1
|
Liu P, Chen Z, Guo Y, He Q, Pan C. Recent advances in small molecule inhibitors of deubiquitinating enzymes. Eur J Med Chem 2025; 287:117324. [PMID: 39908798 DOI: 10.1016/j.ejmech.2025.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Proteins play a pivotal role in maintaining cellular homeostasis. Their degradation primarily orchestrated through the ubiquitin-proteasome system (UPS) and cellular autophagy. Dysfunction of the UPS is associated with various human diseases, including cancer, autoimmune disorders, and neurodegenerative conditions. Consequently, the UPS has emerged as a promising therapeutic target. Deubiquitinases (DUBs) have garnered significant attention as potential targets for therapeutic intervention due to their role in modulating protein stability and function. This review focuses on recent advancements of DUBs, particularly their relevance in the UPS and their potential as drug targets. Notably, inhibitors targeting specific DUBs, such as USP1, USP7, USP14, and USP30 have shown promise in preclinical and clinical studies for cancer therapy. Additionally, DUB inhibitors have been involved in novel therapeutic approaches lately, including as targets for proteolysis-targeting chimeras (PROTACs) or as tools in deubiquitinase-targeting chimeras (DUBTACs).
Collapse
Affiliation(s)
- Pengwei Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Zhengyang Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Yiting Guo
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| | - Chenghao Pan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
Xu L, Ye Y, Gu W, Xu X, Chen N, Zhang L, Cai W, Hu J, Wang T, Chao H, Tu Y, Ji J. Histone lactylation stimulated upregulation of PSMD14 alleviates neuron PANoptosis through deubiquitinating PKM2 to activate PINK1-mediated mitophagy after traumatic brain injury. Autophagy 2025:1-19. [PMID: 40000916 DOI: 10.1080/15548627.2025.2471633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Alleviating the multiple types of programmed neuronal death caused by mechanical injury has been an impetus for designing neuro-therapeutical approaches after traumatic brain injury (TBI). The aim of this study was to elucidate the potential role of PSMD14 (proteasome 26S subunit, non-ATPase 14) in neuron death and the specific mechanism through which it improves prognosis of TBI patients. Here, we identified differential expression of the PSMD14 protein between the controlled cortical impact (CCI) and sham mouse groups by LC-MS proteomic analysis and found that PSMD14 was significantly upregulated in neurons after brain injury by qPCR and western blot. PSMD14 suppressed stretch-induced neuron PANoptosis and improved motor ability and learning performance after CCI in vivo. Mechanistically, PSMD14 improved PINK1 phosphorylation levels at Thr257 and activated PINK1-mediated mitophagy by deubiquitinating PKM/PKM2 (pyruvate kinase M1/2) to maintain PKM protein stability. PSMD14-induced mitophagy promoted mitochondrial homeostasis to reduced ROS production, and ultimately inhibited the neuron PANoptosis. The upregulation of neuronal PSMD14 after TBI was due to the increase of histone lactation modification level and lactate treatment alleviated neuron PANoptosis via increasing PSMD14 expression. Our findings suggest that PSMD14 could be a potential therapeutic approach for improving the prognosis of TBI patients.Abbreviations: CCI: controlled cortical impact; CQ: chloroquine; DUBs: deubiquitinating enzymes; H3K18la: H3 lysine 18 lactylation; IB: immunoblot; IHC: immunohistochemistry; IP: immunoprecipitation; MLKL: mixed lineage kinase domain like pseudokinase; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; PKM/PKM2: pyruvate kinase M1/2; PSMD14: proteasome 26S subunit, non-ATPase 14; ROS: reactive oxygen species; RIPK1: receptor interacting serine/threonine kinase 1; RIPK3: receptor interacting serine/threonine kinase 3; TBI: traumatic brain injury.
Collapse
Affiliation(s)
- Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nuo Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liuchao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanzhi Cai
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingming Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Artux, Xinjiang, China
| |
Collapse
|
3
|
Şen G, Demirci M, Evci Ş, Şenol A, Karsli MA. Effects of High-Fructose Corn Syrup Addition to Broiler Diets on Performance, Carcass Yield, Visceral Weights, Gut pH and Some Blood Parameters. Vet Med Sci 2024; 10:e70058. [PMID: 39324875 PMCID: PMC11425906 DOI: 10.1002/vms3.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND This study hypothesizes that using different amounts of high-fructose corn syrup (HFCS) in broiler diets may improve performance. OBJECTIVES This study aimed to determine the effects of HFCS added to broiler diets on performance, cecum pH and some biochemical parameters. METHODS A total of 120 Ross 308 chicks at the age of 0 day were divided into three main groups with four subgroups each. The groups consisted of a control (CON), low-HFCS and high-HFCS groups. The CON group received a diet containing no HFCS, the low-HFCS diet contained 50 mg/kg HFCS, and the high-HFCS diet contained 100 mg/kg HFCS. Body weight gain, feed consumption, carcass weight, visceral weight and cecum pH values were examined as performance parameters. Blood samples were taken at the end of the experiment and used to spectrophotometrically determine triglyceride, total cholesterol, high-density lipoprotein (HDL-CHO), low-density lipoprotein (LDL-CHO), glucose (GLU), creatinine (CRE), uric acid and insulin concentrations, as well as aspartate aminotransferase and alanine aminotransferase activities and oxidative stress markers. Proinflammatory cytokine levels were measured using ELISA test kits. RESULTS Feed consumption and body weight gain of the high-HFCS group decreased (p < 0.01). The feed conversion rate was negatively affected in both HFCS groups compared to the CON group (p < 0.01). The carcass yields of the groups linearly decreased with the increase of HFCS (p < 0.001). Serum LDL cholesterol (p < 0.05) and GLU (p < 0.01) levels were significantly lower in the HFCS groups than the CON. Serum CRE levels were higher in the low-HFCS group compared to the other groups (p < 0.001). The oxidative stress index (OSI) levels were lower in the low-HFCS group than the CON group (p < 0.05). CONCLUSION The addition of 100 mg/kg HFCS to broiler diets negatively affected performance parameters, but HFCS supplementation positively affected biochemical parameters. In particular, low-HFCS supplementation decreased the OSI, indicating that it could possibly reduce oxidative stress. Accordingly, HFCS could be added to broiler diets at a level of 50 mg/kg.
Collapse
Affiliation(s)
- Gökhan Şen
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary MedicineKırıkkale UniversityKırıkkaleTürkiye
| | - Mehmet Demirci
- Department of Plant and Animal Production, Delice VHSKırıkkale UniversityKırıkkaleTürkiye
| | - Şevket Evci
- Department of Plant and Animal Production, Delice VHSKırıkkale UniversityKırıkkaleTürkiye
| | - Ali Şenol
- Department of Biochemistry, Faculty of Veterinary MedicineKırıkkale UniversityKırıkkaleTürkiye
| | - Mehmet Akif Karsli
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary MedicineKırıkkale UniversityKırıkkaleTürkiye
| |
Collapse
|
4
|
Ruscitti P, Currado D, Rivellese F, Vomero M, Navarini L, Cipriani P, Pitzalis C, Giacomelli R. Diminished expression of the ubiquitin-proteasome system in early treatment-naïve patients with rheumatoid arthritis and concomitant type 2 diabetes may be linked to IL-1 pathway hyper-activity; results from PEAC cohort. Arthritis Res Ther 2024; 26:171. [PMID: 39342401 PMCID: PMC11437779 DOI: 10.1186/s13075-024-03392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE Based on the recent evidence of IL-1 inhibition in patients with rheumatoid arthritis (RA) and concomitant type 2 diabetes (T2D), we evaluated the synovial tissue expression of IL-1 related genes in relationship to the ubiquitin-proteasome system and the effects of insulin on ubiquitinated proteins in fibroblast-like synoviocytes (FLSs). METHODS The synovial expression of IL-1 pathway genes was compared in early (< 1 year) treatment-naïve RA patients with T2D (RA/T2D n = 16) and age- and sex-matched RA patients without T2D (n = 16), enrolled in the Pathobiology of Early Arthritis Cohort (PEAC). The synovial expression of ubiquitin in macrophages and synovial lining fibroblasts was also assessed by Immunohistochemistry/immunofluorescence and correlated with synovial pathotypes. Finally, FLSs from RA patients (n = 5) were isolated and treated with human insulin (200 and 500 nM) and ubiquitinated proteins were assessed by western blot. RESULTS Synovial tissues of RA/T2D patients were characterised by a consistent reduced expression of ubiquitin-proteasome genes. More specifically, ubiquitin genes (UBB, UBC, and UBA52) and genes codifying proteasome subunits (PSMA2, PSMA6, PSMA7, PSMB1, PSMB3, PSMB4, PSMB6, PSMB8, PSMB9, PSMB10, PSMC1, PSMD9, PSME1, and PSME2) were significantly lower in RA/T2D patients. On the contrary, genes regulating fibroblast functions (FGF7, FGF10, FRS2, FGFR3, and SOS1), and genes linked to IL-1 pathway hyper-activity (APP, IRAK2, and OSMR) were upregulated in RA/T2D. Immunohistochemistry showed a significant reduction of the percentage of ubiquitin-positive cells in synovial tissues of RA/T2D patients. Ubiquitin-positive cells were also increased in patients with a lympho-myeloid pathotype compared to diffuse myeloid or pauci-immune-fibroid. Finally, in vitro experiments showed a reduction of ubiquitinated proteins in RA-FLSs treated with a high concentration of insulin (500 nM). CONCLUSIONS A different IL-1 pathway gene expression was observed in the synovial tissues of early treatment-naïve RA/T2D patients, linked to decreased expression of the ubiquitin-proteasome system. These findings may provide a mechanistic explanation of the observed clinical benefits of IL-1 inhibition in patients with RA and concomitant T2D.
Collapse
Affiliation(s)
- Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Delta 6 Building, PO box 67100, L'Aquila, Italy.
| | - Damiano Currado
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust & Barts Biomedical Research Centre (BRC) National Institute for Health and Care Research (NIHR), London, UK
| | - Marta Vomero
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Luca Navarini
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| | - Paola Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Delta 6 Building, PO box 67100, L'Aquila, Italy
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust & Barts Biomedical Research Centre (BRC) National Institute for Health and Care Research (NIHR), London, UK
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| |
Collapse
|
5
|
Lai J, Kong W, Fu Q, Jiang Z, Sun B, Ye X, Kong J, Wei S, Jiang L. PSMD14 is a novel prognostic marker and therapeutic target in osteosarcoma. Diagn Pathol 2024; 19:79. [PMID: 38863002 PMCID: PMC11165824 DOI: 10.1186/s13000-024-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Osteosarcoma is a bone tumor that is characterized by high malignancy and a high mortality rate, and that originates from primitive osteoblastic mesenchymal cells and is most common in rapidly growing long bones. PSMD14, also known as RPN11 or POH1, is a member of the JAMM isopeptidase family, which is able to remove the substrate protein ubiquitination label, thereby regulating the stability and function of the substrate protein. In this study, we explored the expression and potential biological significance of the PSMD14 deubiquitinating enzyme in osteosarcoma. METHODS Immunohistochemical methods were used to detect the expression of PSMD14 in biopsies of 91 osteosarcoma patients, and the specimens were classified into high and low PSMD14 expression groups. The correlation between PSMD14 expression and clinical indicators and prognosis was compared.SiRNA was used to downregulate PSMD14 in two osteosarcoma cell lines (HOS and SJSA-1), and the effects of downregulation of PSMD14 on the viability, proliferation, and invasion ability of osteosarcoma cells were analyzed. RESULTS We identified significant differences in recurrence, metastasis, and survival time of the osteosarcoma patients on the basis of PSMD14 expression. High expression of PSMD14 in osteosarcoma patients was associated with a low survival rate and high risk of metastasis and recurrence. Down-regulation of PSMD14 inhibited the viability, proliferation, and invasiveness of osteosarcoma cell lines. CONCLUSIONS PSMD14 may be a new prognostic marker and therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Jiabin Lai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Weike Kong
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qiangchang Fu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Zhaochang Jiang
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Bohao Sun
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xin Ye
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jing Kong
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shumei Wei
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Lifeng Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Jiao K, Xu G, Liu Y, Yang Z, Xiang L, Chen Z, Xu C, Zuo Y, Wu Z, Zheng N, Xu W, Zhang L, Liu Y. UBXN1 promotes liver tumorigenesis by regulating mitochondrial homeostasis. J Transl Med 2024; 22:485. [PMID: 38773518 PMCID: PMC11110256 DOI: 10.1186/s12967-024-05208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND The maintenance of mitochondrial homeostasis is critical for tumor initiation and malignant progression because it increases tumor cell survival and growth. The molecular events controlling mitochondrial integrity that facilitate the development of hepatocellular carcinoma (HCC) remain unclear. Here, we report that UBX domain-containing protein 1 (UBXN1) hyperactivation is essential for mitochondrial homeostasis and liver tumorigenesis. METHODS Oncogene-induced mouse liver tumor models were generated with the Sleeping Beauty (SB) transposon delivery system. Assessment of HCC cell growth in vivo and in vitro, including tumour formation, colony formation, TUNEL and FACS assays, was conducted to determine the effects of UBXN1 on HCC cells, as well as the involvement of the UBXN1-prohibitin (PHB) interaction in mitochondrial function. Coimmunoprecipitation (Co-IP) was used to assess the interaction between UBXN1 and PHB. Liver hepatocellular carcinoma (LIHC) datasets and HCC patient samples were used to assess the expression of UBXN1. RESULTS UBXN1 expression is commonly upregulated in human HCCs and mouse liver tumors and is associated with poor overall survival in HCC patients. UBXN1 facilitates the growth of human HCC cells and promotes mouse liver tumorigenesis driven by the NRas/c-Myc or c-Myc/shp53 combination. UBXN1 interacts with the inner mitochondrial membrane protein PHB and sustains PHB expression. UBXN1 inhibition triggers mitochondrial damage and liver tumor cell apoptosis. CONCLUSIONS UBXN1 interacts with PHB and promotes mitochondrial homeostasis during liver tumorigenesis.
Collapse
Affiliation(s)
- Kun Jiao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guiqin Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaojuan Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lvzhu Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehong Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - You Zuo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhibai Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ningqian Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wangjie Xu
- Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yongzhong Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Liu F, Gao C. Regulation of the Inflammasome Activation by Ubiquitination Machinery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:123-134. [PMID: 39546140 DOI: 10.1007/978-981-97-7288-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Inflammasomes are multiprotein complexes that assemble in response to the detection of stress- or infection-associated stimuli and lead to the activation of caspase-1 and consequent maturation of caspase-1 target molecules such as interleukin (IL)-1β and IL-18. Although inflammasome is the essential component of the innate immunity system to defense against insults, inappropriate or prolonged activation of inflammasome may be harmful and is associated with various diseases, e.g., gout, atherosclerosis, diabetes, and Alzheimer's disease. Therefore, regulating inflammasome activation is crucial for maintaining immune homeostasis. Studies have found that post-translational modifications (PTMs), e.g., ubiquitination and phosphorylation, are critical for inflammasome activation. Ubiquitination is an important form of post-translational modification of proteins that plays a pivotal role in various cellular functions. In recent years, its function in regulating inflammasome assembly has been a hot topic of interest. This study discussed the function and mechanism of the ubiquitin system controlling inflammasome activation and highlighted the challenges of this research area.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China.
| |
Collapse
|
8
|
Jing T, Xu X, Wu C, Wei D, Yuan L, Huang Y, Liu Y, Wang B. POH1 facilitates pancreatic carcinogenesis through MYC-driven acinar-to-ductal metaplasia and is a potential therapeutic target. Cancer Lett 2023; 577:216444. [PMID: 37844756 DOI: 10.1016/j.canlet.2023.216444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), a necessary process for pancreatic ductal adenocarcinoma (PDAC) initiation. However, the regulatory role of POH1, a deubiquitinase linked to several types of cancer, in ADM and PDAC is unclear. In this study, we investigated the role of POH1 in ADM and PDAC using murine models. Our findings suggest that pancreatic-specific deletion of Poh1 alleles attenuates ADM and impairs pancreatic carcinogenesis, improving murine survival. Mechanistically, POH1 deubiquitinates and stabilizes the MYC protein, which potentiates ADM and PDAC. Furthermore, POH1 is highly expressed in PDAC samples, and clinical evidence establishes a positive correlation between aberrantly expressed POH1 and poor prognosis in PDAC patients. Targeting POH1 with a specific small-molecule inhibitor significantly reduces pancreatic tumor formation, highlighting POH1 as a promising therapeutic target for PDAC treatment. Overall, POH1-mediated MYC deubiquitination is crucial for ADM and PDAC onset, and targeting POH1 could be an effective strategy for PDAC treatment, offering new avenues for PDAC targeted therapy.
Collapse
Affiliation(s)
- Tiantian Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoli Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Chengsi Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Dianhui Wei
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Yuan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yiwen Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Boshi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
9
|
Jiang Q, Zhu Z, Mao X. Ubiquitination is a major modulator for the activation of inflammasomes and pyroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194955. [PMID: 37331650 DOI: 10.1016/j.bbagrm.2023.194955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhigang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
10
|
Mishra V, Crespo-Puig A, McCarthy C, Masonou T, Glegola-Madejska I, Dejoux A, Dow G, Eldridge MJG, Marinelli LH, Meng M, Wang S, Bennison DJ, Morrison R, Shenoy AR. IL-1β turnover by the UBE2L3 ubiquitin conjugating enzyme and HECT E3 ligases limits inflammation. Nat Commun 2023; 14:4385. [PMID: 37474493 PMCID: PMC10359330 DOI: 10.1038/s41467-023-40054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
The cytokine interleukin-1β (IL-1β) has pivotal roles in antimicrobial immunity, but also incites inflammatory disease. Bioactive IL-1β is released following proteolytic maturation of the pro-IL-1β precursor by caspase-1. UBE2L3, a ubiquitin conjugating enzyme, promotes pro-IL-1β ubiquitylation and proteasomal disposal. However, actions of UBE2L3 in vivo and its ubiquitin ligase partners in this process are unknown. Here we report that deletion of Ube2l3 in mice reduces pro-IL-1β turnover in macrophages, leading to excessive mature IL-1β production, neutrophilic inflammation and disease following inflammasome activation. An unbiased RNAi screen identified TRIP12 and AREL1 E3 ligases of the Homologous to E6 C-terminus (HECT) family in adding destabilising K27-, K29- and K33- poly-ubiquitin chains on pro-IL-1β. We show that precursor abundance determines mature IL-1β production, and UBE2L3, TRIP12 and AREL1 limit inflammation by shrinking the cellular pool of pro-IL-1β. Our study uncovers fundamental processes governing IL-1β homeostasis and provides molecular insights that could be exploited to mitigate its adverse actions in disease.
Collapse
Affiliation(s)
- Vishwas Mishra
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Anna Crespo-Puig
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Callum McCarthy
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Tereza Masonou
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Izabela Glegola-Madejska
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Alice Dejoux
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Gabriella Dow
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Matthew J G Eldridge
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Luciano H Marinelli
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Meihan Meng
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Shijie Wang
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel J Bennison
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Rebecca Morrison
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Avinash R Shenoy
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
11
|
ETV4 potentiates nuclear YAP retention and activities to enhance the progression of hepatocellular carcinoma. Cancer Lett 2022; 537:215640. [PMID: 35296440 DOI: 10.1016/j.canlet.2022.215640] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022]
Abstract
Dysregulation of the Hippo pathway that promotes cell survival, proliferation and tumorigenesis, relays on the coordinated interactions of YAP with the factors that determine YAP translocation and the related transcriptional programming. Here, we demonstrate that ETV4, a transcriptional factor participating in various protumorigenic processes, enhances YAP-mediated transactivation and hepatocellular carcinoma (HCC) progression. Mechanistically, the enhancement of YAP activities is mediated by the interaction between ETV4 and YAP, which not only increases nuclear YAP accumulation but also directly augments the YAP/TEAD4-mediated transcriptional activation in tumor cells. Functionally, the interplay of ETV4 and YAP promotes growth of liver tumor cells, and activates the genes related to myeloid cell recruitment, including CXCL1 and CXCL5, leading to an enriched presence of myeloid-derived suppressive cells and macrophages but a decreased infiltration of T cells and NK cells in transplanted tumors. More importantly, the correlations between YAP activation, the altered immune cell distribution and ETV4 expression are observed in human HCCs. Therefore, our study reveals a functional interaction between ETV4 and YAP that contributes to HCC progression, and provides mechanistic insights into the regulation of nuclear YAP retention and transactivation.
Collapse
|
12
|
E3 ubiquitin ligase SYVN1 is a key positive regulator for GSDMD-mediated pyroptosis. Cell Death Dis 2022; 13:106. [PMID: 35115505 PMCID: PMC8814081 DOI: 10.1038/s41419-022-04553-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023]
Abstract
Gasdermin D (GSDMD) participates in the activation of inflammasomes and pyroptosis. Meanwhile, ubiquitination strictly regulates inflammatory responses. However, how ubiquitination regulates Gasdermin D activity is not well understood. In this study, we show that pyroptosis triggered by Gasdermin D is regulated through ubiquitination. Specifically, SYVN1, an E3 ubiquitin ligase of gasdermin D, promotes GSDMD-mediated pyroptosis. SYVN1 deficiency inhibits pyroptosis and subsequent LDH release and PI uptake. SYVN1 directly interacts with GSDMD, and mediates K27-linked polyubiquitination of GSDMD on K203 and K204 residues, promoting GSDMD-induced pyroptotic cell death. Thus, our findings revealed the essential role of SYVN1 in GSDMD-mediated pyroptosis. Overall, GSDMD ubiquitination is a potential therapeutic module for inflammatory diseases.
Collapse
|
13
|
Ji N, Wu L, Shi H, Li Q, Yu A, Yang Z. VSIG4 Attenuates NLRP3 and Ameliorates Neuroinflammation via JAK2-STAT3-A20 Pathway after Intracerebral Hemorrhage in Mice. Neurotox Res 2022; 40:78-88. [PMID: 35013905 DOI: 10.1007/s12640-021-00456-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022]
Abstract
Intracerebral hemorrhage (ICH) is a fatal cerebrovascular disease. Neuroinflammation plays an important pathological role in brain injury after ICH. NLRP3 contributes to the pathogenesis of ICH, but the underlying mechanisms regulating of NLRP3 remain elusive. V-set and immunoglobulin domain containing 4 (VSIG4), specifically expressed in resting tissue-resident macrophages, can deliver anti-inflammatory signals into various inflammatory diseases. However, the interaction between VSIG4 and NLRP3, as well as the underlying mechanisms after ICH have not been reported. C57BL/6 mice were subjected to the autologous blood injection ICH model. VSIG4 and NLRP3 levels of macrophages were detected following ICH. Ad-VSIG4 or controls were administered via intracerebroventricular (i.c.v) injection before ICH induction. STAT3 inhibitor (S31-201), JAK2 inhibitor (TG101348), or Ad-A20 RNAi was administered to investigate the role of JAK2-STAT3-A20 pathway in VSIG4-mediated neuroinflammation after ICH. Pro-inflammatory cytokine production, BBB disruption, brain water content, and neurological test were examined in ICH mice. VSIG4 levels were significantly decreased, and NLRP3 levels were significantly increased in the perihematomal brain tissues after ICH. Ad-VSIG4 attenuated NLRP3 levels and inhibited inflammation, as well as improved neurological function and reduced BBB disruption and brain water content. Furthermore, Ad-VSIG4 increased the protein levels of phosphorylated JAK2 and STAT3, and A20 levels at 24 h after ICH. STAT3 inhibitor, JAK2 inhibitor, and A20 RNAi abolished the beneficial effects of Ad-VSIG4 after ICH. In summary, these data suggested that VSIG4 attenuated NLRP3 and ameliorated neuroinflammation via JAK2-STAT3-A20 pathway after intracerebral hemorrhage in mice. VSIG4 might be an ideal therapeutic target for ICH patients.
Collapse
Affiliation(s)
- Na Ji
- Department of Anesthesia, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lirong Wu
- Department of Neurology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Hui Shi
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Qianlu Li
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Anyong Yu
- Emergency Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou, 563003, China.
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
14
|
Xing Y, Wang JY, Li MY, Zhang ZH, Jin HL, Zuo HX, Ma J, Jin X. Convallatoxin inhibits IL-1β production by suppressing zinc finger protein 91-mediated pro-IL-1β ubiquitination and caspase-8 inflammasome activity. Br J Pharmacol 2021; 179:1887-1907. [PMID: 34825365 DOI: 10.1111/bph.15758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/27/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE ZFP91 positively regulates IL-1β production in macrophages and may be a potential therapeutic target to treat inflammatory-related diseases. Therefore, we investigated whether this process is modulated by convallatoxin, which is a cardiac glycoside isolated from the traditional Chinese medicinal plant Adonis amurensis Regel et Radde. EXPERIMENTAL APPROACH In vitro, the underlying mechanisms by which convallatoxin inhibits ZFP91-regulated IL-1β expression were investigated using molecular docking, western blotting, RT-PCR, ELISA, immunofluorescence, and immunoprecipitation assays. In vivo, liver injury was induced by an intraperitoneal injection of D-GalN and LPS, colitis was induced by oral administration of DSS in drinking water, and peritonitis was induced by an intraperitoneal injection of alum. KEY RESULTS We confirmed that convallatoxin inhibited the release of IL-1β by downregulating ZFP91. Importantly, we found that convallatoxin significantly reduced K63-linked polyubiquitination of pro-IL-1β regulated by ZFP91 and decreased the efficacy of pro-IL-1β cleavage. Moreover, convallatoxin suppressed ZFP91-mediated activation of the non-canonical caspase-8 inflammasome and MAPK signaling pathways in macrophages. Furthermore, we showed that ZFP91 promoted the assembly of the caspase-8 inflammasome complex, whereas convallatoxin treatment reversed this result. In vivo studies further demonstrated that convallatoxin ameliorated D-GalN/LPS-induced liver injury, DSS-induced colitis, and alum-induced peritonitis by downregulating ZFP91. CONCLUSION AND IMPLICATIONS We report for the first time that convallatoxin-mediated inhibition of ZFP91 is an important regulatory event that prevents inappropriate inflammatory responses to maintain of immune homeostasis. This mechanism provides new perspectives for the development of convallatoxin as a novel anti-inflammatory drug targeting ZFP91.
Collapse
Affiliation(s)
- Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Zhi Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
15
|
Fan X, Zhang J, Dai Y, Shan K, Xu J. Blockage of P2X7R suppresses Th1/Th17-mediated immune responses and corneal allograft rejection via inhibiting NLRP3 inflammasome activation. Exp Eye Res 2021; 212:108792. [PMID: 34656546 DOI: 10.1016/j.exer.2021.108792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023]
Abstract
P2X7R is a vital modifier of various inflammatory and immune-related diseases. However, the immunomodulatory effects of P2X7R on corneal allograft rejection remains unknown. Here we showed that P2X7R expression was significantly upregulated in corneal grafts of allogeneic transplant mice. Pharmacological blockage of P2X7R remarkably prolonged graft survival time, and reduced inflammatory cell infiltration in corneal grafts, in particular Th1/Th17 cells. Meanwhile, the frequencies of Th1/Th17 cells in draining lymph nodes were significantly decreased in P2X7R blocked allogeneic mice. Further results showed that the effect of P2X7R on promoting Th1/Th17 mediated immune responses in corneal allograft rejection relied heavily on its activation on the NLRP3/caspase-1/IL-1β axis, while P2X7R blockage could mitigate such activation. Nevertheless, the addition of IL-1β in vivo abrogated the protective effect of P2X7R blockage on promoting corneal graft survival. These findings demonstrate that blockage of P2X7R can substantially alleviate corneal allograft rejection and promote grafts survival, highlighting it as a promising target for preventing or treating corneal allograft rejection.
Collapse
Affiliation(s)
- Xiangyu Fan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jing Zhang
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Yiqin Dai
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Kun Shan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200031, China.
| |
Collapse
|
16
|
NLRP3 Ubiquitination-A New Approach to Target NLRP3 Inflammasome Activation. Int J Mol Sci 2021; 22:ijms22168780. [PMID: 34445484 PMCID: PMC8395773 DOI: 10.3390/ijms22168780] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023] Open
Abstract
In response to diverse pathogenic and danger signals, the cytosolic activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing (3)) inflammasome complex is a critical event in the maturation and release of some inflammatory cytokines in the state of an inflammatory response. After activation of the NLRP3 inflammasome, a series of cellular events occurs, including caspase 1-mediated proteolytic cleavage and maturation of the IL-1β and IL-18, followed by pyroptotic cell death. Therefore, the NLRP3 inflammasome has become a prime target for the resolution of many inflammatory disorders. Since NLRP3 inflammasome activation can be triggered by a wide range of stimuli and the activation process occurs in a complex, it is difficult to target the NLRP3 inflammasome. During the activation process, various post-translational modifications (PTM) of the NLRP3 protein are required to form a complex with other components. The regulation of ubiquitination and deubiquitination of NLRP3 has emerged as a potential therapeutic target for NLRP3 inflammasome-associated inflammatory disorders. In this review, we discuss the ubiquitination and deubiquitination system for NLRP3 inflammasome activation and the inhibitors that can be used as potential therapeutic agents to modulate the activation of the NLRP3 inflammasome.
Collapse
|
17
|
Gong Y, Wei ZR. Identification of PSMD14 as a potential novel prognosis biomarker and therapeutic target for osteosarcoma. Cancer Rep (Hoboken) 2021; 5:e1522. [PMID: 34383385 PMCID: PMC9327663 DOI: 10.1002/cnr2.1522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/08/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary bone tumor. The survival rate of osteosarcoma patients has not significantly increased in the past decades. Uncovering the mechanisms of malignancy, progression, and metastasis will shed light on the development of new therapeutic targets and treatment for osteosarcoma. AIM The aim of this study is to identify potential osteosarcoma biomarker and/or therapeutic targets by using integrated bioinformatics analysis. METHODS AND RESULTS We utilized existing gene expression datasets to identify differential expressed genes (DEGs) that could serve as osteosarcoma biomarkers or even as therapeutic targets. We found 48 DEGs were overlapped in three datasets. Among these 48 DEGs, PSMD14 was on the top of the up-regulated gene list. We further found that higher PSMD14 expression was correlated with higher risk group (younger age group, ≤20.83 years of age), metastasis within 5 years and higher grade of tumor. Higher PSMD14 expression in osteosarcoma had positive correlation with higher infiltration of CD8+ T cells, neutrophils and myeloid dendritic cells. Kaplan-Myer survival data further revealed that higher expression of PSMD14 predicted significantly worse prognosis (p = .013). Gene set enrichment analysis was further performed for the DEGs related to PSMD14 in osteosarcoma. We found that lower PSMD14 expression group had more immune responses such as interferon γ, α responses, inflammation response etc. However, the higher PSMD14 expression group had more cell proliferation-related biological processes, such as G2M checkpoints and Myc targets. Through establishing protein-protein interaction networks using PSMD14 related DEGs, we identified 10 hub genes that were all ribosomal proteins. These hub genes may play roles in osteosarcoma tumorigenesis, progression and/or metastasis. CONCLUSION We identified PSMD14 gene as a possible osteosarcoma biomarker, and/or a possible therapeutic target.
Collapse
Affiliation(s)
- Yubao Gong
- Department of Orthopedics, Jilin University First Hospital, Jilin, China
| | - Zheng-Ren Wei
- Department of Pharmocology, Jilin University Bethune College of Medicine, Jilin, China
| |
Collapse
|
18
|
Yang Z, Xu G, Wang B, Liu Y, Zhang L, Jing T, Tang M, Xu X, Jiao K, Xiang L, Fu Y, Tang D, Zhang X, Jin W, Zhuang G, Zhao X, Liu Y. USP12 downregulation orchestrates a protumourigenic microenvironment and enhances lung tumour resistance to PD-1 blockade. Nat Commun 2021; 12:4852. [PMID: 34381028 PMCID: PMC8357983 DOI: 10.1038/s41467-021-25032-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Oncogenic activation of KRAS and its surrogates is essential for tumour cell proliferation and survival, as well as for the development of protumourigenic microenvironments. Here, we show that the deubiquitinase USP12 is commonly downregulated in the KrasG12D-driven mouse lung tumour and human non-small cell lung cancer owing to the activation of AKT-mTOR signalling. Downregulation of USP12 promotes lung tumour growth and fosters an immunosuppressive microenvironment with increased macrophage recruitment, hypervascularization, and reduced T cell activation. Mechanistically, USP12 downregulation creates a tumour-promoting secretome resulting from insufficient PPM1B deubiquitination that causes NF-κB hyperactivation in tumour cells. Furthermore, USP12 inhibition desensitizes mouse lung tumour cells to anti-PD-1 immunotherapy. Thus, our findings propose a critical component downstream of the oncogenic signalling pathways in the modulation of tumour-immune cell interactions and tumour response to immune checkpoint blockade therapy. The cancer cell-extrinsic roles of deubiquitinases are unclear. Here the authors show that deubiquitinase USP12 downregulation contributes to development of an immune-suppressive tumour microenvironment in KRAS-driven lung cancers and mechanistically this is through the insufficient deubiquitination of the NF-κB inhibitor, PPM1B.
Collapse
Affiliation(s)
- Zhaojuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiqin Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boshi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Xu
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Kun Jiao
- Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Lvzhu Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Fu
- Department of Thoracic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daoqiang Tang
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University, Guangzhou, China
| | - Weilin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Vijayaraj SL, Feltham R, Rashidi M, Frank D, Liu Z, Simpson DS, Ebert G, Vince A, Herold MJ, Kueh A, Pearson JS, Dagley LF, Murphy JM, Webb AI, Lawlor KE, Vince JE. The ubiquitylation of IL-1β limits its cleavage by caspase-1 and targets it for proteasomal degradation. Nat Commun 2021; 12:2713. [PMID: 33976225 PMCID: PMC8113568 DOI: 10.1038/s41467-021-22979-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Interleukin-1β (IL-1β) is activated by inflammasome-associated caspase-1 in rare autoinflammatory conditions and in a variety of other inflammatory diseases. Therefore, IL-1β activity must be fine-tuned to enable anti-microbial responses whilst limiting collateral damage. Here, we show that precursor IL-1β is rapidly turned over by the proteasome and this correlates with its decoration by K11-linked, K63-linked and K48-linked ubiquitin chains. The ubiquitylation of IL-1β is not just a degradation signal triggered by inflammasome priming and activating stimuli, but also limits IL-1β cleavage by caspase-1. IL-1β K133 is modified by ubiquitin and forms a salt bridge with IL-1β D129. Loss of IL-1β K133 ubiquitylation, or disruption of the K133:D129 electrostatic interaction, stabilizes IL-1β. Accordingly, Il1bK133R/K133R mice have increased levels of precursor IL-1β upon inflammasome priming and increased production of bioactive IL-1β, both in vitro and in response to LPS injection. These findings identify mechanisms that can limit IL-1β activity and safeguard against damaging inflammation.
Collapse
Affiliation(s)
- Swarna L Vijayaraj
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Maryam Rashidi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Daniel Frank
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Zhengyang Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Angelina Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kate E Lawlor
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia. .,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
20
|
Ren GM, Li J, Zhang XC, Wang Y, Xiao Y, Zhang XY, Liu X, Zhang W, Ma WB, Zhang J, Li YT, Tao SS, Wang T, Liu K, Chen H, Zhan YQ, Yu M, Li CY, Ge CH, Tian BX, Dou GF, Yang XM, Yin RH. Pharmacological targeting of NLRP3 deubiquitination for treatment of NLRP3-associated inflammatory diseases. Sci Immunol 2021; 6:6/58/eabe2933. [PMID: 33931568 DOI: 10.1126/sciimmunol.abe2933] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/03/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Pharmacologically inhibiting nucleotide-binding domain and leucine-rich repeat-containing (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome activation results in potent therapeutic effects in a wide variety of preclinical inflammatory disease models. NLRP3 deubiquitination is essential for efficient NLRP3 inflammasome activity, but it remains unclear whether this process can be harnessed for therapeutic benefit. Here, we show that thiolutin (THL), an inhibitor of the JAB1/MPN/Mov34 (JAMM) domain-containing metalloprotease, blocks NLRP3 inflammasome activation by canonical, noncanonical, alternative, and transcription-independent pathways at nanomolar concentrations. In addition, THL potently inhibited the activation of multiple NLRP3 mutants linked with cryopyrin-associated periodic syndromes (CAPS). Treatment with THL alleviated NLRP3-related diseases in mouse models of lipopolysaccharide-induced sepsis, monosodium urate-induced peritonitis, experimental autoimmune encephalomyelitis, CAPS, and methionine-choline-deficient diet-induced nonalcoholic fatty liver disease. Mechanistic studies revealed that THL inhibits the BRCC3-containing isopeptidase complex (BRISC)-mediated NLRP3 deubiquitination and activation. In addition, we show that holomycin, a natural methyl derivative of THL, displays an even higher inhibitory activity against NLRP3 inflammasome than THL. Our study validates that posttranslational modification of NLRP3 can be pharmacologically targeted to prevent or treat NLRP3-associated inflammatory diseases. Future clinical development of derivatives of THL may provide new therapies for NLRP3-related diseases.
Collapse
Affiliation(s)
- Guang-Ming Ren
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Chun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yang Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xuan-Yi Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wen Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wen-Bing Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jie Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ya-Ting Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shou-Song Tao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Kai Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo-Xue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Gui-Fang Dou
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China. .,School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
21
|
Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ 2021; 28:591-605. [PMID: 33432113 PMCID: PMC7798376 DOI: 10.1038/s41418-020-00708-5] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin system is complex, multifaceted, and is crucial for the modulation of a vast number of cellular processes. Ubiquitination is tightly regulated at different levels by a range of enzymes including E1s, E2s, and E3s, and an array of DUBs. The UPS directs protein degradation through the proteasome, and regulates a wide array of cellular processes including transcription and epigenetic factors as well as key oncoproteins. Ubiquitination is key to the dynamic regulation of programmed cell death. Notably, the TNF signaling pathway is controlled by competing ubiquitin conjugation and deubiquitination, which governs both proteasomal degradation and signaling complex formation. In the inflammatory response, ubiquitination is capable of both activating and dampening inflammasome activation through the control of either protein stability, complex formation, or, in some cases, directly affecting receptor activity. In this review, we discuss the enzymes and targets in the ubiquitin system that regulate fundamental cellular processes regulating cell death, and inflammation, as well as disease consequences resulting from their dysregulation. Finally, we highlight several pre-clinical and clinical compounds that regulate ubiquitin system enzymes, with the aim of restoring homeostasis and ameliorating diseases.
Collapse
Affiliation(s)
- Peter E Cockram
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.,Departments of Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Matthias Kist
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sumit Prakash
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Si-Han Chen
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ingrid E Wertz
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA. .,Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Domagoj Vucic
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
22
|
Seoane PI, Lee B, Hoyle C, Yu S, Lopez-Castejon G, Lowe M, Brough D. The NLRP3-inflammasome as a sensor of organelle dysfunction. J Cell Biol 2020; 219:191204. [PMID: 33044555 PMCID: PMC7543090 DOI: 10.1083/jcb.202006194] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Diverse pathogen- and damage-associated stresses drive inflammation via activation of the multimolecular NLRP3-inflammasome complex. How the effects of diverse stimuli are integrated by the cell to regulate NLRP3 has been the subject of intense research, and yet an accepted unifying hypothesis for the control of NLRP3 remains elusive. Here, we review the literature on the effects of NLRP3-activating stimuli on subcellular organelles and conclude that a shared feature of NLRP3-activating stresses is an organelle dysfunction. In particular, we propose that the endosome may be more important than previously recognized as a signal-integrating hub for NLRP3 activation in response to many stimuli and may also link to the dysfunction of other organelles. In addition, NLRP3-inflammasome-activating stimuli trigger diverse posttranslational modifications of NLRP3 that are important in controlling its activation. Future research should focus on how organelles respond to specific NLRP3-activating stimuli, and how this relates to posttranslational modifications, to delineate the organellar control of NLRP3.
Collapse
Affiliation(s)
- Paula I. Seoane
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Bali Lee
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Christopher Hoyle
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Shi Yu
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK,Correspondence to David Brough:
| |
Collapse
|
23
|
Allen C, Sellers B, Smith M, Edwards A, Gateless K, Aab B, Sherrard K, Bolyard C, Stover S. Effects of Intermittent Fasting and Physical Activity on Salivary Expression of Reduced Glutathione and Interleukin-1β. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2020; 13:1063-1071. [PMID: 32922651 PMCID: PMC7449335 DOI: 10.70252/nzgz6326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Previous research has consistently demonstrated that regular exercise promotes antioxidant production and decreases the expression of inflammation markers. However, there is very little research examining the effects of intermittent fasting (IF) on oxidative stress and inflammation. The present study investigated the hypothesis that a combination of IF and physical activity will reduce the need for glutathione (GSH) production by decreasing oxidative stress. In addition, it was hypothesized that a combination of IF and physical activity will significantly reduce inflammation, as indicated by a decrease in interleukin-1β (IL-1β) concentration. For three months, subjects practicing IF (n=7) ate only during an eight-hour window each day and fasted for the next 16 hours. A standard diet control group (n=18) maintained a normal, balanced diet spread out over the course of 14-18 hours each day. Based on data obtained from fitness-tracking devices, subjects were placed into one of three activity level groups: minimum, moderate, and maximum physical activity. Subjects provided fasting saliva samples monthly. The samples were subjected to a glutathione microplate assay and an interleukin ELISA test to determine salivary concentrations of GSH and IL-1β, respectively. For GSH concentration, there were no significant differences between the diets at any physical activity level. However, moderate to maximum physical activity, in conjunction with fasting, led to significant decreases in IL-1β concentration. In summary, results suggest that a combination of moderate physical activity and intermittent fasting promotes the maintenance of antioxidant function while inhibiting the inflammatory process.
Collapse
Affiliation(s)
- Colton Allen
- Department of Biology and Environmental Science, Davis & Elkins College, Elkins, WV, USA
| | - Brandon Sellers
- Department of Biology and Environmental Science, Davis & Elkins College, Elkins, WV, USA
| | - Mackinzie Smith
- Department of Biology and Environmental Science, Davis & Elkins College, Elkins, WV, USA
| | - Alyssa Edwards
- Department of Biology and Environmental Science, Davis & Elkins College, Elkins, WV, USA
| | - Kirsten Gateless
- Department of Biology and Environmental Science, Davis & Elkins College, Elkins, WV, USA
| | - Bailey Aab
- Department of Biology and Environmental Science, Davis & Elkins College, Elkins, WV, USA
| | - Kalee Sherrard
- Department of Biology and Environmental Science, Davis & Elkins College, Elkins, WV, USA
| | - Carl Bolyard
- Emergency Department, Davis Medical Center, Elkins, WV, USA
| | - Shawn Stover
- Department of Biology and Environmental Science, Davis & Elkins College, Elkins, WV, USA
| |
Collapse
|
24
|
Li T, Zou C. The Role of Deubiquitinating Enzymes in Acute Lung Injury and Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:E4842. [PMID: 32650621 PMCID: PMC7402294 DOI: 10.3390/ijms21144842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30-40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways.
Collapse
Affiliation(s)
| | - Chunbin Zou
- Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
25
|
Gadhave K, Kumar P, Kapuganti SK, Uversky VN, Giri R. Unstructured Biology of Proteins from Ubiquitin-Proteasome System: Roles in Cancer and Neurodegenerative Diseases. Biomolecules 2020; 10:E796. [PMID: 32455657 PMCID: PMC7278180 DOI: 10.3390/biom10050796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
The 26S proteasome is a large (~2.5 MDa) protein complex consisting of at least 33 different subunits and many other components, which form the ubiquitin proteasomal system (UPS), an ATP-dependent protein degradation system in the cell. UPS serves as an essential component of the cellular protein surveillance machinery, and its dysfunction leads to cancer, neurodegenerative and immunological disorders. Importantly, the functions and regulations of proteins are governed by the combination of ordered regions, intrinsically disordered protein regions (IDPRs) and molecular recognition features (MoRFs). The structure-function relationships of UPS components have not been identified completely; therefore, in this study, we have carried out the functional intrinsic disorder and MoRF analysis for potential neurodegenerative disease and anti-cancer targets of this pathway. Our report represents the presence of significant intrinsic disorder and disorder-based binding regions in several UPS proteins, such as extraproteasomal polyubiquitin receptors (UBQLN1 and UBQLN2), proteasome-associated polyubiquitin receptors (ADRM1 and PSMD4), deubiquitinating enzymes (DUBs) (ATXN3 and USP14), and ubiquitinating enzymes (E2 (UBE2R2) and E3 (STUB1) enzyme). We believe this study will have implications for the conformation-specific roles of different regions of these proteins. This will lead to a better understanding of the molecular basis of UPS-associated diseases.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Shivani K. Kapuganti
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA;
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Cientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| |
Collapse
|
26
|
Zhang L, Xu H, Ma C, Zhang J, Zhao Y, Yang X, Wang S, Li D. Upregulation of deubiquitinase PSMD14 in lung adenocarcinoma (LUAD) and its prognostic significance. J Cancer 2020; 11:2962-2971. [PMID: 32226511 PMCID: PMC7086243 DOI: 10.7150/jca.39539] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023] Open
Abstract
PSMD14 is a 19S-proteasome-associated deubiquitinating enzyme that facilitates protein degradation by the 20S proteasome core particle. Although accumulating evidence indicates that PSMD14 has emerged as a critical oncogenic factor by promoting tumor growth, the expression and function of PSMD14 in non-small cell lung cancer (NSCLC) remain largely unknown. In this study, we assessed PSMD14 expression and correlated it with clinical-pathological features and patient survival in NSCLC. We also determined the roles of PSMD14 in the regulation of lung adenocarcinoma (LUAD) cell growth. The results showed that PSMD14 expression was significantly upregulated in human NSCLC tissues compared with adjacent non-cancerous tissues. The PSMD14 level was associated with tumor size, lymph node invasion, and TNM stage in LUAD patients. Importantly, high PSMD14 expression was associated with poor overall survival (OS) and disease-free survival (DFS) in LUAD patients. Further, knockdown of PSMD14 significantly inhibited cell growth and caused G1 arrest and cellular senescence by increasing p21 stability in LUAD cells. PSMD14 knockdown also promoted cell apoptosis by increasing cleaved caspase-3 levels in H1299 cells. PSMD14 may serve as a potential prognostic marker and therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Hui Xu
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Chunping Ma
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Jieru Zhang
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Yuanjie Zhao
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Shusheng Wang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| |
Collapse
|
27
|
de Dieuleveult M, Miotto B. Ubiquitin Dynamics in Stem Cell Biology: Current Challenges and Perspectives. Bioessays 2020; 42:e1900129. [PMID: 31967345 DOI: 10.1002/bies.201900129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/18/2019] [Indexed: 11/09/2022]
Abstract
Ubiquitination plays a central role in the regulation of stem cell self-renewal, propagation, and differentiation. In this review, the functions of ubiquitin dynamics in a myriad of cellular processes, acting along side the pluripotency network, to regulate embryonic stem cell identity are highlighted. The implication of deubiquitinases (DUBs) and E3 Ubiquitin (Ub) ligases in cellular functions beyond protein degradation is reported, including key functions in the regulation of mRNA stability, protein translation, and intra-cellular trafficking; and how it affects cell metabolism, the micro-environment, and chromatin organization is discussed. Finally, unsolved issues in the field are emphasized and will need to be tackled in order to fully understand the contribution of ubiquitin dynamics to stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Maud de Dieuleveult
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, Paris, France
| | - Benoit Miotto
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, Paris, France
| |
Collapse
|
28
|
Lopez‐Castejon G. Control of the inflammasome by the ubiquitin system. FEBS J 2020; 287:11-26. [PMID: 31679183 PMCID: PMC7138099 DOI: 10.1111/febs.15118] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/27/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Inflammation is the body's response to danger. One of the first immune cell types to encounter danger is the macrophage. Macrophages sense danger signals such as extracellular ATP or bacterial toxins, derived from tissue damage or infection, and initiate the activation of an intracellular molecular complex called the inflammasome. The inflammasome consists of a cytosolic pattern recognition receptor, an adaptor molecule ASC (apoptosis-associated speck-like protein containing a CARD) and the protease caspase-1. Assembly of the complex leads to the cleavage and activation of caspase-1 that triggers processing and release of the cytokines interleukin (IL)-1β and IL-18, and ultimately cell death via the process of pyroptosis. The ability to sense and respond to danger appropriately is critical for maintaining immune homeostasis. Dysregulation of inflammasomes contributes to the progression of chronic diseases prevalent in the ageing population, such as Alzheimer's disease, COPD and metabolic disease; hence, it is critical that activation of the inflammatory response and inflammasome activation are tightly regulated. Post-translational modifications (PTMs) such as ubiquitination have recently emerged as important regulators of inflammasome assembly. However, the mechanisms by which PTMs regulate the inflammasome are still not understood. This review aims to summarize our knowledge to date on how the ubiquitin system controls inflammasome activation and where this area of research is heading.
Collapse
Affiliation(s)
- Gloria Lopez‐Castejon
- Division of Infection, Immunity and Respiratory MedicineFaculty of Biology, Medicine and HealthLydia Becker Institute of Immunology and InflammationManchester Collaborative Centre for Inflammation ResearchManchester Academic Health Science CentreUniversity of ManchesterUK
| |
Collapse
|
29
|
Wang B, Cai W, Ai D, Zhang X, Yao L. The Role of Deubiquitinases in Vascular Diseases. J Cardiovasc Transl Res 2019; 13:131-141. [DOI: 10.1007/s12265-019-09909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
|
30
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
31
|
Nie Y, Wang Z, Chai G, Xiong Y, Li B, Zhang H, Xin R, Qian X, Tang Z, Wu J, Zhao P. Dehydrocostus Lactone Suppresses LPS-induced Acute Lung Injury and Macrophage Activation through NF-κB Signaling Pathway Mediated by p38 MAPK and Akt. Molecules 2019; 24:molecules24081510. [PMID: 30999647 PMCID: PMC6514677 DOI: 10.3390/molecules24081510] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023] Open
Abstract
Acute lung injury (ALI) is a severe clinical disease marked by dysregulated inflammation response and has a high rate of morbidity and mortality. Macrophages, which play diverse roles in the inflammatory response, are becoming therapeutic targets in ALI. In this study we investigated the effects of dehydrocostus lactone (DHL), a natural sesquiterpene, on macrophage activation and LPS-induced ALI. The macrophage cell line RAW264.7 and primary lung macrophages were incubated with DHL (0, 3, 5, 10 and 30 μmol/L) for 0.5 h and then challenged with LPS (100 ng/mL) for up to 8 hours. C57BL/6 mice were intratracheally injected with LPS (5 mg/kg) to induce acute lung injury (ALI) and then treated with a range of DHL doses intraperitoneally (5 to 20 mg/kg). The results showed that DHL inhibited LPS-induced production of proinflammatory mediators such as iNOS, NO, and cytokines including TNF-α, IL-6, IL-1β, and IL-12 p35 by suppressing the activity of NF-κB via p38 MAPK/MK2 and Akt signaling pathway in macrophages. The in vivo results revealed that DHL significantly attenuated LPS-induced pathological injury and reduced cytokines expression in the lung. NF-κB, p38 MAPK/MK2 and Akt signaling molecules were also involved in the anti-inflammatory effect. Collectively, our findings suggested that DHL is a promising agent for alleviating LPS-induced ALI.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Zhongxuan Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Yue Xiong
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Boyu Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Hui Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Ruiting Xin
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Xiaohang Qian
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Zihan Tang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Jiajun Wu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|