1
|
Xu XQ, Yu S, Yue XY, Liu Z, Lyu JM, Wang YL, Hu ZY, Li Y, Chen LH, Su BL. Anchoring Cu sites in a hierarchical single-crystalline ZSM-5 zeolite for enhanced diffusion and benzene oxidation. Dalton Trans 2025; 54:7734-7740. [PMID: 40259767 DOI: 10.1039/d5dt00442j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Phenol is an important intermediate for high-value chemicals. Current phenol production via the three-step cumene process leads to significant energy waste and environmental problems. The conversion of benzene to phenol under mild conditions can be achieved by oxidation with Cu-based zeolites. However, conventional microporous zeolites suffer from severe diffusion limitations, especially when bulky molecules, such as benzene, are involved. In this work, we used a hierarchically macro-meso-microporous ZSM-5 single crystal (Hier-ZSM-5) as a substrate for Cu species (Cu@Hier-ZSM-5). The irregular morphology of the opal-like Hier-ZSM-5 exhibited abundant surface Si-OH groups and provided a platform for stabilizing Cu2+ sites. Meanwhile, hierarchical porosity significantly improved the diffusion ability of bulky molecules. As a result, excellent selective oxidation performance of benzene was obtained with Cu@Hier-ZSM-5, achieving a conversion of 77% and a phenol selectivity of 73%, which were 1.5 times and 2 times higher than those obtained with a catalyst based on microporous ZSM-5, respectively. CuOOH species were identified as an important intermediate in benzene oxidation. This hierarchical zeolite system, with a synergistic effect of site anchoring and molecular diffusion, provides an excellent platform for catalyst design.
Collapse
Affiliation(s)
- Xue-Qing Xu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Shen Yu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Xing-Yu Yue
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Zhan Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jia-Min Lyu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Zhi-Yi Hu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yu Li
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Li-Hua Chen
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
| | - Bao-Lian Su
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, Hubei, China.
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
2
|
Zhang QS, Wang YL, Yue L, Shan YD, Wu SH, Liu Y, Han X. Highly Selective Oxidation of Benzene to Phenol Mediated by KHCO 3 in the Bimetallic Mo-Cu/NC-H 2O 2 System. Inorg Chem 2025; 64:9342-9355. [PMID: 40293284 DOI: 10.1021/acs.inorgchem.5c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Although selective oxidation of benzene to phenol (SOBP) by H2O2 is an important chemical process, overoxidation of benzene by the produced nonselective •OH during the activation of H2O2 inevitably reduces the oxidation selectivity. We, therefore, attempt to mediate the oxidation selectively by using electrophilic KHCO3 in the oxidation system. In this study, Mo-Cu/NC has been successfully synthesized via ball-milling bimetallic Mo-Cu and N-doped carbon, which exhibits high reactivity in SOBP by H2O2 and KHCO3 with a desirable phenol yield of 25.1% and selectivity of 100%. A series of characterizations and DFT calculations reveal that the reaction between H2O2 and KHCO3 produces HCO4-, which is then moderately activated on Mo1Cu2/NC via the nonradical pathway with the formation of Mo-(η2-O2) peroxo. Meanwhile, Ov at Mo1Cu2/NC facilitates the adsorption of benzene, which is then selectively oxidized by Mo-(η2-O2) peroxo to phenol via the oxygen atom transfer pathway. This study provides new insights on the importance of Mo-(η2-O2) peroxo mediated by H2O2-KHCO3 in selective oxidation of aromatic C-H bond via the nonradical pathway.
Collapse
Affiliation(s)
- Qing-Shuai Zhang
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yu-Le Wang
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Li Yue
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yu-Dong Shan
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Song-Hai Wu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xu Han
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Zhang H, Xu G. Yb-Doped CuY modulates Cu electronic structures for efficient oxidation of anisole to guaiacol. RSC Adv 2025; 15:9899-9909. [PMID: 40171280 PMCID: PMC11959456 DOI: 10.1039/d5ra00463b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
Copper-based catalysts are widely employed in the catalytic conversion of aromatic compounds to phenolic derivatives. However, single-atom copper catalysts often exhibit limited reactivity and stability. In this study, we addressed these limitations by loading Cu onto NaY zeolite via ion exchange to synthesize a CuY catalyst, followed by Yb modification. By optimizing the Yb content, we significantly enhanced the anisole conversion rate and guaiacol yield. Catalyst characterization revealed that Yb species modulate the electronic structure of copper, favoring the formation of abundant Cu+ species. This electronic modification promotes the catalytic generation of hydroxyl radicals (˙OH) from hydrogen peroxide, thereby accelerating the reaction kinetics. Furthermore, Yb incorporation into CuY induced the formation of oxygen vacancies, which improved hydroxyl radical adsorption and facilitated the generation of metal-oxo species. These synergistic effects collectively increased the reaction's overall conversion efficiency. Under optimized reaction conditions, the Yb/CuY catalyst achieved an anisole conversion of 56.2% and an ortho-selectivity of 74.6%, clearly outperforming previous reports.
Collapse
Affiliation(s)
- Hanghang Zhang
- a, Polytechnic Institute, Zhejiang University Hangzhou 310015 China
| | - Gang Xu
- College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
4
|
Tong Y, Wang X, Zhang Y, Xu J, Sun C. Reactive species in peracetic acid-based AOPs: A critical review of their formation mechanisms, identification methods and oxidation performances. WATER RESEARCH 2025; 272:122917. [PMID: 39671863 DOI: 10.1016/j.watres.2024.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The efficient removal of emerging micropollutants poses significant challenges in wastewater treatments. Advanced oxidation processes (AOPs) are extensively studied in the field, and peracetic acid (PAA) has attracted great attention as an alternative oxidant in recent years. Various reactive species yield in PAA-based AOPs, which are regarded as the promising approaches for pollutants elimination. This review systematically investigates the formation pathways, identification methods and oxidation performances of the reactive species in PAA-based AOPs, putting focus on the organic radicals such as CH3C(O)O•, CH3C(O)OO•, CH3OO• and •CH3. Firstly, the formation pathways of reactive species induced by PAA activation are outlined. Then the specific probes and quenchers used for the identification of reactive species are summarized, and the commonly used methods are described and discussed. The reaction kinetics and mechanisms of reactive species and compounds are compared, indicating that the oxidation performances of organic radicals are mainly depended on the properties of radicals and the structure of compounds. Finally, the prospects on further research of PAA-based AOPs are proposed. This article provides a comprehensive overview of organic radicals for the first time, which can serve useful reference for ongoing studies in PAA-based AOPs.
Collapse
Affiliation(s)
- Yunping Tong
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu Province, PR China
| | - Xiaolei Wang
- School of Environment Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Yuanzheng Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu Province, PR China
| | - Jian Xu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu Province, PR China.
| | - Cheng Sun
- School of Environment Nanjing University, Nanjing 210023, Jiangsu Province, PR China.
| |
Collapse
|
5
|
Yu D, Lin Y, Zhou W, Wang X, Yu Z, Hou Y, Anpo M, Yu JC, Zhang J, Wang X. Photocatalytic Oxidation of Benzene to Phenol with O 2 over WO 3 Treated by Vacuum-Sealed Annealing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4287-4295. [PMID: 39912609 DOI: 10.1021/acs.langmuir.4c04998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Photocatalytic oxidation of benzene to phenol using molecular O2 is one of the most promising sustainable approaches for the green synthesis of phenol. Introducing oxygen vacancies (OVs) on semiconductor surfaces by defect engineering is a promising strategy to enhance the efficiency of benzene oxidation to produce phenol due to the unique functions of OVs in facilitating the charge separation and activation of molecular O2. Herein, a vacuum-sealed annealing strategy has been well developed to generate abundant surface OVs on semiconductors, such as WO3. The well-sealed quartz vial creates a well-controlled low-pressure condition for the formation of OVs without the need for external energy for maintaining the vacuum state. Moreover, the gaseous species generated during the thermal annealing process help mitigate stress-induced defects, particularly bulk defects. The vacuum-sealed annealed WO3 with sufficient OVs and reduced bulk defects shows a better photocatalytic performance in the one-step oxidation of benzene to phenol with O2, compared to the WO3 synthesized through thermal annealing in Ar and H2 atmospheres. The present vacuum-sealed annealing strategy is found to be further applicable to engineer a wide range of semiconducting photocatalysts with abundant OVs to optimize their properties for efficient photocatalysis and other OV-promoted systems.
Collapse
Affiliation(s)
- Dexi Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yuhong Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Wenhui Zhou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiaoyi Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhenzhen Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Masakazu Anpo
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P. R. China
| | - Jinshui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
6
|
Niu X, Wei J, Jiang Z, Cui X, Li Y, Cui N, Li J, Wang L, Huo J, Ji W, Zhang X, Li J. New insights into the pH-dependent removal of sulfamethoxazole in peracetic acid activation systems: From mechanistic exploration to practical application potentials. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134674. [PMID: 38823106 DOI: 10.1016/j.jhazmat.2024.134674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Peracetic acid (PAA) as emerging oxidant in advanced oxidation processes (AOPs) has attracted widespread attention in purifying water pollution. In this research, the removal of target contaminant (sulfamethoxazole, SMX) was investigated through PAA activation by a facile catalyst (Co@C), and the active sites of catalyst were identified as sp3-C, Oads, and Co0 by correlation analysis. Especially, different pH adjustment strategies were designed, including System A (adjusting pH after adding PAA) and System B (adjusting pH before adding PAA), to investigate the impact of oxidant acidity and alkalinity on solution microenvironment as well as effect and mechanism of pollutant removal. The results showed that HO· and CH3C(O)OO· dominated in System A, while Co(IV)O2+ was also observed in System B. Both systems showed optimal SMX degradation (98 %). However, System A exhibited excellent water quality tolerance (efficiency > 78 %), superior sustained catalyst activation (efficiency > 80 % in 40 h), less ion leaching (41 μg L-1), and lower products toxicity. Moreover, the pH of solution after reaction in System B was intensely acidic, requiring costly pH adjustments for discharge. This study unveils the strategy of adjusting pH after adding PAA is preferable for water purification, enriching the emerging research of PAA-based AOPs for the remediation of environments.
Collapse
Affiliation(s)
- Xiruo Niu
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jia Wei
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Zijian Jiang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xueru Cui
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yanan Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Nan Cui
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiamei Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Linhao Wang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiangkai Huo
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Ji
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaohui Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Shen Q, Sheng K, Gao ZY, Bilyachenko A, Huang XQ, Azam M, Tung CH, Sun D. Vanadium-Silsesquioxane Nanocages as Heterogeneous Catalysts for Synthesis of Quinazolinones. Inorg Chem 2024; 63:13022-13030. [PMID: 38946199 DOI: 10.1021/acs.inorgchem.4c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The functionalization of polyoxovanadate clusters is promising but of great challenge due to the versatile coordination geometry and oxidation state of vanadium. Here, two unprecedented silsesquioxane ligand-protected "fully reduced" polyoxovanadate clusters were fabricated via a facial solvothermal methodology. The initial mixture of the two polyoxovanadate clusters with different colors and morphologies (green plate V14 and blue block V6) was successfully separated as pure phases by meticulously controlling the assembly conditions. Therein, the V14 cluster is the highest-nuclearity V-silsesquioxane cluster to date. Moreover, the transformation from a dimeric silsesquioxane ligand-protected V14 cluster to a cyclic hexameric silsesquioxane ligand-protected V6 cluster was also achieved, and the possible mechanism termed "ligand-condensation-involved dissociation reassembly" was proposed to explain this intricate conversion process. In addition, the robust V6 cluster was served as a heterogeneous catalyst for the synthesis of important heterocyclic compounds, quinazolinones, starting from 2-aminobenzamide and aldehydes. The V6 cluster exhibits high activity and selectivity to access pure quinazolinones under mild conditions, where the high selectivity was attributed to the confinement effect of the macrocyclic silsesquioxane ligand constraining the molecular freedom of the reaction species. The stability and recyclability as well as the tolerance of a wide scope of aldehyde substrates endow the V6 cluster with a superior performance and appreciable potential in catalytic applications.
Collapse
Affiliation(s)
- Qi Shen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Kai Sheng
- School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, People's Republic of China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Alexey Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119334, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Xian-Qiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455 Riyadh 11451, Saudi Arabia
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
8
|
Chen Q, Jiao CY, Xu H, Li SM, Yang JB, Mei H, Xu Y. Copper-containing POM-based hybrid P2Mo22V4Cu4 nanocluster as heterogeneous catalyst for the light-driven hydroxylation of benzene to phenol. Dalton Trans 2024; 53:1190-1195. [PMID: 38108093 DOI: 10.1039/d3dt02812g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The current traditional phenol production process has many shortcomings, and the efficient and clean photocatalytic one-step oxidation to phenol is gradually attracting attention. Heteropolyacids (PMo10V2) with high-density Lewis acid active sites and excellent photoelectron transfer ability are ideal choices for catalytic reactions. In this study, a copper-modified isolated dimeric hybrid nanocluster, [Cu(pyim)2]2[Cu(pyim)2(P2MoVI20MoV2VIV4O82)]2·(H2O) (pyim = [2-(pyridin-2-yl)imidazole]), was synthesized by a convenient hydrothermal method. The structural analysis demonstrated that the compound was composed of metal-organic complexes containing pyim ligands, Keggin-type heteropolyacids, and transition metal copper ions. Remarkably, this not only solves the difficulty that the heteropolymeric acid cannot be recovered by dissolving in the solvent but also introduces the copper atom as a second active center. The catalyst exhibited a benzene conversion of 15.6% and a selectivity of 85.2% in a mixed solution of acetonitrile and acetic acid under optimal reaction conditions. After four catalytic cycles, the PXRD pattern proved that the catalyst was still stable. This study provides a good idea for photocatalytic reactions and other environmental applications.
Collapse
Affiliation(s)
- Qun Chen
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Cheng-Yang Jiao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Hu Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Si-Man Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Jian-Bo Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| |
Collapse
|
9
|
Li SM, Wang JL, Zhou JL, Xiang XY, Yu YT, Chen Q, Mei H, Xu Y. An iron-containing POM-based hybrid compound as a heterogeneous catalyst for one-step hydroxylation of benzene to phenol. Dalton Trans 2024; 53:1058-1065. [PMID: 38099604 DOI: 10.1039/d3dt03560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
It is a major challenge to perform one-pot hydroxylation of benzene to phenol under mild conditions, which replaces the environmentally harmful cumene method. Thus, finding highly efficient heterogeneous catalysts that can be recycled is extremely significant. Herein, a (POM)-based hybrid compound {[FeII(pyim)2(C2H5O)][FeII(pyim)2(H2O)][PMoV2MoVI9VIV3O42]}·H2O (pyim = 2-(2-pyridyl)benzimidazole) (Fe2-PMo11V3) was successfully prepared by hydrothermal synthesis using typical Keggin POMs, iron ions and pyim ligands. Single-crystal diffraction shows that the Fe-pyim unit in Fe2-PMo11V3 forms a stable double-supported skeleton by Fe-O bonding to the polyacid anion. Remarkably, due to the introduction of vanadium, Fe2-PMo11V3 forms a divanadium-capped conformation. Benzene oxidation experiments indicated that Fe2-PMo11V3 can catalyze the benzene hydroxylation reaction to phenol in a mixed solution of acetonitrile and acetic acid containing H2O2 at 60 °C, affording a phenol yield of about 16.2% and a selectivity of about 94%.
Collapse
Affiliation(s)
- Si-Man Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Jiu-Lin Zhou
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xin-Ying Xiang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ya-Ting Yu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Qun Chen
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
10
|
Liu X, Liu Y, Wu Y, Dong S, Qi G, Chen C, Xi S, Luo P, Dai Y, Han Y, Zhou Y, Guo Y, Wang J. Room temperature removal of high-space-velocity formaldehyde boosted by fixing Pt nanoparticles into Beta zeolite framework. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131848. [PMID: 37336111 DOI: 10.1016/j.jhazmat.2023.131848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Catalytic oxidation of volatile organic compounds like formaldehyde (HCHO) over the noble metals catalysts at room temperature is among the most promising strategies to control indoor pollution but remains one challenge to maximize the efficiency of noble metal species. Herein, we demonstrated the straightforward encapsulation of highly dispersive Pt nanoparticles (NPs) within BEA zeolite and adjacent with the surface hydroxyl groups to reach the synergistic HCHO oxidation at 25 °C. High efficiency and long-term stability was reached under large space velocity (∼100% conversion at 180,000 mL (gcat × h)-1 and >95% at 360,000 mL (gcat × h)-1), affording rapid elimination rate of 129.4 μmol (gPt × s)-1 and large turnover frequency of 2.5 × 10-2 s-1. This is the first synergy example derived from the hydroxyl groups and confined noble metals within zeolites that accelerated the rate-determining step, the formate transformation, in the HCHO elimination.
Collapse
Affiliation(s)
- Xiaoling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yitong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yue Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shan Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guoqin Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A⁎STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Pan Luo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yihu Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yu Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
11
|
Miao F, Yue X, Cheng C, Chen X, Ren W, Zhang H. Insights into the mechanism of carbocatalysis for peracetic acid activation: Kinetic discernment and active site identification. WATER RESEARCH 2022; 227:119346. [PMID: 36395567 DOI: 10.1016/j.watres.2022.119346] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Peracetic-acid-based advanced oxidation processes (PAA-AOPs) on metal-free catalysts have emerged as charming strategies for water contaminant removal. However, the involved reactive species and their corresponding active sites are ambiguous. Herein, using carbon nanotube (CNT) as a model carbocatalyst, we demonstrated that, under neutral conditions, the CNT-PAA* complex was the dominant reactive species to oxidize phenolic compounds via electron-transfer process (ETP), whereas the surface-bound hydroxyl radicals (·OHsurface) played a minor role on the basis of quenching and electrochemical tests as well as Raman spectroscopy. More importantly, the experimental and density functional theory (DFT) calculation results collaboratively proved that the active site for ETP was the sp2-hybridized carbon on the CNT bulk, while that for radical generation was the edge-located hydroxyl group (C-OH), which lowered the energy barrier for cleaving the O-O bond in CNT-PAA* complex. We further discerned the oxidation kinetic constants (koxid) of different pollutants from the apparent kinetic constants in CNT/PAA system. The significant negative linear correlation between lnkoxid and half-wave potential of phenolic compounds suggests that the pollutants with a lower one-electron oxidation potential (i.e., stronger electron-donating ability) are more easily oxidized. Overall, this study scrutinizes the hybrid radical and non-radical mechanism and the corresponding active sites of the CNT/PAA system, providing insights into the application of PAA-AOPs and the development of ETP in the remediation of emerging organic pollutants.
Collapse
Affiliation(s)
- Fei Miao
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Xiting Yue
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Cheng Cheng
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Xuantong Chen
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resource Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hui Zhang
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
12
|
Chen Z, Zou M, Li G, Liu X, Zhou Y, Wang J. Enhancing efficiency of solvent-free oxidation of aromatic alcohols with atmospheric oxygen by POSS-based cationic polymer backbone paired heteropolyanions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Liu M, Don X, Guo Z, Yuan A, Gao S, Yang F. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Application of Raw and Chemically Modified Biomasses for Heterogeneous Cu-Catalysed Conversion of Aryl boronic Acids to Phenols Derivatives. Catalysts 2022. [DOI: 10.3390/catal12010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This work describes the application of raw and chemically modified cellulose and sugarcane bagasse for ipso-hydroxylation of aryl boronic acids in environmentally friendly reaction conditions. The catalytic efficiency of five support-[Cu] materials was compared in forming phenols from aryl boronic acids. Our investigation highlights that the CEDA-[Cu] material (6-deoxy-6-aminoethyleneamino cellulose loaded with Cu) leads to the best results under very mild reaction conditions. The optimized catalytic sequence, allowing a facile transformation of boronic acids to phenols, required the mandatory and joint presence of the support, Cu2O, and KOH at room temperature. CEDA-[Cu] was characterized using 13C solid-state NMR, ICP, and FTIR. The use of CEDA-[Cu] accounts for the efficacious synthesis of variously substituted phenol derivatives and presents very good recyclability after five catalytic cycles.
Collapse
|
15
|
Li X, Li S, Jia W, Sun Q, Zhang Y. Reusable citric acid modified V/AC catalyst prepared by dielectric barrier discharge for hydroxylation of benzene to phenol. NEW J CHEM 2022. [DOI: 10.1039/d1nj05145h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reusable and efficient citric acid modified V/AC catalyst for benzene hydroxylation was prepared using an environmentally benign DBD method.
Collapse
Affiliation(s)
- Xiuying Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Siyu Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Wenting Jia
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Qi Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yue Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| |
Collapse
|
16
|
Li Y, Li S, Kong Y. Hydroxylation of benzene to phenol over heteropoly acid H 5PMo 10V 2O 40 supported on amine-functionalized MCM-41. RSC Adv 2021; 11:26571-26580. [PMID: 35480001 PMCID: PMC9037690 DOI: 10.1039/d1ra04269f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Supported catalysts with Keggin type heteropoly acids (H5PMo10V2O40) loaded onto amine-functionalized MCM-41 for the catalytic hydroxylation of benzene to phenol with H2O2 were prepared by a wet impregnation method. The effects of the preparation conditions on the properties and activity of the supported catalysts were fully investigated. The results showed that the catalyst retained the mesoporous structure of MCM-41 and H5PMo10V2O40 was dispersed uniformly on the surface of the amine-functionalized MCM-41. Meanwhile, the reusability and catalytic performance of the catalyst were affected by two key factors, i.e., the interaction between the heteropoly acid and the surface of MCM-41, and the hydrophobicity of the catalyst since they decide the leaching of H5PMo10V2O40 and the adsorption of benzene. The catalyst with H5PMo10V2O40 loaded onto amine-functionalized MCM-41, which was prepared using ethanol as the solvent, exhibited the highest phenol yield (20.4%), a turnover frequency value of 20.3 h-1 and good reusability. We believe this work offers an effective and facile strategy for the preparation of a new catalyst for hydroxylation of benzene to phenol.
Collapse
Affiliation(s)
- Yanjun Li
- Faculty of Materials and Chemical Engineering, Yibin University Yibin Sichuan 644000 China
| | - Shichao Li
- Faculty of Materials and Chemical Engineering, Yibin University Yibin Sichuan 644000 China
| | - Yan Kong
- Department of Safety and Operation Management, Yibin Tianyuan Group Company Limited Yibin 644000 China
| |
Collapse
|
17
|
Li M, Shen X, Liu M, Lu J. Synthesis TS-1 nanozelites via L-lysine assisted route for hydroxylation of Benzene. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
19
|
Zhou Y, Zhang J, Wang L, Cui X, Liu X, Wong SS, An H, Yan N, Xie J, Yu C, Zhang P, Du Y, Xi S, Zheng L, Cao X, Wu Y, Wang Y, Wang C, Wen H, Chen L, Xing H, Wang J. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science 2021; 373:315-320. [PMID: 34437149 DOI: 10.1126/science.aax5776] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2020] [Accepted: 06/07/2021] [Indexed: 01/21/2023]
Abstract
The development of low-cost, efficient physisorbents is essential for gas adsorption and separation; however, the intrinsic tradeoff between capacity and selectivity, as well as the unavoidable shaping procedures of conventional powder sorbents, greatly limits their practical separation efficiency. Herein, an exceedingly stable iron-containing mordenite zeolite monolith with a pore system of precisely narrowed microchannels was self-assembled using a one-pot template- and binder-free process. Iron-containing mordenite monoliths that could be used directly for industrial application afforded record-high volumetric carbon dioxide uptakes (293 and 219 cubic centimeters of carbon dioxide per cubic centimeter of material at 273 and 298 K, respectively, at 1 bar pressure); excellent size-exclusive molecular sieving of carbon dioxide over argon, nitrogen, and methane; stable recyclability; and good moisture resistance capability. Column breakthrough experiments and process simulation further visualized the high separation efficiency.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jianlin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Lei Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xili Cui
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Xiaoling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Sie Shing Wong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Hua An
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jingyan Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cong Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peixin Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences, Jurong Island, Singapore 627833, Singapore.,National Synchrotron Light Source II, Brookhaven National Lab, Upton, NY 11973, USA
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Jurong Island, Singapore 627833, Singapore
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xingzhong Cao
- Multi-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yajing Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yingxia Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chongqing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haimeng Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lei Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huabin Xing
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
20
|
Wu Y, Zhang X, Wang F, Zhai Y, Cui X, Lv G, Jiang T, Hu J. Synergistic Effect between Fe and Cu Species on Mesoporous Silica for Hydroxylation of Benzene to Phenol. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuzhou Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Xubin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Fumin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Xianbao Cui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Guojun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Tao Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jiaqi Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
21
|
Gu Y, Li Q, Zang D, Huang Y, Yu H, Wei Y. Light‐Induced Efficient Hydroxylation of Benzene to Phenol by Quinolinium and Polyoxovanadate‐Based Supramolecular Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaqi Gu
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
| | - Qi Li
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
| | - Dejin Zang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
| | - Yichao Huang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
| | - Han Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Haidian District Beijing 100084 P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 P. R. China
| |
Collapse
|
22
|
Gu Y, Li Q, Zang D, Huang Y, Yu H, Wei Y. Light-Induced Efficient Hydroxylation of Benzene to Phenol by Quinolinium and Polyoxovanadate-Based Supramolecular Catalysts. Angew Chem Int Ed Engl 2021; 60:13310-13316. [PMID: 32905640 DOI: 10.1002/anie.202011164] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 11/06/2022]
Abstract
Direct Hydroxylation of benzene to phenol with high yield and selectivity has been the goal of phenol industrial production. Photocatalysis can serve as a competitive method to realize the hydroxylation of benzene to phenol owing to its cost-effective and environmental friendliness, however it is still a forbidding challenge to obtain good yield, high selectivity and high atom availability meanwhile. Here we show a series of supramolecular catalysts based on alkoxohexavanadate anions and quinolinium ions for the photocatalytic hydroxylation of benzene to phenol under UV irradiation. We demonstrate that polyoxoalkoxovanadates can serve as efficient catalysts which can not only stabilize quinolinium radicals but also reuse H2 O2 produced by quinolinium ions under light irradiation to obtain excellent synergistic effect, including competitive good yield (50.1 %), high selectivity (>99 %) and high atom availability.
Collapse
Affiliation(s)
- Yaqi Gu
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Qi Li
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Dejin Zang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Yichao Huang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Han Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
23
|
Guo J, Feng Z, Xu J, Zhu J, Zhang G, Du Y, Zhang H, Yan C. Facile Preparation of Methyl Phenols from Ethanol over Lamellar Ce(OH)SO 4· xH 2O. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jinqiu Guo
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Zongjing Feng
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Jun Xu
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Jie Zhu
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Guanghui Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yaping Du
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Hongbo Zhang
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Chunhua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Wang W, Wei Y, Jiang X, He ZH, Zhang C, Liu ZT. Rational Designed Polymer as a Metal-Free Catalyst for Hydroxylation of Benzene to Phenol with Dioxygen. Catal Letters 2021. [DOI: 10.1007/s10562-020-03392-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Li C, Li G, Dong P, Li H, Meng W, Zhang D. Enhancement of Catalytic Activity for Benzene Hydroxylation over Novel V2O5/HZSM-5 Catalyst. KINETICS AND CATALYSIS 2021. [DOI: 10.1134/s0023158421020075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Mishra S, Bal R, Dey R. Heterogeneous recyclable copper oxide supported on activated red mud as an efficient and stable catalyst for the one pot hydroxylation of benzene to phenol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Xie Z, Chen B, Zheng L, Peng F, Liu H, Han B. Monomeric vanadium oxide: a very efficient species for promoting aerobic oxidative dehydrogenation of N-heterocycles. NEW J CHEM 2021. [DOI: 10.1039/d0nj04708b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The isolated monomeric VO4 species, controlled by natural ligand tartaric acid, in the VOx/NbOy@C catalysts exhibited excellent performances and good recyclability in the dehydrogenation of N-heterocycles.
Collapse
Affiliation(s)
- Zhenbing Xie
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloidal and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloidal and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Lirong Zheng
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Fangfang Peng
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloidal and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloidal and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloidal and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
28
|
Si ZB, Xiong JS, Qi T, Yang HM, Min HY, Yang HQ, Hu CW. Theoretical study on molecular mechanism of aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformyfuran catalyzed by VO 2+ with counterpart anion in N, N-dimethylacetamide solution. RSC Adv 2021; 11:39888-39895. [PMID: 35494149 PMCID: PMC9044584 DOI: 10.1039/d1ra07297h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Vanadium-containing catalysts exhibit good catalytic activity toward the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformyfuran (DFF). The aerobic oxidation mechanism of HMF to DFF catalyzed by VO2+ with counterpart anion in N,N-dimethylacetamide (DMA) solution have been theoretically investigated. In DMA solution, the stable VO2+-containing complex is the four-coordinated [V(O)2(DMA)2]+ species. For the gross reaction of 2HMF + O2 → 2DFF + 2H2O, there are three main reaction stages, i.e., the oxidation of the first HMF to DFF with the reduction of [V(O)2(DMA)2]+ to [V(OH)2(DMA)]+, the aerobic oxidation of [V(OH)2(DMA)]+ to the peroxide [V(O)3(DMA)]+, and the oxidation of the second HMF to DFF with the reduction of [V(O)3(DMA)]+ to [V(O)2(DMA)2]+. The rate-determining reaction step is associated with the C–H bond cleavage of –CH2 group of the first HMF molecule. The peroxide [V(O)3(DMA)]+ species exhibits better oxidative activity than the initial [V(O)2(DMA)2]+ species, which originates from its narrower HOMO–LUMO gap. The counteranion Cl− exerts promotive effect on the aerobic oxidation of HMF to DFF catalyzed by [V(O)2(DMA)2]+ species. The rate-determining reaction step is associated with the C–H bond cleavage of –CH2 group of the first HMF molecule oxidized by [V(O)2(DMA)2]+ species, while counteranion Cl− exhibits catalytically promotive effect.![]()
Collapse
Affiliation(s)
- Zhen-Bing Si
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Jin-Shan Xiong
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Ting Qi
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Hong-Mei Yang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Han-Yun Min
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Hua-Qing Yang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Chang-Wei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| |
Collapse
|
29
|
Shen X, Xin Y, Liu H, Han B. Product-oriented Direct Cleavage of Chemical Linkages in Lignin. CHEMSUSCHEM 2020; 13:4367-4381. [PMID: 32449257 DOI: 10.1002/cssc.202001025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Lignin is one of the most important biomacromolecules in the plant biomass and the largest renewable source of aromatic building blocks in nature. Selectively producing value-added chemicals from the catalytic transformation of renewable lignin is of strategic significance and meet sustainability targets owing to the excessive consumption of non-renewable petroleum resource, but remains a long-term challenge owing to the complexity of lignin structure. This Minireview provides a summary and perspective of the extensive research that provides insight into selectively catalytic transformations of lignin and its derived monomers via directed scissor of chemical linkages (C-O and C-C bonds) with product-oriented targets. Furthermore, some challenges and opportunities of lignin catalytic transformation are provided based on existing problems in this field for readers to discuss future research directions.
Collapse
Affiliation(s)
- Xiaojun Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P. R. China
| | - Yu Xin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P. R. China
| |
Collapse
|
30
|
Ottenbacher RV, Talsi EP, Bryliakov KP. Recent progress in catalytic oxygenation of aromatic C–H groups with the environmentally benign oxidants H
2
O
2
and O
2. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roman V. Ottenbacher
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Evgenii P. Talsi
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Konstantin P. Bryliakov
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| |
Collapse
|
31
|
Zhu Z, Ma H, Xu H, Wang B, Wu P, Lü H. Oxidative desulfurization of model oil over Ta-Beta zeolite synthesized via structural reconstruction. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122458. [PMID: 32155526 DOI: 10.1016/j.jhazmat.2020.122458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
As to metallosilicate zeolites, ions with larger size such as Ta5+ in the gels greatly retarded their crystallization during the hydrothermal synthesis, affording long-winded synthesis periods, up-limited framework-substituted metal contents, or even frustrated outcome. An efficient hydrothermal synthesis strategy for metallosilicate, in this case of Ta framework-substituted *BEA zeolite, via structural reconstruction was proposed to stride the gap. The Ta content in our developed Ta-Beta-Re-50 zeolite achieved up to 5.48 % (Si/Ta = 52), breaking through the limitation of Ta contents for conventional method (Si/Ta > 100). Additionally, this Ta-Beta-Re zeolite possessed nanosized crystals (20-40 nm) and short crystallization time (8 h), significantly improving space-time yields of practical zeolite production. Through spectroscopic study, it was confirmed that the existence of zeolite structural units intensively facilitated the formation of nucleation and crystal growth. This innovative Ta-Beta zeolite demonstrated high catalytic performances for oxidation desulfurization, far outperforming traditional fluoride-mediated Ta-Beta-F, which was ascribed to its excellent diffusion properties and incredible high isolated Ta contents. Additionally, the catalytic performance of Ta-Beta-Re could be regenerated after simple calcination and the deactivation may be caused by pore blocking of organics. This work provides a new method for rationally design and construction of metallosilicate materials with high activity for catalytic oxidation applications, which can bridge the conceptual and technical gap between periodic trends and zeolite material synthesis.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Green Chemistry Centre, College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, China
| | - Haikuo Ma
- Green Chemistry Centre, College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, China
| | - Hao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Rd. 3663, Shanghai, 200062, China
| | - Bo Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Rd. 3663, Shanghai, 200062, China.
| | - Hongying Lü
- Green Chemistry Centre, College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, China.
| |
Collapse
|
32
|
Tang J, Liu P, Liu X, Chen L, Wen H, Zhou Y, Wang J. In Situ Encapsulation of Pt Nanoparticles within Pure Silica TON Zeolites for Space-Confined Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11522-11532. [PMID: 32075373 DOI: 10.1021/acsami.9b20884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Straightforward encapsulation of Pt clusters (∼2 nm) into the pure silica TON-type zeolite (ZSM-22) was reached in a dry gel conversion route, where the ionic liquid template was removed via the hydrocracking-calcination-reduction approach. The obtained Pt@ZSM-22 series possessed high crystallinity, large surface area, and ultrafine Pt clusters inside the zeolite crystals. They exhibited remarkable activity in the semi-hydrogenation of phenylacetylene into styrene; the lead sample with 0.2 wt % Pt loading afforded a large turnover number up to 117,787. The preferential high affinity of the pure silica ZSM-22-encapsulated Pt clusters toward the substrate phenylacetylene rather than the hydrogenated product was derived from the unique space-confinement effect of zeolite microchannels, which is responsible for such excellent performance.
Collapse
Affiliation(s)
- Junjie Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Peiwen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaoling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Lei Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Haimeng Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
33
|
Liu C, Zhou Z, Qin J, Li F, Yu C, Liu G, Huang H, Wu W. Influence of Titanium Species on the Ordered Mesoporous Structure of V‐Zr Catalysts for Naphthalene Oxidation with Hydrogen Peroxide. ChemistrySelect 2020. [DOI: 10.1002/slct.201904071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chuanfa Liu
- College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Zhiwei Zhou
- College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Juan Qin
- Productivity Center of Jiangsu Province Technology and Finance Service Center of Jiangsu Province Nanjing 210042 P. R. China
| | - Fanqing Li
- College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Chaojie Yu
- College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Guang Liu
- College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Hao Huang
- College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| | - Wenliang Wu
- College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| |
Collapse
|
34
|
Yu ZH, Gan YL, Xu J, Xue B. Direct Catalytic Hydroxylation of Benzene to Phenol Catalyzed by FeCl3 Supported on Exfoliated Graphitic Carbon Nitride. Catal Letters 2020. [DOI: 10.1007/s10562-019-03003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Liu LJ, Wang ZM, Lyu YJ, Zhang JF, Huang Z, Qi T, Si ZB, Yang HQ, Hu CW. Catalytic mechanisms of oxygen-containing groups over vanadium active sites in an Al-MCM-41 framework for production of 2,5-diformylfuran from 5-hydroxymethylfurfural. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02130b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the V-doped Al-MCM-41 framework, the [V-1] active site with a hydroxyl group displays better catalytic activity than the [V-0] active site without a hydroxyl group toward the oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran.
Collapse
Affiliation(s)
- Li-Juan Liu
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhao-Meng Wang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Ya-Jing Lyu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- P.R. China
| | - Jin-Feng Zhang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhou Huang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Ting Qi
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhen-Bing Si
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Hua-Qing Yang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Chang-Wei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- P.R. China
| |
Collapse
|
36
|
Kumari S, Ray S. Zeolite encapsulated Ni( ii) Schiff-base complexes: improved catalysis and site isolation. NEW J CHEM 2020. [DOI: 10.1039/d0nj01590c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Site isolation and distorted geometry of the zeolite encapsulated complex govern the improved catalysis for phenol hydroxylation reaction.
Collapse
Affiliation(s)
| | - Saumi Ray
- Birla Institute of Technology and Science
- Pilani
- India
| |
Collapse
|
37
|
Sharma N, Lee Y, Nam W, Fukuzumi S. Photoinduced Generation of Superoxidants for the Oxidation of Substrates with High C−H Bond Dissociation Energies. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Namita Sharma
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
- Graduate School of Science and EngineeringMeijo University, Nagoya Aichi 468-8502 Japan
| |
Collapse
|
38
|
Zhu J, Li G, Wang Q, Zhou Y, Wang J. Engineering Surface Groups of Commercially Activated Carbon for Benzene Hydroxylation to Phenol with Dioxygen. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Guoqing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
39
|
A Bi-functional Cobalt and Nitrogen Co-doped Carbon Catalyst for Aerobic Oxidative Esterification of Benzyl Alcohol with Methanol and Oxygen Reduction Reaction. Catal Letters 2019. [DOI: 10.1007/s10562-019-02882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Yang X, Jiang X, Wang W, Yang Q, Ma Y, Wang K. Catalyst- and solvent-free ipso-hydroxylation of arylboronic acids to phenols. RSC Adv 2019; 9:34529-34534. [PMID: 35529971 PMCID: PMC9074145 DOI: 10.1039/c9ra07201b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023] Open
Abstract
A catalyst-free method for the hydroxylation of arylboronic acids to form the corresponding phenols with sodium perborate as the oxidant was developed using water as the solvent. Under the reaction conditions, the yield of phenol reached 92% at only 5 min. Moreover, the reaction could be conducted without a catalyst under the solvent-free condition, the efficiency of which was as high as that of a liquid-phase reaction. Using a microcalorimeter, the reaction was found to be an exothermic reaction. The reaction mechanism was investigated and understood via DFT calculations, which revealed that it was a nucleophilic reaction.
Collapse
Affiliation(s)
- Xiufang Yang
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
| | - Xulu Jiang
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
| | - Weitao Wang
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
| | - Qi Yang
- College of Chemistry and Materials Science, Northwest University Xi'an Shaanxi 710127 China
| | - Yangmin Ma
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
| | - Kuan Wang
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science & Technology Xi'an Shaanxi 710021 China
| |
Collapse
|
41
|
Zhang L, Hou Q, Zhou Y, Wang J. Phosphotungstic anion-paired quinoline salt for heterogeneous photocatalytic hydroxylation of benzene to phenol with air. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Taheri M, Ghiaci M, Moheb A, Shchukarev A. Organic–inorganic hybrid of anchored dicationic ionic liquid on Al‐MCM‐41‐phosphovanadomolybdate toward selective oxidation of benzene to phenol. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoud Taheri
- Department of ChemistryIsfahan University of Technology Isfahan 8415683111 Iran
- College of Pardis, Chemistry SectionIsfahan University of Technology Isfahan 8415683111 Iran
| | - Mehran Ghiaci
- Department of ChemistryIsfahan University of Technology Isfahan 8415683111 Iran
| | - Ahmad Moheb
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 8415683111 Iran
| | | |
Collapse
|
43
|
Tu TN, Nguyen HTT, Nguyen HTD, Nguyen MV, Nguyen TD, Tran NT, Lim KT. A new iron-based metal-organic framework with enhancing catalysis activity for benzene hydroxylation. RSC Adv 2019; 9:16784-16789. [PMID: 35516388 PMCID: PMC9064430 DOI: 10.1039/c9ra03287h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/17/2019] [Indexed: 12/01/2022] Open
Abstract
A new Fe-based metal-organic framework (MOF), termed Fe-TBAPy Fe2(OH)2(TBAPy)·4.4H2O, was solvothermally synthesized. Structural analysis revealed that Fe-TBAPy is built from [Fe(OH)(CO2)2]∞ rod-shaped SBUs (SBUs = secondary building units) and 1,3,6,8-tetrakis(p-benzoate)pyrene (TBAPy4-) linker to form the frz topological structure highlighted by 7 Å channels and 3.4 Å narrow pores sandwiching between the pyrene cores of TBAPy4-. Consequently, Fe-TBAPy was used as a recyclable heterogeneous catalyst for benzene hydroxylation. Remarkably, the catalysis reaction resulted in high phenol yield and selectivity of 64.5% and 92.9%, respectively, which are higher than that of the other Fe-based MOFs and comparable with those of the best-performing heterogeneous catalysts for benzene hydroxylation. This finding demonstrated the potential for the design of MOFs with enhancing catalysis activity for benzene hydroxylation.
Collapse
Affiliation(s)
- Thach N Tu
- Nguyen Tat Thanh University 300A Nguyen Tat Thanh Street, District 4 Ho Chi Minh City 755414 Vietnam
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University-Ho Chi Minh (VNU-HCM) Ho Chi Minh City 721337 Vietnam
| | - Hue T T Nguyen
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University-Ho Chi Minh (VNU-HCM) Ho Chi Minh City 721337 Vietnam
- University of Science, Vietnam National University-Ho Chi Minh (VNU-HCM) Ho Chi Minh City 721337 Vietnam
| | - Huong T D Nguyen
- University of Science, Vietnam National University-Ho Chi Minh (VNU-HCM) Ho Chi Minh City 721337 Vietnam
| | - My V Nguyen
- University of Science, Vietnam National University-Ho Chi Minh (VNU-HCM) Ho Chi Minh City 721337 Vietnam
| | - Trinh D Nguyen
- Nguyen Tat Thanh University 300A Nguyen Tat Thanh Street, District 4 Ho Chi Minh City 755414 Vietnam
| | - Nhung Thi Tran
- Ho Chi Minh City University of Technology and Education 01 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc District Ho Chi Minh City 720100 Vietnam
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University Busan 608-737 South Korea
| |
Collapse
|
44
|
Cao J, Shan W, Wang Q, Ling X, Li G, Lyu Y, Zhou Y, Wang J. Ordered Porous Poly(ionic liquid) Crystallines: Spacing Confined Ionic Surface Enhancing Selective CO 2 Capture and Fixation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6031-6041. [PMID: 30648855 DOI: 10.1021/acsami.8b19420] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Porous poly(ionic liquid)s (PPILs) combine the features of porous materials, polymers, and ionic liquids (ILs) or their derivatives, but they are normally of amorphous structure with disordered pores. Here, we report the facile synthesis of ordered porous poly(ionic liquid) crystallines (OPICs, specialized as a kind of PPIL analogues) with diverse and adjustable framework IL moieties through the Schiff base condensation of IL-derived ionic salts and neutral monomers. Ternary monomer mixtures are employed to artistically control the chemical composition and pore configurations. Compact atomic packing was achieved to give spacing confined ionic surface with strong CO2 affinity. Through monomer control, OPICs exhibit high CO2 uptakes with excellent CO2/N2(CH4) selectivities and efficiently implement CO2 fixation through catalyzing epoxides cycloaddition under down to ambient conditions.
Collapse
|
45
|
Wang W, Tang H, Jiang X, Huang FE, Ma Y. Quinone-amine polymers as metal-free and reductant-free catalysts for hydroxylation of benzene to phenol with molecular oxygen. Chem Commun (Camb) 2019; 55:7772-7775. [DOI: 10.1039/c9cc03623g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Quinone-amine polymers can be employed as a metal-free and reductant-free catalyst for the hydroxylation of benzene to phenol and can yield phenol as high as the transition metal catalyst.
Collapse
Affiliation(s)
- Weitao Wang
- College of Chemistry & Chemical Engineering
- Shaanxi University of Science & Technology
- Xi’an
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Hao Tang
- College of Chemistry & Chemical Engineering
- Shaanxi University of Science & Technology
- Xi’an
- China
| | - Xulu Jiang
- College of Chemistry & Chemical Engineering
- Shaanxi University of Science & Technology
- Xi’an
- China
| | - Fu-E Huang
- College of Chemistry & Chemical Engineering
- Shaanxi University of Science & Technology
- Xi’an
- China
| | - Yangmin Ma
- College of Chemistry & Chemical Engineering
- Shaanxi University of Science & Technology
- Xi’an
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| |
Collapse
|