1
|
Liu L, Cheng P, Cui J, Ren S, Yao M, Li L, Zhou H, Zhang X, Qin X, Liu Y, Zhang H, Wang L, Chen M. Galectin-1: An important regulator in myeloid differentiation and acute myeloid leukemia as well as a promising prognostic indicator and therapeutic target. Int Immunopharmacol 2025; 158:114835. [PMID: 40378432 DOI: 10.1016/j.intimp.2025.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/10/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive and heterogeneous hematological malignancy with a low survival probability and limited therapeutic options. Although galectin-1 (LGALS1) has been implicated in tumor cell survival and immune evasion in solid tumor, its role in AML is still unclear. In this study, we found that LGALS1 presents prominent upregulation in AML patients at both mRNA and protein levels compared with the control samples. Bioinformatics analysis indicated that high expression of LGALS1 is a significant unfavorable prognostic factor for overall survival in AML, correlating with adverse clinical and genetic features as well as immune cell infiltration. Depletion of LGALS1 in AML cells impeded cell proliferation, induced apoptosis and promoted myeloid differentiation. Treatment with OTX008, an LGALS1 inhibitor, markedly diminished the viability of primary malignant bone marrow cells from AML patients. Notably, LGALS1 expression was significantly reduced exclusively in AML-M5 patients after treatment, which may be due to its higher expression in AML-M5 subtype compared to other FAB subtypes. In summary, our findings indicate that LGALS1 could serve as an independent prognostic risk factor and a promising therapeutic target in AML, providing novel insights into AML pathogenesis and laying the foundation for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Lulu Liu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China; Key laboratory of cell and biomedical Technology of Shandong Province, PR China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Junjie Cui
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, PR China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Mingkang Yao
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Ling Li
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Hui Zhou
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Xianning Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Xianyun Qin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Yaqi Liu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Hao Zhang
- Key laboratory of cell and biomedical Technology of Shandong Province, PR China; Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China; Jining Key Laboratory of Hematopoietic Stem Cell Transplantation and Immunology, Jining 272000, Shandong Province, PR China
| | - Lina Wang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China.
| | - Mingtai Chen
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China; Key laboratory of cell and biomedical Technology of Shandong Province, PR China; Jining Key Laboratory of Hematopoietic Stem Cell Transplantation and Immunology, Jining 272000, Shandong Province, PR China.
| |
Collapse
|
2
|
Liu Y, Lin W, Gu Y, Lu C, Zhou X, Zhao H, Wang G, Shen A. Dysregulation of SIGLEC1 in non-small cell lung cancer: prognostic implications and immunomodulatory role-a multicenter cohort study. J Cancer Res Clin Oncol 2024; 150:481. [PMID: 39470815 PMCID: PMC11522155 DOI: 10.1007/s00432-024-06005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
PURPOSE To investigate the clinical significance and functional role of SIGLEC1-positive cells in non-small cell lungcancer (NSCLC) patients, focusing on their prognostic impact and therapeutic response. METHODS A multicenter retrospective cohort analysis was conducted, integrating data from multiple sources. Weanalyzed SIGLEC1 expression in NSCLC tissues, clinicopathological features, overall survival outcomes,chemotherapy responsiveness, and sensitivity to targeted therapies. We also developed a prognostic model basedon SIGLEC1 expression and clinical variables. RESULTS SIGLEC1 expression was significantly downregulated in NSCLC tissues, and the density of SIGLEC1-positivecells was inversely correlated with various clinicopathological features. Notably, patients with high infiltration ofSIGLEC1-positive cells exhibited significantly better overall survival outcomes. Furthermore, elevated SIGLEC1expression was associated with improved responsiveness to chemotherapy and demonstrated distinct patterns ofsensitivity to targeted therapies. A robust prognostic model was developed by integrating SIGLEC1 expression andclinical variables. CONCLUSIONS This study highlighted the downregulation of SIGLEC1 in NSCLC tissues and its significant associationwith patient prognosis and therapeutic response. The findings suggested that SIGLEC1 played a critical role inmodulating the tumor immune microenvironment and has potential as both a prognostic biomarker and therapeutictarget in NSCLC.
Collapse
Affiliation(s)
- Yuan Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, 226006, China
- Department of Neuroscience, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital and Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Wei Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yang Gu
- Department of Clinical Medicine, General Medical Class 8, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Chenlin Lu
- Department of Respiratory and Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 214504, China
| | - Xuan Zhou
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Hongyu Zhao
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Gaoren Wang
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, 226006, China.
| | - Aiguo Shen
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, 226006, China.
| |
Collapse
|
3
|
Li W, Zhao B, Wang Q, Lu J, Wu X, Chen X. M2 macrophage exosomes promote resistance to sorafenib in hepatocellular carcinoma cells via miR-200c-3p. Int Immunopharmacol 2024; 139:112807. [PMID: 39068757 DOI: 10.1016/j.intimp.2024.112807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Sorafenib is a chemotherapeutic agent used to treat hepatocellular carcinoma (HCC). However, its clinical response rates are often low. Tumour-associated macrophages (TAMs) have been implicated in tumour resistance. The relationship between TAMs-derived exosomes and primary resistance to sorafenib in hepatocellular carcinoma is unclear. METHODS The study analysed RNA-SEQ data from TCGA-LIHC to explore the relationship between TAMs and sorafenib IC50. THP-1-induced M2 macrophages were used as a model to investigate the relationship between M2 macrophage exosomes and primary resistance to sorafenib in hepatocellular carcinoma cells using apoptosis, colony generation, cell viability and dual luciferase. RESULTS M2 macrophage score and sorafenib IC50 were positively correlated in hepatocellular carcinoma patients, M2 macrophage exosomes promoted sorafenib resistance in hepatocellular carcinoma cells, and M2-exo-miR-200c-3p facilitated the development of sorafenib resistance in hepatocellular carcinoma cells by mediating the activation of PI3K/AKT. CONCLUSION We propose and demonstrate for the first time that M2 macrophage exosomes promote sorafenib resistance in hepatocellular carcinoma, providing a new perspective for the clinical treatment of hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Wenhua Li
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Bin Zhao
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Qianwen Wang
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Junxia Lu
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Xiangwei Wu
- Shihezi University School of Medicine, Shihezi 832000, China; The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| | - Xueling Chen
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| |
Collapse
|
4
|
Xiang D, Zhou L, Yang R, Yuan F, Xu Y, Yang Y, Qiao Y, Li X. Advances in Ferroptosis-Inducing Agents by Targeted Delivery System in Cancer Therapy. Int J Nanomedicine 2024; 19:2091-2112. [PMID: 38476278 PMCID: PMC10929151 DOI: 10.2147/ijn.s448715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, cancer remains one of the most significant threats to human health. Treatment of most cancers remains challenging, despite the implementation of diverse therapies in clinical practice. In recent years, research on the mechanism of ferroptosis has presented novel perspectives for cancer treatment. Ferroptosis is a regulated cell death process caused by lipid peroxidation of membrane unsaturated fatty acids catalyzed by iron ions. The rapid development of bio-nanotechnology has generated considerable interest in exploiting iron-induced cell death as a new therapeutic target against cancer. This article provides a comprehensive overview of recent advancements at the intersection of iron-induced cell death and bionanotechnology. In this respect, the mechanism of iron-induced cell death and its relation to cancer are summarized. Furthermore, the feasibility of a nano-drug delivery system based on iron-induced cell death for cancer treatment is introduced and analyzed. Secondly, strategies for inducing iron-induced cell death using nanodrug delivery technology are discussed, including promoting Fenton reactions, inhibiting glutathione peroxidase 4, reducing low glutathione levels, and inhibiting system Xc-. Additionally, the article explores the potential of combined treatment strategies involving iron-induced cell death and bionanotechnology. Finally, the application prospects and challenges of iron-induced nanoagents for cancer treatment are discussed.
Collapse
Affiliation(s)
- Debiao Xiang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| | - Lili Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Rui Yang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| | - Yilin Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Yuan Yang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, People’s Republic of China
| | - Yong Qiao
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan Province, People’s Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People’s Republic of China
- The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, Hunan Province, People’s Republic of China
| |
Collapse
|
5
|
Le Y, Gao H, Le J, Hornick JL, Bleday R, Wee J, Zhu Z. VentX promotes tumor specific immunity and efficacy of immune checkpoint inhibitors. iScience 2024; 27:108731. [PMID: 38299030 PMCID: PMC10829883 DOI: 10.1016/j.isci.2023.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 02/02/2024] Open
Abstract
Immune suppression within tumor microenvironments (TME) have been implicated in limited efficacy of immune check point inhibitors (ICIs) against solid tumors. Down-regulated VentX expression in tumor associated macrophages (TAMs) underlies phagocytotic anergic phenotype of TAMs, which govern immunological state of TME. In this study, using a tumor immune microenvironment enabling model system (TIME-EMS) of non-small cell lung cancer (NSCLC), we found that PD-1 antibody modestly activates cytotoxic T lymphocytes (CTLs) within the NSCLC-TME but not the status of TIME. We showed that the restoration of VentX expression in TAMs reignites the phagocytotic function of TAMs, which in turn, transforms TIME, activates CTLs in a tumor-specific manner and promotes efficacy of PD-1 antibody against NSCLC but not toxicity on normal lung epithelial cells. Supported by in vivo data on NSG-PDX models of primary human NSCLC, our study revealed potential venues to promote the efficacy of ICI against solid tumors through VentX-based mechanisms.
Collapse
Affiliation(s)
- Yi Le
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hong Gao
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Joanna Le
- Department of Obstetrics and Gynecology, University of Massachusetts Medical Center
| | - Jason L. Hornick
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ronald Bleday
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Jon Wee
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhenglun Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Zhang Y, Lyu Y, Chen L, Cao K, Chen J, He C, Lyu X, Jiang Y, Xiang J, Liu B, Wu C. Exploring the Prognosis-Related Genetic Variation in Gastric Cancer Based on mGWAS. Int J Mol Sci 2023; 24:15259. [PMID: 37894938 PMCID: PMC10607287 DOI: 10.3390/ijms242015259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The use of metabolome genome-wide association studies (mGWAS) has been shown to be effective in identifying functional genes in complex diseases. While mGWAS has been applied to biomedical and pharmaceutical studies, its potential in predicting gastric cancer prognosis has yet to be explored. This study aims to address this gap and provide insights into the genetic basis of GC survival, as well as identify vital regulatory pathways in GC cell progression. Genome-wide association analysis of plasma metabolites related to gastric cancer prognosis was performed based on the Generalized Linear Model (GLM). We used a log-rank test, LASSO regression, multivariate Cox regression, GO enrichment analysis, and the Cytoscape software to visualize the complex regulatory network of genes and metabolites and explored in-depth genetic variation in gastric cancer prognosis based on mGWAS. We found 32 genetic variation loci significantly associated with GC survival-related metabolites, corresponding to seven genes, VENTX, PCDH 7, JAKMIP1, MIR202HG, MIR378D1, LINC02472, and LINC02310. Furthermore, this study identified 722 Single nucleotide polymorphism (SNP) sites, suggesting an association with GC prognosis-related metabolites, corresponding to 206 genes. These 206 possible functional genes for gastric cancer prognosis were mainly involved in cellular signaling molecules related to cellular components, which are mainly involved in the growth and development of the body and neurological regulatory functions related to the body. The expression of 23 of these genes was shown to be associated with survival outcome in gastric cancer patients in The Cancer Genome Atlas (TCGA) database. Based on the genome-wide association analysis of prognosis-related metabolites in gastric cancer, we suggest that gastric cancer survival-related genes may influence the proliferation and infiltration of gastric cancer cells, which provides a new idea to resolve the complex regulatory network of gastric cancer prognosis.
Collapse
Affiliation(s)
- Yuling Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Yanping Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Liangping Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Kang Cao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Jingwen Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Chenzhou He
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Xuejie Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Yu Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Jianjun Xiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Baoying Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Chuancheng Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
7
|
Lin MC, Hsu CL, Lai SF, Huang YL, Hsieh MS, Chen TC, Chen CN, Wang CP, Yang TL, Ko JY, Tsai MH, Lou PJ. Spindle Cell Carcinoma of the Head and Neck: Clinical Characteristics and Molecular Signatures. Laryngoscope 2023; 133:2183-2191. [PMID: 36300609 DOI: 10.1002/lary.30467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE/HYPOTHESIS Spindle cell carcinoma of the head and neck (HNSpCC) is a rare variant of head and neck squamous cell carcinoma (HNSCC). This study evaluated the clinical characteristics and molecular signatures of such tumors. STUDY DESIGN Retrospective analysis. METHODS Medical records of patients diagnosed with HNSpCC from 1996 to 2018 were reviewed. The clinicopathologic features, treatment modalities, and survival status were carefully recorded. Whole exome sequencing (WES) was performed to evaluate the genetic signatures of HNSpCC. RESULTS We found that among all 71 patients included in this study, the majority of them were male, with tumors developing predominantly in the oral cavity. The 1-, 3-, and 5-year disease-specific survival (DSS) rates were 64.6%, 49.5%, and 43.9%, respectively. A high local recurrence (LR) and distant metastasis (DM) rate (47.9%-25.3%, respectively) were observed. A significant proportion (28.2%) of patients with the worst prognosis had history of previous head and neck cancer (HNC) and had been treated with radiotherapy (RT). WES revealed that those post-RT SpCC shared common mutations with their previous HNC (pre-RT SCC), but gained additional genetic traits, such as hypoxia and cell-ECM interaction that were favorable for survival in an irradiated microenvironment. Distinct genetic landscapes in primary and post-RT SpCC were also found. CONCLUSIONS This study demonstrates that HNSpCC is a unique entity with more aggressive behavior than conventional HNSCC. HNSpCC arising from a previously irradiated field is a predictor of dismal survival. Both genetic and microenvironmental factors contribute to this highly invasive tumor. LEVEL OF EVIDENCE 4 Laryngoscope, 133:2183-2191, 2023.
Collapse
Affiliation(s)
- Mei-Chun Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Fan Lai
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tseng-Cheng Chen
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Nan Chen
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Ping Wang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jenq-Yuh Ko
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Huang T, Zhang Q, Yi J, Wang R, Zhang Z, Luo P, Zeng R, Wang Y, Tu M. PEG-Sheddable Nanodrug Remodels Tumor Microenvironment to Promote Effector T Cell Infiltration and Revise Their Exhaustion for Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301749. [PMID: 37211704 DOI: 10.1002/smll.202301749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Low infiltration of cytotoxic T lymphocytes and their exhaustion manifest the two concurrent main hurdles for achieving effective tumor immunotherapy of triple-negative breast cancer. It is found that Galectin-9 blockage can revise the exhaustion of effector T cells, meanwhile the repolarization of protumoral M2 tumor-associated macrophages (TAMs) into tumoricidal M1-like ones can recruit effector T cells infiltrating into tumor to boost immune responses. Herein, a sheddable PEG-decorated and M2-TAMs targeted nanodrug incorporating Signal Transducer and Activator of Transcription 6 inhibitor (AS) and anti-Galectin-9 antibody (aG-9) is prepared. The nanodrug responds to acidic tumor microenvironment (TME) with the shedding of PEG corona and the release of aG-9, exerting local blockade of PD-1/Galectin-9/TIM-3 interaction to augment effector T cells via exhaustion reversing. Synchronously, targeted repolarization of M2-TAMs into M1 phenotype by AS-loaded nanodrug is achieved, which promotes tumor infiltration of effector T cells and thus synergizes with aG-9 blockade to boost the therapeutic efficacy. Besides, the PEG-sheddable approach endows nanodrug with stealth ability to reduce immune-related adverse effects caused by AS and aG-9. This PEG sheddable nanodrug holds the potential to reverse the immunosuppressive TME and increase effector T cell infiltration, which dramatically enhances immunotherapy in highly malignant breast cancer.
Collapse
Affiliation(s)
- Tao Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Jing Yi
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Rongze Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Zekun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Pin Luo
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Rong Zeng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
9
|
He R, He Y, Du R, Liu C, Chen Z, Zeng A, Song L. Revisiting of TAMs in tumor immune microenvironment: Insight from NF-κB signaling pathway. Biomed Pharmacother 2023; 165:115090. [PMID: 37390708 DOI: 10.1016/j.biopha.2023.115090] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are key components of tumor immune microenvironment and play a dual role in promoting tumor growth and anti-tumor immunity. Therefore, regulating TAMs has become a promising method in cancer immunotherapy. NF- κB pathway is the key regulatory pathway of TAMs. Targeting this pathway has shown the potential to improve tumor immune microenvironment. At present, there are still some controversies and the idea of combined therapy in this field. This article reviews the progress in the field of immunotherapy in improving tumor immune microenvironment by exploring the mechanism of regulating TAMs (including promoting M1 polarization, inhibiting M2 polarization and regulating TAMs infiltration).
Collapse
Affiliation(s)
- Rui He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yan He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Ran Du
- College of Education and Psychology, Chengdu Normal University, Chengdu, Sichuan 611130, PR China
| | - Chenxin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Zeran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| |
Collapse
|
10
|
Cheng C, Wang P, Yang Y, Du X, Xia H, Liu J, Lu L, Wu H, Liu Q. Smoking-Induced M2-TAMs, via circEML4 in EVs, Promote the Progression of NSCLC through ALKBH5-Regulated m6A Modification of SOCS2 in NSCLC Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300953. [PMID: 37246269 PMCID: PMC10401136 DOI: 10.1002/advs.202300953] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Indexed: 05/30/2023]
Abstract
Lung cancer is a commonly diagnosed disease worldwide, with non-small cell lung cancers (NSCLCs) accounting for ≈ 85% of cases. Cigarette smoke is an environmental exposure promoting progression of NSCLC, but its role is poorly understood. This study reports that smoking-induced accumulation of M2-type tumor-associated macrophages (M2-TAMs) surrounding NSCLC tissues promotes malignancy. Specifically, extracellular vesicles (EVs) from cigarette smoke extract (CSE)-induced M2 macrophages promoted malignancy of NSCLC cells in vitro and in vivo. circEML4 in EVs from CSE-induced M2 macrophages is transported to NSCLC cells, where it reduced the distribution of ALKBH5 in the nucleus by interacting with Human AlkB homolog H5 (ALKBH5), resulting in elevated N6-methyladenosine (m6A) modifications. m6A-seq and RNA-seq revealed suppressor of cytokine signaling 2 (SOCS2)-mediated activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway by regulating m6A modification of SOCS2 via ALKBH5. Down-regulation of circEML4 in EVs from CSE-induced M2 macrophages reversed EVs-enhanced tumorigenicity and metastasis in NSCLC cells. Furthermore, this study found that smoking patients showed an increase in circEML4-positive M2-TAMs. These results indicate that smoking-induced M2-TAMs via circEML4 in EVs promote the NSCLC progression through ALKBH5-regulated m6A modification of SOCS2. This study also reveals that circEML4 in EVs from TAMs acts as a diagnostic biomarker for NSCLC, especially for patients with smoking history.
Collapse
Affiliation(s)
- Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Xuan Du
- Department of Thoracic and Cardiovascular Surgery, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Jinyuan Liu
- Department of Thoracic and Cardiovascular Surgery, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Lu Lu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Hao Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| |
Collapse
|
11
|
Feng X, Chen Z, Liu Z, Fu X, Song H, Zhang Q. Self-delivery photodynamic-hypoxia alleviating nanomedicine synergizes with anti-PD-L1 for cancer immunotherapy. Int J Pharm 2023; 639:122970. [PMID: 37084832 DOI: 10.1016/j.ijpharm.2023.122970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The low level of T-lymphocyte infiltration in tumor is a key issue in cancer immunotherapy. Stimulating anti-tumor immune responses and improving the tumor microenvironment are essential for enhancing anti-PD-L1 immunotherapy. Herein, atovaquone (ATO), protoporphyrin IX (PpIX), and stabilizer (ATO/PpIX NPs) were constructed to self-assemble with hydrophobic interaction and passively targeted to tumor for the first time. The studies have indicated that PpIX-mediated photodynamic induction of immunogenic cell death combined with relieving tumor hypoxia by ATO, leading to maturation of dendritic cells, polarization of M2-type tumor-associated macrophages (TAMs) towards M1-type TAMs, infiltration of cytotoxic T lymphocytes, reduction of regulatory T cells, release of pro-inflammatory cytokines, resulting in an effective anti-tumor immune response synergized with anti-PD-L1 against primary tumor and pulmonary metastasis. Taken together, the combined nanoplatform may be a promising strategy to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Xianquan Feng
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Zhenzhen Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Zhihong Liu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Xiaoling Fu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Hongtao Song
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Qian Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China.
| |
Collapse
|
12
|
Engineering nanoparticles boost TNBC therapy by CD24 blockade and mitochondrial dynamics regulation. J Control Release 2023; 355:211-227. [PMID: 36736908 DOI: 10.1016/j.jconrel.2023.01.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Although cancer immunotherapy has achieved remarkable progress, the clinical treatment of triple-negative breast cancer (TNBC) is still tough to make a breakthrough. The unsatisfactory therapeutic effect may be attributed to the lack of tumor immunogenicity and the strong immunosuppressive tumor microenvironment (ITM). In order to overcome the above shortcomings, engineering nanoparticles (P-aCD24/CEL + P/shMFN1) was designed to deliver anti-CD24 monoclonal antibody (aCD24), celastrol (CEL) and mitofusin 1 shRNA (shMFN1) for synergistic tumor cells-targeted treatment and tumor-associated macrophages (TAMs)-targeted immunomodulation. CD24, highly expressed on tumor cells, interacts with Siglec10 on TAMs to protect tumor cells from phagocytosis by macrophages, and thus has become a novel and dominant immune checkpoint in TNBC. P-aCD24/CEL achieved the release of aCD24 based on the dual response of carrier to pH and MMP2 in tumor microenvironment. Moreover, CEL increased "eat me" signal CRT and induced the immunogenic cell death (ICD) of tumor cells, together with decreased "don't eat me" signal CD24, reactivated macrophage phagocytosis of tumor cells, and ultimately improves the macrophage-based immunotherapy. On the other hand, P/shMFN1 could target TAMs for mitochondrial dynamics regulation via durable MFN1 silencing in TAMs, thereby reversing the phenotype of M2-TAMs. P-aCD24/CEL and P/shMFN1 could synergistically elicit evident antitumor immune responses and long-term immune memory to significantly inhibit tumor progress and postoperative recurrence. Based on remodeling the ITM and increasing antitumor immune response, this combination immunotherapy strategy showed great potential for TNBC treatment.
Collapse
|
13
|
Wan G, Chen X, Chen J, Gou R, Wang H, Liu S, Zhang M, Chen H, Wang D, Zhang Q. Endoplasmic reticulum-targeted NIR-II phototherapy combined with inflammatory vascular suppression elicits a synergistic effect against TNBC. Biomater Sci 2023; 11:1876-1894. [PMID: 36692120 DOI: 10.1039/d2bm01823c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recurrence and metastasis are the main reasons for failure in the treatment of triple-negative breast cancer (TNBC). Phototherapy, one of the most well-known potent cancer treatment models is highlighted by ablating primitive tumors with immunogenic cell death (ICD) and is associated with endoplasmic reticulum (ER) stress to elicit long-lasting anti-tumor immunity. However, the provoked inflammatory response after phototherapy will stimulate angiogenesis, which provides nutrition for tumor recurrence. Here, an ER-targeted nanoplatform was constructed based on hollow mesoporous Cu2-XS (HMCu2-XS) nanoparticles to suppress recurrence and metastasis of TNBC by combining photo-ablation and microenvironment remodeling. Profiting from the metal ion coordination and large hollow space, HMCu2-XS can be easily modified with p-toluenesulfonamide for ER-targeting and quantitatively loaded celecoxib (CXB) as a vascular inhibitor, thus obtaining ER-HMCu2-XS/CXB. ER-HMCu2-XS showed great photothermal and photodynamic efficiency for ablating 4T1 tumors and inducing ICD under NIR-II laser irradiation. Compared with non-ER-targeted nanosystems, the ER-targeted nanosystem elicited stronger ICDs and recruited more immune cells. Moreover, the thermal-responsively released CXB successfully inhibited angiogenesis after photothermal therapy. The data showed that the ER-HMCu2-XS/CXB mediated the triplicate therapeutic effect of photo-ablation, immune response activation, and vascular suppression effectively, preventing the recurrence and metastasis of TNBC. In conclusion, this work provides a synergistic strategy to enhance therapeutic outcomes in TNBC.
Collapse
Affiliation(s)
- Guoyun Wan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Xuheng Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jiayu Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Ruiling Gou
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Haijiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Shuhao Liu
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Mingyang Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China. .,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Dan Wang
- Xuzhou Central Hospital, Xuzhou 221009, China.
| | - Qiqing Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
14
|
Wang N, Li Y, Zhou X, Wang X, Yang G. Comprehensive analysis identifies ARHGEF6 as a potential prognostic and immunological biomarker in lung adenocarcinoma. Comput Biol Med 2023; 153:106448. [PMID: 36586227 DOI: 10.1016/j.compbiomed.2022.106448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lung adenocarcinoma (LUAD), the most common histological type in lung cancer, is one of leading cancers with considerable morbidity/mortality worldwide. Treating LUAD remains an outstanding challenge due to the lack of early diagnosis and the poor therapeutic effects. Rac/Cdc42 guanine nucleotide exchange factor 6 (ARHGEF6), one of cytoskeletal regulators, exerts crucial biological functions in T cell migration. The potential biological role of ARHGEF6 in LUAD has yet to be established. Using multiple bioinformatics tools and statistical methods, we discovered that the mRNA and protein expression level of ARHGEF6 was significantly downregulated in tumor tissues comparing to normal controls. Moreover, ARHGEF6 presented high diagnostic value in LUAD patients (AUC = 0.949), and the patients with low ARHGEF6 expression had more somatic mutations and poor T stage, N stage, clinical prognosis. Experimental validation indicated that ARHGEF6 was low expressed in A549 and PC-9 cells comparing to the normal lung epithelial cells. The overexpression of ARHGEF6 remarkably attenuated the abilities of cell proliferation and colony formation. Furthermore, the immune landscape analysis in TME revealed that ARHGEF6 expression was positively associated with immune cell infiltration and immune checkpoints. Single-cell transcriptome analysis indicated that ARHGEF6 expression was also distributed in immune cell types in TME based on TISCH database. Additionally, differentially expressed genes (DEGs) and functional enrichment analyses uncovered that ARHGEF6 was involved in T cell activation. Finally, LUAD samples were classified two clusters based on DEGs for subgroups analysis. In summary, this study comprehensively uncovered that ARHGEF6 could be identified as a potential prognostic and immunological biomarker in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ning Wang
- The Third Central Hospital of Tianjin, Tianjin, 300170, China.
| | - Yuanyuan Li
- Department of Oncology, The Third Central Hospital of Tianjin, Tianjin, 300170, China
| | - Xue Zhou
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, 300350, China
| | - Xue Wang
- Department of Respiratory Medicine, The Third Central Hospital of Tianjin, Tianjin, 300170, China
| | - Guoyue Yang
- The Third Central Hospital of Tianjin, Tianjin, 300170, China
| |
Collapse
|
15
|
Zhu L, Li J, Guo Z, Kwok HF, Zhao Q. Synergistic combination of targeted nano-nuclear-reactors and anti-PD-L1 nanobodies evokes persistent T cell immune activation for cancer immunotherapy. J Nanobiotechnology 2022; 20:521. [PMID: 36496381 PMCID: PMC9741809 DOI: 10.1186/s12951-022-01736-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Antitumor T cell immunotherapy as a novel cancer therapeutic strategy has shown enormous promise. However, the tumor microenvironment (TME) is characterized by the low immunogenicity, hypoxia, and immunosuppressive condition that dramatically limit effective T cell immunotherapy. Thus, an ideal immunotherapy strategy that is capable of reversing the immunosuppressive TME is highly imperative. RESULTS In this article, we reported that Fe-doped and doxorubicin (DOX) loaded HA@Cu2-XS-PEG (PHCN) nanomaterials were rationally designed as targeted Fe-PHCN@DOX nano-nuclear-reactors, which evoked persistent T cell immune response together with anti-PD-L1 nanobodies. It was confirmed that nano-nuclear-reactors displayed strong nanocatalytic effect for effective antitumor effects. Consequently, they maximized the immunogenic cell death (ICD) effect for antigen presentation and then stimulated T cell activation. In addition, Fe-PHCN@DOX could reprogram M2-phenotype tumor-associated macrophages (TAMs) into M1-phenotype TAMs by relieving tumor hypoxia. Meanwhile, blockade of the anti-PD-L1 nanobody promoted T cell activation through targeting the PD-1/PD-L1 immunosuppressive pathway. Notably, in vivo tumor therapy verified that this nano-nuclear-reactor could be used as an excellent immunotherapy nanoplatform for tumor eradication and metastasis prevention with nanobody. CONCLUSIONS Our findings demonstrated that nano-nuclear-reactors in combination with nanobody could evoke persistent T cell immune activation, suggesting them potential as a promising immunotherapy option for reversing immunosuppressive immune-cold tumors.
Collapse
Affiliation(s)
- Lipeng Zhu
- grid.216417.70000 0001 0379 7164School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 510006 China
| | - Junnan Li
- grid.437123.00000 0004 1794 8068Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078 China
| | - Ziang Guo
- grid.437123.00000 0004 1794 8068Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078 China
| | - Hang Fai Kwok
- grid.437123.00000 0004 1794 8068Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078 China
| | - Qi Zhao
- grid.437123.00000 0004 1794 8068Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078 China ,grid.437123.00000 0004 1794 8068 MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| |
Collapse
|
16
|
Le Y, Gao H, Zhu A, Felt K, Rodig S, Bleday R, Zhu Z. NF-κB-regulated VentX expression mediates tumoricidal effects of chemotherapeutics at noncytotoxic concentrations. iScience 2022; 25:105426. [DOI: 10.1016/j.isci.2022.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
|
17
|
Tian X, Yan T, Liu F, Liu Q, Zhao J, Xiong H, Jiang S. Link of sorafenib resistance with the tumor microenvironment in hepatocellular carcinoma: Mechanistic insights. Front Pharmacol 2022; 13:991052. [PMID: 36071839 PMCID: PMC9441942 DOI: 10.3389/fphar.2022.991052] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
Sorafenib, a multi-kinase inhibitor with antiangiogenic, antiproliferative, and proapoptotic properties, is the first-line treatment for patients with late-stage hepatocellular carcinoma (HCC). However, the therapeutic effect remains limited due to sorafenib resistance. Only about 30% of HCC patients respond well to the treatment, and the resistance almost inevitably happens within 6 months. Thus, it is critical to elucidate the underlying mechanisms and identify effective approaches to improve the therapeutic outcome. According to recent studies, tumor microenvironment (TME) and immune escape play critical roles in tumor occurrence, metastasis and anti-cancer drug resistance. The relevant mechanisms were focusing on hypoxia, tumor-associated immune-suppressive cells, and immunosuppressive molecules. In this review, we focus on sorafenib resistance and its relationship with liver cancer immune microenvironment, highlighting the importance of breaking sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Jing Zhao
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Shulong Jiang,
| |
Collapse
|
18
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
19
|
Zhang ZC, Guo JN, Zhang N, Wang ZQ, Lou G, Cui BB, Yang C. Identification and Validation of Immune-Related Gene for Predicting Prognosis and Therapeutic Response in Ovarian Cancer. Front Immunol 2021; 12:763791. [PMID: 34880862 PMCID: PMC8645858 DOI: 10.3389/fimmu.2021.763791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer (OC) is a devastating malignancy with a poor prognosis. The complex tumor immune microenvironment results in only a small number of patients benefiting from immunotherapy. To explore the different factors that lead to immune invasion and determine prognosis and response to immune checkpoint inhibitors (ICIs), we established a prognostic risk scoring model (PRSM) with differential expression of immune-related genes (IRGs) to identify key prognostic IRGs. Patients were divided into high-risk and low-risk groups according to their immune and stromal scores. We used a bioinformatics method to identify four key IRGs that had differences in expression between the two groups and affected prognosis. We evaluated the sensitivity of treatment from three aspects, namely chemotherapy, targeted inhibitors (TIs), and immunotherapy, to evaluate the value of prediction models and key prognostic IRGs in the clinical treatment of OC. Univariate and multivariate Cox regression analyses revealed that these four key IRGs were independent prognostic factors of overall survival in OC patients. In the high-risk group comprising four genes, macrophage M0 cells, macrophage M2 cells, and regulatory T cells, observed to be associated with poor overall survival in our study, were higher. The high-risk group had a high immunophenoscore, indicating a better response to ICIs. Taken together, we constructed a PRSM and identified four key prognostic IRGs for predicting survival and response to ICIs. Finally, the expression of these key genes in OC was evaluated using RT-qPCR. Thus, these genes provide a novel predictive biomarker for immunotherapy and immunomodulation.
Collapse
Affiliation(s)
- Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ning Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
20
|
Genome wide methylation profiling of selected matched soft tissue sarcomas identifies methylation changes in metastatic and recurrent disease. Sci Rep 2021; 11:667. [PMID: 33436720 PMCID: PMC7804318 DOI: 10.1038/s41598-020-79648-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
In this study we used the Illumina Infinium Methylation array to investigate in a cohort of matched archival human tissue samples (n = 32) from 14 individuals with soft tissue sarcomas if genome-wide methylation changes occur during metastatic and recurrent (Met/Rec) disease. A range of sarcoma types were selected for this study: leiomyosarcoma (LMS), myxofibrosarcoma (MFS), rhabdomyosarcoma (RMS) and synovial sarcoma (SS). We identified differential methylation in all Met/Rec matched samples, demonstrating that epigenomic differences develop during the clonal evolution of sarcomas. Differentially methylated regions and genes were detected, not been previously implicated in sarcoma progression, including at PTPRN2 and DAXX in LMS, WT1-AS and TNXB in SS, VENTX and NTRK3 in pleomorphic RMS and MEST and the C14MC / miR-379/miR-656 in MFS. Our overall findings indicate the presence of objective epigenetic differences across primary and Met/Rec human tissue samples not previously reported.
Collapse
|
21
|
Yang S, Liu Q, Liao Q. Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Front Cell Dev Biol 2021; 8:607209. [PMID: 33505964 PMCID: PMC7829544 DOI: 10.3389/fcell.2020.607209] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy. PDAC is only cured by surgical resection in its early stage, but there remains a relatively high possibility of recurrence. The development of PDAC is closely associated with the tumor microenvironment. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations in the pancreatic tumor stroma. TAMs are inclined to M2 deviation in the tumor microenvironment, which promotes and supports tumor behaviors, including tumorigenesis, immune escape, metastasis, and chemotherapeutic resistance. Herein, we comprehensively reviewed the latest researches on the origin, polarization, functions, and reprogramming of TAMs in PDAC.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Li J, Zhao M, Sun M, Wu S, Zhang H, Dai Y, Wang D. Multifunctional Nanoparticles Boost Cancer Immunotherapy Based on Modulating the Immunosuppressive Tumor Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50734-50747. [PMID: 33124808 DOI: 10.1021/acsami.0c14909] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy has been a favorable strategy for facilitating antitumor immunity. However, immune tolerance and an ultimate immunosuppressive tumor microenvironment (ITM) are primary obstacles. To achieve the goals of remodeling the ITM and promoting cancer immunotherapy, a versatile nanoparticle codelivering shikonin (SK) and PD-L1 knockdown siRNA (SK/siR-NPs) was reported. SK/siR-NPs are demonstrated to tellingly induce the immunogenic cell death (ICD) of tumor cells, leading to increased dendritic cell maturation. Moreover, SK/siR-NPs can cause an efficacious inhibition of PD-L1, leading to enhanced cytotoxic T lymphocyte response to tumor cells. Most importantly, SK/siR-NPs can restrain lactate production via the downregulation of pyruvate kinase-M2 (PKM2) and eventually repolarize tumor associated macrophages (TAMs) from the M2-subtype to M1-subtype states. Meanwhile, SK/siR-NPs suppress regulatory T lymphocytes to fight with the ITM. Overall, the developed co-delivery system presents a significant potential for cancer immunotherapy through simultaneously inducing ICD, repolarizing M2-TAMs, and relieving PD-L1 pathway-regulated immune tolerance.
Collapse
Affiliation(s)
- Ji Li
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Meng Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Hongyan Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yinghui Dai
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
23
|
Feng X, Yu W, Cao L, Meng F, Cong M. A novel chrysin thiazole derivative polarizes macrophages to an M1 phenotype via targeting TLR4. Int Immunopharmacol 2020; 88:106986. [PMID: 33182070 DOI: 10.1016/j.intimp.2020.106986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Tumor-associated macrophages (TAMs) are an important cause of tumorigenesis and tumor development. M2 macrophages can promote tumor growth while M1 macrophages kill tumor cells, therefore, polarizing macrophages to achieve a functional M1 phenotype could effectively play its anti-tumor role. In the current study, we synthesized a novel chrysin derivative which is termed as ChR-TD. And we found ChR-TD might be a ligand of TLR4 that polarized the TAMs towards M1 phenotype and played its anti-tumor role. Further study indicated that ChR-TD reprogrammed the macrophages into an M1 phenotype via TLR4 activation. Moreover, ChR-TD activated TLR4/NF-κB signaling pathway and promoted the NF-κB/p65 translocated into the nuclear, leading to the activation of NF-κB and proinflammatory cytokines release. In addition, type I interferon signaling was also activated by ChR-TD, leading to the expressions of IFN-α and IFN-β and its targeted genes NOS2, MCP-1 and IP-10 were significantly increased in macrophages. Importantly, these effects were disturbed in TLR4-/- macrophages, which are constructed by using CRISPR/Cas9 system. And the molecule docking simulation further indicated that ChR-TD could bind to TLR4 and might be a ligand of TLR4. Hence, these findings suggested that ChR-TD might be a ligand of TLR4 and can be used as a potential lead compound for tumors treatment.
Collapse
Affiliation(s)
- Xiujing Feng
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan 250021, China.
| | - Wen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Lingsen Cao
- Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Fanda Meng
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan 250021, China
| | - Mulin Cong
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
24
|
Le Y, Gao H, Richards W, Zhao L, Bleday R, Clancy T, Zhu Z. VentX expression in tumor-associated macrophages promotes phagocytosis and immunity against pancreatic cancers. JCI Insight 2020; 5:137088. [PMID: 32573491 DOI: 10.1172/jci.insight.137088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy that has no effective treatment. The tumor microenvironment (TME) of PDA employs a multitude of immune derangement strategies to protect PDA from immune elimination. Tumor-associated macrophages (TAMs) have been implicated in the pathogenesis of immune suppression of the PDA TME; however, its underlying mechanisms remained largely unknown. Using primary patient samples, our studies showed that, in comparison with macrophages isolated from normal pancreatic tissues, the phagocytosis activity of the PDA TAMs was significantly reduced. We found that the expression of homeobox protein VentX, a master regulator of macrophage plasticity, was significantly decreased in the PDA TAMs. We demonstrated that VentX was required for phagocytosis and that restoration of VentX expression in PDA TAMs promoted phagocytosis through the regulation of the signaling cascades involved in the process. Using an ex vivo culture model of primary human PDA, we showed that VentX-modulated TAMs transformed the PDA TME from a protumor milieu to an antitumor microenvironment by rectifying differentiation, proliferation, and activation of PDA-infiltrating immune cells. Using NSG-PDX models of primary human PDAs, we showed that VentX-modulated TAMs exerted strong inhibition on PDA tumorigenesis in vivo. Taken together, our data revealed a central mechanism underlying immune evasion of PDA and a potential novel venue to improve PDA prognosis.
Collapse
Affiliation(s)
- Yi Le
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hong Gao
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Zhenglun Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
25
|
He QL, Jiang HX, Zhang XL, Qin SY. Relationship between a 7-mRNA signature of the pancreatic adenocarcinoma microenvironment and patient prognosis (a STROBE-compliant article). Medicine (Baltimore) 2020; 99:e21287. [PMID: 32702921 PMCID: PMC7373597 DOI: 10.1097/md.0000000000021287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/16/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
The potential association between the prognosis of the pancreatic adenocarcinoma (PAAD) and its microenvironment is unclear. This study aims to construct a prognostic index (PI) model of the PAAD microenvironment to predict PAAD patient survival outcomes.The mRNA sequencing and the clinical parameters data were obtained from The Cancer Genome Atlas. Immune and stromal scores were computed using the expression data algorithm to capture infiltration of immune and stromal cells in the PAAD tissue, where patients were categorized as high and low score groups according to these scores. Differentially expressed genes were identified using the R package LIMMA. Univariate and multivariate Cox regression analysis were conducted to select candidate survival-correlated gene signatures from the tumor microenvironment for constructing a model. The Kaplan-Meier method was used to access overall survival of the primary and validation cohorts. The immunological features of the PI model was explored using the Tumor Immune Estimation Resource (TIMER) database. Bioinformatic analyses were conducted based on the DAVID database.A total of 1266 overlapping differentially expressed genes and 49 prognosis-associated genes were identified. A 7-mRNA signature (GBP5, BICC1, SLC7A14, CYSLTR1, P2RY6, VENTX, and RAB39B) was screened for the construction of a PI model (area under the curve = 0.791). In both the primary and validation cohorts, Kaplan Meier analysis revealed that the overall survival of the high-risk group was significantly worse compared to the low-risk group (P < .0001, P = .0028 respectively). The TIMER database described that the 7 signature genes were correlated with immune infiltrating cells and tumor purity. Bioinformatic analyses revealed that these prognosis-associated genes were significantly enriched during inflammation, the defense response, would response, calcium ion transport, and plasma membrane part.A list of the prognosis-correlated genes was generated based on the PAAD microenvironment. A 7-mRNA PI model may be used for predicting the prognosis of PAAD patients.
Collapse
|
26
|
Saito Y, Shultz LD, Ishikawa F. Understanding Normal and Malignant Human Hematopoiesis Using Next-Generation Humanized Mice. Trends Immunol 2020; 41:706-720. [PMID: 32631635 DOI: 10.1016/j.it.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Rodent models for human diseases contribute significantly to understanding human physiology and pathophysiology. However, given the accelerating pace of drug development, there is a crucial need for in vivo preclinical models of human biology and pathology. The humanized mouse is one tool to bridge the gap between traditional animal models and the clinic. The development of immunodeficient mouse strains with high-level engraftment of normal and diseased human immune/hematopoietic cells has made in vivo functional characterization possible. As a patient-derived xenograft (PDX) model, humanized mice functionally correlate putative mechanisms with in vivo behavior and help to reveal pathogenic mechanisms. Combined with single-cell genomics, humanized mice can facilitate functional precision medicine such as risk stratification and individually optimized therapeutic approaches.
Collapse
Affiliation(s)
- Yoriko Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| | | | - Fumihiko Ishikawa
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan.
| |
Collapse
|
27
|
Li L, Zhen M, Wang H, Sun Z, Jia W, Zhao Z, Zhou C, Liu S, Wang C, Bai C. Functional Gadofullerene Nanoparticles Trigger Robust Cancer Immunotherapy Based on Rebuilding an Immunosuppressive Tumor Microenvironment. NANO LETTERS 2020; 20:4487-4496. [PMID: 32407113 DOI: 10.1021/acs.nanolett.0c01287] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer immunotherapy as a novel cancer therapeutic strategy has shown enormous promise. However, the immunosuppressive tumor microenvironment (ITM) is a primary obstacle. Tumor-associated macrophages (TAMs) as a major component of immune cells in a tumor microenvironment are generally polarized to the M2 phenotype that not only accelerates tumor growth but also influences the infiltration of lymphocytes and leads to immunosuppression. Thus, rebuilding ITM by re-educating TAMs and increasing infiltration of lymphocytes is a promising strategy. Herein, gadofullerene (GF-Ala) nanoparticles are demonstrated to reprogram TAMs to M1-like and increase the infiltration of cytotoxic T lymphocytes (CTLs), achieving effective inhibition of tumor growth. Notably, the modulation of ITM by GF-Ala promotes the anticancer efficacy of anti-PD-L1 immune checkpoint inhibitor, achieving superior synergistic treatment. Additionally, GF-Ala nanoparticles can be mostly excreted from the body and cause no obvious toxicity. Together, this study provides an effective immunomodulation strategy using gadofullerene nanoparticles by rebuilding ITM and synergizing immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpu Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Sui H, Tan H, Fu J, Song Q, Jia R, Han L, Lv Y, Zhang H, Zheng D, Dong L, Wang S, Li Q, Xu H. The active fraction of Garcinia yunnanensis suppresses the progression of colorectal carcinoma by interfering with tumorassociated macrophage-associated M2 macrophage polarization in vivo and in vitro. FASEB J 2020; 34:7387-7403. [PMID: 32283574 DOI: 10.1096/fj.201903011r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the third most common solid tumor worldwide and has shown resistance to several immunotherapies, particularly immune checkpoint blockade therapy, which is effective in many other types of cancer. Our previous studies indicated that the active fraction of Garcinia yunnanensis (YTE-17), had potent anticancer activities by regulating multiple signaling pathways. However, knowledge regarding the mechanism and effect of YTE-17 in the prevention of CRC is limited. This study tested the effects of YTE-17 on colon cancer development in vivo by using two murine models: the carcigenic azoxymethane/dextran sulfate sodium (AOM/DSS)-induced CRC model and a genetically induced model using ApcMin/+ mice. Here, the tumor load, tumor number, histology, and even some oncogenes were used to evaluate the effect of YTE-17. The intragastric administration of YTE-17 for 12 weeks significantly decreased CRC incidence, tumor number and size, immunity, and some tumor-associated macrophage (TAM) markers, including CD206, Arg-1, IL-10, and TGF-β. Importantly, the macrophages depletion by clodronate (CEL) also played a role in reducing the tumor burden and inhibiting tumor development, which were not affected by YTE-17 in the ApcMin/+ mice. Moreover, the YTE-17 treatment attenuated CRC cell growth in a co-culture system in the presence of macrophages. Consistently, YTE-17 effectively reduced the tumor burden and macrophage infiltration and enhanced immunity in the AOM/DSS and ApcMin/+ colon tumor models. Altogether, we demonstrate that macrophages in the microenvironment may contribute to the development and progression of CRC cells and propose YTE-17 as a new potential drug option for the treatment of CRC.
Collapse
Affiliation(s)
- Hua Sui
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Fu
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Song
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Lv
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songpo Wang
- Department of Traditional Chinese Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
Du B, Wang Q, Yang Y, Du Q, Liu Y, Zhu W, Xu T, Shen G, Yao H, Wang L. Two-Way Cruise Nanosatellite Promotes Metastasis Inhibition by Immunochemotherapy. Biomacromolecules 2019; 20:2873-2887. [PMID: 31185162 DOI: 10.1021/acs.biomac.9b00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Currently, immunochemotherapy based on tumor-associated macrophages (TAMs) is mainly used for elimination of M2 macrophages. However, these methods cannot make full use of the positive immune-modulatory effects of macrophages. This study explores a two-way cruise strategy for combining immunotherapy based on TAM phenotype reversal with classical chemotherapy, the nanosatellites (DOX@HFn-PGZL@Res) are proposed to accurately deliver the chemotherapeutic agents and immune activators to their respective target cells. When the delivery system is recruited to tumor microenvironment, the nanosatellites are separated into DOX@HFn and Res@GZL nanoparticles, which can enter cancer cells and M2-TAMs, respectively. The data show that DOX@HFn-PGZL@Res successfully re-educate M2 to M1 macrophages, resulting in an activated immune response and inhibition of tumor invasion and metastasis. In general, this work describes a two-way homing nanoplatform for the integration of immunotherapy and chemotherapy, which provides a new idea for the "attack-defense" integrated treatment of tumor.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province, Zhengzhou 450001 , China
| | - Qinghui Wang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Ying Yang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Qian Du
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Ying Liu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Wanying Zhu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Tianguo Xu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Guopeng Shen
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Hanchun Yao
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province, Zhengzhou 450001 , China
| | - Lei Wang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province, Zhengzhou 450001 , China
| |
Collapse
|
30
|
Qin H, Yu H, Sheng J, Zhang D, Shen N, Liu L, Tang Z, Chen X. PI3Kgamma Inhibitor Attenuates Immunosuppressive Effect of Poly(l-Glutamic Acid)-Combretastatin A4 Conjugate in Metastatic Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900327. [PMID: 31380170 PMCID: PMC6662090 DOI: 10.1002/advs.201900327] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Indexed: 05/16/2023]
Abstract
Vascular disrupting agents (VDAs) have great potential for cancer treatment. Poly(l-glutamic acid)-combretastatin A4 conjugate (PLG-CA4) is a novel class of VDAs. Though it has notable antitumor activity, it can induce host immune responses that promote tumor growth. Here, PLG-CA4 induces the polarization of tumor-associated macrophages (TAMs) toward the M2-like phenotype in 4T1 metastatic breast cancer (Control 30% vs PLG-CA4 53%; p < 0.05). Compared to the monotherapy of PLG-CA4, inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) attenuates the immunosuppressive effect of PLG-CA4 treatment by decreasing the number of M2-like TAMs (2.0 × 104 to 1.5 × 104 per tumor) and potential enhancement of cytotoxic T lymphocyte (3.0 × 104 to 5.7 × 104 per tumor). Importantly, PI3Kγ inhibitor synergizing with PLG-CA4 significantly extends the mean survival time from 52 days in monotherapy-treated mice to 61.8 days. Additionally, the combination of PLG-CA4 and PI3Kγ inhibitor improves the tumor therapeutic effect of NLG919, an inhibitor of immune checkpoint indoleamine 2,3-dioxygenase (IDO). As far as it is known, this is the first demonstrated study that VDAs induce the reshaping of macrophages to the M2-like phenotype. The findings also indicate a potential therapeutic strategy of the combination VDAs with an accurate immune modifier in the tumor to reverse the immune resistance.
Collapse
Affiliation(s)
- Hanjiao Qin
- Department of Radiotherapythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Haiyang Yu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgerythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Dawei Zhang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Na Shen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Linlin Liu
- Department of Radiotherapythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| |
Collapse
|