1
|
Zhu G, Yang S, He W, Han X, Chen L, Chen G, Lin T. Simulated nitrogen deposition enhances resistance of female poplars over males to Pestalotiopsis microspora infection through the recruitment of antagonistic microbes in phyllosphere. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124484. [PMID: 39933372 DOI: 10.1016/j.jenvman.2025.124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Atmospheric nitrogen deposition has globally increased due to human activities and has strongly interfered with plant growth and resistance to biotic stressors. Dioecious plant species have shown secondary dimorphism in growth and development between male and female individuals in response to increased nitrogen deposition. However, the extent to whether these sexual differences influence variations in phyllosphere microbial communities and the associated pathogen resistance between male and female conspecifics remains unclear. To address this knowledge gap, female and male full-sibs of a poplar species were exposed to simulated nitrogen deposition and then artificially infected with a leaf pathogenic fungus, Pestalotiopsis microspora. The findings revealed that simulated nitrogen deposition promoted the growth of both sexes, with male plants exhibiting superior growth. Following P. microspora infection, female control plants displayed a greater leaf lesion area compared to males, but simulated nitrogen deposition reversed this difference. Further phyllosphere microbiome analysis and toxicity test indicated that the sexual differences in pathogen resistance between male and female conspecifics were likely attributable to alterations in the composition and structure of epiphytic microbes as the phyllosphere of female plants harbored a higher abundance of ecologically beneficial microbes with potential biological control capabilities, whereas males exhibited an increase abundance in the phytopathogens genera in response to simulated nitrogen deposition. Confirmatively, two bacterial strains were successfully isolated from the epiphytic phyllosphere of female plants that exhibited strong antagonistic effect against the pathogenic fungus P. microspora in both in vitro and in vivo conditions. The findings have significant implications for the selection of suitable poplar sexes for landscaping and reforestation efforts in areas experienced severe atmospheric nitrogen deposition.
Collapse
Affiliation(s)
- Guoqing Zhu
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Shuya Yang
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Wanci He
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Xiaotao Han
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Lianghua Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Gang Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Tiantian Lin
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
2
|
Sui L, Zhu H, Wang D, Zhang Z, Bidochka MJ, Barelli L, Lu Y, Li Q. Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide. PEST MANAGEMENT SCIENCE 2024; 80:4575-4584. [PMID: 38738508 DOI: 10.1002/ps.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO2) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO2 concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO2, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O. furnacalis, and the nutritional status (content of carbon, nitrogen, phosphorus, potassium), biomass, and yield of maize. RESULTS The results showed that endophytic B. bassiana could alleviate the damage caused by O. furnacalis larvae for maize plants under ambient CO2 concentration, and this effect was enhanced under higher CO2 concentration. Inoculation with B. bassiana effectively counteracted the adverse impact of elevated CO2 on maize plants by preserving the nitrogen content at its baseline level (comparable with ambient CO2 conditions without B. bassiana). Both simultaneous effects could explain the improvement of biomass and yield of maize under B. bassiana inoculation and elevated CO2. CONCLUSION This finding provides key information about the multifaceted benefits of B. bassiana as a maize endophyte. Our results highlight the promising potential of incorporating EPF as endophytes into integrated pest management strategies, particularly under elevated CO2 concentrations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Hui Zhu
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Deli Wang
- School of Life Sciences, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Larissa Barelli
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin, China
| | - Qiyun Li
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
3
|
Li ZX, Wang DX, Shi WX, Weng BY, Zhang Z, Su SH, Sun YF, Tan JF, Xiao S, Xie RH. Nitrogen-mediated volatilisation of defensive metabolites in tomato confers resistance to herbivores. PLANT, CELL & ENVIRONMENT 2024; 47:3227-3240. [PMID: 38738504 DOI: 10.1111/pce.14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Plants synthesise a vast array of volatile organic compounds (VOCs), which serve as chemical defence and communication agents in their interactions with insect herbivores. Although nitrogen (N) is a critical resource in the production of plant metabolites, its regulatory effects on defensive VOCs remain largely unknown. Here, we investigated the effect of N content in tomato (Solanum lycopersicum) on the tobacco cutworm (Spodoptera litura), a notorious agricultural pest, using biochemical and molecular experiments in combination with insect behavioural and performance analyses. We observed that on tomato leaves with different N contents, S. litura showed distinct feeding preference and growth and developmental performance. Particularly, metabolomics profiling revealed that limited N availability conferred resistance upon tomato plants to S. litura is likely associated with the biosynthesis and emission of the volatile metabolite α-humulene as a repellent. Moreover, exogenous application of α-humulene on tomato leaves elicited a significant repellent response against herbivores. Thus, our findings unravel the key factors involved in N-mediated plant defence against insect herbivores and pave the way for innovation of N management to improve the plant defence responses to facilitate pest control strategies within agroecosystems.
Collapse
Affiliation(s)
- Zhi-Xing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dan-Xia Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wen-Xuan Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Bo-Yang Weng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhi Zhang
- General Management Office, Shennong Technology Group Co., Ltd, Jinzhong, China
| | - Shi-Hao Su
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yu-Fei Sun
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ruo-Han Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Vogels JJ, Van de Waal DB, WallisDeVries MF, Van den Burg AB, Nijssen M, Bobbink R, Berg MP, Olde Venterink H, Siepel H. Towards a mechanistic understanding of the impacts of nitrogen deposition on producer-consumer interactions. Biol Rev Camb Philos Soc 2023; 98:1712-1731. [PMID: 37265074 DOI: 10.1111/brv.12972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Nitrogen (N) deposition has increased substantially since the second half of the 20th century due to human activities. This increase of reactive N into the biosphere has major implications for ecosystem functioning, including primary production, soil and water chemistry and producer community structure and diversity. Increased N deposition is also linked to the decline of insects observed over recent decades. However, we currently lack a mechanistic understanding of the effects of high N deposition on individual fitness, species richness and community structure of both invertebrate and vertebrate consumers. Here, we review the effects of N deposition on producer-consumer interactions, focusing on five existing ecological frameworks: C:N:P ecological stoichiometry, trace element ecological stoichiometry, nutritional geometry, essential micronutrients and allelochemicals. We link reported N deposition-mediated changes in producer quality to life-history strategies and traits of consumers, to gain a mechanistic understanding of the direction of response in consumers. We conclude that high N deposition influences producer quality via eutrophication and acidification pathways. This makes oligotrophic poorly buffered ecosystems most vulnerable to significant changes in producer quality. Changes in producer quality between the reviewed frameworks are often interlinked, complicating predictions of the effects of high N deposition on producer quality. The degree and direction of fitness responses of consumers to changes in producer quality varies among species but can be explained by differences in life-history traits and strategies, particularly those affecting species nutrient intake regulation, mobility, relative growth rate, host-plant specialisation, ontogeny and physiology. To increase our understanding of the effects of N deposition on these complex mechanisms, the inclusion of life-history traits of consumer species in future study designs is pivotal. Based on the reviewed literature, we formulate five hypotheses on the mechanisms underlying the effects of high N deposition on consumers, by linking effects of nutritional ecological frameworks to life-history strategies. Importantly, we expect that N-deposition-mediated changes in producer quality will result in a net decrease in consumer community as well as functional diversity. Moreover, we anticipate an increased risk of outbreak events of a small subset of generalist species, with concomitant declines in a multitude of specialist species. Overall, linking ecological frameworks with consumer life-history strategies provides a mechanistic understanding of the impacts of high N deposition on producer-consumer interactions, which can inform management towards more effective mitigation strategies.
Collapse
Affiliation(s)
- Joost J Vogels
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH, Amsterdam, The Netherlands
| | - Michiel F WallisDeVries
- De Vlinderstichting / Dutch Butterfly Conservation, P.O. Box 6700 AM, Wageningen, The Netherlands
| | | | - Marijn Nijssen
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Matty P Berg
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- GELIFES, Community and Conservation Ecology Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Harry Olde Venterink
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Liang Y, Li D, Sheng Q, Zhu Z. Exogenous Salicylic Acid Alleviates NO 2 Damage by Maintaining Cell Stability and Physiological Metabolism in Bougainvillea × buttiana 'Miss Manila' Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3283. [PMID: 37765447 PMCID: PMC10535129 DOI: 10.3390/plants12183283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Exogenous substances can alleviate plant damage under adverse conditions. In order to explore whether different concentrations of salicylic acid (SA) can play a role in the resistance of Bougainvillea × buttiana 'Miss Manila' to nitrogen dioxide (NO2) stress and the relevant mechanisms of their effects, different concentrations of SA were applied locally under the control experiment condition of 4.0 μL·L-1 NO2, and the role of SA in alleviating injury was studied. The findings noted a significant increase in metabolic adaptations and antioxidant enzyme activities following 0.25-0.75 mM SA application (p < 0.05), except 1 mM. Superoxide dismutase (SOD) and catalase (CAT) in particular increased by 21.88% and 59.71%, respectively. Such an increase led to effective control of the reduction in photosynthetic pigments and the photosynthetic rate and protection of the structural stability of chloroplasts and other organelles. In addition, the activity of nitrate reductase (NR) increased by 83.85%, and the content of nitrate nitrogen (NO3--N) decreased by 29.23% in nitrogen metabolism. Concurrently, a principal component analysis (PCA) and a membership function analysis further indicated that 0.75 mM SA provided the most notable improvement in NO2 resistance among the different gradients. These findings suggest that 0.25-0.75 mM SA can relieve the stress at 4 μL·L-1 NO2 injury by effectively improving the antioxidant enzyme activity and nitrogen metabolizing enzyme activity, protecting the photosynthetic system and cell structure, but 1 mM SA had the opposite effect. In the future, the specific reasons for inhibition of SA at high concentrations and the comprehensive effects of the application of other exogenous compounds should be further studied.
Collapse
Affiliation(s)
- Yuxiang Liang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
| | - Dalu Li
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- The Center of Southern Modern Forestry Cooperative Innovation, Nanjing Forestry University, Nanjing 210037, China
- Research Center for Digital Innovation Design, Nanjing Forestry University, Nanjing 210037, China
- Jin Pu Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Art and Design, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Guo K, Yan L, He Y, Li H, Lam SS, Peng W, Sonne C. Phytoremediation as a potential technique for vehicle hazardous pollutants around highways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121130. [PMID: 36693585 DOI: 10.1016/j.envpol.2023.121130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
Collapse
Affiliation(s)
- Kang Guo
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lijun Yan
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
7
|
Corsini M, Jagiello Z, Walesiak M, Redlisiak M, Stadnicki I, Mierzejewska E, Szulkin M. Breeding in the pandemic: short-term lockdown restrictions in a European capital city did not alter the life-history traits of two urban adapters. Urban Ecosyst 2022; 26:1-11. [PMID: 36532698 PMCID: PMC9748896 DOI: 10.1007/s11252-022-01309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
Humans are transforming natural habitats into managed urban green areas and impervious surfaces at an unprecedented pace. Yet the effects of human presence per se on animal life-history traits are rarely tested. This is particularly true in cities, where human presence is often indissociable from urbanisation itself. The onset of the SARS-CoV-2 outbreak, along with the resulting lockdown restrictions, offered a unique, "natural experiment" to investigate wildlife responses to a sudden reduction in human activity. We analysed four years of avian breeding data collected in a European capital city to test whether lockdown measures altered nestbox occupancy and life-history traits in terms of egg laying date, incubation duration and clutch size in two urban adapters: great tits (Parus major) and blue tits (Cyanistes caeruleus). Lockdown measures, which modulated human presence, did not influence any of the life-history traits investigated. In contrast, the interaction between year and tree cover, a distinct ecological attribute of the urban space, was positively associated with clutch size, a key avian life-history and reproductive trait. This highlights the importance of inter-year variation and habitat quality over human activity on urban wildlife reproduction. We discuss our results in the light of other urban wildlife studies carried out during the pandemic, inviting the scientific community to carefully interpret all lockdown-associated shifts in biological traits. Supplementary Information The online version contains supplementary material available at 10.1007/s11252-022-01309-5.
Collapse
Affiliation(s)
- Michela Corsini
- Centre of New Technologies, University of Warsaw, ul. Banacha 2c, 02-097 Warsaw, Poland
| | - Zuzanna Jagiello
- Centre of New Technologies, University of Warsaw, ul. Banacha 2c, 02-097 Warsaw, Poland
- Department of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, Poznań, 60-625 Poland
| | - Michał Walesiak
- Centre of New Technologies, University of Warsaw, ul. Banacha 2c, 02-097 Warsaw, Poland
- Mammal Research Institute, Polish Academy of Sciences, ul. Stoczek 1, 17-230 Białowieża, Poland
| | - Michał Redlisiak
- Centre of New Technologies, University of Warsaw, ul. Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Biology, University of Gdansk, Bird Migration Research Station, ul. Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Ignacy Stadnicki
- Centre of New Technologies, University of Warsaw, ul. Banacha 2c, 02-097 Warsaw, Poland
- Artes Liberales, University of Warsaw, ul. Nowy Świat 69, 00-046 Warsaw, Poland
| | - Ewa Mierzejewska
- Centre of New Technologies, University of Warsaw, ul. Banacha 2c, 02-097 Warsaw, Poland
| | - Marta Szulkin
- Centre of New Technologies, University of Warsaw, ul. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Kozlov MV. Population dynamics of herbivorous insects in polluted landscapes. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100987. [PMID: 36307065 DOI: 10.1016/j.cois.2022.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Environmental pollution is one cause of insect decline in the Anthropocene, but the underlying mechanisms remain obscure due to a paucity of pollution-impact studies on insects that address density-dependent processes. Long data series (19-26 years) are available only for a few species monitored around two industrial polluters in north-western Russia. A particularly exciting current finding is that industrial pollution determines the relative strength of rapid (stabilising) and delayed (destabilising) density dependence operating on a herbivore population. Most studies address acute effects of traditional pollutants (e.g. sulphur dioxide and trace elements) and nitrogen deposition on agricultural pests, whereas the effects of realistic concentrations of ozone, particulate matter and emerging pollutants on insects feeding on noncultivated plants are unknown. The accumulated evidence remains insufficient to predict the effects of pollutants of global concern on the population dynamics of herbivorous insects.
Collapse
Affiliation(s)
- Mikhail V Kozlov
- Department of Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
9
|
Ryalls JMW, Staton T, Mullinger NJ, Bromfield LM, Langford B, Pfrang C, Nemitz E, Blande JD, Girling RD. Ozone Mitigates the Adverse Effects of Diesel Exhaust Pollutants on Ground-Active Invertebrates in Wheat. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.833088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is growing evidence to demonstrate that air pollution is affecting invertebrates both directly (e.g., causing physiological stress responses) and indirectly (e.g., via changes in host plant chemistry and/or by disruption of communication by volatile odours). Many of the studies to-date have focused upon winged insects and disruption of in-flight foraging. Therefore, in this study we investigated how the community composition of predominantly ground-dwelling invertebrates in fields of winter wheat are affected by two of the most ubiquitous lower tropospheric air pollutants, diesel exhaust emissions (including nitrogen oxides–NOx) and ozone (O3), both individually and in combination, over 2 years. Pitfall traps, located within the rings of a Free-Air Diesel and Ozone Enrichment (FADOE) facility, were used to sample invertebrates. The facility consisted of eight 8 m-diameter rings, which allowed elevation of the pollutants above ambient levels (ca 49–60 ppb NOx and 35–39 ppb O3) but within levels currently defined as safe for the environment by the Environmental Protection Agency. The invertebrates collected were taxonomically identified and characterised by diet specialisation, mobility and functional group. Taxonomic richness and Shannon’s diversity index were calculated. Even under the relatively low levels of air pollution produced, there were adverse impacts on invertebrate community composition, with greater declines in the abundance and taxonomic richness of invertebrates in the diesel exhaust treatment compared with O3 treatment. In the combined treatment, pollutant levels were lower, most likely because NOx and O3 react with one another, and consequently a lesser negative effect was observed on invertebrate abundance and taxonomic richness. Specialist-feeding and winged invertebrate species appeared to be more sensitive to the impacts of the pollutants, responding more negatively to air pollution treatments than generalist feeders and wingless species, respectively. Therefore, these results suggest a more severe pollution-mediated decline in specialist- compared with generalist-feeding invertebrates, and in more mobile (winged) individuals. Understanding how invertebrate communities respond to air pollutants alone and in combination will facilitate predictions of how terrestrial environments respond to changes in anthropogenic emissions, especially as we shift away from fossil fuel dependence and therefore manipulate the interactions between these two common pollutants.
Collapse
|
10
|
Zverev V, Kozlov MV. Decline of Eulia ministrana (Lepidoptera: Tortricidae) in polluted habitats is not accompanied by phenotypic stress responses. INSECT SCIENCE 2021; 28:1482-1490. [PMID: 32783368 DOI: 10.1111/1744-7917.12862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution is currently identified as one of the major drivers of rapid decline of insect populations, and this finding has revitalized interest in insect responses to pollution. We tested the hypothesis that the pollution-induced decline of insect populations can be predicted from phenotypic stress responses expressed as morphological differences between populations inhabiting polluted and unpolluted sites. We explored populations of the brassy tortrix Eulia ministrana in subarctic forests along an environmental disturbance gradient created by long-lasting severe impacts of aerial emissions of the copper-nickel smelter in Monchegorsk, northwestern Russia. We used pheromone traps to measure the population densities of this leafrolling moth and to collect specimens for assessment of three morphological stress indices: size, forewing melanization, and fluctuating asymmetry in wing venation. Wing length of E. ministrana increased by 10%, and neither forewing melanization nor fluctuating asymmetry changed from the unpolluted forest to the heavily polluted industrial barren. However, the population density of E. ministrana decreased 5 to 10 fold in the same pollution gradient. Thus, none of the studied potential morphological stress indicators signaled vulnerability of E. ministrana to environmental pollution and/or to pollution-induced environmental disturbance. We conclude that insect populations can decline without any visible signs of stress. The use of morphological proxies of insect fitness to predict the consequences of human impact on insect populations is therefore risky until causal relationships between these proxies and insect abundance are deciphered.
Collapse
Affiliation(s)
- Vitali Zverev
- Department of Biology, University of Turku, Turku, Finland
| | | |
Collapse
|
11
|
Hestrin R, Weber PK, Pett-Ridge J, Lehmann J. Plants and mycorrhizal symbionts acquire substantial soil nitrogen from gaseous ammonia transport. THE NEW PHYTOLOGIST 2021; 231:1746-1757. [PMID: 34077566 DOI: 10.1111/nph.17527] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen (N) is an essential nutrient that limits plant growth in many ecosystems. Here we investigate an overlooked component of the terrestrial N cycle - subsurface ammonia (NH3 ) gas transport and its contribution to plant and mycorrhizal N acquisition. We used controlled mesocosms, soil incubations, stable isotopes, and imaging to investigate edaphic drivers of NH3 gas efflux, track lateral subsurface N transport originating from 15 NH3 gas or 15 N-enriched organic matter, and assess plant and mycorrhizal N assimilation from this gaseous transport pathway. NH3 is released from soil organic matter, travels belowground, and contributes to root and fungal N content. Abiotic soil properties (pH and texture) influence the quantity of NH3 available for subsurface transport. Mutualisms with arbuscular mycorrhizal (AM) fungi can substantially increase plant NH3 -N uptake. The grass Brachypodium distachyon acquired 6-9% of total plant N from organic matter-N that traveled as a gas belowground. Colonization by the AM fungus Rhizophagus irregularis was associated with a two-fold increase in total plant N acquisition from subsurface NH3 gas. NH3 gas transport and uptake pathways may be fundamentally different from those of more commonly studied soil N species and warrant further research.
Collapse
Affiliation(s)
- Rachel Hestrin
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, 94550, USA
| | - Peter K Weber
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, 94550, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, 94550, USA
| | - Johannes Lehmann
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, 14853, USA
- Institute for Advanced Study, TU München, Garching, 85748, Germany
| |
Collapse
|
12
|
Manenti R, Mori E, Di Canio V, Mercurio S, Picone M, Caffi M, Brambilla M, Ficetola GF, Rubolini D. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: Insights from the first European locked down country. BIOLOGICAL CONSERVATION 2020; 249:108728. [PMID: 32863391 PMCID: PMC7441970 DOI: 10.1016/j.biocon.2020.108728] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Accepted: 08/02/2020] [Indexed: 05/16/2023]
Abstract
The COVID-19 pandemic zoonosis has determined extensive lockdowns worldwide that provide an unprecedented opportunity to understand how large-scale shifts of human activities can impact wildlife. We addressed the impacts of the COVID-19 lockdown on wildlife in Italy, the first European country that performed a countrywide lockdown, and identified potentially beneficial and negative consequences for wildlife conservation and management. We combined a qualitative analysis of social media information with field data from multiple taxa, data from citizen science projects, and questionnaires addressed to managers of protected areas. Both social media information and field data suggest that a reduction of human disturbance allowed wildlife to exploit new habitats and increase daily activity. The field data confirmed some positive effects on wildlife conservation, such as an increase in species richness in temporarily less-disturbed habitats, a higher breeding success of an aerial insectivorous bird, and reduction of road-killing of both amphibians and reptiles. Despite some positive effects, our data also highlighted several negative impacts of the COVID-19 crisis on wildlife. The lower human disturbance linked to lockdown was in fact beneficial for invasive alien species. Results from questionnaires addressed to managers of protected areas highlighted that the COVID-19 lockdown interrupted actions for the control of invasive alien species, and hampered conservation activities targeting threatened taxa. Furthermore, the reduction of enforcement could cause a surge of illegal killing of wildlife. The COVID-19 crisis, besides having deep socio-economic impacts, might profoundly affect wildlife conservation, with potentially long-lasting effects.
Collapse
Affiliation(s)
- Raoul Manenti
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy
| | - Emiliano Mori
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Viola Di Canio
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy
| | - Silvia Mercurio
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy
| | - Marco Picone
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Via Torino 55, I-30172 Venezia, Italy
| | - Mario Caffi
- Osservatorio Ornitologico Pianura Bresciana 'Padernello', via Cavour 1, I-25022 Borgo San Giacomo, BS, Italy
| | - Mattia Brambilla
- Fondazione Lombardia per l'Ambiente, Settore biodiversità e aree protette, Largo 10 luglio 1976 1, I-20822 Seveso, MB, Italy
- Museo delle Scienze, Sezione di Zoologia dei Vertebrati, Corso del Lavoro e della Scienza 3, I-38122 Trento, Italy
| | - Gentile Francesco Ficetola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine, Rue de la Piscine 2233, F-38000 Grenoble, France
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy
| |
Collapse
|
13
|
Müller C, Bräutigam A, Eilers E, Junker R, Schnitzler JP, Steppuhn A, Unsicker S, van Dam N, Weisser W, Wittmann M. Ecology and Evolution of Intraspecific Chemodiversity of Plants. RESEARCH IDEAS AND OUTCOMES 2020. [DOI: 10.3897/rio.6.e49810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An extraordinarily high intraspecific chemical diversity, i.e. chemodiversity, has been found in several plant species, of which some are of major ecological or economic relevance. Moreover, even within an individual plant there is substantial chemodiversity among tissues and across seasons. This chemodiversity likely has pronounced ecological effects on plant mutualists and antagonists, associated foodwebs and, ultimately, biodiversity. Surprisingly, studies on interactions between plants and their herbivores or pollinators often neglect plant chemistry as a level of diversity and phenotypic variation. The main aim of this Research Unit (RU) is to understand the emergence and maintenance of intraspecific chemodiversity in plants. We address the following central questions:
1) How does plant chemodiversity vary across levels, i.e., within individuals, among individuals within populations, and among populations?
2) What are the ecological consequences of intraspecific plant chemodiversity?
3) How is plant chemodiversity genetically determined and maintained?
By combining field and laboratory studies with metabolomics, transcriptomics, genetic tools, statistical data analysis and modelling, we aim to understand causes and consequences of plant chemodiversity and elucidate its impacts on the interactions of plants with their biotic environment. Furthermore, we want to identify general principles, which hold across different species, and develop meaningful measures to describe the fascinating diversity of defence chemicals in plants. These tasks require integrated scientific collaboration of experts in experimental and theoretical ecology, including chemical and molecular ecology, (bio)chemistry and evolution.
Collapse
|
14
|
Arnaiz A, Rosa-Diaz I, Romero-Puertas MC, Sandalio LM, Diaz I. Nitric Oxide, an Essential Intermediate in the Plant-Herbivore Interaction. FRONTIERS IN PLANT SCIENCE 2020; 11:620086. [PMID: 33488661 PMCID: PMC7819962 DOI: 10.3389/fpls.2020.620086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/24/2020] [Indexed: 05/02/2023]
Abstract
Reactive nitrogen species (RNS), mainly nitric oxide (NO), are highly reactive molecules with a prominent role in plant response to numerous stresses including herbivores, although the information is still very limited. This perspective article compiles the current progress in determining the NO function, as either a signal molecule, a metabolic intermediate, or a toxic oxidative product, as well as the contribution of molecules associated with NO metabolic pathway in the generation of plant defenses against phytophagous arthropods, in particular to insects and acari.
Collapse
Affiliation(s)
- Ana Arnaiz
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Irene Rosa-Diaz
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Maria C. Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Luisa M. Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: Isabel Diaz,
| |
Collapse
|