1
|
Liu Q, Li Z, Ma X, Liu Q, Wei F, Teo SL, Duan R, Rachmawisista AMD, Zhang Y, Lee CJJ, Deng J, Huang A, Luo P, Hui HK, Yap SLK, Zhao M, Ji R, Luo Y, Liu Z, Wang Q. Anisotropic Crystallographic Engineering of α-MoO 3. ACS NANO 2025; 19:21179-21188. [PMID: 40443196 DOI: 10.1021/acsnano.5c07199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The α-phase molybdenum trioxide (α-MoO3), a biaxial hyperbolic van der Waals (vdW) crystal, supports highly confined and anisotropic phonon polaritons (PhPs), positioning it as a superior platform for mid-infrared light manipulation. The performance of PhP-based devices critically depends on the properties of α-MoO3 flakes, including their thickness, roughness, and pattern geometry. However, conventional patterning techniques, such as ion beam milling and plasma etching, often introduce doping artifacts and surface damage, resulting in high PhP losses. In this work, we develop a hot-water-based technique for the crystallographic engineering of α-MoO3, leveraging its anisotropic etching properties for surface polishing and nanopatterning. This method exploits the notably higher etching rate along intralayer directions ([100], [001]) compared to the interlayer direction ([010]). Consequently, a 24% enhancement in PhP lifetime was observed in RIE-treated α-MoO3 flakes after hot water polishing, with no measurable change in material thickness. To further validate this technology, we fabricated various two-dimensional PhP manipulation devices using standard nanopatterning and thinning processes, followed by chemical-free hot water anisotropic crystallographic etching. This approach enabled the creation of nanoresonators, lenses, nanocavities, and unidirectional emitters with sharp edges precisely aligned along the crystallographic planes. Our crystallographic engineering approach unlocks precise control of surface waves at the nanoscale, facilitating the development of photonic devices for cutting-edge nanophotonic and nanoscale sensing applications.
Collapse
Affiliation(s)
- Qiyao Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Zhipeng Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xuezhi Ma
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Qiushi Liu
- Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Fengxia Wei
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Siew Lang Teo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Ruihuan Duan
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Adrianzka Mayreswara Dewa Rachmawisista
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yueqian Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Coryl Jing Jun Lee
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Jie Deng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Aihong Huang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Ping Luo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Hui Kim Hui
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Sherry Lee Koon Yap
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Meng Zhao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Rong Ji
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yu Luo
- National Key Laboratory of Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zheng Liu
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qian Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
2
|
Djurdjić Mijin S, dePedro-Embid I, Panov N, Hemmer E, Lazić S. Cost-Efficient Deterministic Engineering of Single Photon Emitters in Two-Dimensional Materials. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40372002 DOI: 10.1021/acsami.5c05174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Two-dimensional materials have recently emerged as promising candidates for quantum light emission. Their tunable bandgaps, layer-dependent excitonic properties, and strong confinement of charge carriers provide a versatile platform for manipulating and controlling quantum states. Several approaches─such as strain engineering, defect engineering and surface functionalization─have been explored to induce single-photon emitters in these materials. In this work, we present a practical and cost-efficient methodology for deterministic strain engineering of single-photon emitters within thin flakes of GaSe. Our approach utilizes optically active microparticles with a distinctive bipyramidal shape, whose emission does not interfere optically with that of GaSe. The results show strong agreement with previous studies on strain-induced single-photon sources in multilayer GaSe, demonstrating that the proposed technique is a promising platform for generating nonclassical light emission in layered materials. Compared to other local strain engineering techniques for single-photon sources in two-dimensional materials, our method offers greater accessibility and lower cost, making it feasible for implementation in most laboratories performing the experimental research in the field. This increased accessibility can help advance the understanding of two-dimensional semiconductor systems and their potential applications in nanophotonics and quantum light technologies.
Collapse
Affiliation(s)
- Sanja Djurdjić Mijin
- Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Ismael dePedro-Embid
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117 Berlin, Germany
| | - Nikita Panov
- Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Snežana Lazić
- Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Instituto Universitario de Ciencia de Materiales "Nicolás Cabrera" (INC) and Condensed Matter Physics Center (IFIMAC), UAM, 28049 Madrid, Spain
| |
Collapse
|
3
|
Glebov NV, Masharin MA, Yulin A, Mikhin A, Miah MR, Demir HV, Krizhanovskii DN, Kravtsov V, Samusev AK, Makarov SV. Room-Temperature Exciton-Polariton-Driven Self-Phase Modulation in Planar Perovskite Waveguides. ACS NANO 2025; 19:14097-14106. [PMID: 40168581 DOI: 10.1021/acsnano.4c18847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Optical nonlinearities are crucial for advanced photonic technologies since they allow photons to be managed by photons. Exciton-polaritons resulting from strong light-matter coupling are hybrid in nature: they combine the small mass and high coherence of photons with strong nonlinearity enabled by excitons, making them ideal for ultrafast all-optical manipulations. Among the most prospective polaritonic materials are halide perovskites since they require neither cryogenic temperatures nor expensive fabrication techniques. Here, we study strikingly nonlinear self-action of ultrashort polaritonic pulses propagating in planar MAPbBr3 perovskite slab waveguides. Tuning the input pulse energy and central frequency, we experimentally observe various scenarios of its nonlinear evolution in the spectral domain, which include peak shifts, narrowing, or splitting driven by self-phase modulation, group velocity dispersion, and self-steepening. The theoretical model provides complementary temporal traces of pulse propagation and reveals the transition from the birth of a doublet of optical solitons to the formation of a shock wave, both supported by the system. Our results presented here represent an important step in ultrafast nonlinear on-chip polaritonics in perovskite-based systems.
Collapse
Affiliation(s)
- Nikita V Glebov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Mikhail A Masharin
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Alexei Yulin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Alexey Mikhin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Md Rumon Miah
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, and School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Dmitry N Krizhanovskii
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Anton K Samusev
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| |
Collapse
|
4
|
Luo C, Li W, Li J, Fu Z, Hu N, Yu Z, Chang W, Li P, Huang X, Liu B, Yang Y, Jin A, Quan B, Tian S, Yang H, Guo Y, Gu C. Room-Temperature Exciton Polaritons in Monolayer WS 2 Enabled by Plasmonic Bound States in the Continuum. NANO LETTERS 2025; 25:4361-4368. [PMID: 40042082 DOI: 10.1021/acs.nanolett.4c06464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Exciton polaritons formed by the strong coupling between excitons and photons have been extensively studied in transition metal disulfides (TMDs) for their potential to inherit ultralong radiation lifetime and remarkable nonlinearity. Many studies have achieved strong coupling at room temperature. However, the systems in these studies generally lack orderly characteristics and precise controllability, and their tunability also remains rather limited. Here, we demonstrate a plasmonic grating with a bound state in the continuum (BIC) as a highly tunable platform for generating exciton polaritons in monolayer WS2 at room temperature. We characterized the polariton modes and determined an energy splitting of 93 meV. This validates strong coupling in our system. Our research offers a new approach for exploring exciton polaritons in 2D semiconductors, opening doors for room-temperature optoelectronic and quantum computing applications.
Collapse
Affiliation(s)
- Cai Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Wei Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianmei Li
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Ziyi Fu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Nannan Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixiang Yu
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Wenyao Chang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Pinxu Li
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xin Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Baoli Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Aizi Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Baogang Quan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Material Laboratory, Dongguan, Guangdong 523808, China
| | - Shibing Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Haifang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Han B, Fitzgerald JM, Lackner L, Rosati R, Esmann M, Eilenberger F, Taniguchi T, Watanabe K, Syperek M, Malic E, Schneider C. Infrared Magnetopolaritons in MoTe_{2} Monolayers and Bilayers. PHYSICAL REVIEW LETTERS 2025; 134:076902. [PMID: 40053962 DOI: 10.1103/physrevlett.134.076902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 03/09/2025]
Abstract
MoTe_{2} monolayers and bilayers are unique within the family of van der Waals materials since they pave the way toward atomically thin infrared light-matter quantum interfaces, potentially reaching the important telecommunication windows. Here, we report emergent exciton polaritons based on MoTe_{2} monolayers and bilayers in a low-temperature open microcavity in a joint experiment-theory study. Our experiments clearly evidence both the enhanced oscillator strength and enhanced luminescence of MoTe_{2} bilayers, signified by a 38% increase of the Rabi splitting and a strongly enhanced relaxation of polaritons to low-energy states. The latter is distinct from polaritons in MoTe_{2} monolayers, which feature a bottlenecklike relaxation inhibition. Both the polaritonic spin valley locking in monolayers and the spin-layer locking in bilayers are revealed via the Zeeman effect, which we map and control via the light-matter composition of our polaritonic resonances.
Collapse
Affiliation(s)
- Bo Han
- Carl von Ossietzky Universität Oldenburg, Institut für Physik, Fakultät V, 26129 Oldenburg, Germany
| | - Jamie M Fitzgerald
- Philipps-Universität Marburg, Department of Physics, Mainzer Gasse 33, D-35032 Marburg, Germany
| | - Lukas Lackner
- Carl von Ossietzky Universität Oldenburg, Institut für Physik, Fakultät V, 26129 Oldenburg, Germany
| | - Roberto Rosati
- Philipps-Universität Marburg, Department of Physics, Mainzer Gasse 33, D-35032 Marburg, Germany
| | - Martin Esmann
- Carl von Ossietzky Universität Oldenburg, Institut für Physik, Fakultät V, 26129 Oldenburg, Germany
| | - Falk Eilenberger
- Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, 07745 Jena, Germany
- Friedrich Schiller Universität Jena, Institute of Applied Physics, Abbe Center of Photonics, 07745 Jena, Germany
- Max Planck School of Photonics, 07745 Jena, Germany
| | - Takashi Taniguchi
- National Institute for Materials Science, International Center for Materials Nanoarchitectonics, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, Research Center for Functional Materials, Tsukuba 305-0044, Japan
| | - Marcin Syperek
- Wrocław University of Science and Technology, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wyb.Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ermin Malic
- Philipps-Universität Marburg, Department of Physics, Mainzer Gasse 33, D-35032 Marburg, Germany
| | - Christian Schneider
- Carl von Ossietzky Universität Oldenburg, Institut für Physik, Fakultät V, 26129 Oldenburg, Germany
| |
Collapse
|
6
|
Lu Z, Song D, Lin C, Zhang H, Zhang S, Xu H. Plexciton Photoluminescence in Strongly Coupled 2D Semiconductor-Plasmonic Nanocavity Hybrid. ACS NANO 2025; 19:5637-5648. [PMID: 39889270 DOI: 10.1021/acsnano.4c15637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Strong plasmon-exciton interaction between two-dimensional transition metal dichalcogenides and a plasmonic nanocavity under ambient conditions has been reported extensively. But the suspicion on whether it has reached a true "strong coupling" is always there because the commonly used dark-field scattering spectroscopy shows a larger spectral splitting and the splitting in the photoluminescence spectra is absent. Here, by using a nanobipyramid-over-mirror to enhance the in-plane vacuum field, we achieve spectral Rabi splitting in both scattering and differential reflection spectra and observe a clear photoluminescence emission of the lower plexciton branch. The established nanocavity offers two polarization-dependent gap plasmon resonances to provide excitation and quantum yield enhancement simultaneously, yielding a total photoluminescence enhancement of 2.1 × 104 times. This allows the acquisition of emission spectra from an individual coupled system regardless of the presence of an uncoupled emitting background in the collection area. The sharp tips of the nanobipyramid lead to a large single-exciton coupling strength up to a few meV. Correlated scattering, differential reflection, and photoluminescence spectra reveal the similarity between the scattering and normalized photoluminescence spectra. These correlative measurements on a single coupled system clear up the suspicions of strong plasmon-exciton interactions and will promote the development of light-emitting plexcitonic devices at room temperature.
Collapse
Affiliation(s)
- Zhengyi Lu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Dudu Song
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Cidu Lin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Hao Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shunping Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Hongxing Xu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan China
| |
Collapse
|
7
|
Tabataba-Vakili F, Krelle L, Husel L, Nguyen HPG, Li Z, Bilgin I, Watanabe K, Taniguchi T, Högele A. Metasurface of Strongly Coupled Excitons and Nanoplasmonic Arrays. NANO LETTERS 2024; 24:10090-10097. [PMID: 39106977 PMCID: PMC11342386 DOI: 10.1021/acs.nanolett.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
Metasurfaces allow light to be manipulated at the nanoscale. Integrating metasurfaces with transition metal dichalcogenide monolayers provides additional functionality to ultrathin optics, including tunable optical properties with enhanced light-matter interactions. In this work, we demonstrate the realization of a polaritonic metasurface utilizing the sizable light-matter coupling of excitons in monolayer WSe2 and the collective lattice resonances of nanoplasmonic gold arrays. We developed a novel fabrication method to integrate gold nanodisk arrays in hexagonal boron nitride and thus simultaneously ensure spectrally narrow exciton transitions and their immediate proximity to the near-field of array surface lattice resonances. In the regime of strong light-matter coupling, the resulting van der Waals metasurface exhibits all key characteristics of lattice polaritons, with a directional and linearly polarized far-field emission profile dictated by the underlying nanoplasmonic lattice. Our work can be straightforwardly adapted to other lattice geometries, establishing structured van der Waals metasurfaces as means to engineer polaritonic lattices.
Collapse
Affiliation(s)
- Farsane Tabataba-Vakili
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Munich
Center for Quantum Science and Technology (MCQST), Schellingtraße 4, 80799 München, Germany
| | - Lukas Krelle
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Lukas Husel
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Huy P. G. Nguyen
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Zhijie Li
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Ismail Bilgin
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexander Högele
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Munich
Center for Quantum Science and Technology (MCQST), Schellingtraße 4, 80799 München, Germany
| |
Collapse
|
8
|
Liu B, Michail E, He G, Sfeir MY, Forrest SR. Ultrafast Dynamics of Bloch Surface Wave Polaritons in Large-Area 2D Semiconductor Monolayers at Room Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404286. [PMID: 38924714 DOI: 10.1002/adma.202404286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The dynamics of strongly coupled polariton systems integrated with 2D transition metal dichalcogenides (TMDs) is key to enabling efficient coherent processes and achieving high-performance TMD-based polaritonic devices, such as ultralow-threshold polariton lasers and ultrafast optical switches. However, there has been a lack of a comprehensive understanding of the excited state dynamics in TMD-based polariton systems. In this work, ultrafast pump-probe optical spectroscopy is used to investigate the room temperature dynamics of the polariton systems consisting of TMD monolayer excitons strongly coupled with Bloch surface waves (BSWs) supported by all-dielectric photonic structures. The transient response is found for both above-exciton energy pumping and polariton-resonant pumping. The excited state population and ultrafast coherent coupling of the exciton reservoir and lower polariton (LP) branch are observed for resonant pumping. Moreover, it is found that the transient response of the LP first decays on a short-time scale of 0.15-0.25 ps compared to the calculated intrinsic lifetime of 0.11-0.20 ps, and is followed by a longer decay (>100 ps) due to the dynamical evolution of the exciton reservoir. The results provide a fundamental understanding of the dynamics of TMD-based polariton systems while showing the potential for achieving efficient coherent optical processes for device applications.
Collapse
Affiliation(s)
- Bin Liu
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Evripidis Michail
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Stephen R Forrest
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Yang J, Tao R, Huang Z, Li D, Rong X, Chu Z, Liu Q, Huo X, Li T, Sheng B, Wang T, Liu F, Yuan Y, Wang P, Ge W, Shen B, Wang X. A near-resonant excitation strategy to achieve ultra-low threshold GaN polariton lasing. OPTICS LETTERS 2024; 49:4058-4061. [PMID: 39008776 DOI: 10.1364/ol.529895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024]
Abstract
A near-resonant excitation strategy is proposed and implemented in a 4-µm-thick GaN microcavity to realize an exciton-polariton condensate/lasing with low threshold. Strong exciton-photon coupling is demonstrated, and polariton lasing is realized with an ultra-low threshold excitation power density of about 13.3 W/cm2 at room temperature. Such an ultra-low threshold is ascribed to the implementation of the near-resonant optical excitation strategy, which enables acceleration of the exciton and polariton relaxation and suppression of the heat generation in the cavity, thereby reducing the energy loss and enhance the cavity excitation efficiency.
Collapse
|
10
|
Timmer D, Gittinger M, Quenzel T, Cadore AR, Rosa BLT, Li W, Soavi G, Lünemann DC, Stephan S, Silies M, Schulz T, Steinhoff A, Jahnke F, Cerullo G, Ferrari AC, De Sio A, Lienau C. Ultrafast Coherent Exciton Couplings and Many-Body Interactions in Monolayer WS 2. NANO LETTERS 2024; 24:8117-8125. [PMID: 38901032 PMCID: PMC11229071 DOI: 10.1021/acs.nanolett.4c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Transition metal dichalcogenides (TMDs) are quantum confined systems with interesting optoelectronic properties, governed by Coulomb interactions in the monolayer (1L) limit, where strongly bound excitons provide a sensitive probe for many-body interactions. Here, we use two-dimensional electronic spectroscopy (2DES) to investigate many-body interactions and their dynamics in 1L-WS2 at room temperature and with sub-10 fs time resolution. Our data reveal coherent interactions between the strongly detuned A and B exciton states in 1L-WS2. Pronounced ultrafast oscillations of the transient optical response of the B exciton are the signature of a coherent 50 meV coupling and coherent population oscillations between the two exciton states. Supported by microscopic semiconductor Bloch equation simulations, these coherent dynamics are rationalized in terms of Dexter-like interactions. Our work sheds light on the role of coherent exciton couplings and many-body interactions in the ultrafast temporal evolution of spin and valley states in TMDs.
Collapse
Affiliation(s)
- Daniel Timmer
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Moritz Gittinger
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Quenzel
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Alisson R. Cadore
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Barbara L. T. Rosa
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Wenshan Li
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Giancarlo Soavi
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Daniel C. Lünemann
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Sven Stephan
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Martin Silies
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
| | - Tommy Schulz
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Alexander Steinhoff
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Frank Jahnke
- Institute
for Theoretical Physics and Bremen Center for Computational Materials
Science, University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Istituto
di Fotonica e Nanotecnologie-CNR, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, CB3 0FA Cambridge, United Kingdom
| | - Antonietta De Sio
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Institut für Physik, 26129 Oldenburg, Germany
| | - Christoph Lienau
- Institut
für Physik, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Institut für Physik, 26129 Oldenburg, Germany
| |
Collapse
|
11
|
Tu X, Zhang Y, Zhou S, Tang W, Yan X, Rui Y, Wang W, Yan B, Zhang C, Ye Z, Shi H, Su R, Wan C, Dong D, Xu R, Zhao QY, Zhang LB, Jia XQ, Wang H, Kang L, Chen J, Wu P. Tamm-cavity terahertz detector. Nat Commun 2024; 15:5542. [PMID: 38956040 PMCID: PMC11219876 DOI: 10.1038/s41467-024-49759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Efficiently fabricating a cavity that can achieve strong interactions between terahertz waves and matter would allow researchers to exploit the intrinsic properties due to the long wavelength in the terahertz waveband. Here we show a terahertz detector embedded in a Tamm cavity with a record Q value of 1017 and a bandwidth of only 469 MHz for direct detection. The Tamm-cavity detector is formed by embedding a substrate with an Nb5N6 microbolometer detector between an Si/air distributed Bragg reflector (DBR) and a metal reflector. The resonant frequency can be controlled by adjusting the thickness of the substrate layer. The detector and DBR are fabricated separately, and a large pixel-array detector can be realized by a very simple assembly process. This versatile cavity structure can be used as a platform for preparing high-performance terahertz devices and opening up the study of the strong interactions between terahertz waves and matter.
Collapse
Affiliation(s)
- Xuecou Tu
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Yichen Zhang
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Shuyu Zhou
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wenjing Tang
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xu Yan
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yunjie Rui
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wohu Wang
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Bingnan Yan
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chen Zhang
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Ziyao Ye
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hongkai Shi
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Runfeng Su
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chao Wan
- Purple Mountain Laboratories, Nanjing, Jiangsu, 211111, China
| | - Daxing Dong
- Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Ruiying Xu
- Nanjing Electronic Devices Institute, Nanjing, 210016, China
| | - Qing-Yuan Zhao
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
- Purple Mountain Laboratories, Nanjing, Jiangsu, 211111, China
| | - La-Bao Zhang
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Xiao-Qing Jia
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Huabing Wang
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
- Purple Mountain Laboratories, Nanjing, Jiangsu, 211111, China
| | - Lin Kang
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Jian Chen
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
- Purple Mountain Laboratories, Nanjing, Jiangsu, 211111, China
| | - Peiheng Wu
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.
- Hefei National Laboratory, Hefei, 230088, China.
| |
Collapse
|
12
|
Zhang Y, Schill HJ, Irsen S, Linden S. Strong coupling between WS 2 monolayer excitons and a hybrid plasmon polariton at room temperature. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2847-2856. [PMID: 39635256 PMCID: PMC11502097 DOI: 10.1515/nanoph-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 12/07/2024]
Abstract
Light-matter interactions between plasmonic and excitonic modes have attracted considerable interest in recent years. A major challenge in achieving strong coupling is the identification of suitable metallic nanostructures that combine tight field confinement with sufficiently low losses. Here, we report on a room-temperature study on the interaction of tungsten disulfide (WS2) monolayer excitons with a hybrid plasmon polariton (HPP) mode supported by nanogroove grating structures milled into single-crystalline silver flakes. By engineering the depth of the nanogroove grating, we can change the character of the HPP mode from propagating surface plasmon polariton-like (SPP-like) to localized surface plasmon resonance-like (LSPR-like). Using reflection spectroscopy, we demonstrate strong coupling with a Rabi splitting of 68 meV between the WS2 monolayer excitons and the lower HPP branch for an optimized nanograting configuration with 60 nm deep nanogrooves. In contrast, only weak coupling between the constituents is observed for shallower and deeper nanogratings since either the field confinement provided by the HPP is not sufficient or the damping is too large. The possibility to balance the field confinement and losses render nanogroove grating structures an attractive platform for future applications.
Collapse
Affiliation(s)
- Yuhao Zhang
- Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115Bonn, Germany
| | - Hans-Joachim Schill
- Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115Bonn, Germany
| | - Stephan Irsen
- Electron Microscopy and Analytics, Center of Advanced European Studies and Research (Caesar), 53175Bonn, Germany
| | - Stefan Linden
- Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115Bonn, Germany
| |
Collapse
|
13
|
Khestanova E, Shahnazaryan V, Kozin VK, Kondratyev VI, Krizhanovskii DN, Skolnick MS, Shelykh IA, Iorsh IV, Kravtsov V. Electrostatic Control of Nonlinear Photonic-Crystal Polaritons in a Monolayer Semiconductor. NANO LETTERS 2024. [PMID: 38855978 DOI: 10.1021/acs.nanolett.4c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Integration of 2D semiconductors with photonic crystal slabs provides an attractive approach to achieving strong light-matter coupling and exciton-polariton formation in a chip-compatible geometry. However, for the development of practical devices, it is crucial that polariton excitations are easily tunable and exhibit a strong nonlinear response. Here we study neutral and charged exciton-polaritons in an electrostatically gated photonic crystal slab with an embedded monolayer semiconductor MoSe2 and experimentally demonstrate a novel approach to optical control based on polariton nonlinearity. We show that spatial modulation of the dielectric environment within the photonic crystal unit cell results in the formation of two distinct excitonic species with significantly different nonlinear responses of the corresponding charged exciton-polaritons under optical pumping. This behavior enables optical switching with ultrashort laser pulses and can be sensitively controlled via an electrostatic gate voltage. Our results open new avenues toward the development of active polaritonic devices in a compact chip-compatible implementation.
Collapse
Affiliation(s)
- Ekaterina Khestanova
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Vanik Shahnazaryan
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Valerii K Kozin
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Valeriy I Kondratyev
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | | | - Maurice S Skolnick
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Ivan A Shelykh
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
- Science Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland
| | - Ivan V Iorsh
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
14
|
Meng F, Cao L, Mangeney J, Roskos HG. Strong coupling of metamaterials with cavity photons: toward non-Hermitian optics. NANOPHOTONICS 2024; 13:2443-2451. [PMID: 38836105 PMCID: PMC11147495 DOI: 10.1515/nanoph-2023-0899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 06/06/2024]
Abstract
The investigation of strong coupling between light and matter is an important field of research. Its significance arises not only from the emergence of a plethora of intriguing chemical and physical phenomena, often novel and unexpected, but also from its provision of important tool sets for the design of core components for novel chemical, electronic, and photonic devices such as quantum computers, lasers, amplifiers, modulators, sensors and more. Strong coupling has been demonstrated for various material systems and spectral regimes, each exhibiting unique features and applications. In this perspective, we will focus on a sub-field of this domain of research and discuss the strong coupling between metamaterials and photonic cavities at THz frequencies. The metamaterials, themselves electromagnetic resonators, serve as "artificial atoms". We provide a concise overview of recent advances and outline possible research directions in this vital and impactful field of interdisciplinary science.
Collapse
Affiliation(s)
- Fanqi Meng
- Physikalisches Institut, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Lei Cao
- Physikalisches Institut, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | | | - Hartmut G. Roskos
- Physikalisches Institut, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Galimov AI, Kazanov DR, Poshakinskiy AV, Rakhlin MV, Eliseyev IA, Toropov AA, Remškar M, Shubina TV. Direct observation of split-mode exciton-polaritons in a single MoS 2 nanotube. NANOSCALE HORIZONS 2024; 9:968-975. [PMID: 38647350 DOI: 10.1039/d4nh00052h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A single nanotube synthesized from a transition metal dichalcogenide (TMDC) exhibits strong exciton resonances and, in addition, can support optical whispering gallery modes. This combination is promising for observing exciton-polaritons without an external cavity. However, traditional energy-momentum-resolved detection methods are unsuitable for this tiny object. Instead, we propose to use split optical modes in a twisted nanotube with the flattened cross-section, where a gradually decreasing gap between the opposite walls leads to a change in mode energy, similar to the effect of the barrier width on the eigenenergies in the double-well potential. Using micro-reflectance spectroscopy, we investigated the rich pattern of polariton branches in single MoS2 tubes with both variable and constant gaps. Observed Rabi splitting in the 40-60 meV range is comparable to that for a MoS2 monolayer in a microcavity. Our results, based on the polariton dispersion measurements and polariton dynamics analysis, present a single TMDC nanotube as a perfect polaritonic structure for nanophotonics.
Collapse
Affiliation(s)
- A I Galimov
- Ioffe Institute, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia.
| | - D R Kazanov
- Ioffe Institute, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia.
| | - A V Poshakinskiy
- Ioffe Institute, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia.
| | - M V Rakhlin
- Ioffe Institute, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia.
| | - I A Eliseyev
- Ioffe Institute, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia.
| | - A A Toropov
- Ioffe Institute, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia.
| | - M Remškar
- Jozef Stefan Institute, 39 Jamova cesta, Ljubljana, 1000, Slovenia
| | - T V Shubina
- Ioffe Institute, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia.
| |
Collapse
|
16
|
Zulkifli B, Ahmad Khushaini MA, Azeman NH, Md Jamil MS, Tg Abdul Aziz TH, Md Zain AR. Strong coupling between plasmonic nanocavity gold nanorods and quantum dots emitter. OPTICS EXPRESS 2024; 32:19676-19683. [PMID: 38859097 DOI: 10.1364/oe.519939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 06/12/2024]
Abstract
The discovery of hybrid states in strong coupling interaction has gained growing attention in cavity-quantum electrodynamics research owing to its fundamental directives and potential in advanced optical applications. The ultra-confined mode volume of plasmonic cavity gold nanorods (AuNRs), particularly at the nanorod tip "hotspot" provides a large coupling strength, a prerequisite for a coherent energy exchange in the strong coupling regime. Here, we reported a remarkable Rabi splitting of ∼231 meV between gold nanorods longitudinal localized surface plasmon resonance (LLSPR) mode and quantum dots (QDs) at ambient conditions, monitored by dielectric medium tuning. Numerical simulations confirmed the result, displaying absorption spectral splitting.
Collapse
|
17
|
Yuan X, Jiang G, Liu P, Fu Q, Zhang Z, Liu T, Jiang Y, Zhao W, Wang W, Zhao B, Li Z, Liu D, Ni Z, Lu J. Validated enhancement and temperature modulated absorbance of a WS 2 monolayer based on a planar structure. OPTICS LETTERS 2024; 49:2401-2404. [PMID: 38691729 DOI: 10.1364/ol.522089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Transition-metal dichalcogenides (TMDCs), as emerging optoelectronic materials, necessitate the establishment of an experimentally viable system to study their interaction with light. In this study, we propose and analyze a WS2/PMMA/Ag planar Fabry-Perot (F-P) cavity, enabling the direct experimental measurement of WS2 absorbance. By optimizing the structure, the absorbance of A exciton of WS2 up to 0.546 can be experimentally achieved, which matches well with the theoretical calculations. Through temperature and thermal expansion strain induced by temperature, the absorbance of the A exciton can be tuned in situ. Furthermore, temperature-dependent photocurrent measurements confirmed the consistent absorbance of the A exciton under varying temperatures. This WS2/PMMA/Ag planar structure provides a straightforward and practical platform for investigating light interaction in TMDCs, laying a solid foundation for future developments of TMDC-based optoelectronic devices.
Collapse
|
18
|
Song S, Rahaman M, Jariwala D. Can 2D Semiconductors Be Game-Changers for Nanoelectronics and Photonics? ACS NANO 2024; 18:10955-10978. [PMID: 38625032 DOI: 10.1021/acsnano.3c12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
2D semiconductors have interesting physical and chemical attributes that have led them to become one of the most intensely investigated semiconductor families in recent history. They may play a crucial role in the next technological revolution in electronics as well as optoelectronics or photonics. In this Perspective, we explore the fundamental principles and significant advancements in electronic and photonic devices comprising 2D semiconductors. We focus on strategies aimed at enhancing the performance of conventional devices and exploiting important properties of 2D semiconductors that allow fundamentally interesting device functionalities for future applications. Approaches for the realization of emerging logic transistors and memory devices as well as photovoltaics, photodetectors, electro-optical modulators, and nonlinear optics based on 2D semiconductors are discussed. We also provide a forward-looking perspective on critical remaining challenges and opportunities for basic science and technology level applications of 2D semiconductors.
Collapse
Affiliation(s)
- Seunguk Song
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mahfujur Rahaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Greten L, Salzwedel R, Göde T, Greten D, Reich S, Hughes S, Selig M, Knorr A. Strong Coupling of Two-Dimensional Excitons and Plasmonic Photonic Crystals: Microscopic Theory Reveals Triplet Spectra. ACS PHOTONICS 2024; 11:1396-1411. [PMID: 38645994 PMCID: PMC11027155 DOI: 10.1021/acsphotonics.3c01208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/23/2024]
Abstract
Monolayers of transition metal dichalcogenides (TMDCs) are direct-gap semiconductors with strong light-matter interactions featuring tightly bound excitons, while plasmonic crystals (PCs), consisting of metal nanoparticles that act as meta-atoms, exhibit collective plasmon modes and allow one to tailor electric fields on the nanoscale. Recent experiments show that TMDC-PC hybrids can reach the strong-coupling limit between excitons and plasmons, forming new quasiparticles, so-called plexcitons. To describe this coupling theoretically, we develop a self-consistent Maxwell-Bloch theory for TMDC-PC hybrid structures, which allows us to compute the scattered light in the near- and far-fields explicitly and provide guidance for experimental studies. One of the key findings of the developed theory is the necessity to differentiate between bright and originally momentum-dark excitons. Our calculations reveal a spectral splitting signature of strong coupling of more than 100 meV in gold-MoSe2 structures with 30 nm nanoparticles, manifesting in a hybridization of the plasmon mode with momentum-dark excitons into two effective plexcitonic bands. The semianalytical theory allows us to directly infer the characteristic asymmetric line shape of the hybrid spectra in the strong coupling regime from the energy distribution of the momentum-dark excitons. In addition to the hybridized states, we find a remaining excitonic mode with significantly smaller coupling to the plasmonic near-field, emitting directly into the far-field. Thus, hybrid spectra in the strong coupling regime can contain three emission peaks.
Collapse
Affiliation(s)
- Lara Greten
- Institut
für Theoretische Physik, Technische
Universität Berlin, 10623 Berlin, Germany
| | - Robert Salzwedel
- Institut
für Theoretische Physik, Technische
Universität Berlin, 10623 Berlin, Germany
| | - Tobias Göde
- Institut
für Theoretische Physik, Technische
Universität Berlin, 10623 Berlin, Germany
| | - David Greten
- Institut
für Theoretische Physik, Technische
Universität Berlin, 10623 Berlin, Germany
| | - Stephanie Reich
- Experimentelle
Festkörperphysik, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Stephen Hughes
- Department
of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Malte Selig
- Institut
für Theoretische Physik, Technische
Universität Berlin, 10623 Berlin, Germany
| | - Andreas Knorr
- Institut
für Theoretische Physik, Technische
Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
20
|
Nakamoto T, Matsuyama K, Sakai M, Chen CT, Cheuch YL, Mouri S, Yoshimura T, Fujimura N, Kiriya D. Selective Isolation of Mono- to Quadlayered 2D Materials via Sonication-Assisted Micromechanical Exfoliation. ACS NANO 2024; 18:2455-2463. [PMID: 38196098 DOI: 10.1021/acsnano.3c11099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Mechanical exfoliation methods of two-dimensional materials have been an essential process for advanced devices and fundamental sciences. However, the exfoliation method usually generates various thick flakes, and a bunch of thick bulk flakes usually covers an entire substrate. Here, we developed a method to selectively isolate mono- to quadlayers of transition metal dichalcogenides (TMDCs) by sonication in organic solvents. The analysis reveals the importance of low interface energies between solvents and TMDCs, leading to the effective removal of bulk flakes under sonication. Importantly, a monolayer adjacent to bulk flakes shows cleavage at the interface, and the monolayer can be selectively isolated on the substrate. This approach can extend to preparing a monolayer device with crowded 17 electrode fingers surrounding the monolayer and for the measurement of electrostatic device performance.
Collapse
Affiliation(s)
- Tatsuya Nakamoto
- Department of Physics and Electronics, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Keigo Matsuyama
- Department of Physics and Electronics, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Masahiro Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Chieh-Ting Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Lun Cheuch
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shinichiro Mouri
- College of Science and Engineering, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Takeshi Yoshimura
- Department of Physics and Electronics, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Norifumi Fujimura
- Department of Physics and Electronics, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Daisuke Kiriya
- Department of Physics and Electronics, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
21
|
Kang H, Ma J, Li J, Zhang X, Liu X. Exciton Polaritons in Emergent Two-Dimensional Semiconductors. ACS NANO 2023; 17:24449-24467. [PMID: 38051774 DOI: 10.1021/acsnano.3c07993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The "marriage" of light (i.e., photon) and matter (i.e., exciton) in semiconductors leads to the formation of hybrid quasiparticles called exciton polaritons with fascinating quantum phenomena such as Bose-Einstein condensation (BEC) and photon blockade. The research of exciton polaritons has been evolving into an era with emergent two-dimensional (2D) semiconductors and photonic structures for their tremendous potential to break the current limitations of quantum fundamental study and photonic applications. In this Perspective, the basic concepts of 2D excitons, optical resonators, and the strong coupling regime are introduced. The research progress of exciton polaritons is reviewed, and important discoveries (especially the recent ones of 2D exciton polaritons) are highlighted. Subsequently, the emergent 2D exciton polaritons are discussed in detail, ranging from the realization of the strong coupling regime in various photonic systems to the discoveries of attractive phenomena with interesting physics and extensive applications. Moreover, emerging 2D semiconductors, such as 2D perovskites (2DPK) and 2D antiferromagnetic (AFM) semiconductors, are surveyed for the manipulation of exciton polaritons with distinct control degrees of freedom (DOFs). Finally, the outlook on the 2D exciton polaritons and their nonlinear interactions is presented with our initial numerical simulations. This Perspective not only aims to provide an in-depth overview of the latest fundamental findings in 2D exciton polaritons but also attempts to serve as a valuable resource to prospect explorations of quantum optics and topological photonic applications.
Collapse
Affiliation(s)
- Haifeng Kang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jingwen Ma
- Faculty of Science and Engineering, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Junyu Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiang Zhang
- Faculty of Science and Engineering, The University of Hong Kong, Hong Kong, SAR, P. R. China
- Department of Physics, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xiaoze Liu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
22
|
Prokhorov AV, Gubin MY, Shesterikov AV, Arsenin AV, Volkov VS, Evlyukhin AB. Lasing Effect in Symmetrical van der Waals Heterostructured Metasurfaces Due to Lattice-Induced Multipole Coupling. NANO LETTERS 2023; 23:11105-11111. [PMID: 38029331 PMCID: PMC10880088 DOI: 10.1021/acs.nanolett.3c03522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
New practical ways to reach the lasing effect in symmetrical metasurfaces have been developed and theoretically demonstrated. Our approach is based on excitation of the resonance of an octupole quasi-trapped mode (OQTM) in heterostructured symmetrical metasurfaces composed of monolithic disk-shaped van der Waals meta-atoms featured by thin photoluminescent layers and placed on a substrate. We revealed that the coincidence of the photoluminescence spectrum maximum of these layers with the wavelength of high-quality OQTM resonance leads to the lasing effect. Based on the solution of laser rate equations and direct full-wave simulation, it was shown that lasing is normally oriented to the metasurface plane and occurs from the entire area of metasurface consisting of MoS2/hBN/MoTe2 disks with line width of generated emission of only about 1.4 nm near the wavelength 1140 nm. This opens up new practical possibilities for creating surface emitting laser devices in subwavelength material systems.
Collapse
Affiliation(s)
- Alexei V. Prokhorov
- Emerging
Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
| | - Mikhail Yu. Gubin
- Emerging
Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
| | | | - Aleksey V. Arsenin
- Emerging
Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
| | - Valentyn S. Volkov
- Emerging
Technologies Research Center, XPANCEO, Dubai 00000, United Arab Emirates
| | - Andrey B. Evlyukhin
- Institute
of Quantum Optics, Leibniz Universität
Hannover, Hannover 30167, Germany
| |
Collapse
|
23
|
Sahu TK, Kumar N, Chahal S, Jana R, Paul S, Mukherjee M, Tavabi AH, Datta A, Dunin-Borkowski RE, Valov I, Nayak A, Kumar P. Microwave synthesis of molybdenene from MoS 2. NATURE NANOTECHNOLOGY 2023; 18:1430-1438. [PMID: 37666941 PMCID: PMC10716048 DOI: 10.1038/s41565-023-01484-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/06/2023] [Indexed: 09/06/2023]
Abstract
Dirac materials are characterized by the emergence of massless quasiparticles in their low-energy excitation spectrum that obey the Dirac Hamiltonian. Known examples of Dirac materials are topological insulators, d-wave superconductors, graphene, and Weyl and Dirac semimetals, representing a striking range of fundamental properties with potential disruptive applications. However, none of the Dirac materials identified so far shows metallic character. Here, we present evidence for the formation of free-standing molybdenene, a two-dimensional material composed of only Mo atoms. Using MoS2 as a precursor, we induced electric-field-assisted molybdenene growth under microwave irradiation. We observe the formation of millimetre-long whiskers following screw-dislocation growth, consisting of weakly bonded molybdenene sheets, which, upon exfoliation, show metallic character, with an electrical conductivity of ~940 S m-1. Molybdenene when hybridized with two-dimensional h-BN or MoS2, fetch tunable optical and electronic properties. As a proof of principle, we also demonstrate applications of molybdenene as a surface-enhanced Raman spectroscopy platform for molecular sensing, as a substrate for electron imaging and as a scanning probe microscope cantilever.
Collapse
Affiliation(s)
- Tumesh Kumar Sahu
- Department of Physics, Indian Institute of Technology Patna, Bihar, India
- Department of Physics, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
| | - Nishant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihar, India
| | - Sumit Chahal
- Department of Physics, Indian Institute of Technology Patna, Bihar, India
| | - Rajkumar Jana
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Sumana Paul
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Moumita Mukherjee
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Amir H Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany
| | - Ayan Datta
- School of Chemical Sciences, Indian Association of Cultivation of Science, Kolkata, India
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany
| | - Ilia Valov
- Peter Grünberg Institute (PGI-7), Forschungszentrum Jülich, Jülich, Germany.
- Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Alpana Nayak
- Department of Physics, Indian Institute of Technology Patna, Bihar, India.
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihar, India.
- Global Innovative Centre for Advanced Nanomaterials, The University of Newcastle, Newcastle, New South Wales, Australia.
| |
Collapse
|
24
|
Fang J, Yao K, Wang M, Yu Z, Zhang T, Jiang T, Huang S, Korgel BA, Terrones M, Alù A, Zheng Y. Observation of Room-Temperature Exciton-Polariton Emission from Wide-Ranging 2D Semiconductors Coupled with a Broadband Mie Resonator. NANO LETTERS 2023; 23:9803-9810. [PMID: 37879099 DOI: 10.1021/acs.nanolett.3c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Two-dimensional exciton-polaritons in monolayer transition metal dichalcogenides (TMDs) exhibit practical advantages in valley coherence, optical nonlinearities, and even bosonic condensation owing to their light-emission capability. To achieve robust exciton-polariton emission, strong photon-exciton couplings are required at the TMD monolayer, which is challenging due to its atomic thickness. High-quality (Q) factor optical cavities with narrowband resonances are an effective approach but typically limited to a specific excitonic state of a certain TMD material. Herein, we achieve on-demand exciton-polariton emission from a wide range of TMDs at room temperature by hybridizing excitons with broadband Mie resonances spanning the whole visible spectrum. By confining broadband light at the TMD monolayer, our one type of Mie resonator on different TMDs enables enhanced light-matter interactions with multiple excitonic states simultaneously. We demonstrate multi-Rabi splittings and robust polaritonic photoluminescence in monolayer WSe2, WS2, and MoS2. The hybrid system also shows the potential to approach the ultrastrong coupling regime.
Collapse
Affiliation(s)
- Jie Fang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kan Yao
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mingsong Wang
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Zhuohang Yu
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry, and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tianyi Zhang
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry, and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Taizhi Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Suichu Huang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mauricio Terrones
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry, and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Physics Program, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Tahir Z, Jung JW, Rashid MU, Kim S, Dang DK, Kang JW, Cho CH, Jang JI, Kim YS. Strong exciton-photon coupling in self-hybridized organic-inorganic lead halide perovskite microcavities. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4297-4306. [PMID: 39634720 PMCID: PMC11501772 DOI: 10.1515/nanoph-2023-0366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 12/07/2024]
Abstract
Controlling coherent light-matter interactions in semiconductor microcavities is at the heart of the next-generation solid-state polaritonic devices. Organic-inorganic hybrid perovskites are potential materials for room-temperature polaritonics owing to their high exciton oscillator strengths and large exciton binding energies. Herein, we report on strong exciton-photon coupling in the micro-platelet and micro-ribbon shaped methylammonium lead bromide single crystals. Owing to high crystallinity and large refractive index, the as-grown perovskite microcrystals serve as self-hybridized optical microcavities along different orientations due to their distinct physical dimensionalities. In this regard, the perovskite micro-platelet forms a simple Fabry-Perot microcavity in out-of-plane orientation, while the micro-ribbon functions as a Fabry-Perot type waveguide microcavity within the plane of the perovskite sample. Consequently, excitons in these microcavities strongly interact with their corresponding uncoupled cavity modes, yielding multimode exciton-polaritons with Rabi splitting energies ∼205 and 235 meV for micro-platelet and micro-ribbon geometry, respectively. Furthermore, micro-ribbon geometry displays Young's double-slit-like interference patterns, which together with the numerical simulation readily reveals the parity and the mode order of the uncoupled cavity modes. Thus, our results not only shed light on strong exciton-photon coupling in various morphologies of methylammonium lead bromide microcrystals but also open an avenue for advanced polaritonic devices.
Collapse
Affiliation(s)
- Zeeshan Tahir
- Department of Semiconductor Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan44610, South Korea
| | - Jin-Woo Jung
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu42988, South Korea
| | - Mamoon Ur Rashid
- Department of Semiconductor Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan44610, South Korea
| | - Sungdo Kim
- Department of Semiconductor Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan44610, South Korea
| | - Dinh Khoi Dang
- Department of Semiconductor Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan44610, South Korea
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, Vietnam
| | - Jang-Won Kang
- Department of Semiconductor and Applied Physics, Mokpo National University, Muan58554, South Korea
| | - Chang-Hee Cho
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu42988, South Korea
| | - Joon I. Jang
- Department of Physics, Sogang University, Seoul04017, South Korea
| | - Yong Soo Kim
- Department of Semiconductor Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan44610, South Korea
| |
Collapse
|
26
|
Ruggenthaler M, Sidler D, Rubio A. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chem Rev 2023; 123:11191-11229. [PMID: 37729114 PMCID: PMC10571044 DOI: 10.1021/acs.chemrev.2c00788] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 09/22/2023]
Abstract
In this review, we present the theoretical foundations and first-principles frameworks to describe quantum matter within quantum electrodynamics (QED) in the low-energy regime, with a focus on polaritonic chemistry. By starting from fundamental physical and mathematical principles, we first review in great detail ab initio nonrelativistic QED. The resulting Pauli-Fierz quantum field theory serves as a cornerstone for the development of (in principle exact but in practice) approximate computational methods such as quantum-electrodynamical density functional theory, QED coupled cluster, or cavity Born-Oppenheimer molecular dynamics. These methods treat light and matter on equal footing and, at the same time, have the same level of accuracy and reliability as established methods of computational chemistry and electronic structure theory. After an overview of the key ideas behind those ab initio QED methods, we highlight their benefits for understanding photon-induced changes of chemical properties and reactions. Based on results obtained by ab initio QED methods, we identify open theoretical questions and how a so far missing detailed understanding of polaritonic chemistry can be established. We finally give an outlook on future directions within polaritonic chemistry and first-principles QED.
Collapse
Affiliation(s)
- Michael Ruggenthaler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik Sidler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
| |
Collapse
|
27
|
Kondratyev VI, Permyakov DV, Ivanova TV, Iorsh IV, Krizhanovskii DN, Skolnick MS, Kravtsov V, Samusev AK. Probing and Control of Guided Exciton-Polaritons in a 2D Semiconductor-Integrated Slab Waveguide. NANO LETTERS 2023; 23:7876-7882. [PMID: 37638634 DOI: 10.1021/acs.nanolett.3c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Guided 2D exciton-polaritons, resulting from the strong coupling of excitons in semiconductors with nonradiating waveguide modes, provide an attractive approach toward developing novel on-chip optical devices. These quasiparticles are characterized by long propagation distances and efficient nonlinear interactions but cannot be directly accessed from the free space. Here we demonstrate a powerful approach for probing and manipulating guided polaritons in a Ta2O5 slab integrated with a WS2 monolayer using evanescent coupling through a high-index solid immersion lens. Tuning the nanoscale lens-sample gap allows for extracting all of the intrinsic parameters of the system. We also demonstrate the transition from weak to strong coupling accompanied by the onset of the motional narrowing effect: with the increase of exciton-photon coupling strength, the inhomogeneous contribution to polariton line width, inherited from the exciton resonance, becomes fully lifted. Our results enable the development of integrated optics employing room-temperature exciton-polaritons in 2D semiconductor-based structures.
Collapse
Affiliation(s)
- Valeriy I Kondratyev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Dmitry V Permyakov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Tatyana V Ivanova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Ivan V Iorsh
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | | | - Maurice S Skolnick
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Anton K Samusev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Experimentelle Physik 2, Technische Universität Dortmund, 44227 Dortmund, Germany
| |
Collapse
|
28
|
Zhang M, Tian Y, Chen X, Sun Z, Zhu X, Wu J. Observation of ultra-large Rabi splitting in the plasmon-exciton polaritons at room temperature. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3267-3275. [PMID: 39634146 PMCID: PMC11501516 DOI: 10.1515/nanoph-2023-0162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 12/07/2024]
Abstract
Modifying the light-matter interactions in the plasmonic structures and the two-dimensional (2D) materials not only advances the deeper understanding of the fundamental studies of many-body physics but also provides the opportunities for exploration of novel 2D plasmonic polaritonic devices. Here, we report the plasmon-exciton coupling in the hybrid system with a plasmonic metasurface which can confine the electric field in an extremely compact mode volume. Because of the 2D feature of the designed and fabricated Al plasmonic metasurface, the confined electronic field is distributed in the plane with the same orientation as that of the exciton dipole moment in the transition metal dichalcogenides monolayers. By finely tuning the geometric size of the plasmonic nanostructures, we can significantly modify the dispersion relation of the coupled plasmon and the exciton. Our system shows a strong coupling behavior with an achieved Rabi splitting up to ∼200 meV at room temperature, in ambient conditions. The effective tailoring of the plasmon-exciton coupling with the plasmonic metasurfaces provides the testing platform for studying the quantum electromagnetics at the subwavelength scale as well as exploring plasmonic polariton Bose-Einstein condensation at room temperature.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Yuan Tian
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xingzhou Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Zheng Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China
| | - Xiaolong Zhu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing401121, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai201800, China
| |
Collapse
|
29
|
Liu B, Lynch J, Zhao H, Conran BR, McAleese C, Jariwala D, Forrest SR. Long-Range Propagation of Exciton-Polaritons in Large-Area 2D Semiconductor Monolayers. ACS NANO 2023. [PMID: 37489978 DOI: 10.1021/acsnano.3c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Atomically thin transition metal dichalcogenides (TMDs), a subclass of two-dimensional (2D) layered materials, have numerous fascinating properties that make them a promising platform for photonic and optoelectronic devices. In particular, excited state transport by TMDs is important in energy harvesting and photonic switching; however, long-range transport in TMDs is challenging due to the lack of availability of large area films. Whereas most previous studies have focused on small, exfoliated monolayer flakes, in this work we demonstrate metal-organic chemical vapor deposition grown centimeter-scale monolayers of WS2 that support polariton propagation lengths of up to 60 μm. The polaritons form through the strong coupling of excitons with Bloch surface waves (BSWs) supported by all-dielectric photonic structures. We observe that the propagation length increases with the number of dielectric pairs due to the increased quality factor of the supporting distributed Bragg reflector. Furthermore, a longer propagation length is observed as the guided or BSW content of the polariton is increased. Our results provide a practical approach for the systematic engineering of long-range energy transport mediated by exciton-polaritons in TMD layers. Along with the accessibility of large area TMDs, our work enables applications for practical TMD-based polaritonic devices that operate at room temperature.
Collapse
Affiliation(s)
- Bin Liu
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Haonan Zhao
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ben R Conran
- AIXTRON Ltd, Swavesey, Cambridge CB24 4FQ, United Kingdom
| | | | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stephen R Forrest
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Jin Y, Wu K, Sheng B, Ma W, Chen Z, Li X. Plasmonic Bound States in the Continuum to Tailor Exciton Emission of MoTe 2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1987. [PMID: 37446502 DOI: 10.3390/nano13131987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Plasmon resonances can greatly enhance light-matter interactions of two-dimensional van der Waals materials. However, the quality factor of plasmonic resonances is limited. Here, we demonstrate a plasmonic quasi-bound state in the continuum (quasi-BIC), which is composed of gold nanorod pairs. Through controlling the rotation angle of the nanorods, the quality factor of the plasmonic BIC mode can be tuned. Simulation results show that the plasmonic BIC combines the advantages of high-quality factor from the BIC effect and small mode volume from plasmonic resonance. Experiment results show that the designed plasmonic BIC mode exhibits a quality factor higher than 15 at the wavelength of around 1250 nm. Through integrating the plasmonic bound state structure with monolayer molybdenum ditelluride (MoTe2), the exciton emission of MoTe2 in the PL spectrum split into two exciton-polariton modes, which is attributed to the high Q factor and strong interaction between the BIC mode and excitons of MoTe2.
Collapse
Affiliation(s)
- Yuxuan Jin
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Kai Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Bining Sheng
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Wentao Ma
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Zefeng Chen
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Xiaofeng Li
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| |
Collapse
|
31
|
Lu H, Li D, Shi S, Li Y, Zhao J. Exciton-induced Fano resonance in metallic nanocavity with tungsten disulfide atomic layer. OPTICS EXPRESS 2023; 31:20761-20768. [PMID: 37381192 DOI: 10.1364/oe.494083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/27/2023] [Indexed: 06/30/2023]
Abstract
Photon-exciton coupling behaviors in optical nanocavities attract broad attention due to their crucial applications in light manipulation and emission. Herein, we experimentally observed a Fano-like resonance with asymmetrical spectral response in an ultrathin metal-dielectric-metal (MDM) cavity integrated with an atomic-layer tungsten disulfide (WS2). The resonance wavelength of an MDM nanocavity can be flexibly controlled by adjusting dielectric layer thickness. The results measured by the home-made microscopic spectrometer agree well with the numerical simulations. A temporal coupled-mode theoretical model was established to analyze the formation mechanism of Fano resonance in the ultrathin cavity. The theoretical analysis reveals that the Fano resonance is attributed to a weak coupling between the resonance photons in the nanocavity and excitons in the WS2 atomic layer. The results will pave a new way for exciton-induced generation of Fano resonance and light spectral manipulation at the nanoscale.
Collapse
|
32
|
Bhatt P, Dutta J, Kaur K, George J. Long-Range Energy Transfer in Strongly Coupled Donor-Acceptor Phototransistors. NANO LETTERS 2023. [PMID: 37235844 DOI: 10.1021/acs.nanolett.3c00867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Strong light-matter coupling offers a way to tailor the optoelectronic properties of materials. Energy transfer between strongly coupled donor-acceptor pairs shows remarkable efficiency beyond the Förster distance via coupling through a confined photon. This long-range energy transfer is facilitated through the collective nature of polaritonic states. Here, the cooperative, strong coupling of a donor (MoS2 monolayer) and an acceptor (BRK) generates mixed polaritonic states. The photocurrent spectrum of the MoS2 monolayer is measured in a field effect transistor while coupling the two oscillators to the confined cavity mode. The strongly coupled system shows efficient energy transfer, which is observed through the photoresponsivity even the donor and acceptor are physically separated by 500 Å. These studies are further correlated with the Hopfield coefficients and the overlap integral of the lower polaritonic and uncoupled/dark states. Cavity detuning and distance-dependent studies support the above evidence. These observations open new avenues for using long-range interaction of polaritonic states in optoelectronic devices.
Collapse
Affiliation(s)
- Pooja Bhatt
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| | - Jhuma Dutta
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| | - Kuljeet Kaur
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| | - Jino George
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| |
Collapse
|
33
|
Li S, Ai R, Chui KK, Fang Y, Lai Y, Zhuo X, Shao L, Wang J, Lin HQ. Routing the Exciton Emissions of WS 2 Monolayer with the High-Order Plasmon Modes of Ag Nanorods. NANO LETTERS 2023; 23:4183-4190. [PMID: 37158482 PMCID: PMC10214448 DOI: 10.1021/acs.nanolett.3c00054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Locally routing the exciton emissions in two-dimensional (2D) transition-metal dichalcogenides along different directions at the nanophotonic interface is of great interest in exploiting the promising 2D excitonic systems for functional nano-optical components. However, such control has remained elusive. Herein we report on a facile plasmonic approach for electrically controlled spatial modulation of the exciton emissions in a WS2 monolayer. The emission routing is enabled by the resonance coupling between the WS2 excitons and the multipole plasmon modes in individual silver nanorods placed on a WS2 monolayer. Different from prior demonstrations, the routing effect can be modulated by the doping level of the WS2 monolayer, enabling electrical control. Our work takes advantage of the high-quality plasmon modes supported by simple rod-shaped metal nanocrystals for the angularly resolved manipulation of 2D exciton emissions. Active control is achieved, which offers great opportunities for the development of nanoscale light sources and nanophotonic devices.
Collapse
Affiliation(s)
- Shasha Li
- Beijing
Computational Science Research Center, Beijing 100193, People’s Republic of China
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Ruoqi Ai
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Ka Kit Chui
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Yini Fang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Yunhe Lai
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Xiaolu Zhuo
- School
of Science and Engineering, The Chinese
University of Hong Kong (Shenzhen), Shenzhen 518172, People’s Republic of China
| | - Lei Shao
- State
Key Laboratory of Optoelectronic Materials and Technologies, Guangdong
Province Key Laboratory of Display Material and Technology, School
of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People’s
Republic of China
| | - Jianfang Wang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR 999077, People’s Republic of China
| | - Hai-Qing Lin
- Beijing
Computational Science Research Center, Beijing 100193, People’s Republic of China
| |
Collapse
|
34
|
Jo K, Marino E, Lynch J, Jiang Z, Gogotsi N, Darlington TP, Soroush M, Schuck PJ, Borys NJ, Murray CB, Jariwala D. Direct nano-imaging of light-matter interactions in nanoscale excitonic emitters. Nat Commun 2023; 14:2649. [PMID: 37156799 PMCID: PMC10167231 DOI: 10.1038/s41467-023-38189-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Strong light-matter interactions in localized nano-emitters placed near metallic mirrors have been widely reported via spectroscopic studies in the optical far-field. Here, we report a near-field nano-spectroscopic study of localized nanoscale emitters on a flat Au substrate. Using quasi 2-dimensional CdSe/CdxZn1-xS nanoplatelets, we observe directional propagation on the Au substrate of surface plasmon polaritons launched from the excitons of the nanoplatelets as wave-like fringe patterns in the near-field photoluminescence maps. These fringe patterns were confirmed via extensive electromagnetic wave simulations to be standing-waves formed between the tip and the edge-up assembled nano-emitters on the substrate plane. We further report that both light confinement and in-plane emission can be engineered by tuning the surrounding dielectric environment of the nanoplatelets. Our results lead to renewed understanding of in-plane, near-field electromagnetic signal transduction from the localized nano-emitters with profound implications in nano and quantum photonics as well as resonant optoelectronics.
Collapse
Affiliation(s)
- Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123, Palermo, Italy
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhiqiao Jiang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalie Gogotsi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas P Darlington
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mohammad Soroush
- Departement of Physics, Montana State University, Bozeman, MT, 59717, USA
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicholas J Borys
- Departement of Physics, Montana State University, Bozeman, MT, 59717, USA
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Guo X, Lyu W, Chen T, Luo Y, Wu C, Yang B, Sun Z, García de Abajo FJ, Yang X, Dai Q. Polaritons in Van der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2201856. [PMID: 36121344 DOI: 10.1002/adma.202201856] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/15/2022] [Indexed: 05/17/2023]
Abstract
2D monolayers supporting a wide variety of highly confined plasmons, phonon polaritons, and exciton polaritons can be vertically stacked in van der Waals heterostructures (vdWHs) with controlled constituent layers, stacking sequence, and even twist angles. vdWHs combine advantages of 2D material polaritons, rich optical structure design, and atomic scale integration, which have greatly extended the performance and functions of polaritons, such as wide frequency range, long lifetime, ultrafast all-optical modulation, and photonic crystals for nanoscale light. Here, the state of the art of 2D material polaritons in vdWHs from the perspective of design principles and potential applications is reviewed. Some fundamental properties of polaritons in vdWHs are initially discussed, followed by recent discoveries of plasmons, phonon polaritons, exciton polaritons, and their hybrid modes in vdWHs. The review concludes with a perspective discussion on potential applications of these polaritons such as nanophotonic integrated circuits, which will benefit from the intersection between nanophotonics and materials science.
Collapse
Affiliation(s)
- Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Lyu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tinghan Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Yang Luo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Chenchen Wu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bei Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
36
|
Rong R, Liu Y, Nie X, Zhang W, Zhang Z, Liu Y, Guo W. The Interaction of 2D Materials With Circularly Polarized Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206191. [PMID: 36698292 PMCID: PMC10074140 DOI: 10.1002/advs.202206191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
2D materials (2DMs), due to spin-valley locking degree of freedom, exhibit strongly bound exciton and chiral optical selection rules and become promising material candidates for optoelectronic and spin/valleytronic devices. Over the last decade, the manifesting of 2D materials by circularly polarized lights expedites tremendous fascinating phenomena, such as valley/exciton Hall effect, Moiré exciton, optical Stark effect, circular dichroism, circularly polarized photoluminescence, and spintronic property. In this review, recent advance in the interaction of circularly polarized light with 2D materials covering from graphene, black phosphorous, transition metal dichalcogenides, van der Waals heterostructures as well as small proportion of quasi-2D perovskites and topological materials, is overviewed. The confronted challenges and theoretical and experimental opportunities are also discussed, attempting to accelerate the prosperity of chiral light-2DMs interactions.
Collapse
Affiliation(s)
- Rong Rong
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Ying Liu
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Xuchen Nie
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Wei Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Yanpeng Liu
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationState Key Laboratory of Mechanics and Control of Mechanical Structuresand Institute for Frontier ScienceNanjing University of Aeronautics and AstronauticsNanjing210016China
| |
Collapse
|
37
|
Phonon-driven intra-exciton Rabi oscillations in CsPbBr 3 halide perovskites. Nat Commun 2023; 14:1047. [PMID: 36828818 PMCID: PMC9958027 DOI: 10.1038/s41467-023-36654-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Coupling electromagnetic radiation with matter, e.g., by resonant light fields in external optical cavities, is highly promising for tailoring the optoelectronic properties of functional materials on the nanoscale. Here, we demonstrate that even internal fields induced by coherent lattice motions can be used to control the transient excitonic optical response in CsPbBr3 halide perovskite crystals. Upon resonant photoexcitation, two-dimensional electronic spectroscopy reveals an excitonic peak structure oscillating persistently with a 100-fs period for up to ~2 ps which does not match the frequency of any phonon modes of the crystals. Only at later times, beyond 2 ps, two low-frequency phonons of the lead-bromide lattice dominate the dynamics. We rationalize these findings by an unusual exciton-phonon coupling inducing off-resonant 100-fs Rabi oscillations between 1s and 2p excitons driven by the low-frequency phonons. As such, prevailing models for the electron-phonon coupling in halide perovskites are insufficient to explain these results. We propose the coupling of characteristic low-frequency phonon fields to intra-excitonic transitions in halide perovskites as the key to control the anharmonic response of these materials in order to establish new routes for enhancing their optoelectronic properties.
Collapse
|
38
|
Patra A, Caligiuri V, Zappone B, Krahne R, De Luca A. In-Plane and Out-of-Plane Investigation of Resonant Tunneling Polaritons in Metal-Dielectric-Metal Cavities. NANO LETTERS 2023; 23:1489-1495. [PMID: 36745481 PMCID: PMC9951238 DOI: 10.1021/acs.nanolett.2c04864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Polaritons can be generated by tuning the optical transitions of a light emitter to the resonances of a photonic cavity. We show that a dye-doped cavity generates resonant tunneling polaritons with Epsilon-Near-Zero (ENZ) effective permittivity. We studied the polariton spectral dispersion in dye-doped metal-dielectric-metal (MDM) cavities as a function of the in-plane (k||) and out-of-plane (k⊥) components of the incident wavevector. The dependence on k|| was investigated through ellipsometry, revealing the ENZ modes. The k⊥ dependence was measured by varying the cavity thickness under normal incidence using a Surface Force Apparatus (SFA). Both methods revealed a large Rabi splitting well exceeding 100 meV. The SFA-based investigation highlighted the collective nature of strong coupling by producing a splitting proportional to the square root of the involved photons. This study demonstrates the possibility of generating ENZ polaritons and introduces the SFA as a powerful tool for the characterization of strong light-matter interactions.
Collapse
Affiliation(s)
- Aniket Patra
- Dipartimento
di Fisica, Università della Calabria, via P. Bucci 33b, 87036 Rende CS, Italy
- Optoelectronics
Research Line, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Vincenzo Caligiuri
- Dipartimento
di Fisica, Università della Calabria, via P. Bucci 33b, 87036 Rende CS, Italy
- Consiglio
Nazionale delle Ricerche−Istituto di Nanotecnologia (CNR-Nanotec), via P. Bucci 33c, 87036 Rende, Italy
| | - Bruno Zappone
- Consiglio
Nazionale delle Ricerche−Istituto di Nanotecnologia (CNR-Nanotec), via P. Bucci 33c, 87036 Rende, Italy
| | - Roman Krahne
- Optoelectronics
Research Line, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Antonio De Luca
- Dipartimento
di Fisica, Università della Calabria, via P. Bucci 33b, 87036 Rende CS, Italy
- Consiglio
Nazionale delle Ricerche−Istituto di Nanotecnologia (CNR-Nanotec), via P. Bucci 33c, 87036 Rende, Italy
| |
Collapse
|
39
|
Zhao LY, Wang H, Liu TY, Li FF, Zhou Q, Wang HY. Tailoring photoluminescence of WS 2-microcavity coupling devices in broad visible range. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:753-760. [PMID: 39679339 PMCID: PMC11636489 DOI: 10.1515/nanoph-2022-0705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 12/17/2024]
Abstract
Most of the previous TMDC-photon coupling devices were mainly based on A exciton due to its high oscillator strength and large exciton binding energy. Less effort has been focused on the modulation of the emission of B exciton and Rydberg states in TMDCs, especially in monolayer WS2. Here, we demonstrate that the photoluminescence (PL) emission of WS2-microcavity coupling devices can be tailored in a broad visible wavelength range (490 nm-720 nm). In contrast to the intrinsic PL emission of monolayer WS2, 25-fold enhanced B exciton emission and significant PL emission from the 2s Rydberg state can be observed. From the transient absorption (TA) measurements, the strongly coupled hybrid states based on B exciton can be remarkably fingerprinted. Furthermore, the strongly enhanced PL emission from the coupled B exciton has been demonstrated due to the strongly increased lower polariton (LP) state population and the internal conversion pathway being blocked in the strong coupling regime. Besides, the remarkable PL emission from the 2s Rydberg state is also revealed and confirmed by the additional ground state bleaching signal in TA spectra. These physical mechanisms about tailoring the PL emission in low dimensional TMDCs can provide significant references for constructing highly efficient optoelectronic devices.
Collapse
Affiliation(s)
- Le-Yi Zhao
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Hai Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| | - Tian-Yu Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| | - Fang-Fei Li
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Qiang Zhou
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Hai-Yu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| |
Collapse
|
40
|
Nie X, Wu X, Wang Y, Ban S, Lei Z, Yi J, Liu Y, Liu Y. Surface acoustic wave induced phenomena in two-dimensional materials. NANOSCALE HORIZONS 2023; 8:158-175. [PMID: 36448884 DOI: 10.1039/d2nh00458e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface acoustic wave (SAW)-matter interaction provides a fascinating key for inducing and manipulating novel phenomena and functionalities in two-dimensional (2D) materials. The dynamic strain field and piezo-electric field associated with propagating SAWs determine the coherent manipulation and transduction between 2D excitons and phonons. Over the past decade, many intriguing acoustic-induced effects, including the acousto-electric effect, acousto-galvanic effect, acoustic Stark effect, acoustic Hall effect and acoustic exciton transport, have been reported experimentally. However, many more phenomena, such as the valley acousto-electric effect, valley acousto-electric Hall effect and acoustic spin Hall effect, were only theoretically proposed, the experimental verification of which are yet to be achieved. In this minireview, we attempt to overview the recent breakthrough of SAW-induced phenomena covering acoustic charge transport, acoustic exciton transport and modulation, and coherent acoustic phonons. Perspectives on the opportunities of the proposed SAW-induced phenomena, as well as open experimental challenges, are also discussed, attempting to offer some guidelines for experimentalists and theorists to explore the desired exotic properties and boost practical applications of 2D materials.
Collapse
Affiliation(s)
- Xuchen Nie
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Xiaoyue Wu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Yang Wang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Siyuan Ban
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Ying Liu
- College of Jincheng, Nanjing University of Aeronautics and Astronautics, Nanjing 211156, China.
| | - Yanpeng Liu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
41
|
Vadia S, Scherzer J, Watanabe K, Taniguchi T, Högele A. Magneto-Optical Chirality in a Coherently Coupled Exciton-Plasmon System. NANO LETTERS 2023; 23:614-618. [PMID: 36617344 PMCID: PMC9881169 DOI: 10.1021/acs.nanolett.2c04246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Chirality is a fundamental asymmetry phenomenon, with chiral optical elements exhibiting asymmetric response in reflection or absorption of circularly polarized light. Recent realizations of such elements include nanoplasmonic systems with broken-mirror symmetry and polarization-contrasting optical absorption known as circular dichroism. An alternative route to circular dichroism is provided by spin-valley polarized excitons in atomically thin semiconductors. In the presence of magnetic fields, they exhibit an imbalanced coupling to circularly polarized photons and thus circular dichroism. Here, we demonstrate that polarization-contrasting optical transitions associated with excitons in monolayer WSe2 can be transferred to proximal plasmonic nanodisks by coherent coupling. The coupled exciton-plasmon system exhibits magneto-induced circular dichroism in a spectrally narrow window of Fano interference, which we model in a master equation framework. Our work motivates the use of exciton-plasmon interfaces as building blocks of chiral metasurfaces for applications in information processing, nonlinear optics, and sensing.
Collapse
Affiliation(s)
- Samarth Vadia
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz
1, 80539 München, Germany
- Munich
Center for Quantum Science and Technology (MCQST), Schellingtr. 4, 80799 München, Germany
- attocube
systems AG, Eglfinger
Weg 2, 85540 Haar, Germany
| | - Johannes Scherzer
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz
1, 80539 München, Germany
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexander Högele
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz
1, 80539 München, Germany
- Munich
Center for Quantum Science and Technology (MCQST), Schellingtr. 4, 80799 München, Germany
| |
Collapse
|
42
|
Cilibrizzi P, Liu X, Zhang P, Wang C, Li Q, Yang S, Zhang X. Self-Induced Valley Bosonic Stimulation of Exciton Polaritons in a Monolayer Semiconductor. PHYSICAL REVIEW LETTERS 2023; 130:036902. [PMID: 36763375 DOI: 10.1103/physrevlett.130.036902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
The newly discovered valley degree of freedom in atomically thin two-dimensional transition metal dichalcogenides offers a promising platform to explore rich nonlinear physics, such as spinor Bose-Einstein condensate and novel valleytronics applications. However, the critical nonlinear effect, such as valley polariton bosonic stimulation, has long remained an unresolved challenge due to the generation of limited polariton ground state densities necessary to induce the stimulated scattering of polaritons in specific valleys. Here, we report the self-induced valley bosonic stimulation of exciton polaritons via spin-valley locking in a WS_{2} monolayer microcavity. This is achieved by the resonant injection of valley polaritons at specific energy and wave vector, which allows spin-polarized polaritons to efficiently populate their ground state and induce a valley-dependent bosonic stimulation. As a result, we observe the nonlinear self-amplification of polariton emission from the valley-dependent ground state. Our finding paves the way for the investigation of spin ordering and phase transitions in transition metal dichalcogenides polariton Bose-Einstein condensate, offering a promising route for the realization of polariton spin lattices in moiré polariton systems and spin lasers.
Collapse
Affiliation(s)
- Pasquale Cilibrizzi
- NSF Nanoscale Science and Engineering Center, University of California, Berkeley, California 94720, USA
| | - Xiaoze Liu
- NSF Nanoscale Science and Engineering Center, University of California, Berkeley, California 94720, USA
| | - Peiyao Zhang
- NSF Nanoscale Science and Engineering Center, University of California, Berkeley, California 94720, USA
| | - Chenzhe Wang
- NSF Nanoscale Science and Engineering Center, University of California, Berkeley, California 94720, USA
| | - Quanwei Li
- NSF Nanoscale Science and Engineering Center, University of California, Berkeley, California 94720, USA
| | - Sui Yang
- NSF Nanoscale Science and Engineering Center, University of California, Berkeley, California 94720, USA
| | - Xiang Zhang
- NSF Nanoscale Science and Engineering Center, University of California, Berkeley, California 94720, USA
| |
Collapse
|
43
|
Wurdack M, Estrecho E, Todd S, Schneider C, Truscott AG, Ostrovskaya EA. Enhancing Ground-State Population and Macroscopic Coherence of Room-Temperature WS_{2} Polaritons through Engineered Confinement. PHYSICAL REVIEW LETTERS 2022; 129:147402. [PMID: 36240404 DOI: 10.1103/physrevlett.129.147402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Exciton polaritons (polaritons herein) in transition-metal dichalcogenide monolayers have attracted significant attention due to their potential for polariton-based optoelectronics. Many of the proposed applications rely on the ability to trap polaritons and to reach macroscopic occupation of their ground energy state. Here, we engineer a trap for room-temperature polaritons in an all-dielectric optical microcavity by locally increasing the interactions between the WS_{2} excitons and cavity photons. The resulting confinement enhances the population and the first-order coherence of the polaritons in the ground state, with the latter effect related to dramatic suppression of disorder-induced inhomogeneous dephasing. We also demonstrate efficient population transfer into the trap when optically injecting free polaritons outside of its periphery.
Collapse
Affiliation(s)
- M Wurdack
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Department of Quantum Science and Technology, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - E Estrecho
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Department of Quantum Science and Technology, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - S Todd
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Department of Quantum Science and Technology, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - C Schneider
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26126 Oldenburg, Germany
| | - A G Truscott
- Department of Quantum Science and Technology, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - E A Ostrovskaya
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Department of Quantum Science and Technology, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
44
|
Choi MS, Ali N, Ngo TD, Choi H, Oh B, Yang H, Yoo WJ. Recent Progress in 1D Contacts for 2D-Material-Based Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202408. [PMID: 35594170 DOI: 10.1002/adma.202202408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have intensively examined 2D materials (2DMs) as promising materials for use in future quantum devices due to their atomic thinness. However, a major limitation occurs when 2DMs are in contact with metals: a van der Waals (vdW) gap is generated at the 2DM-metal interfaces, which induces metal-induced gap states that are responsible for an uncontrollable Schottky barrier (SB), Fermi-level pinning (FLP), and high contact resistance (RC ), thereby substantially lowering the electronic mobility of 2DM-based devices. Here, vdW-gap-free 1D edge contact is reviewed for use in 2D devices with substantially suppressed carrier scattering of 2DMs with hexagonal boron nitride (hBN) encapsulation. The 1D contact further enables uniform carrier transport across multilayered 2DM channels, high-density transistor integration independent of scaling, and the fabrication of double-gate transistors suitable for demonstrating unique quantum phenomena of 2DMs. The existing 1D contact methods are reviewed first. As a promising technology toward the large-scale production of 2D devices, seamless lateral contacts are reviewed in detail. The electronic, optoelectronic, and quantum devices developed via 1D contacts are subsequently discussed. Finally, the challenges regarding the reliability of 1D contacts are addressed, followed by an outlook of 1D contact methods.
Collapse
Affiliation(s)
- Min Sup Choi
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Nasir Ali
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Tien Dat Ngo
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hyungyu Choi
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Byungdu Oh
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Won Jong Yoo
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
45
|
Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED. Nat Commun 2022; 13:4884. [PMID: 35985999 PMCID: PMC9391484 DOI: 10.1038/s41467-022-32292-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
Devices based on two-dimensional (2D) semiconductors hold promise for the realization of compact and versatile on-chip interconnects between electrical and optical signals. Although light emitting diodes (LEDs) are fundamental building blocks for integrated photonics, the fabrication of light sources made of bulk materials on complementary metal-oxide-semiconductor (CMOS) circuits is challenging. While LEDs based on van der Waals heterostructures have been realized, the control of the emission properties necessary for information processing remains limited. Here, we show room-temperature electrical control of the location, directionality and polarization of light emitted from a 2D LED operating at MHz frequencies. We integrate the LED in a planar cavity to couple the polariton emission angle and polarization to the in-plane exciton momentum, controlled by a lateral voltage. These findings demonstrate the potential of TMDCs as fast, compact and tunable light sources, promising for the realization of electrically driven polariton lasers. 2D semiconductors offer a promising platform for the realization of compact and CMOS-compatible optoelectronic components. Here, the authors report the realization of light-emitting diodes based on 2D WSe2 integrated with a planar cavity, showing the electrical control of the emission angle and polarization at room temperature.
Collapse
|
46
|
Rahaman M, Zahn DRT. Plasmon-enhanced Raman spectroscopy of two-dimensional semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:333001. [PMID: 35671747 DOI: 10.1088/1361-648x/ac7689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) semiconductors have grown fast into an extraordinary research field due to their unique physical properties compared to other semiconducting materials. The class of materials proved extremely fertile for both fundamental studies and a wide range of applications from electronics/spintronics/optoelectronics to photocatalysis and CO2reduction. 2D materials are highly confined in the out-of-plane direction and often possess very good environmental stability. Therefore, they have also become a popular material system for the manipulation of optoelectronic properties via numerous external parameters. Being a versatile characterization technique, Raman spectroscopy is used extensively to study and characterize various physical properties of 2D materials. However, weak signals and low spatial resolution hinder its application in more advanced systems where decoding local information plays an important role in advancing our understanding of these materials for nanotechnology applications. In this regard, plasmon-enhanced Raman spectroscopy has been introduced in recent time to investigate local heterogeneous information of 2D semiconductors. In this review, we summarize the recent progress of plasmon-enhanced Raman spectroscopy of 2D semiconductors. We discuss the current state-of-art and provide future perspectives on this specific branch of Raman spectroscopy applied to 2D semiconductors.
Collapse
Affiliation(s)
- Mahfujur Rahaman
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, 19104 Pennsilvania, United States of America
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), 09126 Chemnitz, Germany
| |
Collapse
|
47
|
Guimbao J, Sanchis L, Weituschat L, Manuel Llorens J, Song M, Cardenas J, Aitor Postigo P. Numerical Optimization of a Nanophotonic Cavity by Machine Learning for Near-Unity Photon Indistinguishability at Room Temperature. ACS PHOTONICS 2022; 9:1926-1935. [PMID: 35726240 PMCID: PMC9205277 DOI: 10.1021/acsphotonics.1c01651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 05/25/2023]
Abstract
Room-temperature (RT), on-chip deterministic generation of indistinguishable photons coupled to photonic integrated circuits is key for quantum photonic applications. Nevertheless, high indistinguishability (I) at RT is difficult to obtain due to the intrinsic dephasing of most deterministic single-photon sources (SPS). Here, we present a numerical demonstration of the design and optimization of a hybrid slot-Bragg nanophotonic cavity that achieves a theoretical near-unity I and a high coupling efficiency (β) at RT for a variety of single-photon emitters. Our numerical simulations predict modal volumes in the order of 10-3(λ/2n)3, allowing for strong coupling of quantum photonic emitters that can be heterogeneously integrated. We show that high I and β should be possible by fine-tuning the quality factor (Q) depending on the intrinsic properties of the single-photon emitter. Furthermore, we perform a machine learning optimization based on the combination of a deep neural network and a genetic algorithm (GA) to further decrease the modal volume by almost 3 times while relaxing the tight dimensions of the slot width required for strong coupling. The optimized device has a slot width of 20 nm. The design requires fabrication resolution in the limit of the current state-of-the-art technology. Also, the condition for high I and β requires a positioning accuracy of the quantum emitter at the nanometer level. Although the proposal is not a scalable technology, it can be suitable for experimental demonstration of single-photon operation.
Collapse
Affiliation(s)
- J. Guimbao
- Instituto
de Micro y Nanotecnología, IMN-CNM,
CSIC (CEI UAM+CSIC), Tres Cantos, Madrid E-28760, Spain
| | - L. Sanchis
- Instituto
de Micro y Nanotecnología, IMN-CNM,
CSIC (CEI UAM+CSIC), Tres Cantos, Madrid E-28760, Spain
| | - L. Weituschat
- Instituto
de Micro y Nanotecnología, IMN-CNM,
CSIC (CEI UAM+CSIC), Tres Cantos, Madrid E-28760, Spain
| | - J. Manuel Llorens
- Instituto
de Micro y Nanotecnología, IMN-CNM,
CSIC (CEI UAM+CSIC), Tres Cantos, Madrid E-28760, Spain
| | - M. Song
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - J. Cardenas
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - P. Aitor Postigo
- Instituto
de Micro y Nanotecnología, IMN-CNM,
CSIC (CEI UAM+CSIC), Tres Cantos, Madrid E-28760, Spain
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
48
|
Qian C, Villafañe V, Soubelet P, Hötger A, Taniguchi T, Watanabe K, Wilson NP, Stier AV, Holleitner AW, Finley JJ. Nonlocal Exciton-Photon Interactions in Hybrid High-Q Beam Nanocavities with Encapsulated MoS_{2} Monolayers. PHYSICAL REVIEW LETTERS 2022; 128:237403. [PMID: 35749182 DOI: 10.1103/physrevlett.128.237403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/11/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Atomically thin semiconductors can be readily integrated into a wide range of nanophotonic architectures for applications in quantum photonics and novel optoelectronic devices. We report the observation of nonlocal interactions of "free" trions in pristine hBN/MoS_{2}/hBN heterostructures coupled to single mode (Q>10^{4}) quasi 0D nanocavities. The high excitonic and photonic quality of the interaction system stems from our integrated nanofabrication approach simultaneously with the hBN encapsulation and the maximized local cavity field amplitude within the MoS_{2} monolayer. We observe a nonmonotonic temperature dependence of the cavity-trion interaction strength, consistent with the nonlocal light-matter interactions in which the extent of the center-of-mass (c.m.) wave function is comparable to the cavity mode volume in space. Our approach can be generalized to other optically active 2D materials, opening the way toward harnessing novel light-matter interaction regimes for applications in quantum photonics.
Collapse
Affiliation(s)
- Chenjiang Qian
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Viviana Villafañe
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Pedro Soubelet
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Alexander Hötger
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Nathan P Wilson
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Andreas V Stier
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Alexander W Holleitner
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Jonathan J Finley
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| |
Collapse
|
49
|
Fitzgerald JM, Thompson JJP, Malic E. Twist Angle Tuning of Moiré Exciton Polaritons in van der Waals Heterostructures. NANO LETTERS 2022; 22:4468-4474. [PMID: 35594200 PMCID: PMC9185750 DOI: 10.1021/acs.nanolett.2c01175] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/16/2022] [Indexed: 06/01/2023]
Abstract
Twisted atomically thin semiconductors are characterized by moiré excitons. Their optical signatures and selection rules are well understood. However, their hybridization with photons in the strong coupling regime for heterostructures integrated in an optical cavity has not been the focus of research yet. Here, we combine an excitonic density matrix formalism with a Hopfield approach to provide microscopic insights into moiré exciton polaritons. In particular, we show that exciton-light coupling, polariton energy, and even the number of polariton branches can be controlled via the twist angle. We find that these new hybrid light-exciton states become delocalized relative to the constituent excitons due to the mixing with light and higher-energy excitons. The system can be interpreted as a natural quantum metamaterial with a periodicity that can be engineered via the twist angle. Our study presents a significant advance in microscopic understanding and control of moiré exciton polaritons in twisted atomically thin semiconductors.
Collapse
Affiliation(s)
- Jamie M. Fitzgerald
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | | | - Ermin Malic
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Department
of Physics, Philipps University, 35037 Marburg, Germany
| |
Collapse
|
50
|
Menabde SG, Heiden JT, Cox JD, Mortensen NA, Jang MS. Image polaritons in van der Waals crystals. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2433-2452. [PMID: 39635681 PMCID: PMC11501350 DOI: 10.1515/nanoph-2021-0693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 12/07/2024]
Abstract
Polaritonic modes in low-dimensional materials enable strong light-matter interactions and the manipulation of light on nanometer length scales. Very recently, a new class of polaritons has attracted considerable interest in nanophotonics: image polaritons in van der Waals crystals, manifesting when a polaritonic material is in close proximity to a highly conductive metal, so that the polaritonic mode couples with its mirror image. Image modes constitute an appealing nanophotonic platform, providing an unparalleled degree of optical field compression into nanometric volumes while exhibiting lower normalized propagation loss compared to conventional polariton modes in van der Waals crystals on nonmetallic substrates. Moreover, the ultra-compressed image modes provide access to the nonlocal regime of light-matter interaction. In this review, we systematically overview the young, yet rapidly growing, field of image polaritons. More specifically, we discuss the dispersion properties of image modes, showcase the diversity of the available polaritons in various van der Waals materials, and highlight experimental breakthroughs owing to the unique properties of image polaritons.
Collapse
Affiliation(s)
- Sergey G. Menabde
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Jacob T. Heiden
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| | - Joel D. Cox
- Center for Nano Optics, University of Southern Denmark, DK-5230Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, DK-5230Odense, Denmark
| | - N. Asger Mortensen
- Center for Nano Optics, University of Southern Denmark, DK-5230Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, DK-5230Odense, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, DK-2800Kongens Lyngby, Denmark
| | - Min Seok Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon34141, Korea
| |
Collapse
|