1
|
Sol D, Prego A, Olivé L, Genovart M, Oro D, Hernández-Matías A. Adaptations to marine environments and the evolution of slow-paced life histories in endotherms. Nat Commun 2025; 16:4265. [PMID: 40335483 PMCID: PMC12059040 DOI: 10.1038/s41467-025-59273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
All organisms face a certain risk of dying before reproducing, putting strong pressure on individuals to reproduce as early as possible. Despite this, some organisms delay maturity, defer reproduction, and age slowly. The evolution of such slow-paced life is classically attributed to allometric effects and reduced extrinsic mortality, but might also result from the invasion of challenging environments requiring adaptations that boost adult survival yet impose substantial energetic and developmental costs. Here, we reveal that the invasion of marine environments by endotherms may have triggered adaptive shifts towards slow life histories, particularly in pelagic lineages. Such life history convergences may have been facilitated by the slow-paced nature of their non-marine ancestors, and were associated with adaptations for enhanced energy acquisition and storage, enabling a long reproductive lifespan at the expense of extended development. Ancestral traits and lifestyle changes might thus have been important in shaping the evolution of slow life histories.
Collapse
Affiliation(s)
- Daniel Sol
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Catalonia, Spain.
- Centre for Ecological Research and Applied Forestries; Cerdanyola del Vallès, Catalonia, Spain.
| | - Antón Prego
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, Barcelona, Catalonia, Spain
| | - Laura Olivé
- Centre for Ecological Research and Applied Forestries; Cerdanyola del Vallès, Catalonia, Spain
| | | | - Daniel Oro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC); Blanes, Girona, Spain
| | - Antonio Hernández-Matías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Gutiérrez-Ibáñez C, Němec P, Paré M, Wylie DR, Lefebvre L. How do big brains evolve? Trends Ecol Evol 2025:S0169-5347(25)00063-1. [PMID: 40251059 DOI: 10.1016/j.tree.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
In both birds and mammals, variation in brain size predominantly reflects variation in mass or volume of the pallium (neocortex) and, to a lesser extent, of the cerebellum, suggesting convergent coevolution of brains and cognition. When brain measures are based on neuron counts, however, a surprisingly different picture emerges: The number of neurons in the cerebellum surpasses those in the pallium of all mammals (including humans and other primates) and in many but not all birds studied to date. In particular, parrots and corvids, clades known for cognitive abilities that match those of primates, have brains that contain more pallial than cerebellar neurons. Birds and mammals may thus have followed different evolutionary routes of pallial-cerebellar coordination behind enhanced cognitive complexity.
Collapse
Affiliation(s)
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Paré
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Louis Lefebvre
- Department of Biology, McGill University, Montréal, QC, Canada; CREAF, Autonomous University of Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Jin L, Jiang Y, Han L, Luan X, Liu X, Liao W. Big-brained alien birds tend to occur climatic niche shifts through enhanced behavioral innovation. Integr Zool 2025; 20:407-418. [PMID: 38872346 DOI: 10.1111/1749-4877.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Identifying climatic niche shift and its influencing factors is of great significance in predicting the risk of alien species invasions accurately. Previous studies have attempted to identify the factors related to the niche shift of alien species in their invaded ranges, including changes in introduction history, selection of exact climate predictors, and anthropogenic factors. However, the effect of species-level traits on niche shift remains largely unexplored, especially those reflecting the species' adaptation ability to new environments. Based on the occurrence data of 117 successful alien bird invaders at a global scale, their native and invaded climatic niches were compared, and the potential influencing factors were identified. Our results show the niche overlap was low, with more than 75% of the non-native birds representing climatic niche shift (i.e. >10% niche expansion). In addition, 85% of the species showed a large proportion (mean ± SD, 39% ± 21%) of niche unfilling. Relative brain size (RBS) after accounting for body size had no direct effect on niche shift, but path analysis showed that RBS had an indirect effect on niche shift by acting on behavioral innovation primarily on technical innovation rather than consumer innovation. These findings suggested the incorporation of species' important behavioral adaptation traits may be promising to develop future prediction frameworks of biological invasion risk in response to the continued global change.
Collapse
Affiliation(s)
- Long Jin
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Jiang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, China
| | - Lixia Han
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Luan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
4
|
Illera JC, Rando JC, Melo M, Valente L, Stervander M. Avian Island Radiations Shed Light on the Dynamics of Adaptive and Nonadaptive Radiation. Cold Spring Harb Perspect Biol 2024; 16:a041451. [PMID: 38621823 PMCID: PMC11610763 DOI: 10.1101/cshperspect.a041451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Understanding the mechanisms underlying species formation and differentiation is a central goal of evolutionary biology and a formidable challenge. This understanding can provide valuable insights into the origins of the astonishing diversity of organisms living on our planet. Avian evolutionary radiations on islands have long fascinated biologists as they provide the ideal variation to study the ecological and evolutionary forces operating on the continuum between incipient lineages to complete speciation. In this review, we summarize the key insights gained from decades of research on adaptive and nonadaptive radiations of both extant and extinct insular bird species. We present a new comprehensive global list of potential avian radiations on oceanic islands, based on published island species checklists, taxonomic studies, and phylogenetic analyses. We demonstrate that our understanding of evolutionary processes is being greatly enhanced through the use of genomic tools. However, to advance the field, it is critical to complement this information with a solid understanding of the ecological and behavioral traits of both extinct and extant avian island species.
Collapse
Affiliation(s)
- Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres 33600, Asturias, Spain
| | - Juan Carlos Rando
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
| | - Martim Melo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Museu de História Natural e da Ciência da Universidade do Porto, Porto 4050-368, Portugal
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town 7701, South Africa
| | - Luís Valente
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 AB, The Netherlands
| | - Martin Stervander
- Bird Group, Natural History Museum, Tring HP23 6AP, Hertfordshire, United Kingdom
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, United Kingdom
| |
Collapse
|
5
|
Recuerda M, Montoya JCH, Blanco G, Milá B. Repeated evolution on oceanic islands: comparative genomics reveals species-specific processes in birds. BMC Ecol Evol 2024; 24:140. [PMID: 39516810 PMCID: PMC11545622 DOI: 10.1186/s12862-024-02320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the interplay between genetic drift, natural selection, gene flow, and demographic history in driving phenotypic and genomic differentiation of insular populations can help us gain insight into the speciation process. Comparing patterns across different insular taxa subjected to similar selective pressures upon colonizing oceanic islands provides the opportunity to study repeated evolution and identify shared patterns in their genomic landscapes of differentiation. We selected four species of passerine birds (Common Chaffinch Fringilla coelebs/canariensis, Red-billed Chough Pyrrhocorax pyrrhocorax, House Finch Haemorhous mexicanus and Dark-eyed/island Junco Junco hyemalis/insularis) that have both mainland and insular populations. Changes in body size between island and mainland populations were consistent with the island rule. For each species, we sequenced whole genomes from mainland and insular individuals to infer their demographic history, characterize their genomic differentiation, and identify the factors shaping them. We estimated the relative (Fst) and absolute (dxy) differentiation, nucleotide diversity (π), Tajima's D, gene density and recombination rate. We also searched for selective sweeps and chromosomal inversions along the genome. All species shared a marked reduction in effective population size (Ne) upon island colonization. We found diverse patterns of differentiated genomic regions relative to the genome average in all four species, suggesting the role of selection in island-mainland differentiation, yet the lack of congruence in the location of these regions indicates that each species evolved differently in insular environments. Our results suggest that the genomic mechanisms involved in the divergence upon island colonization-such as chromosomal inversions, and historical factors like recurrent selection-differ in each species, despite the highly conserved structure of avian genomes and the similar selective factors involved. These differences are likely influenced by factors such as genetic drift, the polygenic nature of fitness traits and the action of case-specific selective pressures.
Collapse
Affiliation(s)
- María Recuerda
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain.
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA.
| | | | - Guillermo Blanco
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Borja Milá
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain.
| |
Collapse
|
6
|
Xiong Y, Rozzi R, Zhang Y, Fan L, Zhao J, Li D, Yao Y, Xiao H, Liu J, Zeng X, Xu H, Jiang Y, Lei F. Convergent evolution toward a slow pace of life predisposes insular endotherms to anthropogenic extinctions. SCIENCE ADVANCES 2024; 10:eadm8240. [PMID: 38996028 PMCID: PMC11244536 DOI: 10.1126/sciadv.adm8240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Island vertebrates have evolved a number of morphological, physiological, and life history characteristics that set them apart from their mainland relatives. However, to date, the evolution of metabolism and its impact on the vulnerability to extinction of insular vertebrates remains poorly understood. This study used metabolic data from 2813 species of tetrapod vertebrates, including 695 ectothermic and 2118 endothermic species, to reveal that island mammals and birds evolved convergent metabolic strategies toward a slow pace of life. Insularity was associated with shifts toward slower metabolic rates and greater generation lengths in endotherms, while insularity just drove the evolution of longer generation lengths in ectotherms. Notably, a slow pace of life has exacerbated the extinction of insular endemic species in the face of anthropogenic threats. These findings have important implications for understanding physiological adaptations associated with the island syndrome and formulating conservation strategies across taxonomic groups with different metabolic modes.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Roberto Rozzi
- Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Yizhou Zhang
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Liqing Fan
- Key Laboratory of Forest Ecology in Tibet Plateau, Tibet Agricultural & Animal Husbandry University, Ministry of Education, Nyingchi 860000, China
| | - Jidong Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institude of Zoology, Xi’an 710000, China
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yongfang Yao
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Hongtao Xiao
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Jing Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Xianyin Zeng
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Huailiang Xu
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life science, Sichuan Agricultural University, Ya’an 625000, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Li S, Liu Y, DU X, Li G, Liao W. Nest complexity correlates with larger brain size but smaller body mass across bird species. Integr Zool 2024; 19:496-504. [PMID: 37378973 DOI: 10.1111/1749-4877.12744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Amniotes differ substantially in absolute and relative brain size after controlling for allometry, and numerous hypotheses have been proposed to explain brain size evolution. Brain size is thought to correlate with processing capacity and the brain's ability to support complex manipulation such as nest-building skills. The increased complexity of nest structure is supposed to be a measure of an ability to manipulate nesting material into the required shape. The degree of nest-structure complexity is also supposed to be associated with body mass, partly because small species lose heat faster and delicate and insulated nests are more crucial for temperature control of eggs during incubation by small birds. Here, we conducted comparative analyses to test these hypotheses by investigating whether the complexity of species-typical nest structure can be explained by brain size and body mass (a covariate also to control for allometric effects on brain size) across 1353 bird species from 147 families. Consistent with these hypotheses, our results revealed that avian brain size increases as the complexity of the nest structure increases after controlling for a significant effect of body size, and also that a negative relationship exists between nest complexity and body mass.
Collapse
Affiliation(s)
- Shaobin Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Yuxin Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Xiaolong DU
- College of Life Science, Yangtze University, Jingzhou, China
| | - Guopan Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| |
Collapse
|
8
|
Dufour P, Sayol F, Cooke R, Blackburn TM, Gallien L, Griesser M, Steinbauer MJ, Faurby S. The importance of migratory drop-off for island colonization in birds. Proc Biol Sci 2024; 291:20232926. [PMID: 38628117 PMCID: PMC11021927 DOI: 10.1098/rspb.2023.2926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Seasonal migration is an underappreciated driver of animal diversification. Changes in migratory behaviour may favour the establishment of sedentary founder populations and promote speciation if there is sufficient reproductive isolation between sedentary and migratory populations. From a systematic literature review, we here quantify the role of migratory drop-off-the loss of migratory behaviour-in promoting speciation in birds on islands. We identify at least 157 independent colonization events likely initiated by migratory species that led to speciation, including 44 cases among recently extinct species. By comparing, for all islands, the proportion of island endemic species that derived from migratory drop-off with the proportion of migratory species among potential colonizers, we showed that seasonal migration has a larger effect on island endemic richness than direct dispersal. We also found that the role of migration in island colonization increases with the geographic isolation of islands. Furthermore, the success of speciation events depends in part on species biogeographic and ecological factors, here positively associated with greater range size and larger flock sizes. These results highlight the importance of shifts in migratory behaviour in the speciation process and calls for greater consideration of migratory drop-off in the biogeographic distribution of birds.
Collapse
Affiliation(s)
- Paul Dufour
- Department of Biological & Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Ferran Sayol
- Centre for Ecological Research and Forestry Applications (CREAF), E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Rob Cooke
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - Tim M. Blackburn
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| | - Laure Gallien
- LECA, CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Chambéry, France
| | - Michael Griesser
- Department of Biology, University of Konstanz, Konstanz, Germany
- Center for the Advanced Study of Collective Behavior, University of Konstanz, Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Manuel J. Steinbauer
- Bayreuth Center of Ecology and Environmental Research (BayCEER) & Bayreuth Center of Sport Science (BaySpo), University of Bayreuth, Bayreuth, Germany
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Søren Faurby
- Department of Biological & Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| |
Collapse
|
9
|
Audet JN, Couture M, Lefebvre L, Jarvis ED. Problem-solving skills are predicted by technical innovations in the wild and brain size in passerines. Nat Ecol Evol 2024; 8:806-816. [PMID: 38388692 PMCID: PMC11009111 DOI: 10.1038/s41559-024-02342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Behavioural innovations can provide key advantages for animals in the wild, especially when ecological conditions change rapidly and unexpectedly. Innovation rates can be compared across taxa by compiling field reports of novel behaviours. Large-scale analyses have shown that innovativeness reduces extinction risk, increases colonization success and is associated with increased brain size and pallial neuron numbers. However, appropriate laboratory measurements of innovativeness, necessary to conduct targeted experimental studies, have not been clearly established, despite decades of speculation on the most suitable assay. Here we implemented a battery of cognitive tasks on 203 birds of 15 passerine species and tested for relationships at the interspecific and intraspecific levels with ecological metrics of innovation and brain size. We found that species better at solving extractive foraging problems had higher technical innovation rates in the wild and larger brains. By contrast, performance on other cognitive tasks often subsumed under the term behavioural flexibility, namely, associative and reversal learning, as well as self-control, were not related to problem-solving, innovation in the wild or brain size. Our study yields robust support for problem-solving as an accurate experimental proxy of innovation and suggests that novel motor solutions are more important than self-control or learning of modified cues in generating technical innovations in the wild.
Collapse
Affiliation(s)
- Jean-Nicolas Audet
- The Rockefeller University Field Research Center, Millbrook, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.
| | - Mélanie Couture
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Louis Lefebvre
- Department of Biology, McGill University, Montreal, Quebec, Canada
- CREAF, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Erich D Jarvis
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| |
Collapse
|
10
|
Liu Y, Du X, Li G, Liu Y, Li S. Life-History and Ecological Correlates of Egg and Clutch Mass Variation in Sympatric Bird Species at High Altitude. BIOLOGY 2023; 12:1303. [PMID: 37887013 PMCID: PMC10604263 DOI: 10.3390/biology12101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The variation in egg and clutch mass in sympatric species at high altitudes is poorly understood, and the potential causes of variation are rarely investigated. This study aimed to describe the interspecific variation in avian egg and clutch mass among 22 sympatric bird species at an altitude of 3430 m. Our objective was to reduce potential confounding effects of biotic/abiotic factors and investigated hypotheses concerning allometry, clutch size, parental care, nest predation, and lifespan as possible correlates and explanations for the observed variation. Our findings indicated that both egg and clutch mass evolve with body mass across species. We found that egg mass variation was not explained by clutch size when controlling for allometric effects, which contrasts the "egg mass vs. clutch size trade-off" hypothesis. Additionally, we found that clutch mass was positively associated with parental care (reflected by development period) but negatively associated with predation rate. By substituting egg mass and clutch size into the models, we found that clutch size was significantly correlated with parental care, predation rate, and lifespan, while egg mass was only significantly associated with development period. Overall, these findings support life-history theories suggesting that reduced clutch size or mass is associated with a higher risk of predation, reduced parental care, but longer adult lifespan. Interestingly, our results indicate that clutch size has a greater influence on these factors compared to egg mass. This could be attributed to the fact that smaller clutch sizes result in a more notable decrease in energetic allocation, as they require a reduced effort in terms of offspring production, incubation, and feeding, as opposed to solely reducing egg size. These findings contribute to the growing evidence that life-history and ecological traits correlate with egg and clutch mass variation in sympatric species. However, further research is needed to explore the potential evolutionary causes underlying these patterns.
Collapse
Affiliation(s)
| | | | | | - Yingbao Liu
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Shaobin Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
11
|
Audet JN, Couture M, Jarvis ED. Songbird species that display more-complex vocal learning are better problem-solvers and have larger brains. Science 2023; 381:1170-1175. [PMID: 37708288 DOI: 10.1126/science.adh3428] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Complex vocal learning, a critical component of human spoken language, has been assumed to be associated with more-advanced cognitive abilities. Tests of this hypothesis between individuals within a species have been inconclusive and have not been done across species. In this work, we measured an array of cognitive skills-namely, problem-solving, associative and reversal learning, and self-control-across 214 individuals of 23 bird species, including 19 wild-caught songbird species, two domesticated songbird species, and two wild-caught vocal nonlearning species. We found that the greater the vocal learning abilities of a species, the better their problem-solving skills and the relatively larger their brains. These conclusions held when controlling for noncognitive variables and phylogeny. Our results support a hypothesis of shared genetic and cognitive mechanisms between vocal learning, problem-solving, and bigger brains in songbirds.
Collapse
Affiliation(s)
- Jean-Nicolas Audet
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Mélanie Couture
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
12
|
Liu Y, Jiang Y, Xu J, Liao W. Evolution of Avian Eye Size Is Associated with Habitat Openness, Food Type and Brain Size. Animals (Basel) 2023; 13:ani13101675. [PMID: 37238105 DOI: 10.3390/ani13101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The eye is the primary sensory organ that obtains information from the ecological environments and specifically bridges the brain with the extra environment. However, the coevolutionary relationships between eye size and ecological factors, behaviours and brain size in birds remain poorly understood. Here, we investigate whether eye size evolution is associated with ecological factors (e.g., habitat openness, food type and foraging habitat), behaviours (e.g., migration and activity pattern) and brain size among 1274 avian species using phylogenetically controlled comparative analyses. Our results indicate that avian eye size is significantly associated with habitat openness, food type and brain size. Species living in dense habitats and consuming animals exhibit larger eye sizes compared to species living in open habitats and consuming plants, respectively. Large-brained birds tend to possess larger eyes. However, migration, foraging habitat and activity pattern were not found to be significantly associated with eye size in birds, except for nocturnal birds having longer axial lengths than diurnal ones. Collectively, our results suggest that avian eye size is primarily influenced by light availability, food need and cognitive ability.
Collapse
Affiliation(s)
- Yating Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ying Jiang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jiliang Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| |
Collapse
|
13
|
Extractive foraging behaviour in woodpeckers evolves in species that retain a large ancestral brain. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
14
|
Constanti Crosby L, Sayol F, Horswill C. Relative brain size is associated with natal dispersal rate and species' vulnerability to climate change in seabirds. OIKOS 2023. [DOI: 10.1111/oik.09698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Abstract
Extra-pair paternity (EPP) benefits to improve the reproductive success via extra-pair fertilizations without the costs of parental care in males and through improved offspring quality with additional food and parental care in females among species of birds. Variations in the EPP appear to link to behavioral and ecological factors and sexual selection. According to the "relationship intelligence hypothesis", the cognitive abilities of the birds play an important role in maintaining long-term relationships. Here, we undertook the first comparative test of the relationships between extra-pair paternity and brain size, testis size, and life histories among 315 species of birds using phylogenetically controlled comparative analyses and path analysis. After controlling for the effects of shared ancestry and body mass, the frequency of EPP was negatively correlated with relative brain size, but positively with testis size across species of birds. However, the frequency of EPP was not linked to life-history traits (e.g. incubation period, fledging period, clutch size, egg mass, and longevity). Our findings suggest that large-brained birds associated with enhanced cognitive abilities are more inclined to maintain long-term stable relationships with their mates and to mutualism with them than to increase the frequency of EPP.
Collapse
Affiliation(s)
- Yating Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China.,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China.,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| |
Collapse
|
16
|
Abstract
Large brains support numerous cognitive adaptations and therefore may appear to be highly beneficial. Nonetheless, the high energetic costs of brain tissue may have prevented the evolution of large brains in many species. This problem may also have a developmental dimension: juveniles, with their immature and therefore poorly performing brains, would face a major energetic hurdle if they were to pay for the construction of their own brain, especially in larger-brained species. Here, we explore the possible role of parental provisioning for the development and evolution of adult brain size in birds. A comparative analysis of 1,176 bird species shows that various measures of parental provisioning (precocial vs. altricial state at hatching, relative egg mass, time spent provisioning the young) strongly predict relative brain size across species. The parental provisioning hypothesis also provides an explanation for the well-documented but so far unexplained pattern that altricial birds have larger brains than precocial ones. We therefore conclude that the evolution of parental provisioning allowed species to overcome the seemingly insurmountable energetic constraint on growing large brains, which in turn enabled bird species to increase survival and population stability. Because including adult eco- and socio-cognitive predictors only marginally improved the explanatory value of our models, these findings also suggest that the traditionally assessed cognitive abilities largely support successful parental provisioning. Our results therefore indicate that the cognitive adaptations underlying successful parental provisioning also provide the behavioral flexibility facilitating reproductive success and survival.
Collapse
|
17
|
Howell KJ, Walsh MR. Transplant experiments demonstrate that larger brains are favoured in high-competition environments in Trinidadian killifish. Ecol Lett 2023; 26:53-62. [PMID: 36262097 DOI: 10.1111/ele.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 12/27/2022]
Abstract
The extent to which the evolution of a larger brain is adaptive remains controversial. Trinidadian killifish (Anablepsoides hartii) are found in sites that differ in predation intensity; fish that experience decreased predation and increased intraspecific competition exhibit larger brains. We evaluated the connection between brain size and fitness (survival and growth) when killifish are found in their native habitats and when fish are transplanted from sites with predators to high-competition sites that lack predators. Selection for a larger brain was absent within locally adapted populations. Conversely, there was a strong positive relationship between brain size and growth in transplanted but not resident fish in high-competition environments. We also observed significantly larger brain sizes in the transplanted fish that were recaptured at the end of the experiment versus those that were not. Our results provide experimental support that larger brains increase fitness and are favoured in high-competition environments.
Collapse
Affiliation(s)
- Kaitlyn J Howell
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
18
|
De Meester G, Van Linden L, Torfs J, Pafilis P, Šunje E, Steenssens D, Zulčić T, Sassalos A, Van Damme R. Learning with lacertids: Studying the link between ecology and cognition within a comparative framework. Evolution 2022; 76:2531-2552. [PMID: 36111365 DOI: 10.1111/evo.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 01/22/2023]
Abstract
Cognition is an essential tool for animals to deal with environmental challenges. Nonetheless, the ecological forces driving the evolution of cognition throughout the animal kingdom remain enigmatic. Large-scale comparative studies on multiple species and cognitive traits have been advanced as the best way to facilitate our understanding of cognitive evolution, but such studies are rare. Here, we tested 13 species of lacertid lizards (Reptilia: Lacertidae) using a battery of cognitive tests measuring inhibitory control, problem-solving, and spatial and reversal learning. Next, we tested the relationship between species' performance and (a) resource availability (temperature and precipitation), habitat complexity (Normalized Difference Vegetation Index), and habitat variability (seasonality) in their natural habitat and (b) their life history (size at hatching and maturity, clutch size, and frequency). Although species differed markedly in their cognitive abilities, such variation was mostly unrelated to their ecology and life history. Yet, species living in more variable environments exhibited lower behavioral flexibility, likely due to energetic constrains in such habitats. Our standardized protocols provide opportunities for collaborative research, allowing increased sample sizes and replication, essential for moving forward in the field of comparative cognition. Follow-up studies could include more detailed measures of habitat structure and look at other potential selective drivers such as predation.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Lisa Van Linden
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jonas Torfs
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Emina Šunje
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Dries Steenssens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Tea Zulčić
- Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Athanasios Sassalos
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
19
|
The impact of environmental factors on the evolution of brain size in carnivorans. Commun Biol 2022; 5:998. [PMID: 36130990 PMCID: PMC9492690 DOI: 10.1038/s42003-022-03748-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
The reasons why some animals have developed larger brains has long been a subject of debate. Yet, it remains unclear which selective pressures may favour the encephalization and how it may act during evolution at different taxonomic scales. Here we studied the patterns and tempo of brain evolution within the order Carnivora and present large-scale comparative analysis of the effect of ecological, environmental, social, and physiological variables on relative brain size in a sample of 174 extant carnivoran species. We found a complex pattern of brain size change between carnivoran families with differences in both the rate and diversity of encephalization. Our findings suggest that during carnivorans’ evolution, a trade-off have occurred between the cognitive advantages of acquiring a relatively large brain allowing to adapt to specific environments, and the metabolic costs of the brain which may constitute a disadvantage when facing the need to colonize new environments. The brain size of carnivores has evolved to balance a trade-off between increased cognitive function and increased metabolic cost.
Collapse
|
20
|
Abstract
The reasons why some animals have developed larger brains has long been a subject of debate. Yet, it remains unclear which selective pressures may favour the encephalization and how it may act during evolution at different taxonomic scales. Here we studied the patterns and tempo of brain evolution within the order Carnivora and present large-scale comparative analysis of the effect of ecological, environmental, social, and physiological variables on relative brain size in a sample of 174 extant carnivoran species. We found a complex pattern of brain size change between carnivoran families with differences in both the rate and diversity of encephalization. Our findings suggest that during carnivorans' evolution, a trade-off have occurred between the cognitive advantages of acquiring a relatively large brain allowing to adapt to specific environments, and the metabolic costs of the brain which may constitute a disadvantage when facing the need to colonize new environments.
Collapse
|
21
|
Down a Rabbit Hole: Burrowing Behaviour and Larger Home Ranges are Related to Larger Brains in Leporids. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractStudies on the evolution of brain size variation usually focus on large clades encompassing broad phylogenetic groups. This risks introducing ‘noise’ in the results, often obscuring effects that might be detected in less inclusive clades. Here, we focus on a sample of endocranial volumes (endocasts) of 18 species of rabbits and hares (Lagomorpha: Leporidae), which are a discrete radiation of mammals with a suitably large range of body sizes. Using 60 individuals, we test five popular hypotheses on brain size and olfactory bulb evolution in mammals. We also address the pervasive issue of missing data, using multiple phylogenetic imputations as to conserve the full sample size for all analyses. Our analyses show that home range and burrowing behaviour are the only predictors of leporid brain size variation. Litter size, which is one of the most widely reported constraints on brain size, was unexpectedly not associated with brain size. However, a constraining effect may be masked by a strong association of litter size with temperature seasonality, warranting further study. Lastly, we show that unreasonable estimations of phylogenetic signal (Pagel’s lamba) warrant additional caution when using small sample sizes, such as ours, in comparative studies.
Collapse
|
22
|
Nakao T, Yamasaki T, Ogihara N, Shimada M. Relationship between flightlessness and brain morphology among Rallidae. J Anat 2022; 241:776-788. [PMID: 35608388 PMCID: PMC9358762 DOI: 10.1111/joa.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Studies have suggested that the brain morphology and flight ability of Aves are interrelated; however, such a relationship has not been thoroughly investigated. This study aimed to examine whether flight ability, volant or flightless, affects brain morphology (size and shape) in the Rallidae, which has independently evolved to adapt secondary flightlessness multiple times within a single taxonomic group. Brain endocasts were extracted from computed tomography images of the crania, measured by 3D geometric morphometrics, and were analyzed using principal component analysis. The results of phylogenetic ANCOVA showed that flightless rails have brain sizes and shapes that are significantly larger than and different from those of volant rails, even after considering the effects of body mass and brain size respectively. Flightless rails tended to have a wider telencephalon and more inferiorly positioned foramen magnum than volant rails. Although the brain is an organ that requires a large amount of metabolic energy, reduced selective pressure for a lower body weight may have allowed flightless rails to have larger brains. The evolution of flightlessness may have changed the position of the foramen magnum downward, which would have allowed the support of the heavier cranium. The larger brain may have facilitated the acquisition of cognitively advanced behavior, such as tool-using behavior, among rails.
Collapse
Affiliation(s)
- Tatsuro Nakao
- Graduate School of Science and EngineeringTeikyo University of ScienceUenoharaJapan
| | | | | | - Masaki Shimada
- Department of Animal SciencesTeikyo University of ScienceUenoharaJapan
| |
Collapse
|
23
|
Neuron numbers link innovativeness with both absolute and relative brain size in birds. Nat Ecol Evol 2022; 6:1381-1389. [PMID: 35817825 DOI: 10.1038/s41559-022-01815-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 05/19/2022] [Indexed: 12/31/2022]
Abstract
A longstanding issue in biology is whether the intelligence of animals can be predicted by absolute or relative brain size. However, progress has been hampered by an insufficient understanding of how neuron numbers shape internal brain organization and cognitive performance. On the basis of estimations of neuron numbers for 111 bird species, we show here that the number of neurons in the pallial telencephalon is positively associated with a major expression of intelligence: innovation propensity. The number of pallial neurons, in turn, is greater in brains that are larger in both absolute and relative terms and positively covaries with longer post-hatching development periods. Thus, our analyses show that neuron numbers link cognitive performance to both absolute and relative brain size through developmental adjustments. These findings help unify neuro-anatomical measures at multiple levels, reconciling contradictory views over the biological significance of brain expansion. The results also highlight the value of a life history perspective to advance our understanding of the evolutionary bases of the connections between brain and cognition.
Collapse
|
24
|
Heldstab SA, Isler K, Graber SM, Schuppli C, van Schaik CP. The economics of brain size evolution in vertebrates. Curr Biol 2022; 32:R697-R708. [PMID: 35728555 DOI: 10.1016/j.cub.2022.04.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Across the animal kingdom, we see remarkable variation in brain size. This variation has even increased over evolutionary time. Traditionally, studies aiming to explain brain size evolution have looked at the fitness benefits of increased brain size in relation to its increased cognitive performance in the social and/or ecological domain. However, brains are among the most energetically expensive tissues in the body and also require an uninterrupted energy supply. If not compensated, these energetic demands inevitably lead to a reduction in energy allocation to other vital functions. In this review, we summarize how an increasing number of studies show that to fully comprehend brain size evolution and the large variation in brain size across lineages, it is important to look at the economics of brains, including the different pathways through which the high energetic costs of brains can be offset. We further show how numerous studies converge on the conclusion that cognitive abilities can only drive brain size evolution in vertebrate lineages where they result in an improved energy balance through favourable ecological preconditions. Cognitive benefits that do not directly improve the organism's energy balance can only be selectively favoured when they produce such large improvements in reproduction or survival that they outweigh the negative energetic effects of the large brain.
Collapse
Affiliation(s)
- Sandra A Heldstab
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany.
| | - Karin Isler
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sereina M Graber
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Caroline Schuppli
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany
| | - Carel P van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Comparative Socioecology Group, Max Planck Institute of Animal Behavior, Bücklestrasse 5a, 78467 Konstanz, Germany; Department of Evolutionary Biology and Environmental Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
25
|
Goncerzewicz A, Górkiewicz T, Dzik JM, Jędrzejewska-Szmek J, Knapska E, Konarzewski M. Brain size, gut size and cognitive abilities: the energy trade-offs tested in artificial selection experiment. Proc Biol Sci 2022; 289:20212747. [PMID: 35414242 PMCID: PMC9006030 DOI: 10.1098/rspb.2021.2747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The enlarged brains of homeotherms bring behavioural advantages, but also incur high energy expenditures. The ‘expensive brain’ (EB) hypothesis posits that the energetic costs of the enlarged brain and the resulting increased cognitive abilities (CA) were met by either increased energy turnover or reduced allocation to other expensive organs, such as the gut. We tested the EB hypothesis by analysing correlated responses to selection in an experimental evolution model system, which comprises line types of laboratory mice selected for high or low basal metabolic rate (BMR), maximum (VO2max) metabolic rates and random-bred (unselected) lines. The traits are implicated in the evolution of homeothermy, having been pre-requisites for the encephalization and exceptional CA of mammals, including humans. High-BMR mice had bigger guts, but not brains, than mice of other line types. Yet, they were superior in the cognitive tasks carried out in both reward and avoidance learning contexts and had higher neuronal plasticity (indexed as the long-term potentiation) than their counterparts. Our data indicate that the evolutionary increase of CA in mammals was initially associated with increased BMR and brain plasticity. It was also fuelled by an enlarged gut, which was not traded off for brain size.
Collapse
Affiliation(s)
| | | | - Jakub M Dzik
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | | | - Ewelina Knapska
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Marek Konarzewski
- Faculty of Biology, University of Białystok, Ciołkowskiego 1 J, 15-245 Białystok, Poland
| |
Collapse
|
26
|
Resident birds are more behaviourally plastic than migrants. Sci Rep 2022; 12:5743. [PMID: 35388121 PMCID: PMC8986783 DOI: 10.1038/s41598-022-09834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/08/2022] Open
Abstract
Species subjected to more variable environments should have greater phenotypic plasticity than those that are more restricted to specific habitat types leading to the expectation that migratory birds should be relatively more plastic than resident birds. We tested this comparatively by studying variation in flight initiation distance (FID), a well-studied antipredator behaviour. We predicted that variation in FID would be greater for migratory species because they encountered a variety of locations during their lives and therefore had less predictable assessments of risk compared to more sedentary species. Contrary to our prediction, we found that non-migratory species (sedentary) had greater variation in FID than migratory ones. Migratory and partially migratory birds had greater average FIDs than sedentary birds, suggesting that they were generally more wary. These results suggest that the predictability associated with not migrating permits more nuanced risk assessment which was seen in the greater variation in FID of sedentary bird species.
Collapse
|
27
|
Gavriilidi I, De Meester G, Van Damme R, Baeckens S. How to behave when marooned: the behavioural component of the island syndrome remains underexplored. Biol Lett 2022; 18:20220030. [PMID: 35440235 PMCID: PMC9039784 DOI: 10.1098/rsbl.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Animals on islands typically depart from their mainland relatives in assorted aspects of their biology. Because they seem to occur in concert, and to some extent evolve convergently in disparate taxa, these changes are referred to as the 'island syndrome'. While morphological, physiological and life-history components of the island syndrome have received considerable attention, much less is known about how insularity affects behaviour. In this paper, we argue why changes in personality traits and cognitive abilities can be expected to form part of the island syndrome. We provide an overview of studies that have compared personality traits and cognitive abilities between island and mainland populations, or among islands. Overall, the pickings are remarkably slim. There is evidence that animals on islands tend to be bolder than on the mainland, but effects on other personality traits go either way. The evidence for effects of insularity on cognitive abilities or style is highly circumstantial and very mixed. Finally, we consider the ecological drivers that may induce such changes, and the mechanisms through which they might occur. We conclude that our knowledge of the behavioural and cognitive responses to island environments remains limited, and we encourage behavioural biologists to make more use of these 'natural laboratories for evolution'.
Collapse
Affiliation(s)
- Ioanna Gavriilidi
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Shiomi K. Possible link between brain size and flight mode in birds: Does soaring ease the energetic limitation of the brain? Evolution 2022; 76:649-657. [PMID: 34989401 DOI: 10.1111/evo.14425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 01/22/2023]
Abstract
Elucidating determinants of interspecies variation in brain size has been a long-standing challenge in cognitive and evolutionary ecology. As the brain is an energetically expensive organ, energetic tradeoffs among organs are considered to play a key role in brain size evolution. This study examined the tradeoff between the brain and locomotion in birds by testing the relationship between brain size, flight modes with different energetic costs (flapping and soaring), and migratory behavior, using published data on the whole-brain mass of 2242 species. According to comparative analyses considering phylogeny and body mass, soarers, who can gain kinetic energy from wind shear or thermals and consequently save flight costs, have larger brains than flappers among migratory birds. Meanwhile, the brain size difference was not consistent in residents, and the size variation appeared much larger than that in migrants. In addition, the brain size of migratory birds was smaller than that of resident birds among flappers, whereas this property was not significant in soarers. Although further research is needed to draw a definitive conclusion, these findings provide further support for the energetic tradeoff of the brain with flight and migratory movements in birds and advance the idea that a locomotion mode with lower energetic cost could be a driver of encephalization during the evolution of the brain.
Collapse
Affiliation(s)
- Kozue Shiomi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.,Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
29
|
Baldwin JW, Garcia-Porta J, Botero CA. Phenotypic responses to climate change are significantly dampened in big-brained birds. Ecol Lett 2022; 25:939-947. [PMID: 35142006 DOI: 10.1111/ele.13971] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 01/29/2023]
Abstract
Anthropogenic climate change is rapidly altering local environments and threatening biodiversity throughout the world. Although many wildlife responses to this phenomenon appear largely idiosyncratic, a wealth of basic research on this topic is enabling the identification of general patterns across taxa. Here, we expand those efforts by investigating how avian responses to climate change are affected by the ability to cope with ecological variation through behavioural flexibility (as measured by relative brain size). After accounting for the effects of phylogenetic uncertainty and interspecific variation in adaptive potential, we confirm that although climate warming is generally correlated with major body size reductions in North American migrants, these responses are significantly weaker in species with larger relative brain sizes. Our findings suggest that cognition can play an important role in organismal responses to global change by actively buffering individuals from the environmental effects of warming temperatures.
Collapse
Affiliation(s)
- Justin W Baldwin
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Joan Garcia-Porta
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Carlos A Botero
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Marugán‐Lobón J, Nebreda SM, Navalón G, Benson R. Beyond the beak: Brain size and allometry in avian craniofacial evolution. J Anat 2022; 240:197-209. [PMID: 34558058 PMCID: PMC8742972 DOI: 10.1111/joa.13555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/18/2021] [Accepted: 09/10/2021] [Indexed: 12/01/2022] Open
Abstract
Birds exhibit an enormous variety of beak shapes. Such remarkable variation, however, has distracted research from other important aspects of their skull evolution, the nature of which has been little explored. Key aspects of avian skull variation appear to be qualitatively similar to those of mammals, encompassing variation in the degree of cranial vaulting, cranial base flexure, and the proportions and orientations of the occipital and facial regions. The evolution of these traits has been studied intensively in mammals under the Spatial Packing Hypothesis (SPH), an architectural constraint so-called because the general anatomical organization and development of such skull parts makes them evolve predictably in response to changes in relative brain size. Such SPH predictions account for the different appearances of skull configurations across species, either in having longer or shorter faces, and caudally or ventrally oriented occiputs, respectively. This pattern has been morphometrically and experimentally proven in mammals but has not been examined in birds or other tetrapods, and so its generality remains unknown. We explored the SPH in an interspecific sample of birds using three-dimensional geometric morphometrics. Our results show that the dominant trend of evolutionary variation in the skull of crown-group birds can be predicted by the SPH, involving concomitant changes in the face, the cranial vault and the basicranium, and with striking similarities to craniofacial variation among mammals. Although craniofacial variation is significantly affected by allometry, these allometric effects are independent of the influence of the SPH on skull morphology, as are any effects of volumetric encephalization. Our results, therefore, validate the hypothesis that a general architectural constraint underlies skull homoplasy evolution of cranial morphology among avian clades, and possibly between birds and mammals, but they downplay encephalization and allometry as the only factors involved.
Collapse
Affiliation(s)
- Jesús Marugán‐Lobón
- Unidad de PaleontologíaDpto. BiologíaUniversidad Autónoma de MadridMadridSpain
- Dinosaur InstituteNatural History Museum of Los Angeles CountyLos AngelesCaliforniaUSA
| | - Sergio M. Nebreda
- Unidad de PaleontologíaDpto. BiologíaUniversidad Autónoma de MadridMadridSpain
| | - Guillermo Navalón
- Unidad de PaleontologíaDpto. BiologíaUniversidad Autónoma de MadridMadridSpain
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
31
|
Vultures as an overlooked model in cognitive ecology. Anim Cogn 2021; 25:495-507. [PMID: 34817739 DOI: 10.1007/s10071-021-01585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Despite important recent advances in cognitive ecology, our current understanding of avian cognition still largely rests on research conducted on a few model taxa. Vultures are an ecologically distinctive group of species by being the only obligate carrion consumers across terrestrial vertebrates. Their unique scavenging lifestyle suggests they have been subject to particular selective pressures to locate scarce, unpredictable, ephemeral, and nutritionally challenging food. However, substantial variation exists among species in diet, foraging techniques and social structure of populations. Here, we provide an overview of the current knowledge on vulture cognition through a comprehensive literature review and a compilation of our own observations. We find evidence for a variety of innovative foraging behaviors, scrounging tactics, collective problem-solving abilities and tool-use, skills that are considered indicative of enhanced cognition and that bear clear connections with the eco-social lifestyles of species. However, we also find that the cognitive basis of these skills remain insufficiently studied, and identify new research areas that require further attention in the future. Despite these knowledge gaps and the challenges of working with such large animals, we conclude that vultures may provide fresh insight into our knowledge of the ecology and evolution of cognition.
Collapse
|
32
|
Chen M, Li G, Liu J, Li S. Large brain size is associated with low extra-pair paternity across bird species. Ecol Evol 2021; 11:13601-13608. [PMID: 34646493 PMCID: PMC8495782 DOI: 10.1002/ece3.8087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Gaining extrapair copulations (EPCs) is a complicated behavior process. The interaction between males and females to procure EPCs may be involved in brain function evolution and lead to a larger brain. Thus, we hypothesized that extrapair paternity (EPP) rate can be predicted by relative brain size in birds. Past work has implied that the EPP rate is associated with brain size, but empirical evidence is rare. METHODS We collated data from published references on EPP levels and brain size of 215 bird species to examine whether the evolution of EPP rate can be predicted by brain size using phylogenetically generalized least square (PGLS) models and phylogenetic path analyses. RESULTS We found that EPP rates (both the percentage EP offspring and percentage of broods with EP offspring) are negatively associated with relative brain size. We applied phylogenetic path analysis to test the causal relationship between relative brain size and EPP rate. Best-supported models (ΔCICc < 2) suggested that large brain lead to reduced EPP rate, which failed to support the hypothesis that high rates of EPP cause the evolution of larger brains. CONCLUSION This study indicates that pursuing EPCs may be a natural instinct in birds and the interaction between males and females for EPCs may lead to large brains, which in turn may restrict their EPC level for both sexes across bird species.
Collapse
Affiliation(s)
- Min Chen
- College of Life ScienceYangtze UniversityJingzhouChina
| | - Guopan Li
- College of Life ScienceYangtze UniversityJingzhouChina
| | - Jinlong Liu
- College of Life ScienceYangtze UniversityJingzhouChina
| | - Shaobin Li
- College of Life ScienceYangtze UniversityJingzhouChina
- MOE Key Laboratory of Biodiversity and Ecology EngineeringBeijing Normal UniversityBeijingChina
| |
Collapse
|
33
|
Martini D, Dussex N, Robertson BC, Gemmell NJ, Knapp M. Evolution of the "world's only alpine parrot": Genomic adaptation or phenotypic plasticity, behaviour and ecology? Mol Ecol 2021; 30:6370-6386. [PMID: 33973288 DOI: 10.1111/mec.15978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Climate warming, in particular in island environments, where opportunities for species to disperse are limited, may become a serious threat to cold adapted alpine species. In order to understand how alpine species may respond to a warming world, we need to understand the drivers that have shaped their habitat specialisation and the evolutionary adaptations that allow them to utilize alpine habitats. The endemic, endangered New Zealand kea (Nestor notabilis) is considered the only alpine parrot in the world. As a species commonly found in the alpine zone it may be highly susceptible to climate warming. But is it a true alpine specialist? Is its evolution driven by adaptation to the alpine zone, or is the kea an open habitat generalist that simply uses the alpine zone to, for example, avoid lower lying anthropogenic landscapes? We use whole genome data of the kea and its close, forest adapted sister species, the kākā (Nestor meridionalis) to reconstruct the evolutionary history of both species and identify the functional genomic differences that underlie their habitat specialisations. Our analyses do not identify major functional genomic differences between kea and kākā in pathways associated with high-altitude. Rather, we found evidence that selective pressures on adaptations commonly found in alpine species are present in both Nestor species, suggesting that selection for alpine adaptations has not driven their divergence. Strongly divergent demographic responses to past climate warming between the species nevertheless highlight potential future threats to kea survival in a warming world.
Collapse
Affiliation(s)
- Denise Martini
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael Knapp
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
34
|
Eliason CM, McCullough JM, Andersen MJ, Hackett SJ. Accelerated Brain Shape Evolution Is Associated with Rapid Diversification in an Avian Radiation. Am Nat 2021; 197:576-591. [PMID: 33908824 DOI: 10.1086/713664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractNiche expansion is a critical step in the speciation process. Large brains linked to improved cognitive ability may enable species to expand their niches and forage in new ways, thereby promoting speciation. Despite considerable work on ecological divergence in brain size and its importance in speciation, relatively little is known about how brain shape relates to behavioral, ecological, and taxonomic diversity at macroevolutionary scales. This is due in part to inherent challenges with quantifying brain shape across many species. Here we present a novel, semiautomated approach for rapidly phenotyping brain shape using semilandmarks derived from X-ray computed microtomography scans. We then test its utility by parsing evolutionary trends within a diverse radiation of birds: kingfishers (Aves: Alcedinidae). Multivariate comparative analyses reveal that rates of brain shape evolution (but not beak shape) are positively correlated with lineage diversification rates. Distinct brain shapes are further associated with changes in body size and foraging behavior, suggesting both allometric and ecological constraints on brain shape evolution. These results are in line with the idea of brains acting as a "master regulator" of critical processes governing speciation, such as dispersal, foraging behavior, and dietary niche.
Collapse
|
35
|
Boutry J, Dujon AM, Gerard AL, Tissot S, Macdonald N, Schultz A, Biro PA, Beckmann C, Hamede R, Hamilton DG, Giraudeau M, Ujvari B, Thomas F. Ecological and Evolutionary Consequences of Anticancer Adaptations. iScience 2020; 23:101716. [PMID: 33241195 PMCID: PMC7674277 DOI: 10.1016/j.isci.2020.101716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cellular cheating leading to cancers exists in all branches of multicellular life, favoring the evolution of adaptations to avoid or suppress malignant progression, and/or to alleviate its fitness consequences. Ecologists have until recently largely neglected the importance of cancer cells for animal ecology, presumably because they did not consider either the potential ecological or evolutionary consequences of anticancer adaptations. Here, we review the diverse ways in which the evolution of anticancer adaptations has significantly constrained several aspects of the evolutionary ecology of multicellular organisms at the cell, individual, population, species, and ecosystem levels and suggest some avenues for future research.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Antoine M. Dujon
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Anne-Lise Gerard
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Nick Macdonald
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Aaron Schultz
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Peter A. Biro
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
| | - Christa Beckmann
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
- School of Science, Western Sydney University, Parramatta, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - David G. Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia France
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| |
Collapse
|
36
|
Sayol F, Collado MÁ, Garcia-Porta J, Seid MA, Gibbs J, Agorreta A, San Mauro D, Raemakers I, Sol D, Bartomeus I. Feeding specialization and longer generation time are associated with relatively larger brains in bees. Proc Biol Sci 2020; 287:20200762. [PMID: 32933447 DOI: 10.1098/rspb.2020.0762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite their miniature brains, insects exhibit substantial variation in brain size. Although the functional significance of this variation is increasingly recognized, research on whether differences in insect brain sizes are mainly the result of constraints or selective pressures has hardly been performed. Here, we address this gap by combining prospective and retrospective phylogenetic-based analyses of brain size for a major insect group, bees (superfamily Apoidea). Using a brain dataset of 93 species from North America and Europe, we found that body size was the single best predictor of brain size in bees. However, the analyses also revealed that substantial variation in brain size remained even when adjusting for body size. We consequently asked whether such variation in relative brain size might be explained by adaptive hypotheses. We found that ecologically specialized species with single generations have larger brains-relative to their body size-than generalist or multi-generation species, but we did not find an effect of sociality on relative brain size. Phylogenetic reconstruction further supported the existence of different adaptive optima for relative brain size in lineages differing in feeding specialization and reproductive strategy. Our findings shed new light on the evolution of the insect brain, highlighting the importance of ecological pressures over social factors and suggesting that these pressures are different from those previously found to influence brain evolution in other taxa.
Collapse
Affiliation(s)
- Ferran Sayol
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.,Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Miguel Á Collado
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, Isla de la Cartuja, 41092, Sevilla, Spain
| | - Joan Garcia-Porta
- Department of Biology, Washington University in St. Louis, St. Louis, USA
| | - Marc A Seid
- Biology Department, Neuroscience Program, The University of Scranton, Scranton, PA, USA
| | - Jason Gibbs
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ainhoa Agorreta
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | - Diego San Mauro
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Daniel Sol
- CREAF, Cerdanyola del Vallès, Catalonia, Spain.,CSIC, Cerdanyola del Vallès, Catalonia, Spain
| | - Ignasi Bartomeus
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, Isla de la Cartuja, 41092, Sevilla, Spain
| |
Collapse
|
37
|
Duhamel A, Hume JP, Guenser P, Salaviale C, Louchart A. Cranial evolution in the extinct Rodrigues Island owl Otus murivorus (Strigidae), associated with unexpected ecological adaptations. Sci Rep 2020; 10:14019. [PMID: 32820225 PMCID: PMC7441405 DOI: 10.1038/s41598-020-69868-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022] Open
Abstract
Island birds that were victims of anthropic extinctions were often more specialist species, having evolved their most distinctive features in isolation, making the study of fossil insular birds most interesting. Here we studied a fossil cranium of the 'giant' extinct scops owl Otus murivorus from Rodrigues Island (Mascarene Islands, southwestern Indian Ocean), to determine any potential unique characters. The fossil and extant strigids were imaged through X-ray microtomography, providing 3D views of external and internal (endocast, inner ear) cranial structures. Geometric morphometrics and analyses of traditional measurements yielded new information about the Rodrigues owl's evolution and ecology. Otus murivorus exhibits a 2-tier "lag behind" phenomenon for cranium and brain evolution, both being proportionately small relative to increased body size. It also had a much more developed olfactory bulb than congeners, indicating an unexpectedly developed olfactory sense, suggesting a partial food scavenging habit. In addition, O. murivorus had the eyes placed more laterally than O. sunia, the species from which it was derived, probably a side effect of a small brain; rather terrestrial habits; probably relatively fearless behavior; and a less vertical posture (head less upright) than other owls (this in part an allometric effect of size increase). These evolutionary features, added to gigantism and wing reduction, make the extinct Rodrigues owl's evolution remarkable, and with multiple causes.
Collapse
Affiliation(s)
- Anaïs Duhamel
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622, Villeurbanne, France.
| | - Julian P Hume
- Bird Group, Department of Life Sciences, Natural History Museum, Tring, Herts, HP23 6AP, UK
| | - Pauline Guenser
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69622, Villeurbanne, France
| | - Céline Salaviale
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622, Villeurbanne, France
| | - Antoine Louchart
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, 69622, Villeurbanne, France
| |
Collapse
|
38
|
Winegard B, Winegard B, Anomaly J. Dodging Darwin: Race, evolution, and the hereditarian hypothesis. PERSONALITY AND INDIVIDUAL DIFFERENCES 2020. [DOI: 10.1016/j.paid.2020.109915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Uomini N, Fairlie J, Gray RD, Griesser M. Extended parenting and the evolution of cognition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190495. [PMID: 32475334 DOI: 10.1098/rstb.2019.0495] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traditional attempts to understand the evolution of human cognition compare humans with other primates. This research showed that relative brain size covaries with cognitive skills, while adaptations that buffer the developmental and energetic costs of large brains (e.g. allomaternal care), and ecological or social benefits of cognitive abilities, are critical for their evolution. To understand the drivers of cognitive adaptations, it is profitable to consider distant lineages with convergently evolved cognitions. Here, we examine the facilitators of cognitive evolution in corvid birds, where some species display cultural learning, with an emphasis on family life. We propose that extended parenting (protracted parent-offspring association) is pivotal in the evolution of cognition: it combines critical life-history, social and ecological conditions allowing for the development and maintenance of cognitive skillsets that confer fitness benefits to individuals. This novel hypothesis complements the extended childhood idea by considering the parents' role in juvenile development. Using phylogenetic comparative analyses, we show that corvids have larger body sizes, longer development times, extended parenting and larger relative brain sizes than other passerines. Case studies from two corvid species with different ecologies and social systems highlight the critical role of life-history features on juveniles' cognitive development: extended parenting provides a safe haven, access to tolerant role models, reliable learning opportunities and food, resulting in higher survival. The benefits of extended juvenile learning periods, over evolutionary time, lead to selection for expanded cognitive skillsets. Similarly, in our ancestors, cooperative breeding and increased group sizes facilitated learning and teaching. Our analyses highlight the critical role of life-history, ecological and social factors that underlie both extended parenting and expanded cognitive skillsets. This article is part of the theme issue 'Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals'.
Collapse
Affiliation(s)
- Natalie Uomini
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, Jena, Germany
| | | | - Russell D Gray
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, Jena, Germany.,School of Psychology, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Michael Griesser
- State Key Laboratory of Biocontrol, Department of Ecology and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.,Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
40
|
Ksepka DT, Balanoff AM, Smith NA, Bever GS, Bhullar BAS, Bourdon E, Braun EL, Burleigh JG, Clarke JA, Colbert MW, Corfield JR, Degrange FJ, De Pietri VL, Early CM, Field DJ, Gignac PM, Gold MEL, Kimball RT, Kawabe S, Lefebvre L, Marugán-Lobón J, Mongle CS, Morhardt A, Norell MA, Ridgely RC, Rothman RS, Scofield RP, Tambussi CP, Torres CR, van Tuinen M, Walsh SA, Watanabe A, Witmer LM, Wright AK, Zanno LE, Jarvis ED, Smaers JB. Tempo and Pattern of Avian Brain Size Evolution. Curr Biol 2020; 30:2026-2036.e3. [DOI: 10.1016/j.cub.2020.03.060] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/05/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022]
|
41
|
Nicolaï MPJ, Shawkey MD, Porchetta S, Claus R, D'Alba L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat Commun 2020; 11:2414. [PMID: 32415098 PMCID: PMC7229023 DOI: 10.1038/s41467-020-15894-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/26/2020] [Indexed: 12/02/2022] Open
Abstract
Plumage is among the most well-studied components of integumentary colouration. However, plumage conceals most skin in birds, and as a result the presence, evolution and function of skin colour remains unexplored. Here we show, using a database of 2259 species encompassing >99% of bird genera, that melanin-rich, black skin is found in a small but sizeable percentage (~5%) of birds, and that it evolved over 100 times. The spatial distribution of black skin follows Gloger’s rule, which states that pigmentation of endothermic animals increases towards the equator. Furthermore, most black-skinned birds inhabit high irradiation regions, and tend to be bald and/or have white feathers. Thus, taken together, our results suggest that melanin-rich, black skin helps to protect birds against ultraviolet irradiation. More generally, our results illustrate that feathered skin colour varies taxonomically, ontogenetically and temporally, providing an additional dimension for avian colour research. In contrast to bird plumage, little is known about the evolution of bird skin color. Here, Nicolaï et al. find that black skin has evolved over 100 times in birds and is associated with baldness and/or white feathers as well as with high irradiation habitats, suggesting a role in UV protection.
Collapse
Affiliation(s)
- Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium. .,Department of Recent Vertebrates, Royal Belgian Institute of Natural Sciences, Leuven, Belgium.
| | - Matthew D Shawkey
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Sara Porchetta
- Department of Earth and Environmental Sciences, KULeuven, Leuven, Belgium.,von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium
| | - Ruben Claus
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Liliana D'Alba
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
42
|
Ecology and allometry predict the evolution of avian developmental durations. Nat Commun 2020; 11:2383. [PMID: 32409662 PMCID: PMC7224302 DOI: 10.1038/s41467-020-16257-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/23/2020] [Indexed: 11/08/2022] Open
Abstract
The duration of the developmental period represents a fundamental axis of life-history variation, yet broad insights regarding the drivers of this diversity are currently lacking. Here, we test mechanistic and ecological explanations for the evolution of developmental duration using embryological data and information on incubation and fledging for 3096 avian species. Developmental phases associated primarily with growth are the longest and most variable, consistent with a role for allometric constraint in determining the duration of development. In addition, developmental durations retain a strong imprint of deep evolutionary history and body size differences among species explain less variation than previously thought. Finally, we reveal ecological correlates of developmental durations, including variables associated with the relative safety of the developmental environment and pressures of breeding phenology. Overall, our results provide broad-scale insight into the relative importance of mechanistic, ecological and evolutionary constraints in shaping the diversification of this key life-history trait.
Collapse
|
43
|
Ducatez S, Lefebvre L, Sayol F, Audet JN, Sol D. Host Cognition and Parasitism in Birds: A Review of the Main Mechanisms. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
44
|
Yin RY, Ye YC, Newman C, Buesching CD, Macdonald DW, Luo Y, Zhou ZM. China's online parrot trade: Generation length and body mass determine sales volume via price. Glob Ecol Conserv 2020; 23:e01047. [PMID: 32292803 PMCID: PMC7144616 DOI: 10.1016/j.gecco.2020.e01047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/01/2022] Open
Abstract
The wildlife trade threatens global biodiversity and animal welfare, where parrots are among the taxa most frequently traded, supplying exotic pets and captive breeders worldwide. Using phylogenetic path analysis, we examine how biological factors interact with price to influence online protected parrot trade volumes in China, using transactions recorded for 46 species (n = 5862 individuals). Trade was greatest in smaller, faster breeding species that commanded a lower price. This price effect followed the economic law of demand, with Relatively Inelastic Demand (−0.758), outweighing indicators of ‘quality’ such as body coloration, and conservation status. We identify two areas of concern: those larger, slower-breeding, rarer species, even though sold at lower numbers, may be at conservation risk if harvested from the wild. In contrast, the sheer numbers (over 90% of the individuals were under median generation length, body mass and/or price) and ready availability of smaller and more common species comprises a substantial overall animal welfare issue, given that the capture, importation, or captive breeding of many parrot species in China is illegal and thus unregulated. Our investigation highlights the importance of properly understanding the internal relations among drivers of wildlife trade to inform appropriate management.
Collapse
Affiliation(s)
- Ru-Yi Yin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Yun-Chun Ye
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Chris Newman
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - Yi Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Zhao-Min Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| |
Collapse
|
45
|
Sayol F, Sol D, Pigot AL. Brain Size and Life History Interact to Predict Urban Tolerance in Birds. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
Shatkovska OV, Ghazali M. Integration of skeletal traits in some passerines: impact (or the lack thereof) of body mass, phylogeny, diet and habitat. J Anat 2019; 236:274-287. [PMID: 31713858 DOI: 10.1111/joa.13095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 02/05/2023] Open
Abstract
Morphological integration of the bird skeleton is of great interest because it relates to issues of specialization, plasticity, and rate of evolutionary transformations of a skeleton as a whole and its anatomical regions. Despite growing interest, the integration and modularity of the skeleton of birds, in general, remain little studied. We evaluated the change of relative sizes and integration of shapes of skull, sternum and pelvis, and factors that influence the covariation of these regions among passerines. Results of both standard and phylogenetic reduced major axis showed that the relative lengths of the most studied skeletal traits were largely determined by body mass. The length of the skull scaled isometrically on body mass, and the lengths of both synsacrum and ilium showed positive allometry. Within the skull, beak length was positively allometric, whereas cranium length was negatively allometric with body mass. We found the presence of covariation between shapes of skull, sternum and pelvis using standard partial least squares (PLS) analysis and absence of covariation between most of these blocks using evolutionary PLS analysis on phylogenetic independent contrasts. Evolutionary integration is confirmed only for shapes of skull and pelvis (dorsal view).
Collapse
Affiliation(s)
- Oksana V Shatkovska
- Department of Evolutionary Morphology, Schmalhausen Institute of Zoology of NAS of Ukraine, Kyiv, Ukraine
| | - Maria Ghazali
- Department of Evolutionary Morphology, Schmalhausen Institute of Zoology of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
47
|
Sayol F, Lapiedra O, Ducatez S, Sol D. Larger brains spur species diversification in birds. Evolution 2019; 73:2085-2093. [PMID: 31518002 DOI: 10.1111/evo.13811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 01/02/2023]
Abstract
Evidence is accumulating that species traits can spur their evolutionary diversification by influencing niche shifts, range expansions, and extinction risk. Previous work has shown that larger brains (relative to body size) facilitate niche shifts and range expansions by enhancing behavioral plasticity but whether larger brains also promote evolutionary diversification is currently backed by insufficient evidence. We addressed this gap by combining a brain size dataset for >1900 avian species worldwide with estimates of diversification rates based on two conceptually different phylogenetic-based approaches. We found consistent evidence that lineages with larger brains (relative to body size) have diversified faster than lineages with relatively smaller brains. The best supported trait-dependent model suggests that brain size primarily affects diversification rates by increasing speciation rather than decreasing extinction rates. In addition, we found that the effect of relatively brain size on species-level diversification rate is additive to the effect of other intrinsic and extrinsic factors. Altogether, our results highlight the importance of brain size as an important factor in evolution and reinforce the view that intrinsic features of species have the potential to influence the pace of evolution.
Collapse
Affiliation(s)
- Ferran Sayol
- Department of Biological and Environmental Sciences, University of Gothenburg, SE 405 30, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, SE 405 30, Gothenburg, Sweden
| | | | - Simon Ducatez
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain.,Department of Biology, McGill University, H3A 2T5, Montréal, Canada
| | - Daniel Sol
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain.,CSIC, Cerdanyola del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
48
|
De Meester G, Huyghe K, Van Damme R. Brain size, ecology and sociality: a reptilian perspective. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gilles De Meester
- Functional Morphology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Katleen Huyghe
- Functional Morphology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|