1
|
Gopich IV, Louis JM, Chung HS. Maximum Likelihood Analysis of Diffusing Molecules with Conformational Dynamics in Single-Molecule FRET. J Phys Chem B 2025; 129:2187-2200. [PMID: 39965193 DOI: 10.1021/acs.jpcb.4c07985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
In single-molecule Förster resonance energy transfer (FRET) experiments, characterizing conformational dynamics from photon bursts emitted by diffusing molecules can be challenging due to the interplay of molecular transitions, translational diffusion, and background noise. This paper extends the maximum likelihood analysis of photon bursts (burstML) to incorporate both conformational dynamics and diffusion through the laser spot, offering a comprehensive analysis of photon bursts from single diffusing molecules. The new approach integrates two previously developed methods: one accounting for diffusion without conformational dynamics and the other addressing conformational dynamics without diffusion. By combining these approaches, the extended burstML method allows determination of brightness, diffusion time, FRET efficiency in each state, and transition rates, even under challenging conditions, such as fast (comparable to photon count rates) and slow (one transition per several bursts) transition rates, high background noise, and unequal brightness or diffusivity of the states. The performance of burstML was demonstrated on simulated data of a two-state diffusing molecule and compared with the colorML method, which simplifies analysis by excluding translational diffusion. While colorML is computationally efficient and performs well under ideal conditions (low background noise and equal brightness and diffusivity of states), its accuracy diminishes when these conditions are not met. In contrast, burstML remains accurate across a broader range of experimental scenarios. Both burstML and colorML were applied to analyze folding of several proteins (Pin1 WW domain, FiP35 WW domain, FBP28 WW domain, villin, and a synthetic protein α3D) under various experimental conditions, highlighting where colorML differs from burstML and providing insights into the applicability of the methods in diverse experimental settings.
Collapse
Affiliation(s)
- Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Dieball C, Mohebi Satalsari Y, Zuccolotto-Bernez AB, Egelhaaf SU, Escobedo-Sánchez MA, Godec A. Precisely controlled colloids: a playground for path-wise non-equilibrium physics. SOFT MATTER 2025. [PMID: 39992252 DOI: 10.1039/d4sm01189a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
We investigate path-wise observables in experiments on driven colloids in a periodic light field to dissect selected intricate transport features, kinetics, and transition-path time statistics out of thermodynamic equilibrium. These observables directly reflect the properties of individual paths in contrast to the properties of an ensemble of particles, such as radial distribution functions or mean-squared displacements. In particular, we present two distinct albeit equivalent formulations of the underlying stochastic equation of motion, highlight their respective practical relevance, and show how to interchange between them. We discuss conceptually different notions of local velocities and interrogate one- and two-sided first-passage and transition-path time statistics in and out of equilibrium. Our results reiterate how path-wise observables may be employed to systematically assess the quality of experimental data and demonstrate that, given sufficient control and sampling, one may quantitatively verify subtle theoretical predictions.
Collapse
Affiliation(s)
- Cai Dieball
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.
| | - Yasamin Mohebi Satalsari
- Condensed Matter Physics Laboratory, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Angel B Zuccolotto-Bernez
- Condensed Matter Physics Laboratory, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Manuel A Escobedo-Sánchez
- Condensed Matter Physics Laboratory, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.
| |
Collapse
|
3
|
Church J, Blumer O, Keidar TD, Ploutno L, Reuveni S, Hirshberg B. Accelerating Molecular Dynamics through Informed Resetting. J Chem Theory Comput 2025; 21:605-613. [PMID: 39772645 PMCID: PMC11781593 DOI: 10.1021/acs.jctc.4c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
We present a procedure for enhanced sampling of molecular dynamics simulations through informed stochastic resetting. Many phenomena, such as protein folding and crystal nucleation, occur over time scales inaccessible in standard simulations. We recently showed that stochastic resetting can accelerate molecular simulations that exhibit broad transition time distributions. However, standard stochastic resetting does not exploit any information about the reaction progress. For a model system and chignolin in explicit water, we demonstrate that an informed resetting protocol leads to greater accelerations than standard stochastic resetting in molecular dynamics and Metadynamics simulations. This is achieved by resetting only when a certain condition is met, e.g., when the distance from the target along the reaction coordinate is larger than some threshold. We use these accelerated simulations to infer important kinetic observables such as the unbiased mean first-passage time and direct transit time. For the latter, Metadynamics with informed resetting leads to speedups of 2-3 orders of magnitude over unbiased simulations with relative errors of only ∼35-70%. Our work significantly extends the applicability of stochastic resetting for enhanced sampling of molecular simulations.
Collapse
Affiliation(s)
| | - Ofir Blumer
- School
of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tommer D. Keidar
- School
of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Leo Ploutno
- School
of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomi Reuveni
- School
of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Barak Hirshberg
- School
of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Kuravsky M, Kelly C, Redfield C, Shammas SL. The transition state for coupled folding and binding of a disordered DNA binding domain resembles the unbound state. Nucleic Acids Res 2024; 52:11822-11837. [PMID: 39315703 PMCID: PMC11514473 DOI: 10.1093/nar/gkae794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
The basic zippers (bZIPs) are one of two large eukaryotic families of transcription factors whose DNA binding domains are disordered in isolation but fold into stable α-helices upon target DNA binding. Here, we systematically disrupt pre-existing helical propensity within the DNA binding region of the homodimeric bZIP domain of cAMP-response element binding protein (CREB) using Ala-Gly scanning and examine the impact on target binding kinetics. We find that the secondary structure of the transition state strongly resembles that of the unbound state. The residue closest to the dimerization domain is largely folded within both unbound and transition states; dimerization apparently propagates additional helical propensity into the basic region. The results are consistent with electrostatically-enhanced DNA binding, followed by rapid folding from the folded zipper outwards. Fly-casting theory suggests that protein disorder can accelerate binding. Interestingly however, we did not observe higher association rate constants for mutants with lower levels of residual structure in the unbound state.
Collapse
Affiliation(s)
- Mikhail Kuravsky
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Conor Kelly
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
5
|
Song K, Makarov DE, Vouga E. Information-theoretical limit on the estimates of dissipation by molecular machines using single-molecule fluorescence resonance energy transfer experiments. J Chem Phys 2024; 161:044111. [PMID: 39046347 DOI: 10.1063/5.0218040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Single-molecule fluorescence resonance energy transfer (FRET) experiments are commonly used to study the dynamics of molecular machines. While in vivo molecular processes often break time-reversal symmetry, the temporal directionality of cyclically operating molecular machines is often not evident from single-molecule FRET trajectories, especially in the most common two-color FRET studies. Solving a more quantitative problem of estimating the energy dissipation/entropy production by a molecular machine from single-molecule data is even more challenging. Here, we present a critical assessment of several practical methods of doing so, including Markov-model-based methods and a model-free approach based on an information-theoretical measure of entropy production that quantifies how (statistically) dissimilar observed photon sequences are from their time reverses. The Markov model approach is computationally feasible and may outperform model free approaches, but its performance strongly depends on how well the assumed model approximates the true microscopic dynamics. Markov models are also not guaranteed to give a lower bound on dissipation. Meanwhile, model-free, information-theoretical methods systematically underestimate entropy production at low photoemission rates, and long memory effects in the photon sequences make these methods demanding computationally. There is no clear winner among the approaches studied here, and all methods deserve to belong to a comprehensive data analysis toolkit.
Collapse
Affiliation(s)
- Kevin Song
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Etienne Vouga
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
6
|
Wang Y, Zhou Y, Qi L, Wang Y, Sun L, Cai M, Fan Q, Zhang L. Visualizing Single-Molecule Protein Conformational Transitions and Free Energy Landscape. Anal Chem 2024; 96:12006-12011. [PMID: 38993005 DOI: 10.1021/acs.analchem.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Monitoring the conformational dynamics of individual proteins is essential to understand the relationship between structure and function in molecular regulatory mechanisms. However, the fast dynamics of single proteins remain poorly understood. Here, we construct a single-molecule sensing platform by introducing plasmonic imaging of single nanoparticles to sense and report the protein conformational changes at the single-molecule level. Tracking the fluctuations of individual nanoparticles with high resolution, we detect and characterize distinct conformational states of molecular chaperone heat shock protein 90 (Hsp90). We also explore the conformational changes of Hsp90 in situ under different nucleotide conditions. Analysis of the conformational fluctuations between the open and closed states of single Hsp90 provides important information on free energy profiles, effective spring constants, and multiphase behaviors. This method offers a strategy to visualize the conformational changes of single proteins in real-time and provides insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Yang Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Liting Qi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Yamin Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Le Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Miaomiao Cai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Lei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Pati AK, Kilic Z, Martin MI, Terry DS, Borgia A, Bar S, Jockusch S, Kiselev R, Altman RB, Blanchard SC. Recovering true FRET efficiencies from smFRET investigations requires triplet state mitigation. Nat Methods 2024; 21:1222-1230. [PMID: 38877317 PMCID: PMC11239528 DOI: 10.1038/s41592-024-02293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) methods employed to quantify time-dependent compositional and conformational changes within biomolecules require elevated illumination intensities to recover robust photon emission streams from individual fluorophores. Here we show that outside the weak-excitation limit, and in regimes where fluorophores must undergo many rapid cycles of excitation and relaxation, non-fluorescing, excitation-induced triplet states with lifetimes orders of magnitude longer lived than photon-emitting singlet states degrade photon emission streams from both donor and acceptor fluorophores resulting in illumination-intensity-dependent changes in FRET efficiency. These changes are not commonly taken into consideration; therefore, robust strategies to suppress excited state accumulations are required to recover accurate and precise FRET efficiency, and thus distance, estimates. We propose both robust triplet state suppression and data correction strategies that enable the recovery of FRET efficiencies more closely approximating true values, thereby extending the spatial and temporal resolution of smFRET.
Collapse
Affiliation(s)
- Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maxwell I Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sukanta Bar
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steffen Jockusch
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Roman Kiselev
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roger B Altman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
8
|
Gopich IV, Chung HS. Unraveling Burst Selection Bias in Single-Molecule FRET of Species with Unequal Brightness and Diffusivity. J Phys Chem B 2024; 128:5576-5589. [PMID: 38833567 DOI: 10.1021/acs.jpcb.4c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Single-molecule free diffusion experiments enable accurate quantification of coexisting species or states. However, unequal brightness and diffusivity introduce a burst selection bias and affect the interpretation of experimental results. We address this issue with a photon-by-photon maximum likelihood method, burstML, which explicitly considers burst selection criteria. BurstML accurately estimates parameters, including photon count rates, diffusion times, Förster resonance energy transfer (FRET) efficiencies, and population, even in cases where species are poorly distinguished in FRET efficiency histograms. We develop a quantitative theory that determines the fraction of photon bursts corresponding to each species and thus obtain accurate species populations from the measured burst fractions. In addition, we provide a simple approximate formula for burst fractions and establish the range of parameters where unequal brightness and diffusivity can significantly affect the results obtained by conventional methods. The performance of the burstML method is compared with that of a maximum likelihood method that assumes equal species brightness and diffusivity, as well as standard Gaussian fitting of FRET efficiency histograms, using both simulated and real single-molecule data for cold-shock protein, protein L, and protein G. The burstML method enhances the accuracy of parameter estimation in single-molecule fluorescence studies.
Collapse
Affiliation(s)
- Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
9
|
Holehouse AS, Kragelund BB. The molecular basis for cellular function of intrinsically disordered protein regions. Nat Rev Mol Cell Biol 2024; 25:187-211. [PMID: 37957331 PMCID: PMC11459374 DOI: 10.1038/s41580-023-00673-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 175.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Center for Biomolecular Condensates, Washington University in St Louis, St Louis, MO, USA.
| | - Birthe B Kragelund
- REPIN, Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Grabenhorst L, Sturzenegger F, Hasler M, Schuler B, Tinnefeld P. Single-Molecule FRET at 10 MHz Count Rates. J Am Chem Soc 2024; 146:3539-3544. [PMID: 38266173 DOI: 10.1021/jacs.3c13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A bottleneck in many studies utilizing single-molecule Förster resonance energy transfer is the attainable photon count rate, as it determines the temporal resolution of the experiment. As many biologically relevant processes occur on time scales that are hardly accessible with currently achievable photon count rates, there has been considerable effort to find strategies to increase the stability and brightness of fluorescent dyes. Here, we use DNA nanoantennas to drastically increase the achievable photon count rates and observe fast biomolecular dynamics in the small volume between two plasmonic nanoparticles. As a proof of concept, we observe the coupled folding and binding of two intrinsically disordered proteins, which form transient encounter complexes with lifetimes on the order of 100 μs. To test the limits of our approach, we also investigated the hybridization of a short single-stranded DNA to its complementary counterpart, revealing a transition path time of 17 μs at photon count rates of around 10 MHz, which is an order-of-magnitude improvement compared to the state of the art. Concomitantly, the photostability was increased, enabling many seconds long megahertz fluorescence time traces. Due to the modular nature of the DNA origami method, this platform can be adapted to a broad range of biomolecules, providing a promising approach to study previously unobservable ultrafast biophysical processes.
Collapse
Affiliation(s)
- Lennart Grabenhorst
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | - Moa Hasler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
- Department of Physics, University of Zurich, 8057 Zurich, Switzerland
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| |
Collapse
|
11
|
Sisk TR, Robustelli P. Folding-upon-binding pathways of an intrinsically disordered protein from a deep Markov state model. Proc Natl Acad Sci U S A 2024; 121:e2313360121. [PMID: 38294935 PMCID: PMC10861926 DOI: 10.1073/pnas.2313360121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024] Open
Abstract
A central challenge in the study of intrinsically disordered proteins is the characterization of the mechanisms by which they bind their physiological interaction partners. Here, we utilize a deep learning-based Markov state modeling approach to characterize the folding-upon-binding pathways observed in a long timescale molecular dynamics simulation of a disordered region of the measles virus nucleoprotein NTAIL reversibly binding the X domain of the measles virus phosphoprotein complex. We find that folding-upon-binding predominantly occurs via two distinct encounter complexes that are differentiated by the binding orientation, helical content, and conformational heterogeneity of NTAIL. We observe that folding-upon-binding predominantly proceeds through a multi-step induced fit mechanism with several intermediates and do not find evidence for the existence of canonical conformational selection pathways. We observe four kinetically separated native-like bound states that interconvert on timescales of eighty to five hundred nanoseconds. These bound states share a core set of native intermolecular contacts and stable NTAIL helices and are differentiated by a sequential formation of native and non-native contacts and additional helical turns. Our analyses provide an atomic resolution structural description of intermediate states in a folding-upon-binding pathway and elucidate the nature of the kinetic barriers between metastable states in a dynamic and heterogenous, or "fuzzy", protein complex.
Collapse
Affiliation(s)
- Thomas R. Sisk
- Department of Chemistry, Dartmouth College, Hanover, NH03755
| | - Paul Robustelli
- Department of Chemistry, Dartmouth College, Hanover, NH03755
| |
Collapse
|
12
|
Liu W, Chen L, Yin D, Yang Z, Feng J, Sun Q, Lai L, Guo X. Visualizing single-molecule conformational transition and binding dynamics of intrinsically disordered proteins. Nat Commun 2023; 14:5203. [PMID: 37626077 PMCID: PMC10457384 DOI: 10.1038/s41467-023-41018-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) play crucial roles in cellular processes and hold promise as drug targets. However, the dynamic nature of IDPs remains poorly understood. Here, we construct a single-molecule electrical nanocircuit based on silicon nanowire field-effect transistors (SiNW-FETs) and functionalize it with an individual disordered c-Myc bHLH-LZ domain to enable label-free, in situ, and long-term measurements at the single-molecule level. We use the device to study c-Myc interaction with Max and/or small molecule inhibitors. We observe the self-folding/unfolding process of c-Myc and reveal its interaction mechanism with Max and inhibitors through ultrasensitive real-time monitoring. We capture a relatively stable encounter intermediate ensemble of c-Myc during its transition from the unbound state to the fully folded state. The c-Myc/Max and c-Myc/inhibitor dissociation constants derived are consistent with other ensemble experiments. These proof-of-concept results provide an understanding of the IDP-binding/folding mechanism and represent a promising nanotechnology for IDP conformation/interaction studies and drug discovery.
Collapse
Affiliation(s)
- Wenzhe Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China
| | - Limin Chen
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, P. R. China
| | - Dongbao Yin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China
| | - Zhiheng Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China
| | - Jianfei Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China
| | - Qi Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China.
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, P. R. China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, P. R. China.
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China.
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, P. R. China.
- National Biomedical Imaging Center, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
13
|
Meng F, Kim JY, Gopich IV, Chung HS. Single-molecule FRET and molecular diffusion analysis characterize stable oligomers of amyloid-β 42 of extremely low population. PNAS NEXUS 2023; 2:pgad253. [PMID: 37564361 PMCID: PMC10411938 DOI: 10.1093/pnasnexus/pgad253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Soluble oligomers produced during protein aggregation have been thought to be toxic species causing various diseases. Characterization of these oligomers is difficult because oligomers are a heterogeneous mixture, which is not readily separable, and may appear transiently during aggregation. Single-molecule spectroscopy can provide valuable information by detecting individual oligomers, but there have been various problems in determining the size and concentration of oligomers. In this work, we develop and use a method that analyzes single-molecule fluorescence burst data of freely diffusing molecules in solution based on molecular diffusion theory and maximum likelihood method. We demonstrate that the photon count rate, diffusion time, population, and Förster resonance energy transfer (FRET) efficiency can be accurately determined from simulated data and the experimental data of a known oligomerization system, the tetramerization domain of p53. We used this method to characterize the oligomers of the 42-residue amyloid-β (Aβ42) peptide. Combining peptide incubation in a plate reader and single-molecule free-diffusion experiments allows for the detection of stable oligomers appearing at various stages of aggregation. We find that the average size of these oligomers is 70-mer and their overall population is very low, less than 1 nM, in the early and middle stages of aggregation of 1 µM Aβ42 peptide. Based on their average size and long diffusion time, we predict the oligomers have a highly elongated rod-like shape.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| |
Collapse
|
14
|
Sisk T, Robustelli P. Folding-upon-binding pathways of an intrinsically disordered protein from a deep Markov state model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550103. [PMID: 37546728 PMCID: PMC10401938 DOI: 10.1101/2023.07.21.550103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A central challenge in the study of intrinsically disordered proteins is the characterization of the mechanisms by which they bind their physiological interaction partners. Here, we utilize a deep learning based Markov state modeling approach to characterize the folding-upon-binding pathways observed in a long-time scale molecular dynamics simulation of a disordered region of the measles virus nucleoprotein NTAIL reversibly binding the X domain of the measles virus phosphoprotein complex. We find that folding-upon-binding predominantly occurs via two distinct encounter complexes that are differentiated by the binding orientation, helical content, and conformational heterogeneity of NTAIL. We do not, however, find evidence for the existence of canonical conformational selection or induced fit binding pathways. We observe four kinetically separated native-like bound states that interconvert on time scales of eighty to five hundred nanoseconds. These bound states share a core set of native intermolecular contacts and stable NTAIL helices and are differentiated by a sequential formation of native and non-native contacts and additional helical turns. Our analyses provide an atomic resolution structural description of intermediate states in a folding-upon-binding pathway and elucidate the nature of the kinetic barriers between metastable states in a dynamic and heterogenous, or "fuzzy", protein complex.
Collapse
Affiliation(s)
- Thomas Sisk
- Dartmouth College, Department of Chemistry, Hanover, NH, 03755
| | - Paul Robustelli
- Dartmouth College, Department of Chemistry, Hanover, NH, 03755
| |
Collapse
|
15
|
Gopich IV, Kim JY, Chung HS. Analysis of photon trajectories from diffusing single molecules. J Chem Phys 2023; 159:024119. [PMID: 37431909 PMCID: PMC10474944 DOI: 10.1063/5.0153114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
In single-molecule free diffusion experiments, molecules spend most of the time outside a laser spot and generate bursts of photons when they diffuse through the focal spot. Only these bursts contain meaningful information and, therefore, are selected using physically reasonable criteria. The analysis of the bursts must take into account the precise way they were chosen. We present new methods that allow one to accurately determine the brightness and diffusivity of individual molecule species from the photon arrival times of selected bursts. We derive analytical expressions for the distribution of inter-photon times (with and without burst selection), the distribution of the number of photons in a burst, and the distribution of photons in a burst with recorded arrival times. The theory accurately treats the bias introduced due to the burst selection criteria. We use a Maximum Likelihood (ML) method to find the molecule's photon count rate and diffusion coefficient from three kinds of data, i.e., the bursts of photons with recorded arrival times (burstML), inter-photon times in bursts (iptML), and the numbers of photon counts in a burst (pcML). The performance of these new methods is tested on simulated photon trajectories and on an experimental system, the fluorophore Atto 488.
Collapse
Affiliation(s)
- Irina V. Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Lyu Y, An L, Zeng H, Zheng F, Guo J, Zhang P, Yang H, Li H. First-passage time analysis of diffusion-controlled reactions in single-molecule detection. Talanta 2023; 260:124569. [PMID: 37116360 DOI: 10.1016/j.talanta.2023.124569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Single-molecule detection (SMD) aims to achieve the ultimate limit-of-detection (LOD) in biosensing. This method detects a countable number of targeted analyte molecules in solution, where the dynamics of molecule diffusion, capturing, identification and delivery greatly impact the SMD's efficiency and accuracy. In this study, we adopt the first-passage time method to investigate the diffusion-controlled reaction process in SMD. We analyze the influence of detection conditions on incubation time and the expected coefficient of variation (CV) under three SMD molecule capturing strategies, including solid-phase capturing (one-dimensional solid-liquid interface fixation), liquid-phase magnetic bead (MB) capturing, and liquid-phase direct fluorescence pair labeling. We find that inside a finite-sized reaction chamber, a finite average reaction time exists in all three capturing strategies, while the liquid-phase strategies are in general more efficient than the solid-phase approaches. CV can be estimated by averaging first-passage time solely in all three strategies, and the CV reduction is achievable given an extended reaction time. To further enable zeptomolar detection, extra treatments, such as adopting liquid-phase fluorescence pairs with high diffusion rates to label the molecule, or designing specific sensing devices with large effective sensing areas would be required. This framework provides solid theoretical support to guide the design of SMD sensing strategies and sensor structures to achieve desired measurement time and CV.
Collapse
Affiliation(s)
- Yingkai Lyu
- National Innovation Center for Advanced Medical Devices, Shenzhen, China; Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lixiang An
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Huaiyang Zeng
- National Innovation Center for Advanced Medical Devices, Shenzhen, China; Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Zheng
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengcheng Zhang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Yang
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hao Li
- National Innovation Center for Advanced Medical Devices, Shenzhen, China.
| |
Collapse
|
17
|
Song K, Makarov DE, Vouga E. The effect of time resolution on the observed first passage times in diffusive dynamics. J Chem Phys 2023; 158:111101. [PMID: 36948823 DOI: 10.1063/5.0142166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Single-molecule and single-particle tracking experiments are typically unable to resolve fine details of thermal motion at short timescales where trajectories are continuous. We show that, when a diffusive trajectory xt is sampled at finite time intervals δt, the resulting error in measuring the first passage time to a given domain can exceed the time resolution of the measurement by more than an order of magnitude. Such surprisingly large errors originate from the fact that the trajectory may enter and exit the domain while being unobserved, thereby lengthening the apparent first passage time by an amount that is larger than δt. Such systematic errors are particularly important in single-molecule studies of barrier crossing dynamics. We show that the correct first passage times, as well as other properties of the trajectories such as splitting probabilities, can be recovered via a stochastic algorithm that reintroduces unobserved first passage events probabilistically.
Collapse
Affiliation(s)
- Kevin Song
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Etienne Vouga
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
18
|
Jain S, Boyer D, Pal A, Dagdug L. Fick-Jacobs description and first passage dynamics for diffusion in a channel under stochastic resetting. J Chem Phys 2023; 158:054113. [PMID: 36754825 DOI: 10.1063/5.0135249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The transport of particles through channels is of paramount importance in physics, chemistry, and surface science due to its broad real world applications. Much insight can be gained by observing the transition paths of a particle through a channel and collecting statistics on the lifetimes in the channel or the escape probabilities from the channel. In this paper, we consider the diffusive transport through a narrow conical channel of a Brownian particle subject to intermittent dynamics, namely, stochastic resetting. As such, resetting brings the particle back to a desired location from where it resumes its diffusive phase. To this end, we extend the Fick-Jacobs theory of channel-facilitated diffusive transport to resetting-induced transport. Exact expressions for the conditional mean first passage times, escape probabilities, and the total average lifetime in the channel are obtained, and their behavior as a function of the resetting rate is highlighted. It is shown that resetting can expedite the transport through the channel-rigorous constraints for such conditions are then illustrated. Furthermore, we observe that a carefully chosen resetting rate can render the average lifetime of the particle inside the channel minimal. Interestingly, the optimal rate undergoes continuous and discontinuous transitions as some relevant system parameters are varied. The validity of our one-dimensional analysis and the corresponding theoretical predictions is supported by three-dimensional Brownian dynamics simulations. We thus believe that resetting can be useful to facilitate particle transport across biological membranes-a phenomenon that can spearhead further theoretical and experimental studies.
Collapse
Affiliation(s)
- Siddharth Jain
- Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad (Prayagraj), UP, 211019, India
| | - Denis Boyer
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Arnab Pal
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Leonardo Dagdug
- Physics Department, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Ciudad de México 09340, Mexico
| |
Collapse
|
19
|
Bryan JS, Pressé S. Learning continuous potentials from smFRET. Biophys J 2023; 122:433-441. [PMID: 36463404 PMCID: PMC9892619 DOI: 10.1016/j.bpj.2022.11.2947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Potential energy landscapes are useful models in describing events such as protein folding and binding. While single-molecule fluorescence resonance energy transfer (smFRET) experiments encode information on continuous potentials for the system probed, including rarely visited barriers between putative potential minima, this information is rarely decoded from the data. This is because existing analysis methods often model smFRET output assuming, from the onset, that the system probed evolves in a discretized state space to be analyzed within a hidden Markov model (HMM) paradigm. By contrast, here, we infer continuous potentials from smFRET data without discretely approximating the state space. We do so by operating within a Bayesian nonparametric paradigm by placing priors on the family of all possible potential curves. As our inference accounts for a number of required experimental features raising computational cost (such as incorporating discrete photon shot noise), the framework leverages a structured-kernel-interpolation Gaussian process prior to help curtail computational cost. We show that our structured-kernel-interpolation priors for potential energy reconstruction from smFRET analysis accurately infers the potential energy landscape from a smFRET binding experiment. We then illustrate advantages of structured-kernel-interpolation priors for potential energy reconstruction from smFRET over standard HMM approaches by providing information, such as barrier heights and friction coefficients, that is otherwise inaccessible to HMMs.
Collapse
Affiliation(s)
- J Shepard Bryan
- Center for Biological Physics, Arizona State University, Tempe, Arizona; Department of Physics, Arizona State University, Tempe, Arizona
| | - Steve Pressé
- Center for Biological Physics, Arizona State University, Tempe, Arizona; Department of Physics, Arizona State University, Tempe, Arizona; School of Molecular Sciences, Arizona State University, Tempe, Arizona.
| |
Collapse
|
20
|
Godec A, Makarov DE. Challenges in Inferring the Directionality of Active Molecular Processes from Single-Molecule Fluorescence Resonance Energy Transfer Trajectories. J Phys Chem Lett 2023; 14:49-56. [PMID: 36566432 DOI: 10.1021/acs.jpclett.2c03244] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We discuss some of the practical challenges that one faces in using stochastic thermodynamics to infer directionality of molecular machines from experimental single-molecule trajectories. Because of the limited spatiotemporal resolution of single-molecule experiments and because both forward and backward transitions between the same pairs of states cannot always be detected, differentiating between the forward and backward directions of, e.g., an ATP-consuming molecular machine that operates periodically, turns out to be a nontrivial task. Using a simple extension of a Markov-state model that is commonly employed to analyze single-molecule transition-path measurements, we illustrate how irreversibility can be hidden from such measurements but in some cases can be uncovered when non-Markov effects in low-dimensional single-molecule trajectories are considered.
Collapse
Affiliation(s)
- Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077Göttingen, Germany
| | | |
Collapse
|
21
|
Oliveira RJD. Coordinate-Dependent Drift-Diffusion Reveals the Kinetic Intermediate Traps of Top7-Based Proteins. J Phys Chem B 2022; 126:10854-10869. [PMID: 36519977 DOI: 10.1021/acs.jpcb.2c07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The computer-designed Top7 served as a scaffold to produce immunoreactive proteins by grafting of the 2F5 HIV-1 antibody epitope (Top7-2F5) followed by biotinylation (Top7-2F5-biotin). The resulting nonimmunoglobulin affinity proteins were effective in inducing and detecting the HIV-1 antibody. However, the grafted Top7-2F5 design led to protein aggregation, as opposed to the soluble biotinylated Top7-2F5-biotin. The structure-based model predicted that the thermodynamic cooperativity of Top7 increases after grafting and biotin-labeling, reducing their intermediate state populations. In this work, the folding kinetic traps that might contribute to the aggregation propensity are investigated by the diffusion theory. Since the engineered proteins have similar sequence and structural homology, they served as protein models to study the kinetic intermediate traps that were uncovered by characterizing the position-dependent drift-velocity (v(Q)) and the diffusion (D(Q)) coefficients. These coordinate-dependent coefficients were taken into account to obtain the folding and transition path times over the free energy transition states containing the intermediate kinetic traps. This analysis may be useful to predict the aggregated kinetic traps of scaffold-epitope proteins that might compose novel diagnostic and therapeutic platforms.
Collapse
Affiliation(s)
- Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG38064-200, Brazil
| |
Collapse
|
22
|
Buholzer KJ, McIvor J, Zosel F, Teppich C, Nettels D, Mercadante D, Schuler B. Multilayered allosteric modulation of coupled folding and binding by phosphorylation, peptidyl-prolyl cis/trans isomerization, and diversity of interaction partners. J Chem Phys 2022; 157:235102. [PMID: 36550025 DOI: 10.1063/5.0128273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) play key roles in cellular regulation, including signal transduction, transcription, and cell-cycle control. Accordingly, IDPs can commonly interact with numerous different target proteins, and their interaction networks are expected to be highly regulated. However, many of the underlying regulatory mechanisms have remained unclear. Here, we examine the representative case of the nuclear coactivator binding domain (NCBD) of the large multidomain protein CBP, a hub in transcriptional regulation, and the interaction with several of its binding partners. Single-molecule Förster resonance energy transfer measurements show that phosphorylation of NCBD reduces its binding affinity, with effects that vary depending on the binding partner and the site and number of modifications. The complexity of the interaction is further increased by the dependence of the affinities on peptidyl-prolyl cis/trans isomerization in NCBD. Overall, our results reveal the potential for allosteric regulation on at least three levels: the different affinities of NCBD for its different binding partners, the differential modulation of these affinities by phosphorylation, and the effect of peptidyl-prolyl cis/trans isomerization on binding.
Collapse
Affiliation(s)
- Karin J Buholzer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jordan McIvor
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Franziska Zosel
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Christian Teppich
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Davide Mercadante
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Dutta R, Pollak E. Microscopic origin of diffusive dynamics in the context of transition path time distributions for protein folding and unfolding. Phys Chem Chem Phys 2022; 24:25373-25382. [PMID: 36239220 DOI: 10.1039/d2cp03158b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Experimentally measured transition path time distributions are usually analyzed theoretically in terms of a diffusion equation over a free energy barrier. It is though well understood that the free energy profile separating the folded and unfolded states of a protein is characterized as a transition through many stable micro-states which exist between the folded and unfolded states. Why is it then justified to model the transition path dynamics in terms of a diffusion equation, namely the Smoluchowski equation (SE)? In principle, van Kampen has shown that a nearest neighbor Markov chain of thermal jumps between neighboring microstates will lead in a continuum limit to the SE, such that the friction coefficient is proportional to the mean residence time in each micro-state. However, the practical question of how many microstates are needed to justify modeling the transition path dynamics in terms of an SE has not been addressed. This is a central topic of this paper where we compare numerical results for transition paths based on the diffusion equation on the one hand and the nearest neighbor Markov jump model on the other. Comparison of the transition path time distributions shows that one needs at least a few dozen microstates to obtain reasonable agreement between the two approaches. Using the Markov nearest neighbor model one also obtains good agreement with the experimentally measured transition path time distributions for a DNA hairpin and PrP protein. As found previously when using the diffusion equation, the Markov chain model used here also reproduces the experimentally measured long time tail and confirms that the transition path barrier height is ∼3kBT. This study indicates that in the future, when attempting to model experimentally measured transition path time distributions, one should perhaps prefer a nearest neighbor Markov model which is well defined also for rough energy landscapes. Such studies can also shed light on the minimal number of microstates needed to unravel the experimental data.
Collapse
Affiliation(s)
- Rajesh Dutta
- Chemical and Biological Physics Department, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Eli Pollak
- Chemical and Biological Physics Department, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
24
|
Makarov DE, Berezhkovskii A, Haran G, Pollak E. The Effect of Time Resolution on Apparent Transition Path Times Observed in Single-Molecule Studies of Biomolecules. J Phys Chem B 2022; 126:7966-7974. [PMID: 36194758 PMCID: PMC9574923 DOI: 10.1021/acs.jpcb.2c05550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Single-molecule experiments have now achieved a time resolution allowing observation of transition paths, the brief trajectory segments where the molecule undergoing an unfolding or folding transition enters the energetically or entropically unfavorable barrier region from the folded/unfolded side and exits to the unfolded/folded side, thereby completing the transition. This resolution, however, is yet insufficient to identify the precise entrance/exit events that mark the beginning and the end of a transition path: the nature of the diffusive dynamics is such that a molecular trajectory will recross the boundary between the barrier region and the folded/unfolded state, multiple times, at a time scale much shorter than that of the typical experimental resolution. Here we use theory and Brownian dynamics simulations to show that, as a result of such recrossings, the apparent transition path times are generally longer than the true ones. We quantify this effect using a simple model where the observed dynamics is a moving average of the true dynamics and discuss experimental implications of our results.
Collapse
Affiliation(s)
- Dmitrii E. Makarov
- Depatment
of Chemistry and Oden Institute for Computational Engineering and
Sciences, University of Texas at Austin, Austin, Texas78712, United States
| | - Alexander Berezhkovskii
- Eunice
Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Gilad Haran
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - Eli Pollak
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| |
Collapse
|
25
|
Inferring potential landscapes from noisy trajectories of particles within an optical feedback trap. iScience 2022; 25:104731. [PMID: 36034218 PMCID: PMC9400092 DOI: 10.1016/j.isci.2022.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/22/2022] Open
Abstract
While particle trajectories encode information on their governing potentials, potentials can be challenging to robustly extract from trajectories. Measurement errors may corrupt a particle’s position, and sparse sampling of the potential limits data in higher energy regions such as barriers. We develop a Bayesian method to infer potentials from trajectories corrupted by Markovian measurement noise without assuming prior functional form on the potentials. As an alternative to Gaussian process priors over potentials, we introduce structured kernel interpolation to the Natural Sciences which allows us to extend our analysis to large datasets. Structured-Kernel-Interpolation Priors for Potential Energy Reconstruction (SKIPPER) is validated on 1D and 2D experimental trajectories for particles in a feedback trap. A feedback trap was used to generate noisy Langevin microbead trajectories The potential energy surface is recovered using a Bayesian formulation The formulation uses a structured-kernel-interpolation Gaussian process (SKI-GP) to tractably approximate Gaussian process regression for larger datasets Thanks to our adaptation of SKI-GP, we have broadened the use of Gaussian processes for natural science applications
Collapse
|
26
|
A modular approach to map out the conformational landscapes of unbound intrinsically disordered proteins. Proc Natl Acad Sci U S A 2022; 119:e2113572119. [PMID: 35658083 PMCID: PMC9191344 DOI: 10.1073/pnas.2113572119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceIntrinsically disordered proteins have the unique ability to morph in response to multiple partners and thereby process sophisticated inputs and outputs. It is, however, a mystery whether their response is passive, that is, entirely determined by the partner, or controlled via an internal, yet unknown, folding mechanism. Here we introduce an approach to examine this key question and demonstrate its potential by dissecting the conformational properties of the partially disordered protein NCBD and obtaining important clues about how it performs its biological function.
Collapse
|
27
|
Imran A, Moyer BS, Wolfe AJ, Cosgrove MS, Makarov DE, Movileanu L. Interplay of Affinity and Surface Tethering in Protein Recognition. J Phys Chem Lett 2022; 13:4021-4028. [PMID: 35485934 PMCID: PMC9106920 DOI: 10.1021/acs.jpclett.2c00621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 05/10/2023]
Abstract
Surface-tethered ligand-receptor complexes are key components in biological signaling and adhesion. They also find increasing utility in single-molecule assays and biotechnological applications. Here, we study the real-time binding kinetics between various surface-immobilized peptide ligands and their unrestrained receptors. A long peptide tether increases the association of ligand-receptor complexes, experimentally proving the fly casting mechanism where the disorder accelerates protein recognition. On the other hand, a short peptide tether enhances the complex dissociation. Notably, the rate constants measured for the same receptor, but under different spatial constraints, are strongly correlated to one another. Furthermore, this correlation can be used to predict how surface tethering on a ligand-receptor complex alters its binding kinetics. Our results have immediate implications in the broad areas of biomolecular recognition, intrinsically disordered proteins, and biosensor technology.
Collapse
Affiliation(s)
- Ali Imran
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Brandon S. Moyer
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Aaron J. Wolfe
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
| | - Michael S. Cosgrove
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Dmitrii E. Makarov
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Oden
Institute
for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- The BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
28
|
Disordered regions flanking the binding interface modulate affinity between CBP and NCOA. J Mol Biol 2022; 434:167643. [DOI: 10.1016/j.jmb.2022.167643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
|
29
|
Transient exposure of a buried phosphorylation site in an autoinhibited protein. Biophys J 2022; 121:91-101. [PMID: 34864046 PMCID: PMC8758417 DOI: 10.1016/j.bpj.2021.11.2890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Autoinhibition is a mechanism used to regulate protein function, often by making functional sites inaccessible through the interaction with a cis-acting inhibitory domain. Such autoinhibitory domains often display a substantial degree of structural disorder when unbound, and only become structured in the inhibited state. These conformational dynamics make it difficult to study the structural origin of regulation, including effects of regulatory post-translational modifications. Here, we study the autoinhibition of the Dbl Homology domain in the protein Vav1 by the so-called acidic inhibitory domain. We use molecular simulations to study the process by which a mostly unstructured inhibitory domain folds upon binding and how transient exposure of a key buried tyrosine residue makes it accessible for phosphorylation. We show that the inhibitory domain, which forms a helix in the bound and inhibited stated, samples helical structures already before binding and that binding occurs via a molten-globule-like intermediate state. Together, our results shed light on key interactions that enable the inhibitory domain to sample a finely tuned equilibrium between an inhibited and a kinase-accessible state.
Collapse
|
30
|
Berezhkovskii AM, Makarov DE. On distributions of barrier crossing times as observed in single-molecule studies of biomolecules. BIOPHYSICAL REPORTS 2021; 1:100029. [PMID: 36425456 PMCID: PMC9680812 DOI: 10.1016/j.bpr.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 06/16/2023]
Abstract
Single-molecule experiments that monitor time evolution of molecular observables in real time have expanded beyond measuring transition rates toward measuring distributions of times of various molecular events. Of particular interest is the first-passage time for making a transition from one molecular configuration ( a ) to another ( b ) and conditional first-passage times such as the transition path time, which is the first-passage time from a to b conditional upon not leaving the transition region intervening between a and b . Another experimentally accessible (but not yet studied experimentally) observable is the conditional exit time, i.e., the time to leave the transition region through a specified boundary. The distributions of such times contain a wealth of mechanistic information about the transitions in question. Here, we use the first and the second (and, if desired, higher) moments of these distributions to characterize their relative width for the model in which the experimental observable undergoes Brownian motion in a potential of mean force. We show that although the distributions of transition path times are always narrower than exponential (in that the ratio of the standard deviation to the distribution's mean is always less than 1), distributions of first-passage times and of conditional exit times can be either narrow or broad, in some cases displaying long power-law tails. The conditional exit time studied here provides a generalization of the transition path time that also allows one to characterize the temporal scales of failed barrier crossing attempts.
Collapse
Affiliation(s)
- Alexander M. Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Dmitrii E. Makarov
- Department of Chemistry and Biochemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| |
Collapse
|
31
|
Observing the base-by-base search for native structure along transition paths during the folding of single nucleic acid hairpins. Proc Natl Acad Sci U S A 2021; 118:2101006118. [PMID: 34853166 DOI: 10.1073/pnas.2101006118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
Biomolecular folding involves searching among myriad possibilities for the native conformation, but the elementary steps expected from theory for this search have never been detected directly. We probed the dynamics of folding at high resolution using optical tweezers, measuring individual trajectories as nucleic acid hairpins passed through the high-energy transition states that dominate kinetics and define folding mechanisms. We observed brief but ubiquitous pauses in the transition states, with a dwell time distribution that matched microscopic theories of folding quantitatively. The sequence dependence suggested that pauses were dominated by microbarriers from nonnative conformations during the search by each nucleotide residue for the native base-pairing conformation. Furthermore, the pauses were position dependent, revealing subtle local variations in energy-landscape roughness and allowing the diffusion coefficient describing the microscopic dynamics within the barrier to be found without reconstructing the shape of the energy landscape. These results show how high-resolution measurements can elucidate key microscopic events during folding to test fundamental theories of folding.
Collapse
|
32
|
Mothi N, Muñoz V. Protein Folding Dynamics as Diffusion on a Free Energy Surface: Rate Equation Terms, Transition Paths, and Analysis of Single-Molecule Photon Trajectories. J Phys Chem B 2021; 125:12413-12425. [PMID: 34735144 DOI: 10.1021/acs.jpcb.1c05401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rates of protein (un)folding are often described as diffusion on the projection of a hyperdimensional energy landscape onto a few (ideally one) order parameters. Testing such an approximation by experiment requires resolving the reactive transition paths of individual molecules, which is now becoming feasible with advanced single-molecule spectroscopic techniques. This has also sparked the interest of theorists in better understanding reactive transition paths. Here we focus on these issues aiming to establish (i) practical guidelines for the mechanistic interpretation of transition path times (TPT) and (ii) methods to extract the free energy surface and protein dynamics from the maximum likelihood analysis of photon trajectories (MLA-PT). We represent the (un)folding rates as diffusion on a 1D free energy surface with the FRET efficiency as a reaction coordinate proxy. We then perform diffusive kinetic simulations on surfaces with two minima and a barrier, but with different shapes (curvatures, barrier height, and symmetry), coupled to stochastic simulations of photon emissions that reproduce current SM-FRET experiments. From the analysis of transition paths, we find that the TPT is inversely proportional to the barrier height (difference in free energy between minimum and barrier top) for any given surface shape, and that dividing the TPT into climb and descent segments provides key information about the barrier's symmetry. We also find that the original MLA-PT procedure used to determine the TPT from experiments underestimates its value, particularly for the cases with smaller barriers (e.g., fast folders), and we suggest a simple strategy to correct for this bias. Importantly, we also demonstrate that photon trajectories contain enough information to extract the 1D free energy surface's shape and dynamics (if TPT is >4-5-fold longer than the interphoton time) using the MLA-PT directly implemented with a diffusive free energy surface model. When dealing with real (unknown) experimental data, the comparison between the likelihoods of the free energy surface and discrete kinetic three-state models can be used to evaluate the statistical significance of the estimated free energy surface.
Collapse
Affiliation(s)
- Nivin Mothi
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, 95343 California, United States.,Chemistry and Chemical Biology Graduate Program, University of California, Merced, 95343 California, United States
| | - Victor Muñoz
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, 95343 California, United States.,Chemistry and Chemical Biology Graduate Program, University of California, Merced, 95343 California, United States.,Department of Bioengineering, University of California, Merced, 95343 California, United States
| |
Collapse
|
33
|
Dutta R, Pollak E. What can we learn from transition path time distributions for protein folding and unfolding? Phys Chem Chem Phys 2021; 23:23787-23795. [PMID: 34643635 DOI: 10.1039/d1cp03296h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in experimental measurements of transition path time distributions have raised intriguing theoretical questions. The present interpretation of the experimental data indicates a small value of the fitted transition path barrier height as compared to the barrier height of the unfolded to folded transition. Secondly, as shown in this paper, it is essential to analyse the experimental data using absorbing boundary conditions at the end points used to determine the transition paths. Such an analysis reveals long time tails that have thus far eluded quantitative theoretical interpretation. Is this due to uncertainty in the experimental data or does it call for a rethinking of the theoretical interpretation? A detailed study of the transition path time distribution using a diffusive model leads to the following conclusions. a. The present experimental data is not accurate enough to discern between functional forms of bell shaped free energy barriers. b. Long time tails indicate the possible existence of a "trap" in the transition path region. c. The "trap" may be considered as a well in the free energy surface. d. The long time tail is quite sensitive to the form of the trap so that future measurements of the long time tail as a function of the location of the end points of the transition path may make it possible to not only determine the well depth but also to distinguish between different functional forms for the free energy surface. e. Introduction of a well along the transition path leads to good fits with the experimental data provided that the transition path barrier height is ∼3kBT, substantially higher than the estimates of ∼1kBT based on bell shaped functions. The results presented here negate the need of introducing multi-dimensional effects, free energy barrier asymmetry, sub-diffusive memory kernels or systematic ruggedness to explain the experimentally measured data.
Collapse
Affiliation(s)
- Rajesh Dutta
- Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Eli Pollak
- Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
34
|
Beckwith JS, Yang H. Information bounds in determining the 3D orientation of a single emitter or scatterer using point-detector-based division-of-amplitude polarimetry. J Chem Phys 2021; 155:144110. [PMID: 34654316 DOI: 10.1063/5.0065034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determining the 3D orientation of a single molecule or particle, encoded in its polar and azimuthal angles, is of interest for a variety of fields, being relevant to a range of questions in elementary chemical reactivity, biomolecular motors, and nanorheology. A popular experimental method, known as division-of-amplitude polarimetry, for determining the real-time orientation of a single particle is to split the emitted/scattered light into multiple polarizations and to measure the light intensity using point detectors at these polarizations during a time interval Δt. Here, we derive the Cramér-Rao lower bounds for this method from the perspective of information theory in the cases of utilizing a chromophore or a scattering particle as a 3D orientation probe. Such Cramér-Rao lower bounds are new for using this experimental method to measure the full 3D orientation in both the scattering case and the fluorescence case. These results show that, for a scatterer, the information content of one photon is 1.16 deg-2 in the polar and 58.71 deg-2 in the azimuthal angles, respectively. For a chromophore, the information content of one photon is 2.54 deg-2 in the polar and 80.29 deg-2 in the azimuthal angles. In addition, the Cramér-Rao lower bound scales with the square root of the total signal photons. To determine orientation to an uncertainty of one degree requires 7.40 × 104 and 2.34 × 103 photons for the polar and the azimuthal angles, respectively, for fluorescence, whereas it takes 1.62 × 105 and 3.20 × 103 photons for scattering. This work provides experimentalists new guidelines by which future experiments can be designed and interpreted.
Collapse
Affiliation(s)
- Joseph S Beckwith
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
35
|
Jankovic B, Bozovic O, Hamm P. Intrinsic Dynamics of Protein-Peptide Unbinding. Biochemistry 2021; 60:1755-1763. [PMID: 33999611 DOI: 10.1021/acs.biochem.1c00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The dynamics of peptide-protein binding and unbinding of a variant of the RNase S system has been investigated. To initiate the process, a photoswitchable azobenzene moiety has been covalently linked to the S-peptide, thereby switching its binding affinity to the S-protein. Transient fluorescence quenching was measured with the help of a time-resolved fluorometer, which has been specifically designed for these experiments and is based on inexpensive light-emitting diodes and laser diodes only. One mutant shows on-off behavior with no specific binding detectable in one of the states of the photoswitch. Unbinding is faster by at least 2 orders of magnitude, compared to that of other variants of the RNase S system. We conclude that unbinding is essentially barrier-less in that case, revealing the intrinsic dynamics of the unbinding event, which occurs on a time scale of a few hundred microseconds in a strongly stretched-exponential manner.
Collapse
Affiliation(s)
- Brankica Jankovic
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Olga Bozovic
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
36
|
Karlsson E, Paissoni C, Erkelens AM, Tehranizadeh ZA, Sorgenfrei FA, Andersson E, Ye W, Camilloni C, Jemth P. Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins. J Biol Chem 2021; 295:17698-17712. [PMID: 33454008 PMCID: PMC7762952 DOI: 10.1074/jbc.ra120.015645] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Intrinsically disordered protein domains often have multiple binding partners. It is plausible that the strength of pairing with specific partners evolves from an initial low affinity to a higher affinity. However, little is known about the molecular changes in the binding mechanism that would facilitate such a transition. We previously showed that the interaction between two intrinsically disordered domains, NCBD and CID, likely emerged in an ancestral deuterostome organism as a low-affinity interaction that subsequently evolved into a higher-affinity interaction before the radiation of modern vertebrate groups. Here we map native contacts in the transition states of the low-affinity ancestral and high-affinity human NCBD/CID interactions. We show that the coupled binding and folding mechanism is overall similar but with a higher degree of native hydrophobic contact formation in the transition state of the ancestral complex and more heterogeneous transient interactions, including electrostatic pairings, and an increased disorder for the human complex. Adaptation to new binding partners may be facilitated by this ability to exploit multiple alternative transient interactions while retaining the overall binding and folding pathway.
Collapse
Affiliation(s)
- Elin Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cristina Paissoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Amanda M Erkelens
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Zeinab A Tehranizadeh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Frieda A Sorgenfrei
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Weihua Ye
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
38
|
Freitas FC, Ferreira PHB, Favaro DC, Oliveira RJD. Shedding Light on the Inhibitory Mechanisms of SARS-CoV-1/CoV-2 Spike Proteins by ACE2-Designed Peptides. J Chem Inf Model 2021; 61:1226-1243. [PMID: 33619962 PMCID: PMC7931628 DOI: 10.1021/acs.jcim.0c01320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 01/07/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor that locks onto the surface spike protein of the 2002 SARS coronavirus (SARS-CoV-1) and of the novel, highly transmissible and deadly 2019 SARS-CoV-2, responsible for the COVID-19 pandemic. One strategy to avoid the virus infection is to design peptides by extracting the human ACE2 peptidase domain α1-helix, which would bind to the coronavirus surface protein, preventing the virus entry into the host cells. The natural α1-helix peptide has a stronger affinity to SARS-CoV-2 than to SARS-CoV-1. Another peptide was designed by joining α1 with the second portion of ACE2 that is far in the peptidase sequence yet grafted in the spike protein interface with ACE2. Previous studies have shown that, among several α1-based peptides, the hybrid peptidic scaffold is the one with the highest/strongest affinity for SARS-CoV-1, which is comparable to the full-length ACE2 affinity. In this work, binding and folding dynamics of the natural and designed ACE2-based peptides were simulated by the well-known coarse-grained structure-based model, with the computed thermodynamic quantities correlating with the experimental binding affinity data. Furthermore, theoretical kinetic analysis of native contact formation revealed the distinction between these processes in the presence of the different binding partners SARS-CoV-1 and SARS-CoV-2 spike domains. Additionally, our results indicate the existence of a two-state folding mechanism for the designed peptide en route to bind to the spike proteins, in contrast to a downhill mechanism for the natural α1-helix peptides. The presented low-cost simulation protocol demonstrated its efficiency in evaluating binding affinities and identifying the mechanisms involved in the neutralization of spike-ACE2 interaction by designed peptides. Finally, the protocol can be used as a computer-based screening of more potent designed peptides by experimentalists searching for new therapeutics against COVID-19.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Paulo Henrique Borges Ferreira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Denize Cristina Favaro
- Departamento de Química Orgânica,
Instituto de Química, Universidade Estadual de
Campinas, São Paulo, SP 13083-970, Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
39
|
Berezhkovskii AM, Bezrukov SM, Makarov DE. Localized potential well vs binding site: Mapping solute dynamics in a membrane channel onto one-dimensional description. J Chem Phys 2021; 154:111101. [PMID: 33752368 DOI: 10.1063/5.0044044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the one-dimensional description, the interaction of a solute molecule with the channel wall is characterized by the potential of mean force U(x), where the x-coordinate is measured along the channel axis. When the molecule can reversibly bind to certain amino acid(s) of the protein forming the channel, this results in a localized well in the potential U(x). Alternatively, this binding can be modeled by introducing a discrete localized site, in addition to the continuum of states along x. Although both models may predict identical equilibrium distributions of the coordinate x, there is a fundamental difference between the two: in the first model, the molecule passing through the channel unavoidably visits the potential well, while in the latter, it may traverse the channel without being trapped at the discrete site. Here, we show that when the two models are parameterized to have the same thermodynamic properties, they automatically yield identical translocation probabilities and mean translocation times, yet they predict qualitatively different shapes of the translocation time distribution. Specifically, the potential well model yields a narrower distribution than the model with a discrete site, a difference that can be quantified by the distribution's coefficient of variation. This coefficient turns out to be always smaller than unity in the potential well model, whereas it may exceed unity when a discrete trapping site is present. Analysis of the translocation time distribution beyond its mean thus offers a way to differentiate between distinct translocation mechanisms.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
40
|
Taumoefolau GH, Best RB. Estimating transition path times and shapes from single-molecule photon trajectories: A simulation analysis. J Chem Phys 2021; 154:115101. [PMID: 33752373 DOI: 10.1063/5.0040949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In a two-state molecular system, transition paths comprise the portions of trajectories during which the system transits from one stable state to the other. Because of their low population, it is essentially impossible to obtain information on transition paths from experiments on a large sample of molecules. However, single-molecule experiments such as laser optical tweezers or Förster resonance energy transfer (FRET) spectroscopy have allowed transition-path durations to be estimated. Here, we use molecular simulations to test the methodology for obtaining information on transition paths in single-molecule FRET by generating photon trajectories from the distance trajectories obtained in the simulation. Encouragingly, we find that this maximum likelihood analysis yields transition-path times within a factor of 2-4 of the values estimated using a good coordinate for folding, but tends to systematically underestimate them. The underestimation can be attributed partly to the fact that the large changes in the end-end distance occur mostly early in a folding trajectory. However, even if the transfer efficiency is a good reaction coordinate for folding, the assumption that the transition-path shape is a step function still leads to an underestimation of the transition-path time as defined here. We find that allowing more flexibility in the form of the transition path model allows more accurate transition-path times to be extracted and points the way toward further improvements in methods for estimating transition-path time and transition-path shape.
Collapse
Affiliation(s)
- Grace H Taumoefolau
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20852, USA
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
41
|
Abstract
Chemists visualize chemical reactions as motion along one-dimensional "reaction coordinates" over free energy barriers. Various rate theories, such as transition state theory and the Kramers theory of diffusive barrier crossing, differ in their assumptions regarding the mathematical specifics of this motion. Direct experimental observation of the motion along reaction coordinates requires single-molecule experiments performed with unprecedented time resolution. Toward this goal, recent single-molecule studies achieved time resolution sufficient to catch biomolecules in the act of crossing free energy barriers as they fold, bind to their targets, or undergo other large structural changes, offering a window into the elusive reaction "mechanisms". This Perspective describes what we can learn (and what we have already learned) about barrier crossing dynamics through synergy of single-molecule experiments, theory, and molecular simulations. In particular, I will discuss how emerging experimental data can be used to answer several questions of principle. For example, is motion along the reaction coordinate diffusive, is there conformational memory, and is reduction to just one degree of freedom to represent the reaction mechanism justified? It turns out that these questions can be formulated as experimentally testable mathematical inequalities, and their application to experimental and simulated data has already led to a number of insights. I will also discuss open issues and current challenges in this fast evolving field of research.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
42
|
Mehlich A, Fang J, Pelz B, Li H, Stigler J. Slow Transition Path Times Reveal a Complex Folding Barrier in a Designed Protein. Front Chem 2020; 8:587824. [PMID: 33365300 PMCID: PMC7750197 DOI: 10.3389/fchem.2020.587824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
De-novo designed proteins have received wide interest as potential platforms for nano-engineering and biomedicine. While much work is being done in the design of thermodynamically stable proteins, the folding process of artificially designed proteins is not well-studied. Here we used single-molecule force spectroscopy by optical tweezers to study the folding of ROSS, a de-novo designed 2x2 Rossmann fold. We measured a barrier crossing time in the millisecond range, much slower than what has been reported for other systems. While long transition times can be explained by barrier roughness or slow diffusion, we show that isotropic roughness cannot explain the measured transition path time distribution. Instead, this study shows that the slow barrier crossing of ROSS is caused by the population of three short-lived high-energy intermediates. In addition, we identify incomplete and off-pathway folding events with different barrier crossing dynamics. Our results hint at the presence of a complex transition barrier that may be a common feature of many artificially designed proteins.
Collapse
Affiliation(s)
- Alexander Mehlich
- Physics Department E22, Technische Universität München, Garching, Germany
| | - Jie Fang
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Pelz
- Physics Department E22, Technische Universität München, Garching, Germany
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
43
|
Girodat D, Pati AK, Terry DS, Blanchard SC, Sanbonmatsu KY. Quantitative comparison between sub-millisecond time resolution single-molecule FRET measurements and 10-second molecular simulations of a biosensor protein. PLoS Comput Biol 2020; 16:e1008293. [PMID: 33151943 PMCID: PMC7643941 DOI: 10.1371/journal.pcbi.1008293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular Dynamics (MD) simulations seek to provide atomic-level insights into conformationally dynamic biological systems at experimentally relevant time resolutions, such as those afforded by single-molecule fluorescence measurements. However, limitations in the time scales of MD simulations and the time resolution of single-molecule measurements have challenged efforts to obtain overlapping temporal regimes required for close quantitative comparisons. Achieving such overlap has the potential to provide novel theories, hypotheses, and interpretations that can inform idealized experimental designs that maximize the detection of the desired reaction coordinate. Here, we report MD simulations at time scales overlapping with in vitro single-molecule Förster (fluorescence) resonance energy transfer (smFRET) measurements of the amino acid binding protein LIV-BPSS at sub-millisecond resolution. Computationally efficient all-atom structure-based simulations, calibrated against explicit solvent simulations, were employed for sampling multiple cycles of LIV-BPSS clamshell-like conformational changes on the time scale of seconds, examining the relationship between these events and those observed by smFRET. The MD simulations agree with the smFRET measurements and provide valuable information on local dynamics of fluorophores at their sites of attachment on LIV-BPSS and the correlations between fluorophore motions and large-scale conformational changes between LIV-BPSS domains. We further utilize the MD simulations to inform the interpretation of smFRET data, including Förster radius (R0) and fluorophore orientation factor (κ2) determinations. The approach we describe can be readily extended to distinct biochemical systems, allowing for the interpretation of any FRET system conjugated to protein or ribonucleoprotein complexes, including those with more conformational processes, as well as those implementing multi-color smFRET. Förster (fluorescence) resonance energy transfer (FRET) has been used extensively by biophysicists as a molecular-scale ruler that yields fundamental structural and kinetic insights into transient processes including complex formation and conformational rearrangements required for biological function. FRET techniques require the identification of informative fluorophore labeling sites, spaced at defined distances to inform on a reaction coordinate of interest and consideration of noise sources that have the potential to obscure quantitative interpretations. Here, we describe an approach to leverage advancements in computationally efficient all-atom structure-based molecular dynamics simulations in which structural dynamics observed via FRET can be interpreted in full atomistic detail on commensurate time scales. We demonstrate the potential of this approach using a model FRET system, the amino acid binding protein LIV-BPSS conjugated to self-healing organic fluorophores. LIV-BPSS exhibits large scale, sub-millisecond clamshell-like conformational changes between open and closed conformations associated with ligand unbinding and binding, respectively. Our findings inform on the molecular basis of the dynamics observed by smFRET and on strategies to optimize fluorophore labeling sites, the manner of fluorophore attachment, and fluorophore composition.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.,New Mexico Consortium, Los Alamos, New Mexico, United States of America
| |
Collapse
|
44
|
Broad distributions of transition-path times are fingerprints of multidimensionality of the underlying free energy landscapes. Proc Natl Acad Sci U S A 2020; 117:27116-27123. [PMID: 33087575 DOI: 10.1073/pnas.2008307117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent single-molecule experiments have observed transition paths, i.e., brief events where molecules (particularly biomolecules) are caught in the act of surmounting activation barriers. Such measurements offer unprecedented mechanistic insights into the dynamics of biomolecular folding and binding, molecular machines, and biological membrane channels. A key challenge to these studies is to infer the complex details of the multidimensional energy landscape traversed by the transition paths from inherently low-dimensional experimental signals. A common minimalist model attempting to do so is that of one-dimensional diffusion along a reaction coordinate, yet its validity has been called into question. Here, we show that the distribution of the transition path time, which is a common experimental observable, can be used to differentiate between the dynamics described by models of one-dimensional diffusion from the dynamics in which multidimensionality is essential. Specifically, we prove that the coefficient of variation obtained from this distribution cannot possibly exceed 1 for any one-dimensional diffusive model, no matter how rugged its underlying free energy landscape is: In other words, this distribution cannot be broader than the single-exponential one. Thus, a coefficient of variation exceeding 1 is a fingerprint of multidimensional dynamics. Analysis of transition paths in atomistic simulations of proteins shows that this coefficient often exceeds 1, signifying essential multidimensionality of those systems.
Collapse
|
45
|
Zijlstra N, Nettels D, Satija R, Makarov DE, Schuler B. Transition Path Dynamics of a Dielectric Particle in a Bistable Optical Trap. PHYSICAL REVIEW LETTERS 2020; 125:146001. [PMID: 33064519 DOI: 10.1103/physrevlett.125.146001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Many processes in chemistry, physics, and biology involve rare events in which the system escapes from a metastable state by surmounting an activation barrier. Examples range from chemical reactions, protein folding, and nucleation events to the catastrophic failure of bridges. A challenge in understanding the underlying mechanisms is that the most interesting information is contained within the rare transition paths, the exceedingly short periods when the barrier is crossed. To establish a model process that enables access to all relevant timescales, although highly disparate, we probe the dynamics of single dielectric particles in a bistable optical trap in solution. Precise localization by high-speed tracking enables us to resolve the transition paths and relate them to the detailed properties of the 3D potential within which the particle diffuses. By varying the barrier height and shape, the experiments provide a stringent benchmark of current theories of transition path dynamics.
Collapse
Affiliation(s)
- Niels Zijlstra
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Rohit Satija
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
- Department of Physics, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
46
|
Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. Proc Natl Acad Sci U S A 2020; 117:24305-24315. [PMID: 32913060 PMCID: PMC7533661 DOI: 10.1073/pnas.2006517117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. "Self-healing" dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum. We show that the Baird aromatic triplet-state energy of cyclooctatetraene can be physically altered to achieve order of magnitude enhancements in fluorophore brightness and signal-to-noise ratio in both the presence and absence of oxygen. We leverage these advances to achieve direct measurements of large-scale conformational dynamics within single molecules at submillisecond resolution using wide-field illumination and camera-based detection methods. These findings demonstrate the capacity to image functionally relevant conformational processes in biological systems in the kilohertz regime at physiological oxygen concentrations and shed important light on the multivariate parameters critical to self-healing organic fluorophore design.
Collapse
|
47
|
Casier R, Duhamel J. Effect of Structure on Polypeptide Blobs: A Model Study Using Poly(l-lysine). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7980-7990. [PMID: 32585108 DOI: 10.1021/acs.langmuir.0c01347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The conformation of a series of pyrene-labeled poly(l-lysine)s (Py-PLLs) in 60:40 and 90:10 (v/v) acetonitrile:water mixtures was determined by comparing the results obtained from the fluorescence blob model (FBM) analysis of their fluorescence decays with those obtained from molecular mechanics optimizations (MMOs). PLL aggregates formed in both solutions as demonstrated by FRET experiments between naphthalene- and pyrene-labeled PLLs. Addition of an excess of unlabeled PLL allowed the conformational study of isolated Py-PLL embedded in a matrix of unlabeled PLLs. By varying the acetonitrile (ACN) content of the solution from 60 to 90 vol % ACN, Py-PLL was found to undergo a conformational change from a random coil to an α-helix. The conformational change induced an increase in the maximum number of lysines (Nblob) separating two pyrene-labeled lysines that could still form an excimer between an excited- and a ground-state pyrene. Nblob obtained from the FBM analysis increased from 15.2 ± 2.1 to 25.2 ± 1.2 lysines as PLL changed its conformation from a random coil to an α-helix. AFM revealed that the α-helical PLLs organized themselves into structured bundles ∼22 nm in diameter. The FBM analysis of the decays acquired with a solution of aggregated Py-PLLs in a 90:10 ACN:water mixture yielded a larger Nblob value of 36.6 ± 3.4. The increase in Nblob indicated that the Py-PLL constructs could now interact with one another in the helical bundles. This increase in Nblob was then used in conjunction with MMOs to determine an interhelical spacing of 2.9 ± 0.1 nm for Py-PLLs in a bundle. This interhelical spacing resulted in a local density of 0.25 ± 0.01 g·cm-3 for the bundles of PLL α-helices, which was a reasonable density for a protein in solution. This study describes an experimental means to probe the number of amino acids that interact with each other as the conformation of a polypeptide evolves from that of a random coil to that of an α-helix to finally that of a bundle of α-helices.
Collapse
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
48
|
Fast three-color single-molecule FRET using statistical inference. Nat Commun 2020; 11:3336. [PMID: 32620782 PMCID: PMC7335206 DOI: 10.1038/s41467-020-17149-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
We describe theory, experiments, and analyses of three-color Förster resonance energy transfer (FRET) spectroscopy for probing sub-millisecond conformational dynamics of protein folding and binding of disordered proteins. We devise a scheme that uses single continuous-wave laser excitation of the donor instead of alternating excitation of the donor and one of the acceptors. This scheme alleviates photophysical problems of acceptors such as rapid photobleaching, which is crucial for high time resolution experiments with elevated illumination intensity. Our method exploits the molecular species with one of the acceptors absent or photobleached, from which two-color FRET data is collected in the same experiment. We show that three FRET efficiencies and kinetic parameters can be determined without alternating excitation from a global maximum likelihood analysis of two-color and three-color photon trajectories. We implement co-parallelization of CPU-GPU processing, which leads to a significant reduction of the likelihood calculation time for efficient parameter determination.
Collapse
|
49
|
Gianni S, Jemth P. Affinity versus specificity in coupled binding and folding reactions. Protein Eng Des Sel 2020; 32:355-357. [PMID: 31397874 DOI: 10.1093/protein/gzz020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/17/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023] Open
Abstract
Intrinsically disordered protein regions may fold upon binding to an interaction partner. It is often argued that such coupled binding and folding enables the combination of high specificity with low affinity. The basic tenet is that an unfavorable folding equilibrium will make the overall binding weaker while maintaining the interaction interface. While theoretically solid, we argue that this concept may be misleading for intrinsically disordered proteins. In fact, experimental evidence suggests that interactions of disordered regions usually involve extended conformations. In such cases, the disordered region is exceptionally unlikely to fold into a bound conformation in the absence of its binding partner. Instead, these disordered regions can bind to their partners in multiple different conformations and then fold into the native bound complex, thus, if anything, increasing the affinity through folding. We concede that (de)stabilization of native structural elements such as helices will modulate affinity, but this could work both ways, decreasing or increasing the stability of the complex. Moreover, experimental data show that intrinsically disordered binding regions display a range of affinities and specificities dictated by the particular side chains and length of the disordered region and not necessarily by the fact that they are disordered. We find it more likely that intrinsically disordered regions are common in protein-protein interactions because they increase the repertoire of binding partners, providing an accessible route to evolve interactions rather than providing a stability-affinity trade-off.
Collapse
Affiliation(s)
- Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome 00185, Italy
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
50
|
Hicks A, Escobar CA, Cross TA, Zhou HX. Sequence-Dependent Correlated Segments in the Intrinsically Disordered Region of ChiZ. Biomolecules 2020; 10:biom10060946. [PMID: 32585849 PMCID: PMC7355643 DOI: 10.3390/biom10060946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
How sequences of intrinsically disordered proteins (IDPs) code for their conformational dynamics is poorly understood. Here, we combined NMR spectroscopy, small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations to characterize the conformations and dynamics of ChiZ1-64. MD simulations, first validated by SAXS and secondary chemical shift data, found scant α-helices or β-strands but a considerable propensity for polyproline II (PPII) torsion angles. Importantly, several blocks of residues (e.g., 11–29) emerge as “correlated segments”, identified by their frequent formation of PPII stretches, salt bridges, cation-π interactions, and sidechain-backbone hydrogen bonds. NMR relaxation experiments showed non-uniform transverse relaxation rates (R2s) and nuclear Overhauser enhancements (NOEs) along the sequence (e.g., high R2s and NOEs for residues 11–14 and 23–28). MD simulations further revealed that the extent of segmental correlation is sequence-dependent; segments where internal interactions are more prevalent manifest elevated “collective” motions on the 5–10 ns timescale and suppressed local motions on the sub-ns timescale. Amide proton exchange rates provides corroboration, with residues in the most correlated segment exhibiting the highest protection factors. We propose the correlated segment as a defining feature for the conformations and dynamics of IDPs.
Collapse
Affiliation(s)
- Alan Hicks
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; (A.H.); (C.A.E.)
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Cristian A. Escobar
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; (A.H.); (C.A.E.)
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Timothy A. Cross
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; (A.H.); (C.A.E.)
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Correspondence: (T.A.C.); (H.-X.Z.)
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
- Correspondence: (T.A.C.); (H.-X.Z.)
| |
Collapse
|