acid (JA) and abscisic acid (ABA) biosynthesis or signaling, as well as higher contents of endogenous JA and ABA, were observed in the OsPP65 knockout plants compared with the wild-type plants after osmotic stress treatment. Further analysis indicated that JA and ABA function independently in osmotic stress tolerance conferred by loss of OsPP65. Moreover, metabolomics analysis revealed higher endogenous levels of galactose and galactinol but a lower content of raffinose in the OsPP65 knockout plants than in the wild-type plants after osmotic stress treatment. These results together suggest that OsPP65 negatively regulates osmotic and salt stress tolerance through regulation of the JA and ABA signaling pathways and modulation of the raffinose family oligosaccharide metabolism pathway in rice. OsPP65 is a promising target for improvement of rice stress tolerance using gene editing.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jierong Ding
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Hang Yu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenyan Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xingxue Mao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenfeng Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Junlian Xing
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Chen Li
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|