1
|
Miao Y, Yang S, Zhang F, Li J, Zhang Y. Discovery and biological evaluation of a novel and highly potent JAK2 inhibitor for the treatment of triple negative breast cancer. J Enzyme Inhib Med Chem 2025; 40:2488127. [PMID: 40298145 PMCID: PMC12042240 DOI: 10.1080/14756366.2025.2488127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Janus kinase 2 (JAK2) is considered an attractive target for the treatment of triple-negative breast cancer (TNBC). Herein, we discovered six JAK2 inhibitors using structure-based virtual screening and molecular docking. Among them, JNN-5 was the best compound. It indicated strong inhibitory effects on JAK2 in the nanomolar range (IC50 = 0.41 ± 0.03 nM), and high selectivity for JAK2 over JAK1 and JAK3 (selectivity index (SI) > 73.17). Moreover, molecular dynamics (MD) simulation exhibited that JNN-5 bound with high stability to JAK2 JH1. Cellular assays revealed that JNN-5 displayed strong antiproliferative activities in the TNBC cell lines (MDA-MB-468, MDA-MB-213, HCC70, MDA-MB-157). JNN-5 significantly reduced the migration of HUVECs with the dose-dependence. JNN-5 had a significant inhibitory effect on multidrug-resistant MDA-MB-231/ADR (IC50 = 0.37 ± 0.02 μM). These data demonstrate that JNN-5 may be a highly effective and selective antitumor compound for the treatment of TNBC.
Collapse
Affiliation(s)
- Yingxiang Miao
- Department of Pharmacy, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, China
| | - Shudan Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Fang Zhang
- Taizhou School of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Jindong Li
- Taizhou School of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yan Zhang
- Taizhou School of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
2
|
Hammouz RY, Baryła I, Styczeń-Binkowska E, Bednarek AK. Twenty-five years of WWOX insight in cancer: a treasure trove of knowledge. Funct Integr Genomics 2025; 25:100. [PMID: 40327201 PMCID: PMC12055895 DOI: 10.1007/s10142-025-01601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/07/2025]
Abstract
More than two decades ago, MD Anderson Cancer group discovered, characterised, and identified the WW domain-containing oxidoreductase (WWOX) as a genes of interest mapping to the chromosomal region 16q23.3-24.2. This was pioneering research since WWOX is a critical tumour suppressor gene implicated in various cancers, involving interactions with numerous signalling pathways and molecular mechanisms. Notably, it inhibits the Wnt/β-catenin pathway, which is often activated in tumours. This inhibition helps prevent tumour formation by regulating cell proliferation and promoting apoptosis. Restoration of WWOX expression in cancer cell lines has been shown to reduce tumour growth and increased sensitivity to treatments. In addition to its role in tumour suppression, WWOX has been found to interact with proteins involved in critical signalling pathways such as TGF-β. Recent advancements allowed to reveal its interactions with key proteins and microRNAs that regulate cellular adhesion, invasion, and motility. Proteomic studies have shown that WWOX directly interacts with signalling molecules like Dishevelled and SMAD3, further underscoring its role in antagonizing metastasis. Challenges remain in translating this knowledge into clinical applications. For instance, the mechanisms underlying WWOX loss in tumours and its role across diverse cancer types require further investigation. Overall, WWOX serves as a vital player in maintaining cellular stability and preventing cancer progression through its multifaceted functions. Here, we include an updated molecular function of WWOX in cancers to possibly contribute to the potential use of WWOX expression as a biomarker regarding prognosis and response to the treatment. CLINICAL TRIAL NUMBER: Not applicable.
Collapse
Affiliation(s)
- Raneem Y Hammouz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Izabela Baryła
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Ewa Styczeń-Binkowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland.
| |
Collapse
|
3
|
Fan S, Zuo X, Liu X, Li C, Guo J, Wu J, Lv C, Li Z, Huang Y. Polygonum capitatum combined with ciprofloxacin ameliorated chronic bacterial prostatitis by inhibiting NF-κB/IL-6/JAK2/STAT3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119539. [PMID: 40010554 DOI: 10.1016/j.jep.2025.119539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum capitatum Buch.-Ham. ex D. Don (Pc, DB52/YC141-2003), a traditional herbal medicine utilized by the Miao nationality, is acknowledged for its therapeutic potential and efficacy in treating various urologic disorders, notably chronic bacterial prostatitis (CBP). Experimental and clinical studies have demonstrated that the combination of Pc with Ciprofloxacin (CIP) effectively alleviates the urinary symptoms in CBP patients, offering superior outcomes compared to monotherapy. However, the underlying mechanisms and specific constituents responsible for this synergistic effect remain poorly understood, which hinders its broader clinical application. AIM OF THE STUDY This study aims to elucidate the potential synergistic mechanism of Pc and CIP in ameliorating CBP and to identify the major active ingredient of Pc that contributed most significantly to the therapeutic efficacy when combined with CIP. MATERIALS AND METHODS A rat model of CBP was induced in rats by prostate bilateral injections of Escherichia coli (E. coli.), followed by therapeutic intervention with a combination of Pc and CIP. The therapeutic effect of this combination was assessed by quantifying the Prostate viscera coefficient (PVC) and bacterial colonization. Histopathological changes in the prostate were observed using HE staining. The expressions of inflammatory mediators was quantified using Western blotting (WB), qRT-PCR, and immunohistochemical staining (IHC). To elucidate the molecular mechanisms underlying the synergism of the combination therapy, transcriptomic profiling was performed using RNA sequencing (RNA-seq). Differentially expressed genes were analyzed via Ingenuity Pathway Analysis (IPA) to identify regulated pathways, with critical targets further validated by qRT-PCR and WB. For direct drug target identification, Tissue-thermal proteome profiling (Tissue-TPP) was implemented, incorporating differential temperature heat treatment, data-independent acquisition (DIA) quantitative proteomics, and thermal shift curve analysis to characterize interaction targets of the Pc-CIP combination in prostate tissue. Binding affinity between the drug combination and identified targets was further confirmed through thermal shift assays. Finally, molecular docking simulations were conducted to characterize the predominant bioactive constituents of Pc that contributed synergistically to therapeutic outcomes when co-administered with CIP. RESULTS The results indicated that the combination of Pc and CIP significantly reduced the PVC and bacterial concentration, restored the prostate gland structure, and inhibited the mRNA and protein expression of pro-inflammatory factors (TNF-α and IL-1β) in CBP rats. RNA-Seq combined with IPA analysis showed that Pc combined with CIP significantly inhibited inflammatory signaling pathway in CBP rats, especially the NF-κB/IL-6/JAK2/STAT3 pathway. Moreover, Tissue-TPP revealed that Pik3cb is a direct target of Pc combined with CIP. Molecular docking studies showed that GA, a predominant component of Pc, can directly bind to Pik3cb. Finally, it was also found that the combination of GA and CIP significantly improved CBP. CONCLUSION The results suggest that Pc combined with CIP can mitigate CBP by targeting Pik3cb to inhibit the NF-κB/IL-6/JAK2/STAT3 signaling pathway, and GA may be a potential pharmacodynamic substance of Pc.
Collapse
Affiliation(s)
- Shanshan Fan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China
| | - Xurui Zuo
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China
| | - Xinyue Liu
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China; Tianjin University of Traditional Chinese, No.10 Poyanghu Road, TuanboNew Town, Jinghai District, Tianjin, 301617, China
| | - Chenming Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China; Tianjin University of Traditional Chinese, No.10 Poyanghu Road, TuanboNew Town, Jinghai District, Tianjin, 301617, China
| | - Jun Guo
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jiayin Wu
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China
| | - Chunxiao Lv
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China.
| | - Ziqiang Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China.
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China.
| |
Collapse
|
4
|
Liu Y, Liu Y, Niu X, Chen A, Li Y, Yu Y, Mo B, Liu Z, Xu T, Cheng J, Wu Z, Wei W. Massively parallel interrogation of human functional variants modulating cancer immunosurveillance. Signal Transduct Target Ther 2025; 10:88. [PMID: 40102418 PMCID: PMC11920242 DOI: 10.1038/s41392-025-02171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) therapy has revolutionized clinical cancer treatment, while abnormal PD-L1 or HLA-I expression in patients can significantly impact the therapeutic efficacy. Somatic mutations in cancer cells that modulate these critical regulators are closely associated with tumor progression and ICB response. However, a systematic interpretation of cancer immune-related mutations is still lacking. Here, we harnessed the ABEmax system to establish a large-scale sgRNA library encompassing approximately 820,000 sgRNAs that target all feasible serine/threonine/tyrosine residues across the human genome, which systematically unveiled thousands of novel mutations that decrease or augment PD-L1 or HLA-I expression. Beyond residues associated with phosphorylation events, our screens also identified functional mutations that affect mRNA or protein stability, DNA binding capacity, protein-protein interactions, and enzymatic catalytic activity, leading to either gene inactivation or activation. Notably, we uncovered certain mutations that concurrently modulate PD-L1 and HLA-I expression, represented by the clinically relevant mutation SETD2_Y1666. We demonstrated that this mutation induces consistent phenotypic effects across multiple cancer cell lines and enhances the efficacy of immunotherapy in different tumor models. Our findings provide an unprecedented resource of functional residues that regulate cancer immunosurveillance, offering valuable guidance for clinical diagnosis, ICB therapy, and the development of innovative drugs for cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuran Niu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Ang Chen
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yizhou Li
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Binrui Mo
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Tao Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Jie Cheng
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeguang Wu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
5
|
Yang T, Zhang S, Nie K, Peng X, Huo J, Fu X, Zhang Y. WWOX-mediated p53/SAT1 and NRF2/FPN1 axis contribute to toosendanin-induced ferroptosis in hepatocellular carcinoma. Biochem Pharmacol 2025; 233:116790. [PMID: 39894307 DOI: 10.1016/j.bcp.2025.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Although ferroptosis as an emerging way exhibits tremendous promising in the therapy of hepatocellular carcinoma (HCC), the novel therapeutic agents targeting ferroptosis are still scarce. In our previous study, we found that the natural products toosendanin (TSN) possessed significant anti-proliferative efficacy by regulating WW domain-containing oxidoreductase (WWOX) in HCC. However, there is very limited understanding about TSN-induced ferroptosis, and the role of WWOX in ferroptosis has not been studied. In present study, we investigated the effect and underlying molecular mechanisms of TSN in WWOX-mediated ferroptosis in HCC. We found that TSN induced ferroptosis in HCC cells and its effect was dependent on WWOX. RNA-seq and RT-qPCR assay identified that TSN significantly increased spermidine/spermine N1-acetyltransferase 1 (SAT1) expression while decreased solute carrier family 40 member 1 (SLC40A1) expression, which play vital roles in ferrous ion transport. Further dual-luciferase reporter assay and Co-IP assay revealed that TSN-induced WWOX activation controlled the transcriptional activity of p53 and NF-E2-related factor 2 (NRF2) by regulating their interaction. Meanwhile, IF assay and WB assay confirmed that TSN increased the nuclear distribution of p-WWOX and p-p53 dimers, but impeded the nuclear translocation of NRF2 by inducing its ubiquitination degradation, ultimately regulating the transcription of their downstream target genes. In addition, the results from cell viability assay and the tumor xenograft model verified that co-treatment of TSN, ML385 (NRF2 inhibitor), and MIRA-1 (p53 activator) could effectively inhibit HCC cells growth in the presence of Fer-1 (ferroptosis inhibitor) in vitro and in vivo. Overall, our study contributes to the necessary understanding of the molecular mechanisms of WWOX-mediated ferroptosis regulation, and identifies TSN as a potential therapeutic agent targeting ferroptosis for HCC.
Collapse
Affiliation(s)
- Tianfeng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Suyu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Kun Nie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Jian Huo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China
| | - Yanmin Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China.
| |
Collapse
|
6
|
Yazdimamaghani M, Kolupaev OV, Lim C, Hwang D, Laurie SJ, Perou CM, Kabanov AV, Serody JS. Tumor microenvironment immunomodulation by nanoformulated TLR 7/8 agonist and PI3k delta inhibitor enhances therapeutic benefits of radiotherapy. Biomaterials 2025; 312:122750. [PMID: 39126779 PMCID: PMC11401478 DOI: 10.1016/j.biomaterials.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.
Collapse
Affiliation(s)
- Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oleg V Kolupaev
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Duke Eye Center, Duke University, Durham, NC, USA
| | - Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Sonia J Laurie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander V Kabanov
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Liu Y, Zou Y, Ye Y, Chen Y. Advances in the Understanding of the Pathogenesis of Triple-Negative Breast Cancer. Cancer Med 2024; 13:e70410. [PMID: 39558881 PMCID: PMC11574469 DOI: 10.1002/cam4.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by high aggressiveness, high malignancy, and poor prognosis compared to other breast cancer subtypes. OBJECTIVE This review aims to explore recent advances in understanding TNBC and to provide new insights and potential references for clinical treatment. METHODS We examined current literature on TNBC to analyze molecular subtypes, genetic mutations, signaling pathways, mechanisms of drug resistance, and emerging therapies. RESULTS Findings highlight key aspects of TNBC's molecular subtypes, relevant mutations, and pathways, alongside emerging treatments that target drug resistance mechanisms. CONCLUSION These insights into TNBC pathogenesis may help guide future therapeutic strategies and improve clinical outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Yuhan Liu
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yuhan Zou
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yangli Ye
- College of Life Sciences and TechnologyShandong Second Medical UniversityWeifangChina
| | - Yong Chen
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical SciencesShandong Second Medical UniversityWeifangChina
| |
Collapse
|
8
|
Long L, Xu J, Qi X, Pen Y, Wang C, Jiang W, Peng X, Hu Z, Yi W, Xie L, Lei X, Wang Z, Zhuo L. Discovery of novel small molecules targeting the USP21/JAK2/STAT3 axis for the treatment of triple-negative breast cancer. Eur J Med Chem 2024; 273:116500. [PMID: 38776807 DOI: 10.1016/j.ejmech.2024.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
The deficiency in available targeted agents and frequency of chemoresistance are primary challenges in clinical management of triple-negative breast cancer (TNBC). The aberrant expression of USP21 and JAK2 represents a characterized mechanism of TNBC progression and resistance to paclitaxel (PTX). Despite its clear that high expression of USP21-mediated de-ubiquitination leads to increased levels of JAK2 protein, we lack regulator molecules to dissect the mechanisms that the interaction between USP21 and JAK2 contributes to the phenotype and resistance of TNBC. Here, we report a USP21/JAK2/STAT3 axis-targeting regulator 13c featuring a N-anthraniloyl tryptamine scaffold that showed excellent anti-TNBC potency and promising safety profile. Importantly, the therapeutic potential of using 13c in combination with PTX in PTX-resistant TNBC was demonstrated. This study showcases N-anthraniloyl tryptamine derivatives as a novel anti-TNBC chemotype with a pharmacological mode of action targeting the USP21/JAK2/STAT3 axis and provides a potential therapeutic target for the treatment of TNBC.
Collapse
Affiliation(s)
- Lin Long
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiachi Xu
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaowen Qi
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yan Pen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zecheng Hu
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Liming Xie
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Xiaoyong Lei
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China.
| | - Linsheng Zhuo
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China.
| |
Collapse
|
9
|
Zhou H, Wang Z, Guo J, Zhu Z, Sun G. Analysis of the potential biological significance of glycosylation in triple-negative breast cancer on patient prognosis. Am J Transl Res 2024; 16:2212-2232. [PMID: 39006258 PMCID: PMC11236660 DOI: 10.62347/pxar3644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Breast cancer is the most common malignancy in women, with its prognosis varying greatly according to its subtype. Triple-negative breast cancer (TNBC) has the worst prognosis among all subtypes. Glycosylation is a critical factor influencing the prognosis of patients with TNBC. Our aim is to develop a tumor prognosis model by analyzing genes related to glycosylation to predict patient outcomes. METHODS The dataset used in this study was downloaded from the Cancer Genome Atlas Program (TCGA) database, and predictive genes were identified through Cox one-way regression analysis. The model genes with the highest risk scores among the 18 samples were obtained by lasso regression analysis to establish the model. We analyzed the pathways affecting the progression of TNBC and discovered key genes for subsequent research. RESULTS Our model was constructed using data from TCGA database and validated through Kaplan-Meier curve analysis and Receiver Operating Characteristic (ROC) curve assessment. Our analysis revealed that a high expression of tumor-related chemokines in the high-risk group may be associated with poor tumor prognosis. Furthermore, we conducted a random survival forest analysis and identified two significant genes, namely DPM2 and PINK1, which have been selected for further investigation. CONCLUSION The prognostic analysis model, developed based on the glycosylation genes in TNBC, exhibits excellent validation efficacy. This model is valuable for the prognostic analysis of patients with TNBC.
Collapse
Affiliation(s)
- Han Zhou
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Zhiwei Wang
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Jun Guo
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionUrumqi 830011, Xinjiang, China
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Zihui Zhu
- Department of Breast Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Gang Sun
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionUrumqi 830011, Xinjiang, China
| |
Collapse
|
10
|
Long L, Fei X, Chen L, Yao L, Lei X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front Oncol 2024; 14:1381251. [PMID: 38699644 PMCID: PMC11063389 DOI: 10.3389/fonc.2024.1381251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangyu Fei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liucui Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Yao
- Department of Pharmacy, Central Hospital of Hengyang, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
11
|
Bidany-Mizrahi T, Shweiki A, Maroun K, Abu-Tair L, Mali B, Aqeilan RI. Unveiling the relationship between WWOX and BRCA1 in mammary tumorigenicity and in DNA repair pathway selection. Cell Death Discov 2024; 10:145. [PMID: 38499540 PMCID: PMC10948869 DOI: 10.1038/s41420-024-01878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in women worldwide, with the basal-like or triple-negative breast cancer (TNBC) subtype being particularly aggressive and challenging to treat. Understanding the molecular mechanisms driving the development and progression of TNBC is essential. We previously showed that WW domain-containing oxidoreductase (WWOX) is commonly inactivated in TNBC and is implicated in the DNA damage response (DDR) through ATM and ATR activation. In this study, we investigated the interplay between WWOX and BRCA1, both frequently inactivated in TNBC, on mammary tumor development and on DNA double-strand break (DSB) repair choice. We generated and characterized a transgenic mouse model (K14-Cre;Brca1fl/fl;Wwoxfl/fl) and observed that mice lacking both WWOX and BRCA1 developed basal-like mammary tumors and exhibited a decrease in 53BP1 foci and an increase in RAD51 foci, suggesting impaired DSB repair. We examined human TNBC cell lines harboring wild-type and mutant BRCA1 and found that WWOX expression promoted NHEJ repair in cells with wild-type BRCA1. Our findings suggest that WWOX and BRCA1 play an important role in DSB repair pathway choice in mammary epithelial cells, underscoring their functional interaction and significance in breast carcinogenesis.
Collapse
Affiliation(s)
- Tirza Bidany-Mizrahi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aya Shweiki
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kian Maroun
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lina Abu-Tair
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bella Mali
- Department of Pathology, Hadassah University Hospital, Jerusalem, Israel
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Cyprus Cancer Research Institute (CCRI), Nicosia, Cyprus.
| |
Collapse
|
12
|
Yazdimamaghani M, Kolupaev OV, Lim C, Hwang D, Laurie SJ, Perou CM, Kabanov AV, Serody JS. Tumor microenvironment immunomodulation by nanoformulated TLR 7/8 agonist and PI3k delta inhibitor enhances therapeutic benefits of radiotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584084. [PMID: 38559220 PMCID: PMC10979841 DOI: 10.1101/2024.03.09.584084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic triple-negative breast cancer (TNBC) tumor model limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells specifically in the TME are currently lacking. To overcome this barrier, polymeric micelles nanoparticles (PMNPs) were used for co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta. The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor altered macrophage polarization, reduced MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune response. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic TNBC tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant restructured the TME and has promising potential for future translation combined with RT for patients with TNBC.
Collapse
|
13
|
Jenkins BD, Rossi E, Pichardo C, Wooten W, Pichardo M, Tang W, Dorsey TH, Ajao A, Hutchison R, Moubadder L, McCullough LE, Bailey-Whyte M, Ambs S. Neighborhood Deprivation and DNA Methylation and Expression of Cancer Genes in Breast Tumors. JAMA Netw Open 2023; 6:e2341651. [PMID: 37930698 PMCID: PMC10628736 DOI: 10.1001/jamanetworkopen.2023.41651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2023] [Indexed: 11/07/2023] Open
Abstract
Importance The biological processes that underlie the association of neighborhood environment with chronic diseases, such as cancer, remain poorly understood. Objective To determine whether differences in breast tissue DNA methylation are associated with neighborhood deprivation among Black and White women with breast cancer. Design, Setting, and Participants This cross-sectional study collected breast tissue from women undergoing surgery for breast cancer between January 1, 1993, and December 31, 2003. Participants were recruited through the University of Maryland Medical Center, with additional collection sites at Baltimore-area hospitals. Data analysis was performed from March 1 through December 1, 2022. Exposure Year 2000 census tract-level socioeconomic deprivation measured via neighborhood deprivation index (NDI) as a standardized score, with Black and White race being ascertained through self-report. Main Outcome and Measures The primary outcome was tissue DNA methylation using genome-wide measurements. The secondary outcome was tissue gene expression. Results Participants included 185 women with breast cancer (110 Black [59.5%], 75 White [40.5%]). Mean (SD) age at surgery was 56.0 (14.1) years. Neighborhood deprivation was higher for Black women than for White women (Mean [SD] NDI, 2.96 [3.03] for Black women and -0.54 [1.91] for White women; difference, -3.50; 95% CI, -4.22 to -2.79; P < .001). In unstratified analysis, 8 hypomethylated CpG sites were identified as associated with the NDI, including sites in 2 tumor suppressor genes, LRIG1 and WWOX. Moreover, expression of the 2 genes inversely correlated with neighborhood deprivation. In the race-stratified analysis, the negative correlation between the LRIG1 gene body CpG site cg26131019 and the NDI remained significant in Black women. A neighborhood deprivation-associated decrease in gene expression was also observed for LRIG1 and WWOX in tumors from Black women. Conclusions and Relevance In this study, high neighborhood deprivation was associated with differences in tissue DNA methylation and gene expression among Black women. These findings suggest that continued investment in public health interventions and policy changes at the neighborhood level may help to remedy biological alterations that could make minoritized populations more susceptible to chronic diseases.
Collapse
Affiliation(s)
- Brittany D. Jenkins
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Emily Rossi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Catherine Pichardo
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland
| | - William Wooten
- Department of Biostatistics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Margaret Pichardo
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Data Science & Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Tiffany H. Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Anuoluwapo Ajao
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ruby Hutchison
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Leah Moubadder
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Lauren E. McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Maeve Bailey-Whyte
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
14
|
Xu Y, Li J, Zhu K, Zeng Y, Chen J, Dong X, Zhang S, Xu S, Wu G. FIBP interacts with transcription factor STAT3 to induce EME1 expression and drive radioresistance in lung adenocarcinoma. Int J Biol Sci 2023; 19:3816-3829. [PMID: 37564211 PMCID: PMC10411469 DOI: 10.7150/ijbs.83134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
Cancer cells inevitably develop radioresistance during lung adenocarcinoma radiotherapy. However, the mechanisms are incompletely clarified. In this study, we show that FIBP protein expression in lung adenocarcinoma tissues is upregulated and associated with worse overall survival. Functionally, we find that depletion of FIBP inhibits lung adenocarcinoma progression and radioresistance in vitro and in vivo. Moreover, we uncover that FIBP interacts with STAT3 to enhance its transcriptional activity, thereby inducing the expression of the downstream target gene EME1. Importantly, we demonstrate that the biological effects of FIBP are partially dependent on EME1 in lung adenocarcinoma. Our work reveals that FIBP modulates the STAT3/EME1 axis to drive lung cancer progression and radioresistance, indicating that targeting FIBP may be a novel intervention strategy for lung adenocarcinoma radiotherapy.
Collapse
Affiliation(s)
- Yunhong Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kuikui Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Xu H, Hao Z, Wang Y, Zhang D, Li J, Chen L, Yao N, Qian B, Peng X, Zhan X. Liquid tumor microenvironment enhances WNT signaling pathway of peritoneal metastasis of gastric cancer. Sci Rep 2023; 13:11125. [PMID: 37429893 DOI: 10.1038/s41598-023-38373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
Gastric cancer remains one of the most prevalent tumors worldwide and peritoneal metastasis is responsible for approximately 60% of death in advanced gastric cancer patients. However, the underlying mechanism of peritoneal metastasis is poorly understood. We have established organoids derived from malignant ascites (MA) of gastric cancer patients and noticed that MA supernatant could strongly increase the colony formation of organoids. Thus, we realized the interaction between exfoliated cancer cells (ECCs) and liquid tumor microenvironment contributes to peritoneal metastasis. Further, we designed a medium component control test which proved that exosomes derived from MA could not enhance the growth of organoids. Using Immunofluorescence and confocal imaging as well as dual-luciferase reporter assay, our data showed WNT signaling pathway was upregulated by high concentrations of WNT ligands (wnt3a and wnt5a), which was verified by ELISA. Besides, suppressing WNT signaling pathway diminished the growth promoting function of MA supernatant. This result implicated WNT signaling pathway as a potential therapeutic target for peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Huawei Xu
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
- Department of Oncology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Zhibin Hao
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Yujie Wang
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Deng Zhang
- Research and Early Development, Haobai Biotechnology Inc, Shanghai, 200235, China
| | - Jie Li
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Ling Chen
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Binbin Qian
- Department of Oncology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Xiaobo Peng
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
16
|
Li J, Goh ELK, He J, Li Y, Fan Z, Yu Z, Yuan P, Liu DX. Emerging Intrinsic Therapeutic Targets for Metastatic Breast Cancer. BIOLOGY 2023; 12:697. [PMID: 37237509 PMCID: PMC10215321 DOI: 10.3390/biology12050697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Breast cancer is now the most common cancer worldwide, and it is also the main cause of cancer-related death in women. Survival rates for female breast cancer have significantly improved due to early diagnosis and better treatment. Nevertheless, for patients with advanced or metastatic breast cancer, the survival rate is still low, reflecting a need for the development of new therapies. Mechanistic insights into metastatic breast cancer have provided excellent opportunities for developing novel therapeutic strategies. Although high-throughput approaches have identified several therapeutic targets in metastatic disease, some subtypes such as triple-negative breast cancer do not yet have an apparent tumor-specific receptor or pathway to target. Therefore, exploring new druggable targets in metastatic disease is a high clinical priority. In this review, we summarize the emerging intrinsic therapeutic targets for metastatic breast cancer, including cyclin D-dependent kinases CDK4 and CDK6, the PI3K/AKT/mTOR pathway, the insulin/IGF1R pathway, the EGFR/HER family, the JAK/STAT pathway, poly(ADP-ribose) polymerases (PARP), TROP-2, Src kinases, histone modification enzymes, activated growth factor receptors, androgen receptors, breast cancer stem cells, matrix metalloproteinases, and immune checkpoint proteins. We also review the latest development in breast cancer immunotherapy. Drugs that target these molecules/pathways are either already FDA-approved or currently being tested in clinical trials.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Eyleen L. K. Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Ji He
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Zhimin Fan
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan 250033, China;
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
17
|
Yu D, Lu Z, Wang R, Xiang Y, Li H, Lu J, Zhang L, Chen H, Li W, Luan X, Chen L. FXR agonists for colorectal and liver cancers, as a stand-alone or in combination therapy. Biochem Pharmacol 2023; 212:115570. [PMID: 37119860 DOI: 10.1016/j.bcp.2023.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Farnesoid X receptor (FXR, NR1H4) is generally considered as a tumor suppressor of colorectal and liver cancers. The interaction between FXR, bile acids (BAs) and gut microbiota is closely associated with an increased risk of colorectal and liver cancers. Increasing evidence shows that FXR agonists may be potential therapeutic agents for colorectal and liver cancers. However, FXR agonists alone do not produce the desired results due to the complicated pathogenesis and single therapeutic mechanism, which suggests that effective treatments will require a multimodal approach. Based on the principle of improvingefficacy andreducingside effects, combination therapy is currently receiving considerable attention. In this review, colorectal and liver cancers are grouped together to discuss the effects of FXR agonists alone or in combination for combating the two cancers. We hope that this review will provide a theoretical basis for the clinical application of novel FXR agonists or combination with FXR agonists against colorectal and liver cancers.
Collapse
Affiliation(s)
- Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhou Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruyu Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yusen Xiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
18
|
Hussain T, Sanchez K, Crayton J, Saha D, Jeter C, Lu Y, Abba M, Seo R, Noebels JL, Fonken L, Aldaz CM. WWOX P47T partial loss-of-function mutation induces epilepsy, progressive neuroinflammation, and cerebellar degeneration in mice phenocopying human SCAR12. Prog Neurobiol 2023; 223:102425. [PMID: 36828035 PMCID: PMC10835625 DOI: 10.1016/j.pneurobio.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
WWOX gene loss-of-function (LoF) has been associated with neuropathologies resulting in developmental, epileptic, and ataxic phenotypes of varying severity based on the level of WWOX dysfunction. WWOX gene biallelic germline variant p.Pro47Thr (P47T) has been causally associated with a new form of autosomal recessive cerebellar ataxia with epilepsy and intellectual disability (SCAR12, MIM:614322). This mutation affecting the WW1 protein binding domain of WWOX, impairs its interaction with canonical proline-proline-X-tyrosine motifs in partner proteins. We generated a mutant knock-in mouse model of Wwox P47T mutation that phenocopies human SCAR12. WwoxP47T/P47T mice displayed epilepsy, profound social behavior and cognition deficits, and poor motor coordination, and unlike KO models that survive only for 1 month, live beyond 1 year of age. These deficits progressed with age and mice became practically immobile, suggesting severe cerebellar dysfunction. WwoxP47T/P47T mice brains revealed signs of progressive neuroinflammation with elevated astro-microgliosis that increased with age. Cerebellar cortex displayed significantly reduced molecular and granular layer thickness and a strikingly reduced number of Purkinje cells with degenerated dendrites. Transcriptome profiling from various brain regions of WW domain LoF mice highlighted widespread changes in neuronal and glial pathways, enrichment of bioprocesses related to neuroinflammation, and severe cerebellar dysfunction. Our results show significant pathobiological effects and potential mechanisms through which WWOX partial LoF leads to epilepsy, cerebellar neurodegeneration, neuroinflammation, and ataxia. Additionally, the mouse model described here will be a useful tool to understand the role of WWOX in common neurodegenerative conditions in which this gene has been identified as a novel risk factor.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kevin Sanchez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer Crayton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Martin Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medicine, Universidad de La Plata, La Plata 1900, Argentina
| | - Ryan Seo
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
19
|
Kałuzińska-Kołat Ż, Kośla K, Kołat D, Płuciennik E, Bednarek AK. Antineoplastic Nature of WWOX in Glioblastoma Is Mainly a Consequence of Reduced Cell Viability and Invasion. BIOLOGY 2023; 12:465. [PMID: 36979157 PMCID: PMC10045224 DOI: 10.3390/biology12030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Following the discovery of WWOX, research has moved in many directions, including the role of this putative tumor suppressor in the central nervous system and related diseases. The task of determining the nature of WWOX in glioblastoma (GBM) is still considered to be at the initial stage; however, the influence of this gene on the GBM malignant phenotype has already been reported. Because most of the available in vitro research does not consider several cellular GBM models or a wide range of investigated biological assays, the present study aimed to determine the main processes by which WWOX exhibits anticancer properties in GBM, while taking into account the phenotypic heterogeneity between cell lines. Ectopic WWOX overexpression was studied in T98G, DBTRG-05MG, U251MG, and U87MG cell lines that were compared with the use of assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, three-dimensional and anchorage-independent growth, and invasiveness. Observations presenting the antineoplastic properties of WWOX were consistent for T98G, U251MG, and U87MG. Increased proliferation and tumor growth were noted in WWOX-overexpressing DBTRG-05MG cells. A possible explanation for this, arrived at via bioinformatics tools, was linked to the TARDBP transcription factor and expression differences of USP25 and CPNE2 that regulate EGFR surface abundance. Collectively, and despite various cell line-specific circumstances, WWOX exhibits its anticancer nature mainly via a reduction of cell viability and invasiveness of glioblastoma.
Collapse
Affiliation(s)
- Żaneta Kałuzińska-Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (K.K.); (D.K.); (A.K.B.)
| |
Collapse
|
20
|
Wang CY, Qin ZX, Wei Y, Hao JX, Zhu YF, Zhao F, Jiao K, Ehrlich H, Tay FR, Niu LN. The immunomodulatory effects of RNA-based biomaterials on bone regeneration. Acta Biomater 2023; 162:32-43. [PMID: 36967055 DOI: 10.1016/j.actbio.2023.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
The use of RNA as therapeutic agents is a visionary idea in contemporary medicine. Some forms of RNA can modulate the immune response of the host to enhance tissue regeneration events such as osteogenesis. Herein, RNA molecules commercially available for immunomodulatory applications (imRNA) were used to prepare biomaterials for bone regeneration. The polyanionic imRNA stabilized calcium phosphate ionic clusters to produce imRNA-ACP that had the capacity to mineralize the intrafibrillar compartments of collagen fibrils. For the first time, it was shown that incorporating imRNA-ACP into collagen scaffolds resulted in rapid new bone formation in cranial defects of mice. Both in vivo and in vitro results demonstrated that macrophage polarization was highly-sensitive to the imRNA-ACP containing collagen scaffolds. Macrophages were polarized into the anti-inflammatory M2 phenotype that produced anti-inflammation cytokines and growth factors. The favorable osteoimmunological microenvironment created by the scaffolds prevented their immunorejection and facilitated osteogenesis. The potential of RNA in creating immunomodulatory biomaterials has been underestimated in the past. The overall aim of this study was to explore the potential application of imRNA-based biomaterials in bone tissue engineering, with the competitive edge of facile synthesis and excellent biocompatibility. STATEMENT OF SIGNIFICANCE: In this work, commercially available RNA extracted from bovine spleens for immunomodulatory applications (imRNA) were used to stabilize amorphous calcium phosphate (ACP) and induce mineralization within collagen fibrils. Incorporation of imRNA-ACP into collagen scaffolds regenerated new bone in-situ. Because of its immunomodulatory effects, the imRNA-ACP that was incorporated into collagen scaffolds modulated the local immune environment of murine cranial defects by altering the macrophage phenotype through JAK2/STAT3 signaling pathway. The novelty of this work existed in the discovery of RNA's potential in creating immunomodulatory biomaterials. With the competitive edge of facile synthesis and excellent biocompatibility, the imRNA-based biomaterials are potentially useful for future bone tissue engineering applications.
Collapse
|
21
|
Chang NS, To KK, Liou YC, Li YJ. Editorial: The role of STAT3 signaling pathway in tumor progression. Front Oncol 2023; 13:1151862. [PMID: 36874126 PMCID: PMC9983217 DOI: 10.3389/fonc.2023.1151862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Affiliation(s)
- Nan-Shan Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Kenneth Kw To
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA, United States
| |
Collapse
|
22
|
Ng ASN, Zhang S, Mak VCY, Zhou Y, Yuen Y, Sharma R, Lu Y, Zhuang G, Zhao W, Pang HH, Cheung LWT. AKTIP loss is enriched in ERα-positive breast cancer for tumorigenesis and confers endocrine resistance. Cell Rep 2022; 41:111821. [PMID: 36516775 PMCID: PMC9837615 DOI: 10.1016/j.celrep.2022.111821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Recurrent deletion of 16q12.2 is observed in luminal breast cancer, yet the causal genomic alterations in this region are largely unknown. In this study, we identify that loss of AKTIP, which is located on 16q12.2, drives tumorigenesis of estrogen receptor alpha (ERα)-positive, but not ERα-negative, breast cancer cells and is associated with poor prognosis of patients with ERα-positive breast cancer. Intriguingly, AKTIP-depleted tumors have increased ERα protein level and activity. Cullin-associated and neddylation-dissociated protein 1 (CAND1), which regulates the cullin-RING E3 ubiquitin ligases, protects ERα from cullin 2-dependent proteasomal degradation. Apart from ERα signaling, AKTIP loss triggers JAK2-STAT3 activation, which provides an alternative survival signal when ERα is inhibited. AKTIP-depleted MCF7 cells and ERα-positive patient-derived organoids are more resistant to ERα antagonists. Importantly, the resistance can be overcome by co-inhibition of JAK2/STAT3. Together, our results highlight the subtype-specific functional consequences of AKTIP loss and provide a mechanistic explanation for the enriched AKTIP copy-number loss in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Angel S N Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shibo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor C Y Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuan Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yin Yuen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rakesh Sharma
- Proteomics and Metabolomics Core, Center for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yiling Lu
- Department of Genomic Medicine, Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Wei Zhao
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Herbert H Pang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lydia W T Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Albendazole exerts an anti-hepatocellular carcinoma effect through a WWOX-dependent pathway. Life Sci 2022; 310:121086. [DOI: 10.1016/j.lfs.2022.121086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
|
24
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
25
|
Huang Y, Yi Q, Feng J, Xie W, Sun W, Sun W. The role of lincRNA-p21 in regulating the biology of cancer cells. Hum Cell 2022; 35:1640-1649. [PMID: 35969349 DOI: 10.1007/s13577-022-00768-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a type of multifunctional endogenous RNA transcript. The dysregulation of lncRNAs is considered to play a role in the initiation and progression of cancer. One such lncRNA, long intergenic non-coding RNA-p21 (lincRNA-p21), was identified in 2010 as a regulator in the p53 pathway and is gradually being identified to play crucial roles in diverse cellular processes. In this review, we have summarised the diverse regulatory functions of lincRNA-p21. For example, lincRNA-p21 has been reported to function as a protein decoy, act as a competitive endogenous RNA, regulate the transcription, regulate the translation processes and exist in the secreted exosomes. Furthermore, we highlight the emerging roles of lincRNA-p21 in cancer cell regulation. Various types of cancers, including colorectal carcinoma, hepatocellular carcinoma and non-small cell lung carcinoma, aberrantly express lincRNA-p21. However, the current understanding of the roles of lincRNA-p21 in cancer remains limited. Therefore, considering its potential as a valuable therapeutic target or biomarker for cancer, more research should be conducted to understand the role of lincRNA-p21 in cancer and other diseases.
Collapse
Affiliation(s)
- Yan Huang
- Department of Dermatology, Suining First People's Hospital, Suining, 629000, Sichuan, China
| | - Qian Yi
- The Central Laboratory, Affiliated Hospital of Putian University, Putian, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People' Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
26
|
Dinakar YH, Kumar H, Mudavath SL, Jain R, Ajmeer R, Jain V. Role of STAT3 in the initiation, progression, proliferation and metastasis of breast cancer and strategies to deliver JAK and STAT3 inhibitors. Life Sci 2022; 309:120996. [PMID: 36170890 DOI: 10.1016/j.lfs.2022.120996] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Breast cancer (BC) accounts for the majority of cancers among the female population. Anomalous activation of various signaling pathways has become an issue of concern. The JAK-STAT signaling pathway is activated in numerous cancers, including BC. STAT3 is widely involved in BCs, as 40 % of BCs display phosphorylated STAT3. JAK-STAT signaling is crucial for proliferation, survival, metastasis and other cellular events associated with the tumor microenvironment. Hence, targeting this pathway has become an area of interest among researchers. KEY FINDINGS This review article focuses on the role of STAT3 in the initiation, proliferation, progression and metastasis of BC. The roles of various phytochemicals, synthetic molecules and biologicals against JAK-STAT and STAT3 in various cancers have been discussed, with special emphasis on BC. SIGNIFICANCE JAK and STAT3 are involved in various phases from initiation to metastasis, and targeting this pathway is a promising approach to inhibit the various stages of BC development and to prevent metastasis. A number of phytochemicals and synthetic and biological molecules have demonstrated potential inhibitory effects on JAK and STAT3, thereby paving the way for the development of better therapeutics against BC.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Mohali 140306, Punjab, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Ramkishan Ajmeer
- Central Drugs Standard Control Organization, East Zone, Kolkata 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
27
|
Advances in Biomarkers and Endogenous Regulation of Breast Cancer Stem Cells. Cells 2022; 11:cells11192941. [PMID: 36230903 PMCID: PMC9562239 DOI: 10.3390/cells11192941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is one of the most common cancers. Even if breast cancer patients initially respond to treatment, developed resistance can lead to a poor prognosis. Cancer stem cells (CSCs) are a group of undifferentiated cells with self-renewal and multipotent differentiation characteristics. Existing evidence has shown that CSCs are one of the determinants that contribute to the heterogeneity of primary tumors. The emergence of CSCs causes tumor recurrence, metastasis, and therapeutic resistance. Previous studies indicated that different stemness-associated surface markers can identify other breast cancer stem cell (BCSC) subpopulations. Deciphering the critical signaling networks that are involved in the induction and maintenance of stemness is essential to develop novel BCSC-targeting strategies. In this review, we reviewed the biomarkers of BCSCs, critical regulators of BCSCs, and the signaling networks that regulate the stemness of BCSCs.
Collapse
|
28
|
WWOX Controls Cell Survival, Immune Response and Disease Progression by pY33 to pS14 Transition to Alternate Signaling Partners. Cells 2022; 11:cells11142137. [PMID: 35883580 PMCID: PMC9323965 DOI: 10.3390/cells11142137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor suppressor WWOX inhibits cancer growth and retards Alzheimer’s disease (AD) progression. Supporting evidence shows that the more strongly WWOX binds intracellular protein partners, the weaker is cancer cell growth in vivo. Whether this correlates with retardation of AD progression is unknown. Two functional forms of WWOX exhibit opposite functions. pY33-WWOX is proapoptotic and anticancer, and is essential for maintaining normal physiology. In contrast, pS14-WWOX is accumulated in the lesions of cancers and AD brains, and suppression of WWOX phosphorylation at S14 by a short peptide Zfra abolishes cancer growth and retardation of AD progression. In parallel, synthetic Zfra4-10 or WWOX7-21 peptide strengthens the binding of endogenous WWOX with intracellular protein partners leading to cancer suppression. Indeed, Zfra4-10 is potent in restoring memory loss in triple transgenic mice for AD (3xTg) by blocking the aggregation of amyloid beta 42 (Aβ42), enhancing degradation of aggregated proteins, and inhibiting activation of inflammatory NF-κB. In light of the findings, Zfra4-10-mediated suppression of cancer and AD is due, in part, to an enhanced binding of endogenous WWOX and its binding partners. In this perspective review article, we detail the molecular action of WWOX in the HYAL-2/WWOX/SMAD4 signaling for biological effects, and discuss WWOX phosphorylation forms in interacting with binding partners, leading to suppression of cancer growth and retardation of AD progression.
Collapse
|
29
|
Ji F, Zhu X, Liao H, Ouyang L, Huang Y, Syeda MZ, Ying S. New Era of Mapping and Understanding Common Fragile Sites: An Updated Review on Origin of Chromosome Fragility. Front Genet 2022; 13:906957. [PMID: 35669181 PMCID: PMC9164283 DOI: 10.3389/fgene.2022.906957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Common fragile sites (CFSs) are specific genomic loci prone to forming gaps or breakages upon replication perturbation, which correlate well with chromosomal rearrangement and copy number variation. CFSs have been actively studied due to their important pathophysiological relevance in different diseases such as cancer and neurological disorders. The genetic locations and sequences of CFSs are crucial to understanding the origin of such unstable sites, which require reliable mapping and characterizing approaches. In this review, we will inspect the evolving techniques for CFSs mapping, especially genome-wide mapping and sequencing of CFSs based on current knowledge of CFSs. We will also revisit the well-established hypotheses on the origin of CFSs fragility, incorporating novel findings from the comprehensive analysis of finely mapped CFSs regarding their locations, sequences, and replication/transcription, etc. This review will present the most up-to-date picture of CFSs and, potentially, a new framework for future research of CFSs.
Collapse
Affiliation(s)
- Fang Ji
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinli Zhu
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Liao
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujian Ouyang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfei Huang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Madiha Zahra Syeda
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Xu D, Shen H, Tian M, Chen W, Zhang X. Cucurbitacin I inhibits the proliferation of pancreatic cancer through the JAK2/STAT3 signalling pathway in vivo and in vitro. J Cancer 2022; 13:2050-2060. [PMID: 35517401 PMCID: PMC9066209 DOI: 10.7150/jca.65875] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/30/2022] [Indexed: 01/08/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive solid malignancies, as it has a 5-year survival rate of less than 10%. The growth and invasion of pancreatic cancer cells into normal tissues and organs make resection and treatment difficult. Finding an effective chemotherapy drug for this disease is crucial. In this study, we selected the tetracyclic triterpenoid compound cucurbitacin I, which may be used as a potential therapeutic drug for treating pancreatic cancer. First, we found that cucurbitacin I inhibited pancreatic cancer proliferation in a dose-time dependent manner. Further studies have shown that cucurbitacin I blocks the cell cycle of pancreatic cancer in the G2/M phase and induces cell apoptosis. In addition, under the action of the compound, the invasion ability of cells was greatly reduced and markedly impaired the growth of pancreatic tumour xenografts in nude mice. Furthermore, the decrease in pancreatic cancer cell proliferation caused by cucurbitacin I appeared to involve JAK2/STAT3 signalling pathway inhibition, and the use of JAK2/STAT3 activators effectively restored the inhibition. In conclusion, our research may provide a basis for the further development of pancreatic cancer treatment drugs.
Collapse
Affiliation(s)
- Dongchao Xu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou310000, China.,Hangzhou Institute of Digestive Diseases, Hangzhou310000, China.,Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou310000, China
| | - Hongzhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou310000, China.,Hangzhou Institute of Digestive Diseases, Hangzhou310000, China.,Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou310000, China
| | - Mengyao Tian
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou310000, China
| | - Wangyang Chen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou310000, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou310000, China.,Hangzhou Institute of Digestive Diseases, Hangzhou310000, China.,Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou310000, China
| |
Collapse
|
31
|
lncRNA GHET1 Promotes the Progression of Triple-Negative Breast Cancer via Regulation of miR-377-3p/GRSF1 Signaling Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8366569. [PMID: 35509860 PMCID: PMC9060992 DOI: 10.1155/2022/8366569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
Objective This study is aimed at investigating the role of lncRNA GHET1 in the progression of triple-negative breast cancer (TNBC). Methods Tumor tissues and paracancerous tissues (normal) of TNBC patients were collected. Human normal breast cells (MCF10A) and TNBC cells (MDA-MB-468 and HCC1937) were employed for in vitro analysis. The expression of lncRNA GHET1, miR-377-3p, and GRSF1 was detected by qRT-PCR. The lncRNA GHET1 and miR-377-3p were overexpressed or knocked down in the TNBC cells, respectively. To determine the specific biological activities of the TNBC cells, MTT, flow cytometry, and wound healing assay were adopted to evaluate the cellular proliferation, apoptosis, and migration abilities, respectively. MMP-9 and MMP-2 protein expression levels were detected as well by Western blot in the cells. The relationship between miR-377-3p and lncRNA GHET1, miR-377-3p, and GRSF1 was validated using dual-luciferase reporter assay. Results lncRNA GHET1 was significantly upregulated in the TNBC patients' tissues and the TNBC cell lines. Overexpression of lncRNA GHET1 significantly increased the proliferation and migration ability, but decreased apoptosis in the TNBC cells. Additionally, overexpression of lncRNA GHET1 upregulated both MMP-9 and MMP-2 protein expression levels. Correlation analysis found that miR-377-3p had a positive relationship with GRSF1, but had a negative relationship with lncRNA GHET1. miR-377-3p mimic attenuated the effects of lncRNA GHET1 on cellular proliferation, apoptosis, and migration of the TNBC cells. Conclusion lncRNA GHET1 promotes TNBC progression through the miR-377-3p/GRSF1 signaling axis.
Collapse
|
32
|
TLR4 and pSTAT3 Expression on Circulating Tumor Cells (CTCs) and Immune Cells in the Peripheral Blood of Breast Cancer Patients: Prognostic Implications. Cancers (Basel) 2022; 14:cancers14041053. [PMID: 35205801 PMCID: PMC8869985 DOI: 10.3390/cancers14041053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
TLR4 and pSTAT3 are key players in cancer inflammation and immune evasion; however, their role in the peripheral blood (PB) is largely unexplored. Herein we evaluated their expression in the circulating tumor cells (CTCs) and peripheral-blood mononuclear cells (PBMCs) of patients with early (n = 99) and metastatic (n = 100) breast cancer (BC). PB samples obtained prior to adjuvant and first-line therapy, were immunofluorescently stained for Cytokeratins/TLR4/pSTAT3/DAPI and analyzed via Ariol microscopy. TLR4+ CTCs were detected in 50% and 68% of early and metastatic CTC-positive patients, respectively, and pSTAT3+ CTCs in 83% and 68%, respectively. In metastatic patients, CTC detection was associated with a high risk of death (HR: 1.764, p = 0.038), while TLR4+ CTCs correlated with a high risk of disease progression (HR: 1.964, p = 0.030). Regarding PBMCs, TLR4 expression prevailed in metastatic disease (p = 0.029), while pSTAT3 expression was more frequent in early disease (p = 0.014). In early BC, TLR4 expression on PBMCs independently predicted for high risk of relapse (HR: 3.549; p = 0.009), whereas in metastatic BC, TLR4+/pSTAT3- PBMCs independently predicted for high risk of death (HR: 2.925; p = 0.012). These results suggest that TLR4/pSTAT3 signaling on tumor- and immune-cell compartments in the PB could play a role in BC progression, and may hold independent prognostic implications for BC patients.
Collapse
|
33
|
Wang J, Sun Q, Zhang J, Wang H, Liu H. Classical Signaling and Trans-Signaling Pathways Stimulated by Megalobrama amblycephala IL-6 and IL-6R. Int J Mol Sci 2022; 23:ijms23042019. [PMID: 35216135 PMCID: PMC8880141 DOI: 10.3390/ijms23042019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) is a multipotent cytokine. IL-6 plays a dual role in inflammation through both classical signaling (IL-6 binds membrane IL-6 receptor/IL-6R) and trans-signaling (IL-6 binds soluble IL-6R). However, the regulation of IL-6 activity, especially the regulation of signaling pathways and downstream genes mediated by IL-6 trans-signaling, remains largely unclear in teleost. Grass carp (Ctenopharyngodon idellus) hepatic (L8824) cells, kidney (CIK) cells, and primary hepatocytes were used as test models in this study. First, the biological activity of recombinant blunt snout bream (Megalobrama amblycephala) IL-6 (rmaIL-6) and sIL-6R (rmasIL-6R) was verified by quantitative PCR (qPCR) and western blot. The western blot results showed that rmaIL-6 significantly upregulated signal transducer and activator of transcription 3 (STAT3) phosphorylation in L8824 cells and primary hepatocytes, while rmaIL-6 in combination with rmasIL-6R (rmaIL-6+rmasIL-6R) significantly upregulated STAT3 phosphorylation in all types of cells. Furthermore, maIL-6 and maIL-6+rmasIL-6R could only induce extracellular-signal-regulated kinase 1/2 (ERK1/2) phosphorylation in L8824 cells and CIK cells, respectively. Therefore, IL-6 mainly acts by activating the janus kinase (JAK)/STAT3 pathway rather than the mitogen-activated protein kinase (MEK)/ERK pathway. Finally, the activation of the JAK2/STAT3 pathway was shown to be essential for the generation of socs3a and socs3b induced by IL-6 trans-signaling after treatment by JAK2/STAT3 pathway inhibitors (c188-9 and TG101348). These findings provide functional insights into IL-6 classical signaling and trans-signaling regulatory mechanisms in teleost, enriching our knowledge of fish immunology.
Collapse
Affiliation(s)
- Jixiu Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Qianhui Sun
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jian Zhang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (Q.S.); (J.Z.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
34
|
Zheng X, Gou Y, Jiang Z, Yang A, Yang Z, Qin S. Icaritin-Induced FAM99A Affects GLUT1-Mediated Glycolysis via Regulating the JAK2/STAT3 Pathway in Hepatocellular Carcinoma. Front Oncol 2021; 11:740557. [PMID: 34765550 PMCID: PMC8576446 DOI: 10.3389/fonc.2021.740557] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Icaritin is a potential treatment option for hepatocellular carcinoma (HCC) based on the results of its phase 2 stage trial. Glucose transporter 1 (GLUT1), a critical gene in regulating glycolysis, has been recognized as a promising target in HCC treatment. Previous studies have reported that FAM99A, a new long noncoding (lncRNA), is associated with HCC metastasis. It has also been demonstrated that the JAK2/STAT3 pathway is related to HCC and is the target of icaritin treatment. However, whether FAM99A participates in icaritin treatment and regulates GLUT1-mediated glycolysis via the JAK2/STAT3 pathway in HCC cells remains to be explored. Our study aimed to clarify the mechanisms underlying glycolysis and understand the regulating effects of the FAM99A and JAK2/STAT3 pathway in HCC cells in icaritin treatment. Molecular mechanism studies were conducted to verify whether FAM99A could bind to the JAK2/STAT3 pathway and to identify the regulatory mechanisms in the HCC cells. It was revealed that icaritin inhibited proliferation, GLUT1 level, and the glycolysis of the HCC cells. FAM99A in HCC cells was upregulated after a high concentration treatment of icaritin. FAM99A inhibited GLUT1 by blocking the JAK2/STAT3 pathway. Mechanically, FAM99A interacted with EIF4B to inhibit gp130 and gp80 translation, which then interacted with miR-299-5p to upregulate SOCS3, causing the JAK2 pathway to inhibit STAT3 phosphorylation, so that JAK2/STAT3 was blocked in HCC cells. Overall, our study proved that icaritin-induced FAM99A can inhibit HCC cell viability and GLUT1-mediated glycolysis via blocking the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Xia Zheng
- Nanjing University of Chinese Medicine, Nanjing, China.,Oncology Department, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yudong Gou
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyu Jiang
- Nanjing University of Chinese Medicine, Nanjing, China.,Oncology Department, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aizhen Yang
- Laboratory Department, Nanjing Jinling Hospital, Nanjing, China
| | - Zhihui Yang
- Pathology Department, Nanjing Jinling Hospital, Nanjing, China
| | - Shukui Qin
- Nanjing University of Chinese Medicine, Nanjing, China.,Oncology Department, Nanjing Jinling Hospital, Nanjing, China
| |
Collapse
|
35
|
Kohandel Z, Farkhondeh T, Aschner M, Pourbagher-Shahri AM, Samarghandian S. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell Int 2021; 21:468. [PMID: 34488773 PMCID: PMC8422731 DOI: 10.1186/s12935-021-02179-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) induces breast cancer malignancy. Recent clinical and preclinical studies have demonstrated an association between overexpressed and activated STAT3 and breast cancer progression, proliferation, metastasis, and chemoresistance. Resveratrol (RES), a naturally occurring phytoalexin, has demonstrated anti-cancer activity in several disease models. Furthermore, RES has also been shown to regulate the STAT3 signaling cascade via its anti-oxidant and anti-inflammatory effects. In the present review, we describe the STAT3 cascade signaling pathway and address the therapeutic targeting of STAT3 by RES as a tool to mitigate breast cancer.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
36
|
Zhao Y, Hu Z, Li J, Hu T. EZH2 Exacerbates Breast Cancer by Methylating and Activating STAT3 Directly. J Cancer 2021; 12:5220-5230. [PMID: 34335938 PMCID: PMC8317538 DOI: 10.7150/jca.50675] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/06/2021] [Indexed: 01/15/2023] Open
Abstract
Breast cancer is one of the most common causes of female death globally. Numerous clinical drugs for breast cancer have been developed, but the unsatisfactory, inevitable side effects and drug resistance are the emerging threatens. Therefore, it is necessary to investigate the comprehensive mechanism of breast cancer. Enhancer of zeste homolog 2 (EZH2) is a candidate oncogenic driver in diverse cancers, such as breast cancer. The canonical role of EZH2 has been vastly investigated, but the non-canonical function of EZH2 in breast cancer remains unclear. Here, we demonstrated that EZH2 exacerbated breast cancer in non-canonical manner by methylating STAT3. EZH2 over-expressed in breast cancer patients and regulated STAT3 post-transcriptionally according to TCGA datasets. Chemical and genetic inhibition of EZH2 impeded proliferation and migration of breast cancer cells, which may be partially rescued by STAT3 over-expression. EZH2 physically interacted with STAT3 and methylated STAT3 directly, resulting in increased nuclear localization and chromatin of STAT3. Furthermore, the mutation of STAT3 methylation site, targeted by EZH2, impeded the transcriptional activity of STAT3. Eventually, disturbed STAT3 methylation by EZH2 in animal model showed decreased breast cancer growth. These data confirm that EZH2 exacerbates breast cancer by methylating STAT3 directly, and thus providing a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yi Zhao
- The First Affiliated Hospital of Jinzhou Medical University
| | - Zhansheng Hu
- The First Affiliated Hospital of Jinzhou Medical University
| | - Jincheng Li
- The First Affiliated Hospital of Jinzhou Medical University
| | - Tingyan Hu
- The First Affiliated Hospital of Jinzhou Medical University
| |
Collapse
|
37
|
Normal cells repel WWOX-negative or -dysfunctional cancer cells via WWOX cell surface epitope 286-299. Commun Biol 2021; 4:753. [PMID: 34140629 PMCID: PMC8211909 DOI: 10.1038/s42003-021-02271-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Metastatic cancer cells are frequently deficient in WWOX protein or express dysfunctional WWOX (designated WWOXd). Here, we determined that functional WWOX-expressing (WWOXf) cells migrate collectively and expel the individually migrating WWOXd cells. For return, WWOXd cells induces apoptosis of WWOXf cells from a remote distance. Survival of WWOXd from the cell-to-cell encounter is due to activation of the survival IκBα/ERK/WWOX signaling. Mechanistically, cell surface epitope WWOX286-299 (repl) in WWOXf repels the invading WWOXd to undergo retrograde migration. However, when epitope WWOX7-21 (gre) is exposed, WWOXf greets WWOXd to migrate forward for merge. WWOX binds membrane type II TGFβ receptor (TβRII), and TβRII IgG-pretreated WWOXf greet WWOXd to migrate forward and merge with each other. In contrast, TβRII IgG-pretreated WWOXd loses recognition by WWOXf, and WWOXf mediates apoptosis of WWOXd. The observatons suggest that normal cells can be activated to attack metastatic cancer cells. WWOXd cells are less efficient in generating Ca2+ influx and undergo non-apoptotic explosion in response to UV irradiation in room temperature. WWOXf cells exhibit bubbling cell death and Ca2+ influx effectively caused by UV or apoptotic stress. Together, membrane WWOX/TβRII complex is needed for cell-to-cell recognition, maintaining the efficacy of Ca2+ influx, and control of cell invasiveness.
Collapse
|
38
|
Sun M, Tang C, Liu J, Jiang W, Yu H, Dong F, Huang C, Rixiati Y. Comprehensive analysis of suppressor of cytokine signaling proteins in human breast Cancer. BMC Cancer 2021; 21:696. [PMID: 34120621 PMCID: PMC8201682 DOI: 10.1186/s12885-021-08434-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background Abnormal expression of suppressor of cytokine signaling (SOCS) proteins regulates tumor angiogenesis and development in cancers. In this study, we aimed to perform a comprehensive bioinformatic analysis of SOCS proteins in breast invasive carcinoma (BRCA). Methods The gene expression, methylation level, copy number, protein expression and patient survival data related to SOCS family members in BRCA patients were obtained from the following databases: Oncomine, The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA), PCViz, cBioPortal and Kaplan-Meier plotter. Correlation analyses, identification of interacting genes and construction of regulatory networks were performed by functional and pathway enrichment analyses, weighted gene coexpression network analysis (WGCNA) and gene set enrichment analysis (GSEA). Results Data related to 1109 BRCA tissues and 113 normal breast tissue samples were extracted from the TCGA database. SOCS2 and SOCS3 exhibited significantly lower mRNA expression levels in BRCA tissues than in normal tissues. BRCA patients with high mRNA levels of SOCS3 (p < 0.01) and SOCS4 (p < 0.05) were predicted to have significantly longer overall survival (OS) times. Multivariate analysis showed that SOCS3 was an independent prognostic factor for OS. High mRNA expression levels of SOCS2 (p < 0.001), SOCS3 (p < 0.001), and SOCS4 (p < 0.01), and a low expression level of SOCS5 (p < 0.001) were predicted to be significantly associated with better recurrence-free survival (RFS). Multivariate analysis showed that SOCS2 was an independent prognostic factor for RFS. Lower expression levels of SOCS2 and SOCS3 were observed in patients with tumors of more advanced clinical stage (p < 0.05). Functional and pathway enrichment analyses, together with WGCNA and GSEA, showed that SOCS3 and its interacting genes were significantly involved in the JAK-STAT signaling pathway, suggesting that JAK-STAT signaling might play a critical role in BRCA angiogenesis and development. Western blot results showed that overexpression of SOCS3 inhibited the activity of the JAK-STAT signaling pathway in vitro. Conclusions SOCS family proteins play a very important role in BRCA. SOCS3 may be a prognostic factor and SOCS2 may be a potential therapeutic target in breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08434-y.
Collapse
Affiliation(s)
- Mingyu Sun
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Chuangang Tang
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Jun Liu
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, 200433, China
| | - Haifeng Yu
- Department of General Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Fang Dong
- Department of Vascular Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, 200433, China
| | - Youlutuziayi Rixiati
- Department of Pathology, Soochow University Medical School, Suzhou, 215123, China.
| |
Collapse
|
39
|
Kałuzińska Ż, Kołat D, Bednarek AK, Płuciennik E. PLEK2, RRM2, GCSH: A Novel WWOX-Dependent Biomarker Triad of Glioblastoma at the Crossroads of Cytoskeleton Reorganization and Metabolism Alterations. Cancers (Basel) 2021; 13:2955. [PMID: 34204789 PMCID: PMC8231639 DOI: 10.3390/cancers13122955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the deadliest human cancers. Its malignancy depends on cytoskeleton reorganization, which is related to, e.g., epithelial-to-mesenchymal transition and metastasis. The malignant phenotype of glioblastoma is also affected by the WWOX gene, which is lost in nearly a quarter of gliomas. Although the role of WWOX in the cytoskeleton rearrangement has been found in neural progenitor cells, its function as a modulator of cytoskeleton in gliomas was not investigated. Therefore, this study aimed to investigate the role of WWOX and its collaborators in cytoskeleton dynamics of glioblastoma. Methodology on RNA-seq data integrated the use of databases, bioinformatics tools, web-based platforms, and machine learning algorithm, and the obtained results were validated through microarray data. PLEK2, RRM2, and GCSH were the most relevant WWOX-dependent genes that could serve as novel biomarkers. Other genes important in the context of cytoskeleton (BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A, NF2, SPOCK1, TTR, UHRF1, and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1, KIF20A, RNF141, and RXRG) were also discovered. For the first time, we propose that changes in WWOX expression dictate a myriad of alterations that affect both glioblastoma cytoskeleton and metabolism, rendering new therapeutic possibilities.
Collapse
Affiliation(s)
- Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (D.K.); (A.K.B.); (E.P.)
| | | | | | | |
Collapse
|
40
|
Gong K, Song K, Zhu Z, Xiang Q, Wang K, Shi J. SWIM domain protein ZSWIM4 is required for JAK2 inhibition resistance in breast cancer. Life Sci 2021; 279:119696. [PMID: 34102191 DOI: 10.1016/j.lfs.2021.119696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
AIMS Janus kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) signaling plays a critical role in the progression of breast cancer. However, a small part of tumor cells survived from the killing effect of JAK2 inhibitor. We aimed to find out the mechanism of drug resistance in breast cancer cells and develop new therapeutic strategies. MATERIALS AND METHODS The anti-tumor effect of TG101209 in breast cancer cells was confirmed by cell counting kit 8 and flow cytometry. Western blotting was used to determine the up-regulation of zinc finger SWIM-type containing 4 (ZSWIM4) induced by TG101209. In vitro and in vivo experiments were performed to evaluate the role of ZSWIM4 in the resistance of breast cancer cells to TG101209. Through the determination and analysis of 50% inhibiting concentration (IC50) curves, the effect of combination therapy was confirmed. KEY FINDINGS Our data indicate that the elevated expression of ZSWIM4 contributes to JAK2 inhibition resistance, as knockdown of ZSWIM4 significantly enhances the sensitivity of breast cancer cells to TG101209 and over-expression of this gene mitigates the killing effect. Furthermore, the expression of vitamin D receptor (VDR) and utilization of 1α,25-(OH)2VD3 is decreased in ZSWIM4-knockdown breast cancer cells. VDR-silencing or GW0742-mediated blockade of VDR activity can partially reverse the JAK2 inhibition resistance. SIGNIFICANCE Our data implicated that ZSWIM4 might be an inducible resistance gene of JAK2 inhibition in breast cancer cells. The combination of JAK2 inhibitor and VDR inhibitor may achieve better coordinated therapeutic effect in breast cancer.
Collapse
Affiliation(s)
- Kunxiang Gong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kai Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhenyun Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qin Xiang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Jian Shi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, China; Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, Guangdong, China.
| |
Collapse
|
41
|
Yang T, Huo J, Xu R, Zhang Y. Synergistic effect of toosendanin and regorafenib against cell proliferation and migration by regulating WWOX signaling pathway in hepatocellular carcinoma. Phytother Res 2021; 35:4567-4578. [PMID: 34058790 DOI: 10.1002/ptr.7174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Regorafenib (RGF), a second-line multi-kinase inhibitor in the treatment of HCC (hepatocellular carcinoma) after sorafenib failure, exposes to the risk of drug resistance and subsequent progression of HCC patients. Toosendanin (TSN), a triterpenoid has presented excellent inhibition on several tumors. The purpose of this study is to investigate the inhibitory effect of the combination of TSN and RGF on HCC cells. We identified that TSN and RGF combination (TRC) synergistically inhibited the proliferation and migration of MHCC-97L cells. The upregulation of WWOX (WW-domain containing oxidoreductase) played a vital role in the HCC cell growth treated with TRC. TRC suppressed the phosphorylation of Stat3 and expression of DVL2, negatively regulated the activity of β-catenin by promoting the phosphorylation of GSK3β. In addition, the intranuclear proteins, including MMP2, MMP9, and C-MYC were significantly inhibited by TRC. The in vivo xenograft models confirmed that TRC effectually prevented the tumor growth through upregulating WWOX. Therefore, the treatment of TRC may be a potential solution of RGF resistance and promising therapeutic method in malignant HCC.
Collapse
Affiliation(s)
- Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Jian Huo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Rui Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, China
| |
Collapse
|
42
|
Gong K, Jiao J, Xu C, Dong Y, Li D, He D, Zhao D, Yu J, Sun Y, Zhang W, Bai M, Duan Y. The targetable nanoparticle BAF312@cRGD-CaP-NP represses tumor growth and angiogenesis by downregulating the S1PR1/P-STAT3/VEGFA axis in triple-negative breast cancer. J Nanobiotechnology 2021; 19:165. [PMID: 34059068 PMCID: PMC8167992 DOI: 10.1186/s12951-021-00904-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background Overexpressed vascular endothelial growth factor A (VEGFA) and phosphorylated signal transducer and activator of transcription 3 (P-STAT3) cause unrestricted tumor growth and angiogenesis of breast cancer (BRCA), especially triple-negative breast cancer (TNBC). Hence, novel treatment strategy is urgently needed. Results We found sphingosine 1 phosphate receptor 1 (S1PR1) can regulate P-STAT3/VEGFA. Database showed S1PR1 is highly expressed in BRCA and causes the poor prognosis of patients. Interrupting the expression of S1PR1 could inhibit the growth of human breast cancer cells (MCF-7 and MDA-MB-231) and suppress the angiogenesis of human umbilical vein endothelial cells (HUVECs) via affecting S1PR1/P-STAT3/VEGFA axis. Siponimod (BAF312) is a selective antagonist of S1PR1, which inhibits tumor growth and angiogenesis in vitro by downregulating the S1PR1/P-STAT3/VEGFA axis. We prepared pH-sensitive and tumor-targeted shell-core structure nanoparticles, in which hydrophilic PEG2000 modified with the cyclic Arg-Gly-Asp (cRGD) formed the shell, hydrophobic DSPE formed the core, and CaP (calcium and phosphate ions) was adsorbed onto the shell; the nanoparticles were used to deliver BAF312 (BAF312@cRGD-CaP-NPs). The size and potential of the nanoparticles were 109.9 ± 1.002 nm and − 10.6 ± 0.056 mV. The incorporation efficacy for BAF312 was 81.4%. Results confirmed BAF312@cRGD-CaP-NP could dramatically inhibit tumor growth and angiogenesis in vitro and in MDA-MB-231 tumor-bearing mice via downregulating the S1PR1/P-STAT3/VEGFA axis. Conclusions Our data suggest a potent role for BAF312@cRGD-CaP-NPs in treating BRCA, especially TNBC by downregulating the S1PR1/P-STAT3/VEGFA axis. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00904-6.
Collapse
Affiliation(s)
- Ke Gong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Juyang Jiao
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Chaoqun Xu
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610041, Sichuan, China
| | - Yang Dong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Dongxiao Li
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610041, Sichuan, China
| | - Di He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - De Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Wei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Min Bai
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
43
|
Yang T, Xu R, Huo J, Wang B, Du X, Dai B, Zhu M, Zhan Y, Zhang D, Zhang Y. WWOX activation by toosendanin suppresses hepatocellular carcinoma metastasis through JAK2/Stat3 and Wnt/β-catenin signaling. Cancer Lett 2021; 513:50-62. [PMID: 34015398 DOI: 10.1016/j.canlet.2021.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 02/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. Loss of WW-domain containing oxidoreductase (WWOX) has been proven to be associated with malignant metastasis in patients with HCC. In this study, by using a non-biased CRISPR knockout genetic screen targeting 19,050 human genes, we found that toosendanin (TSN) is a novel druggable WWOX candidate agonist for metastatic HCC patients. We also found that TSN exhibited significant anti-proliferative and anti-metastatic effects on HCC cells in a WWOX-dependent manner. Overexpression and knockdown of WWOX in vitro and in vivo confirmed that the suppression of HCC by TSN involved WWOX. TSN regulated Stat3, DVL2, and GSK3β by transforming their interactions with WWOX as demonstrated by a Co-IP assay. TSN accelerated the degradation of β-catenin by promoting the function of APC, AXIN1, CK1, and GSK3β complex. Nuclear translocation of p-Stat3 Y705 and β-catenin was impeded by the TSN-induced blockade of JAK2/Stat3 and Wnt/β-catenin signaling, accompanied by the inhibition of MMPs and C-MYC.
Collapse
Affiliation(s)
- Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Rui Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Jian Huo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Bo Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Xia Du
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, 710003, PR China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Yingzhuan Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China.
| |
Collapse
|
44
|
Zhao Q, Bi Y, Zhong J, Li X, Guo J, Liu YX, Pan LR, Tan Y, Deng ZS, Yu XJ. 10,11-dehydrocurvularin exerts antitumor effect against human breast cancer by suppressing STAT3 activation. Acta Pharmacol Sin 2021; 42:791-800. [PMID: 32868906 PMCID: PMC8115668 DOI: 10.1038/s41401-020-0499-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Aberrant activation of signal transducer and activator of transcription 3 (STAT3) plays a critical role in many types of cancers. As a result, STAT3 has been identified as a potential target for cancer therapy. In this study we identified 10,11-dehydrocurvularin (DCV), a natural-product macrolide derived from marine fungus, as a selective STAT3 inhibitor. We showed that DCV (2-8 μM) dose-dependently inhibited the proliferation, migration and invasion of human breast cancer cell lines MDA-MB-231 and MDA-MB-468, and induced cell apoptosis. In the two breast cancer cell lines, DCV selectively inhibited the phosphorylation of STAT3 Tyr-705, but did not affect the upstream components JAK1 and JAK2, as well as dephosphorylation of STAT3. Furthermore, DCV treatment strongly inhibited IFN-γ-induced STAT3 phosphorylation but had no significant effect on IFN-γ-induced STAT1 and STAT5 phosphorylation in the two breast cancer cell lines. We demonstrated that the α, β-unsaturated carbonyl moiety of DCV was essential for STAT3 inactivation. Cellular thermal shift assay (CETSA) further revealed the direct engagement of DCV with STAT3. In nude mice bearing breast cancer cell line MDA-MB-231 xenografts, treatment with DCV (30 mg·kg-1·d-1, ip, for 14 days) markedly suppressed the tumor growth via inhibition of STAT3 activation without observed toxicity. Our results demonstrate that DCV acts as a selective STAT3 inhibitor for breast cancer intervention.
Collapse
Affiliation(s)
- Qun Zhao
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Yun Bi
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Jing Zhong
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China
| | - Xiang Li
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Jian Guo
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Ying-Xiang Liu
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Long-Rui Pan
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Yan Tan
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhang-Shuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, 443002, China.
| | - Xian-Jun Yu
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
45
|
Taouis K, Driouch K, Lidereau R, Lallemand F. Molecular Functions of WWOX Potentially Involved in Cancer Development. Cells 2021; 10:cells10051051. [PMID: 33946771 PMCID: PMC8145924 DOI: 10.3390/cells10051051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
The WW domain-containing oxidoreductase gene (WWOX) was cloned 21 years ago as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. The localization of WWOX in a chromosomal region frequently altered in human cancers has initiated multiple current studies to establish its role in this disease. All of this work suggests that WWOX, due to its ability to interact with a large number of partners, exerts its tumor suppressive activity through a wide variety of molecular actions that are mostly cell specific.
Collapse
|
46
|
Long non-coding RNA LEISA promotes progression of lung adenocarcinoma via enhancing interaction between STAT3 and IL-6 promoter. Oncogene 2021; 40:3449-3459. [PMID: 33859372 DOI: 10.1038/s41388-021-01769-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a new class of regulators for a variety of biological processes and have been suggested to play pivotal roles in cancer development and progression. Our current study found that a lncRNA, designated enhancing IL-6/STAT3 signaling activation (LEISA, ENST00000603468), functioned as an oncogenic lncRNA in lung adenocarcinoma (LAD), a major form of non-small cell lung carcinoma, which is one of the most frequently diagnosed malignancies with high morbidity and mortality worldwide, and was involved in the regulation of STAT3 induced IL-6 transcription. Our data showed that LEISA was highly expressed in, and correlated with the clinical progression and prognosis of LAD. Ectopic expression of LEISA promoted the proliferation and suppressed apoptosis of LAD cells in vitro and in vivo. Mechanistically, we demonstrated that LEISA recruited STAT3 to bind the promoter of IL-6 and upregulated IL-6 expression. Taken together, our work identifies LEISA as a potential diagnostic biomarker and therapeutic target for LAD.
Collapse
|
47
|
Peng X, Guo C, Wu Y, Ying M, Chang R, Song L, Zhan L, Zhan X. miR‑224‑5p regulates the proliferation, migration and invasion of pancreatic mucinous cystadenocarcinoma by targeting PTEN. Mol Med Rep 2021; 23:346. [PMID: 33760113 PMCID: PMC7974333 DOI: 10.3892/mmr.2021.11985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/18/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic mucinous cystadenocarcinoma (MCC) is a rare malignant tumor, with a limited number of studies. The present study aimed to investigate the function and mechanism of microRNA (miR)-224-5p on proliferation, migration and invasion of MCC of the pancreas. Reverse transcription-quantitative PCR was used to explorethe expression of miR-224-5p and the PTEN gene. MTT, wound healing, Transwell and tumorigenesis assays were conducted to investigate the proliferation, migration and invasion of MCC1 cells in vitro and in vivo. Western blot analysis was employed to test the protein expression of PTEN. The target gene of miR-224-5p was assessed and verified by luciferase assay. miR-224-5p expression was notably higher, while PTEN expression was lower, in MCC1 cells compared with normal tissues and cells. Overexpression of miR-224-5p promoted the proliferation, migration and invasion of MCC and knockdown of miR-224-5p inhibited these functions. Bioinformatics analysis and luciferase assay indicated that PTEN was the direct target gene of miR-224-5p. The negative correlation between miR-224-5p and PTEN was confirmed both in vitro and in vivo. PTEN reversed the effects of miR-224-5p on proliferation, migration and invasion of MCC1 cells. The present study revealed for the first time, to the best of the authors' knowledge, that miR-224-5p was highly expressed and served an oncogenic role in MCC. miR-224-5p not only regulated the proliferation, migration and invasion of pancreatic MCC but may also be a potential therapeutic target for MCC.
Collapse
Affiliation(s)
- Xiaobo Peng
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| | - Chengtao Guo
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Mingzhen Ying
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| | - Renxu Chang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Lele Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital Affiliated to Naval Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
48
|
Lin L, Wen J, Lin B, Xia E, Zheng C, Ye L, Wang Y, Wang O, Chen Y. Stress-induced phosphoprotein 1 facilitates breast cancer cell progression and indicates poor prognosis for breast cancer patients. Hum Cell 2021; 34:901-917. [PMID: 33665786 DOI: 10.1007/s13577-021-00507-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/13/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer (BC) threatened the life health of a tremendous amount of the population, and the estimated number of death is still rising nowadays. We found that stress-induced phosphoprotein 1 (STIP1) is overexpressed in BC tissues compared to non-tumorous breast tissues. Our study is to validate the prognostic value of STIP1 and investigate its biological role in BC. We verified the upregulation of STIP1 in multiple databases, proved that STIP1 is upregulated in BC tissues and cell lines using real-time quantitative PCR (qRT-PCR). We used small interfering RNA to examine the function of STIP1 in BC cell lines (BT-549, MDA-MB-231, Hs-578 T) and explored the mechanism of function of STIP1 in BC cells using Western blotting and qRT-PCR. Analyses of multiple databases indicated that high STIP1 expression is a marker that effectively distinguishes BC patients from healthy control and predicts worse clinical outcomes in BC. The loss-of-function experiments showed that STIP1 silencing results in inhibition of cell proliferation and migration, inducing cell apoptosis, and S-phase arrest in vitro. Our study also showed that STIP1 downregulation inhibited the JAK2/STAT3 pathway and epithelial-mesenchymal transition process. Rescue experiments demonstrated that the oncogenic effect of STIP1 is partially dependent on mediating JAK2 expression. This study verified that STIP1 is an oncogenic gene that promotes BC progression and serves as a valuable diagnostic and outcome-related marker of BC.
Collapse
Affiliation(s)
- Lizhi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Jialiang Wen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Bangyi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Erjie Xia
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Chen Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Lechi Ye
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinghao Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yizuo Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
49
|
Shen Y, Gao L, Jiang S, Liu J, Cheng W, Shou H. Expression of WW domain-containing oxidoreductase and its clinical implication in endometrial adenocarcinoma patients with metabolic syndrome. Asia Pac J Clin Oncol 2021; 18:70-75. [PMID: 33629514 DOI: 10.1111/ajco.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/30/2020] [Indexed: 11/29/2022]
Abstract
AIM Metabolic syndrome (MS) is tightly associated with the oncogenesis and prognosis of endometrioid adenocarcinoma, but the underlying mechanism is unclear. Here, we studied the relation between the expression status of WW domain-containing oxidoreductase (WWOX) and the clinicopathological features of endometrioid adenocarcinoma patients with MS. METHODS Fifty-seven samples of endometrial adenocarcinoma were chosen for detection of expression level of WWOX. Overall survival (OS) time of these patients was analyzed by univariate and multivariate analysis. Survival analysis of patients with different WWOX expression levels from the Cancer Genome Atlas (TCGA) database was also performed. RESULTS The WWOX expression is significantly higher in MS group than that in non-MS group (36.4% vs 65.7%, P = .03). WWOX was closely related to MS (P = .03) and muscle invasion of tumor cells (P = .04), but age, tumor grade, status of lymphatic metastasis, and FIGO (International Federation of Gynecology and Obstetrics) stage were not significantly different between the two WWOX expression status. Univariate analysis revealed that lymphatic metastasis (P = .023) and lower stage (P = .006) are significantly associated with OS. Multivariate analysis demonstrated that stage was an independent prognostic factor for OS (hazard ratio = 0.197; 95% CI, 0.043-0.896). Downregulation of WWOX was statistically associated with OS in patients from TCGA database (P = .04). CONCLUSION WWOX may play an important role in the progression of endometrial cancer with MS.
Collapse
Affiliation(s)
- Yan Shen
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Leilei Gao
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shanshan Jiang
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jinwei Liu
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weiye Cheng
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Huafeng Shou
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
50
|
Yu Z, Wang D, Tang Y. PKM2 promotes cell metastasis and inhibits autophagy via the JAK/STAT3 pathway in hepatocellular carcinoma. Mol Cell Biochem 2021; 476:2001-2010. [PMID: 33512635 DOI: 10.1007/s11010-020-04041-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022]
Abstract
Pyruvate kinase M2 (PKM2) is a member of the pyruvate kinase family. It has been recently reported that PKM2 displays non-metabolic activities. Nevertheless, understanding of the role of PKM2 in hepatocellular carcinoma (HCC) is insufficient. Therefore, our study aimed at exploring the impact of PKM2 on malignant growth, autophagy as well as invasion in HCC. Expression of PKM2 in HCC specimens was examined by qRT-PCR and western blot. PKM2 knock down was generated in vitro by shRNA. Activities of malignant cells as well as downstream pathways were assessed. The MTT assay was carried out to evaluate HCC proliferation, and the FACS assay was conducted to study cell death. Elevated PKM2 levels were observed in HCC samples. Knockdown (KD) of PKM2 triggered apoptosis as well as autophagy and inhibited migration and proliferation of HCC cells. Furthermore, PKM2 KD reinforced JAK/STAT3 pathway stimulation. STAT3 inhibition counteracted the impact of PKM2 on proliferation, autophagy, migration as well as cell death in HCC. To conclude, the findings of our research suggest that PKM2 reinforced metastasis and inhibited autophagy in HCC through the JAK/STAT3 pathway, and that PKM2 could serve as a promising target for HCC treatment.
Collapse
Affiliation(s)
- Zhi Yu
- Digestive Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Jiang'an District, Wuhan, 430015, China
| | - Dan Wang
- Digestive Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Jiang'an District, Wuhan, 430015, China
| | - Yingying Tang
- Digestive Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Hong Kong Road, Jiang'an District, Wuhan, 430015, China.
| |
Collapse
|