1
|
Shen S, Lu C, Ling T, Zheng Y. Current advances on RIPK2 and its inhibitors in pathological processes: a comprehensive review. Front Mol Neurosci 2025; 18:1492807. [PMID: 40406369 PMCID: PMC12095162 DOI: 10.3389/fnmol.2025.1492807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/22/2025] [Indexed: 05/26/2025] Open
Abstract
Receptor-Interacting Protein Kinase 2 (RIPK2) is a critical component of the signaling pathways downstream of Nucleotide-binding oligomerization domain-like receptor (NOD-like receptor), playing a vital role in the immune response, particularly in the context of cellular transport, adaptive immunity, and tumorigenesis. Recent advances have further clarified the complex roles of RIPK2, offering insights into its structural and functional characteristics. In this review, we provide a comprehensive overview of RIPK2's involvement in signaling, examine the development of RIPK2 inhibitors, and discuss novel strategies for targeting RIPK2 in therapeutic applications. Additionally, we highlight the dynamic interactions between RIPK2 and NOD-like receptors and explore future directions for improving RIPK2-targeted therapies.
Collapse
Affiliation(s)
- Shanshan Shen
- Jinhua Hospital Affiliated to Zhejiang University School of Medicine, Jinhua, China
| | - Chen Lu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Ling
- Jinhua Hospital Affiliated to Zhejiang University School of Medicine, Jinhua, China
| | - Yanan Zheng
- Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Raghuraman P, Ramireddy S, Raman G, Park S, Sudandiradoss C. Understanding a point mutation signature D54K in the caspase activation recruitment domain of NOD1 capitulating concerted immunity via atomistic simulation. J Biomol Struct Dyn 2025; 43:3766-3782. [PMID: 38415678 DOI: 10.1080/07391102.2024.2322618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 02/29/2024]
Abstract
Point mutation D54K in the human N-terminal caspase recruitment domain (CARD) of nucleotide-binding oligomerization domain -1 (NOD1) abrogates an imperative downstream interaction with receptor-interacting protein kinase (RIPK2) that entails combating bacterial infections and inflammatory dysfunction. Here, we addressed the molecular details concerning conformational changes and interaction patterns (monomeric-dimeric states) of D54K by signature-based molecular dynamics simulation. Initially, the sequence analysis prioritized D54K as a pathogenic mutation, among other variants, based on a sequence signature. Since the mutation is highly conserved, we derived the distant ortholog to predict the sequence and structural similarity between native and mutant. This analysis showed the utility of 33 communal core residues associated with structural-functional preservation and variations, concurrently served to infer the cryptic hotspots Cys39, Glu53, Asp54, Glu56, Ile57, Leu74, and Lys78 determining the inter helical fold forming homodimers for putative receptor interaction. Subsequently, the atomistic simulations with free energy (MM/PB(GB)SA) calculations predicted structural alteration that takes place in the N-terminal mutant CARD where coils changed to helices (45 α3- L4-α4-L6- α683) in contrast to native (45T2-L4-α4-L6-T483). Likewise, the C-terminal helices 93T1-α7105 connected to the loops distorted compared to native 93α6-L7105 may result in conformational misfolding that promotes functional regulation and activation. These structural perturbations of D54K possibly destabilize the flexible adaptation of critical homotypic NOD1CARD-CARDRIPK2 interactions (α4Asp42-Arg488α5 and α6Phe86-Lys471α4) is consistent with earlier experimental reports. Altogether, our findings unveil the conformational plasticity of mutation-dependent immunomodulatory response and may aid in functional validation exploring clinical investigation on CARD-regulated immunotherapies to prevent systemic infection and inflammation.
Collapse
Affiliation(s)
- P Raghuraman
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Sriroopreddy Ramireddy
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
- Department of Genetics and Molecular Biology, School of Health Sciences, The Apollo University, Chittoor, India
| | - Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - C Sudandiradoss
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
3
|
Hu CH, Chen Y, Jin TY, Wang Z, Jin B, Liao J, Ding CY, Zhang A, Tang WY, Zhang LX, Xu LY, Ning FM, Liang G, Wei XH, Wang Y. A derivative of tanshinone IIA and salviadione, 15a, inhibits inflammation and alleviates DSS-induced colitis in mice by direct binding and inhibition of RIPK2. Acta Pharmacol Sin 2025; 46:672-686. [PMID: 39443729 PMCID: PMC11845706 DOI: 10.1038/s41401-024-01399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions primarily affecting the gastrointestinal tract. Previous studies established the role of the NF-κB signaling pathway in the development of IBDs, suggesting that anti-inflammatory therapies might offer a viable treatment strategy. Tanshinone IIA and salviadione, both derived from Salviae Miltiorrhizae Radix et Rhizoma, possess anti-inflammatory and anti-oxidative activities. A series of new compounds were synthesized by hybridizing salviadione with tanshinone. Among these compounds, 15a showed beneficial effects in LPS-induced acute lung injury and diabetes-induced renal injury mouse models. The current study explored the therapeutic efficacy of 15a using both acute and chronic colitis models and elucidated the underlying mechanisms. DSS-induced colitis models were established in mice, where acute colitis was treated with compound 15a (5 or 10 mg·kg-1·d-1) for 8 days, while chronic colitis mice received compound 15a (5 or 10 mg·kg-1·d-1, i.g.) during 2.5% DSS administration. The 15a treatment significantly alleviated DSS-induced pathological and inflammatory damages in both acute and chronic colitis mouse models. In mouse intestinal epithelial cell line MODE-K, pretreatment with compound 15a (5 or 10 μM) significantly suppressed LPS + L18-MDP-induced inflammatory responses. The receptor-interacting serine/threonine kinase 2 (RIPK2) was identified as a direct binding target of compound 15a using microarrays and recombinant human proteins. Moreover, 15a could directly bind to and inhibit the phosphorylation of RIPK2, leading to the suppression of the NF-κB and MAPK signaling pathways. Furthermore, LEU153 and VAL32 were identified within the KD domain of RIPK2 as critical amino residues for the binding of 15a. Briefly, the current findings demonstrate that compound 15a holds promise as a therapeutic agent for managing acute and chronic colitis.
Collapse
Affiliation(s)
- Cheng-Hong Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yue Chen
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Tian-Yang Jin
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Zhe Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bo Jin
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Jing Liao
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Chun-Yong Ding
- Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ao Zhang
- Pharm-X Center, College of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei-Yang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ling-Xi Zhang
- Chemical Biology Research Center, Wenzhou Medical University, School of Pharmaceutical Sciences, Wenzhou, 325035, China
| | - Lei-Yu Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fang-Min Ning
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310051, China
| | - Xiao-Hong Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yi Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
4
|
Ruan J, Wei X, Li S, Ye Z, Hu L, Zhuang R, Cao Y, Wang S, Wu S, Peng D, Chen S, Yuan S, Xu A. Apaf-1 is an evolutionarily conserved DNA sensor that switches the cell fate between apoptosis and inflammation. Cell Discov 2025; 11:4. [PMID: 39833169 PMCID: PMC11747288 DOI: 10.1038/s41421-024-00750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/04/2024] [Indexed: 01/22/2025] Open
Abstract
Apoptotic protease activating factor 1 (Apaf-1) was traditionally defined as a scaffold protein in mammalian cells for assembling a caspase activation platform known as the 'apoptosome' after its binding to cytochrome c. Although Apaf-1 structurally resembles animal NOD-like receptor (NLR) and plant resistance (R) proteins, whether it is directly involved in innate immunity is still largely unknown. Here, we found that Apaf-1-like molecules from lancelets, fruit flies, mice, and humans have conserved DNA sensing functionality. Mechanistically, mammalian Apaf-1 recruits receptor-interacting protein 2 (RIP2, also known as RIPK2) via its WD40 repeat domain and promotes RIP2 oligomerization to initiate NF-κB-driven inflammation upon cytoplasmic DNA recognition. Furthermore, DNA binding of Apaf-1 determines cell fate by switching the cellular processes between intrinsic stimuli-activated apoptosis and inflammation. These findings suggest that Apaf-1 is an evolutionarily conserved DNA sensor and may serve as a cell fate checkpoint, which determines whether cells initiate inflammation or undergo apoptosis by distinct ligand binding.
Collapse
Affiliation(s)
- Jie Ruan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuxia Wei
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suizhi Li
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zijian Ye
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linyi Hu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ru Zhuang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yange Cao
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaozhou Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shengpeng Wu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dezhi Peng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaochun Yuan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, MOE Engineering Center of South China Sea Marine Biotechnology, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Sun Yat-sen University Institute of Advanced Studies Hong Kong, Hong Kong, China.
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Wei K, Zhou C, Shu Z, Shang X, Zou Y, Zhou W, Xu H, Liang Y, Ma T, Sun X, Xiao J. MYSM1 attenuates osteoarthritis by recruiting PP2A to deubiquitinate and dephosphorylate RIPK2. Bone Res 2025; 13:3. [PMID: 39746943 PMCID: PMC11696715 DOI: 10.1038/s41413-024-00368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA), the most prevalent degenerative joint disease, is marked by cartilage degradation and pathological alterations in surrounding tissues. Currently, no effective disease-modifying treatments exist. This study aimed to elucidate the critical roles of Myb-like, SWIRM, and MPN domains 1 (MYSM1) and its downstream effector, Receptor-interacting protein kinase 2 (RIPK2), in OA pathogenesis and the underlying mechanisms. Our findings revealed reduced MYSM1 levels in the cartilage of OA patients and mouse models. Genetic or adenovirus-induced MYSM1 knockout exacerbated OA progression in mice, whereas MYSM1 overexpression mitigated it. Mechanistically, MYSM1 inhibited the NF-κB and MAPK signaling pathways. Conversely, downstream RIPK2 significantly increased OA-like phenotypes and activated the NF-κB and MAPK pathways. The Ripk2S176D mutation accelerated OA pathogenesis, while Ripk2 silencing or Ripk2S176A mutation deactivated NF-κB and MAPK pathways, counteracting the role of MYSM1. MYSM1 deubiquitinates and dephosphorylates RIPK2S176 by recruiting protein phosphatase 2 A (PP2A). These results suggest that targeting MYSM1 or downstream RIPK2 offers promising therapeutic potential for OA.
Collapse
Affiliation(s)
- Kang Wei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chuankun Zhou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zixing Shu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingru Shang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhou
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulin Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Ambujakshan A, Sahu BD. Unraveling the role of RIPKs in diabetic kidney disease and its therapeutic perspectives. Biochem Pharmacol 2025; 231:116642. [PMID: 39571918 DOI: 10.1016/j.bcp.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nephropathy is the microvascular complication of diabetes mellitus and is the leading cause of chronic kidney disease. This review discusses the implications of receptor-interacting protein kinase (RIPK) family members and their regulation of inflammation and cell death pathways in the initiation and progression of diabetic kidney disease. Hyperglycemia leads to reactive oxygen species (ROS) generation and RIPK1 overexpression, the first regulator of necroptosis. Further, RIPK1 can form complex I to promote nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathway activation or complex II to cause programmed cell death in the kidneys. The rise in RIPK1 level upon ROS generation declines the apoptosis regulators' level while the necroptosis regulators' level is boosted. Necroptosis is a programmed or controlled necrosis-type cell death pathway executed by RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL) proteins, and recent research suggests its importance in diabetic nephropathy. In necroptosis, RIPK1 and RIPK3 interrelate with their RIP homotypic interaction motif (RHIM) domains and cause the recruitment of MLKL. Next, MLKL gets oligomerized, migrate towards the plasma membrane, and causes its rupture. We emphasized different research studies on drugs highlighting the nephroprotective effects via regulating the RIPKs. We hope that the conclusions of this review may provide new strategies for diabetic kidney disease treatment and promising targets for drug development based on necroptosis.
Collapse
Affiliation(s)
- Anju Ambujakshan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| |
Collapse
|
7
|
Sun X, Jin X, Lin Z, Liu X, Yang J, Li L, Feng H, Zhang W, Gu C, Hu X, Liu X, Cheng G. Nucleotide-binding oligomerization domain 1 (NOD1) regulates microglial activation in pseudorabies virus infection. Vet Res 2024; 55:161. [PMID: 39696641 DOI: 10.1186/s13567-024-01416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/19/2024] [Indexed: 12/20/2024] Open
Abstract
The primary cause of viral encephalitis (VE) is invasion of the central nervous system (CNS) by the virus, which leads to neuroinflammation and poses a significant threat to global public health. Microglia, as CNS-resident macrophages, play a crucial role in neuroinflammation and are often identified as the preferred target for the prevention or treatment of VE. In this study, we used pseudorabies virus (PRV)-induced VE in mice and pigs as a model to investigate the regulation of microglial responses during viral encephalitis and explored the mechanism of microglial activation. Cellular experiments revealed that microglial activation was accompanied by cell migration, characteristic morphological changes, phagocytosis, inflammatory cytokine production, and antigen presentation. Transcriptome analysis revealed that genes related to inflammation in PRV-infected BV2 cells were significantly enriched. The expression of the NOD1 gene in BV2 cells was significantly increased during PRV infection, after which NOD1 in BV2 cells was silenced by siRNA and overexpressed via a plasmid. NOD1 was found to be involved in the secretion of cytokines in BV2 cells by regulating the MAPK/NF-κB signalling pathway. Mouse and pig experiments have shown that NOD1 is involved in the secretion of cytokines by microglia by regulating the MAPK/NF-κB signalling pathway during PRV infection.
Collapse
Affiliation(s)
- Xiuxiu Sun
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Jin
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengdan Lin
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Liu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junjie Yang
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Helong Feng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Institute of Animal Health and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wanpo Zhang
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changqin Gu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueying Hu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoli Liu
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guofu Cheng
- Division of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
8
|
Chen Y, Hu Q, Zhang W, Gong Q, Yan J, Wang Z, Zhou Z, Ma X, Li Y, Lu X, Efferth T. Chidan Tuihuang granule modulates gut microbiota to influence NOD1/RIPK2 pathway in cholestatic liver injury recovery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156164. [PMID: 39461197 DOI: 10.1016/j.phymed.2024.156164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Cholestatic liver injury (CLI), which occurs if bile acids are imbalanced and the liver becomes inflamed, is difficult to treat effectively OBJECTIVE: We investigated how the Chinese patent medicine Chidan Tuihuang granule (CDTH) ameliorates cholestatic liver injury with a focus on its effects on the NOD1/RIPK2 pathway and intestinal flora METHODS: We used an ANIT-induced SD rat model of CLI to evaluate the therapeutic effects of CDTH. The experimental design included control, model, UDCA (ursodeoxycholic acid) and CDTH treatment groups. UHPLC-Q-Orbitrap-HRMS was used to analyse the blood components of CDTH. The efficacy of CDTH was assessed by liver function tests, histopathological examination (HE and TUNEL staining), transmission electron microscopy, and ELISA to measure apoptosis and inflammatory markers. Mechanistic insights were obtained using transcriptomics and RT-qPCR, while alterations in the expression of key proteins were studied using western blotting, immunohistochemistry, and immunofluorescence. Furthermore, the impact of CDTH on the gut microbiota and its associated metabolite, meso-2,6-diaminopimelic acid (DAP), which is linked to NOD1 activation, was examined and confirmed through in vitro RESULTS: The experimental results demonstrated a notable elevation in serum levels of AST, ALT, ALP, TBA, TBIL, and DBIL in the rats belonging to the model group, accompanied by the infiltration of inflammatory cells, hepatocyte degeneration, and necrosis in the liver tissue. CDTH administration significantly improved liver function and cholestasis indicators. Transmission electron microscopy and TUNEL staining revealed a marked reduction in liver cell apoptosis with CDTH treatment. ELISA results showed that CDTH effectively reduced inflammatory markers. Transcriptomic analysis showed that CDTH inhibited the NOD1/RIPK2 pathway, resulting in a significant decrease in the expression of NOD1, RIPK2 and associated genes in liver tissue. Gut microbiota analysis demonstrated that CDTH regulated intestinal flora structure, reducing the abundance of DAP-producing Gram-negative bacteria such as lactobacilli. In vitro experiments confirmed that CDTH enhanced cell viability by downregulating the DAP-mediated NOD1/RIPK2 signaling pathway secreted by intestinal bacteria CONCLUSION: CDTH ameliorated liver damage in cholestatic rats by inhibiting the NOD1/RIPK2 signaling pathway through regulation of gut flora and downregulation of DAP metabolites.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianqian Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zexin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongyuan Zhou
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yeyu Li
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
9
|
Li Z, Shang D. NOD1 and NOD2: Essential Monitoring Partners in the Innate Immune System. Curr Issues Mol Biol 2024; 46:9463-9479. [PMID: 39329913 PMCID: PMC11430502 DOI: 10.3390/cimb46090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Nucleotide-binding oligomerization domain containing 1 (NOD1) and NOD2 are pivotal cytoplasmic pattern-recognition receptors (PRRs) that exhibit remarkable evolutionary conservation. They possess the ability to discern specific peptidoglycan (PGN) motifs, thereby orchestrating innate immunity and contributing significantly to immune homeostasis maintenance. The comprehensive understanding of both the structure and function of NOD1 and NOD2 has been extensively elucidated. These receptors proficiently recognize an array of damage-associated molecular patterns (DAMPs) as well as pathogen-associated molecular patterns (PAMPs), subsequently mediating inflammatory responses and autophagy. In recent years, emerging evidence has highlighted the crucial roles played by NOD1 and NOD2 in regulating infectious diseases, metabolic disorders, cancer, and autoimmune conditions, among others. Perturbation in either their loss or excessive activation can detrimentally impact immune homeostasis. This review offers a comprehensive overview of the structural characteristics, subcellular localization, activation mechanisms, and significant roles of NOD1 and NOD2 in innate immunity and related disease.
Collapse
Affiliation(s)
- Zhenjia Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
10
|
Parnian R, Heydarifard F, Mousavi FS, Heydarifard Z, Zandi M. Innate Immune Response to Monkeypox Virus Infection: Mechanisms and Immune Escape. J Innate Immun 2024; 16:413-424. [PMID: 39137733 PMCID: PMC11521483 DOI: 10.1159/000540815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The reemergence of monkeypox virus (Mpox, formerly monkeypox) in 2022 in non-endemic countries has raised significant concerns for global health due to its high transmissibility and mortality rate. A major challenge in combating Mpox is its ability to evade the host's innate immune system, the first line of defense against viral infections. SUMMARY Mpox encodes various proteins that interfere with key antiviral pathways and mechanisms, such as the nuclear factor kappa B signaling, cytokine production, complement and inflammasome activation, and chemokine binding. These proteins modulate the expression and function of innate immune mediators, such as interferons, interleukins, and Toll-like receptors, and impair the recruitment and activation of innate immune cells, such as natural killer cells. By suppressing or altering these innate immune responses, Mpox enhances its replication and infection in the host tissues and organs, leading to systemic inflammation, tissue damage, and organ failure. KEY MESSAGES This study reveals new insights into the molecular and cellular interactions between Mpox and the host's innate immune system. It identifies potential targets and strategies for antiviral interventions, highlighting the importance of understanding these interactions to develop effective treatments and improve global health responses to Mpox outbreaks.
Collapse
Affiliation(s)
- Reza Parnian
- Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Heydarifard
- Department of Veterinary, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Fatemeh Sadat Mousavi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Heydarifard
- Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Milad Zandi
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
11
|
Zhao H, Fu X, Zhang Y, Chen C, Wang H. The Role of Pyroptosis and Autophagy in the Nervous System. Mol Neurobiol 2024; 61:1271-1281. [PMID: 37697221 PMCID: PMC10896877 DOI: 10.1007/s12035-023-03614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Autophagy is a conservative self-degradation system, which includes the two major processes of enveloping abnormal proteins, organelles and other macromolecules, and transferring them into lysosomes for the subsequent degradation. It holds the stability of the intracellular environment under stress. So far, three types of autophagy have been found: microautophagy, chaperone-mediated autophagy and macroautophagy. Many diseases have the pathological process of autophagy dysfunction, such as nervous system diseases. Pyroptosis is one kind of programmed cell death mediated by gasdermin (GSDM). In this process of pyroptosis, the activated caspase-3, caspase-4/5/11, or caspase-1 cleaves GSDM into the N-terminal pore-forming domain (PFD). The oligomer of PFD combines with the cell membrane to form membrane holes, thus leading to pyroptosis. Pyroptosis plays a key role in multiple tissues and organs. Many studies have revealed that autophagy and pyroptosis participate in the nervous system, but the mechanisms need to be fully clarified. Here, we focused on the recent articles on the role and mechanism of pyroptosis and autophagy in the pathological processes of the nervous system.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- School of Clinical Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
12
|
Li C, Ouyang Z, Huang Y, Lin S, Li S, Xu J, Liu T, Wu J, Guo P, Chen Z, Wu H, Ding Y. NOD2 attenuates osteoarthritis via reprogramming the activation of synovial macrophages. Arthritis Res Ther 2023; 25:249. [PMID: 38124066 PMCID: PMC10731717 DOI: 10.1186/s13075-023-03230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE Synovial inflammation, which precedes other pathological changes in osteoarthritis (OA), is primarily initiated by activation and M1 polarization of macrophages. While macrophages play a pivotal role in the inflammatory process of OA, the mechanisms underlying their activation and polarization remain incompletely elucidated. This study aims to investigate the role of NOD2 as a reciprocal modulator of HMGB1/TLR4 signaling in macrophage activation and polarization during OA pathogenesis. DESIGN We examined NOD2 expression in the synovium and determined the impact of NOD2 on macrophage activation and polarization by knockdown and overexpression models in vitro. Paracrine effect of macrophages on fibroblast-like synoviocytes (FLS) and chondrocytes was evaluated under conditions of NOD2 overexpression. Additionally, the in vivo effect of NOD2 was assessed using collagenase VII induced OA model in mice. RESULTS Expression of NOD2 was elevated in osteoarthritic synovium. In vitro experiments demonstrated that NOD2 serves as a negative regulator of HMGB1/TLR4 signaling pathway. Furthermore, NOD2 overexpression hampered the inflammatory paracrine effect of macrophages on FLS and chondrocytes. In vivo experiments revealed that NOD2 overexpression mitigated OA in mice. CONCLUSIONS Supported by convincing evidence on the inhibitory role of NOD2 in modulating the activation and M1 polarization of synovial macrophages, this study provided novel insights into the involvement of innate immunity in OA pathogenesis and highlighted NOD2 as a potential target for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Changchuan Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhuji Ouyang
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuhsi Huang
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Sipeng Lin
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shixun Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Xu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Taihe Liu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jionglin Wu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Peidong Guo
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhong Chen
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Haoyu Wu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Ding
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
13
|
Tan J, Ge J, Sahaer P, Li H, Sun H. Identification and functional analysis of circRIPK2 in lipopolysaccharide induced chicken macrophages. Br Poult Sci 2023; 64:678-687. [PMID: 37735991 DOI: 10.1080/00071668.2023.2261870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
1. It was hypothesised that a circular RIPK2 (circRIPK2) highly expressed in chicken macrophages plays an important role during bacterial infection.2. After PCR amplification, Sanger sequencing and RNase R exonuclease treatment of chicken macrophages, it was found that circRIPK2 was a stable circular RNA, which was formed by reverse splicing of exons 4 to 9 of the RIPK2.3. The circRIPK2 can promote the lipopolysaccharide (LPS) induced cellular injury by reducing cell viability and increasing the expression of pro-inflammatory cytokines and apoptosis genes.4. Six miRNAs were identified as interacting with circRIPK2, potentially targeting 1,817 genes, which were significantly enriched in the Wnt signalling pathway, adherens junction and NOD-like receptor signalling pathway.5. This study provides better understanding of the function of circRIPK2, which may prove a potential biomarker and indicate potential targets for the treatment of bacterial infection.
Collapse
Affiliation(s)
- J Tan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - J Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - P Sahaer
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - H Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, China
| | - H Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Duan X, Boo ZZ, Chua SL, Chong KHC, Long Z, Yang R, Zhou Y, Janela B, Chotirmall SH, Ginhoux F, Hu Q, Wu B, Yang L. A Bacterial Quorum Sensing Regulated Protease Inhibits Host Immune Responses by Cleaving Death Domains of Innate Immune Adaptors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304891. [PMID: 37870218 PMCID: PMC10700182 DOI: 10.1002/advs.202304891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Innate immune adaptor proteins are critical components of the innate immune system that propagate pro-inflammatory responses from their upstream receptors, and lead to pathogen clearance from the host. Bacterial pathogens have developed strategies to survive inside host cells without triggering the innate immune surveillance in ways that are still not fully understood. Here, it is reported that Pseudomonas aeruginosa induces its quorum sensing mechanism after macrophage engulfment. Further investigation of its secretome identified a quorum sensing regulated product, LasB, is responsible for innate immune suppression depending on the MyD88-mediated signaling. Moreover, it is showed that this specific type of pathogen-mediated innate immune suppression is due to the enzymatic digestion of the death domains of the innate immune adaptors, mainly MyD88, and attributed to LasB's large substrate binding groove. Lastly, it is demonstrated that the secretion of LasB from P. aeruginosa directly contributed to MyD88 degradation within macrophages. Hence, it is discovered an example of bacterial quorum sensing-regulated cellular innate immune suppression by direct cleavage of immune adaptors.
Collapse
Affiliation(s)
- Xiangke Duan
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Shenzhen Center for Disease, Control and PreventionShenzhen518055P.R. China
| | - Zhao Zhi Boo
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Song Lin Chua
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong Kong SAR999077P. R. China
| | - Kelvin Han Chung Chong
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Ziqi Long
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Renliang Yang
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Yachun Zhou
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Baptiste Janela
- Skin Research Institute of SingaporeSingapore308232Singapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore639798Singapore
| | | | - Florent Ginhoux
- Singapore Immunology NetworkAgency for Science, Technology and Research (A*STAR)8A Biomedical Grove, ImmunosSingapore138648Singapore
| | - Qinghua Hu
- Shenzhen Center for Disease, Control and PreventionShenzhen518055P.R. China
| | - Bin Wu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Liang Yang
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| |
Collapse
|
15
|
Misehe M, Matoušová M, Dvořáková A, Hercík K, Škach K, Chalupská D, Dejmek M, Šála M, Hájek M, Boura E, Mertlíková-Kaiserová H, Nencka R. Exploring positions 6 and 7 of a quinazoline-based scaffold leads to changes in selectivity and potency towards RIPK2/3 kinases. Eur J Med Chem 2023; 260:115717. [PMID: 37598483 DOI: 10.1016/j.ejmech.2023.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research.
Collapse
Affiliation(s)
- Mbilo Misehe
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| | - Marika Matoušová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Alexandra Dvořáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Kamil Hercík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Kryštof Škach
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Dominika Chalupská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
16
|
Rivoal M, Dubuquoy L, Millet R, Leleu-Chavain N. Receptor Interacting Ser/Thr-Protein Kinase 2 as a New Therapeutic Target. J Med Chem 2023; 66:14391-14410. [PMID: 37857324 DOI: 10.1021/acs.jmedchem.3c00593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Receptor interacting serine/threonine protein kinase 2 (RIPK2) is a downstream signaling molecule essential for the activation of several innate immune receptors, including the NOD-like receptors (NOD1 and NOD2). Recognition of pathogen-associated molecular pattern proteins by NOD1/2 leads to their interaction with RIPK2, which induces release of pro-inflammatory cytokines through the activation of NF-κB and MAPK pathways, among others. Thus, RIPK2 has emerged as a key mediator of intracellular signal transduction and represents a new potential therapeutic target for the treatment of various conditions, including inflammatory diseases and cancer. In this Perspective, first, an overview of the mechanisms that underlie RIPK2 function will be presented along with its role in several diseases. Then, the existing inhibitors that target RIPK2 and different therapeutic strategies will be reviewed, followed by a discussion on current challenges and outlook.
Collapse
Affiliation(s)
- Morgane Rivoal
- Inserm, U1286 - INFINITE - Institute for Translational Research in Inflammation, University of Lille, F-59000 Lille, France
| | - Laurent Dubuquoy
- Inserm, U1286 - INFINITE - Institute for Translational Research in Inflammation, University of Lille, F-59000 Lille, France
| | - Régis Millet
- Inserm, U1286 - INFINITE - Institute for Translational Research in Inflammation, University of Lille, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- Inserm, U1286 - INFINITE - Institute for Translational Research in Inflammation, University of Lille, F-59000 Lille, France
| |
Collapse
|
17
|
Tian E, Zhou C, Quan S, Su C, Zhang G, Yu Q, Li J, Zhang J. RIPK2 inhibitors for disease therapy: Current status and perspectives. Eur J Med Chem 2023; 259:115683. [PMID: 37531744 DOI: 10.1016/j.ejmech.2023.115683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Receptor-interacting protein kinase 2 (RIPK2) belongs to the receptor-interacting protein family (RIPs), which is mainly distributed in the cytoplasm. RIPK2 is widely expressed in human tissues, and its mRNA level is highly expressed in the spleen, leukocytes, placenta, testis, and heart. RIPK2 is a dual-specificity kinase with multiple domains, which can interact with tumor necrosis factor receptor (TNFR), and participate in the Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD) signaling pathways. It is considered as a vital adapter molecule involved in the innate immunity, adaptive immunity, and apoptosis. Functionally, RIPK2 and its targeted small molecules are of great significance in inflammatory responses, autoimmune diseases and tumors. The present study reviews the molecule structure and biological functions of RIPK2, and its correlation between human diseases. In addition, we focus on the structure-activity relationship of small molecule inhibitors of RIPK2 and their therapeutic potential in human diseases.
Collapse
Affiliation(s)
- Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuqi Quan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chongying Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guanning Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Quanwei Yu
- Joint Research Institution of Altitude Health, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Wang Y, Xu Q, Meng M, Chang G, Ma N, Shen X. Butyrate Protects against γ-d-Glutamyl- meso-diaminopimelic Acid-Induced Inflammatory Response and Tight Junction Disruption through Histone Deacetylase 3 Inhibition in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14638-14648. [PMID: 37767922 DOI: 10.1021/acs.jafc.3c04417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The present study was conducted to evaluate the regulatory actions and underlying mechanisms of butyrate on the inflammatory response and tight junction (TJ) disruption in bovine mammary epithelial cells (BMECs). Results showed that butyrate declined histone deacetylase 3 (HDAC3) expression, blocked NF-κB activation, and thus suppressed inflammatory cytokine production in γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP)-triggered BMECs. Butyrate also depressed the protein abundance of myosin light chain kinase (MLCK), elevated the expression of TJ proteins, and restored the cellular distribution of TJ proteins and the barrier function of epithelial cells. HDAC3 overexpression abolished the protective effects of butyrate. In conclusion, butyrate alleviated the iE-DAP-induced inflammatory response and TJ injury by blocking NF-κB activation and decreasing inflammatory cytokine production and MLCK expression in a HDAC3-dependent manner. Our finding provides a mechanistic basis for further exploring the regulatory effects of butyrate on the mammary inflammatory response.
Collapse
Affiliation(s)
- Yan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianqian Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Bai P, Fan T, Wang X, Zhao L, Zhong R, Sun G. Modulating MGMT expression through interfering with cell signaling pathways. Biochem Pharmacol 2023; 215:115726. [PMID: 37524206 DOI: 10.1016/j.bcp.2023.115726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Guanine O6-alkylating agents are widely used as first-line chemotherapeutic drugs due to their ability to induce cytotoxic DNA damage. However, a major hurdle in their effectiveness is the emergence of chemoresistance, largely attributed to the DNA repair pathway mediated by O6-methylguanine-DNA methyltransferase (MGMT). MGMT plays an important role in removing the alkyl groups from lethal O6-alkylguanine (O6-AlkylG) adducts formed by chemotherapeutic alkylating agents. By doing so, MGMT enables tumor cells to evade apoptosis and develop drug resistance toward DNA alkylating agents. Although covalent inhibitors of MGMT, such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl)guanine (O6-4-BTG or lomeguatrib), have been explored in clinical settings, their utility is limited due to severe delayed hematological toxicity observed in most patients when combined with alkylating agents. Therefore, there is an urgent need to identify new targets and unravel the underlying molecular mechanisms and to develop alternative therapeutic strategies that can overcome MGMT-mediated tumor resistance. In this context, the regulation of MGMT expression via interfering the specific cell signaling pathways (e.g., Wnt/β-catenin, NF-κB, Hedgehog, PI3K/AKT/mTOR, JAK/STAT) emerges as a promising strategy for overcoming tumor resistance, and ultimately enhancing the efficacy of DNA alkylating agents in chemotherapy.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
20
|
Stanley J, Lohith A, Debiaso L, Wang K, Ton M, Cui W, Gu W, Fu A, Pourmand N. High throughput isolation of RNA from single-cells within an intact tissue for spatial and temporal sequencing a reality. PLoS One 2023; 18:e0289279. [PMID: 37527243 PMCID: PMC10393160 DOI: 10.1371/journal.pone.0289279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023] Open
Abstract
Single-cell transcriptomics is essential for understanding biological variability among cells in a heterogenous population. Acquiring high-quality single-cell sequencing data from a tissue sample has multiple challenges including isolation of individual cells as well as amplification of the genetic material. Commercially available techniques require the isolation of individual cells from a tissue through extensive manual manipulation before single cell sequence data can be acquired. However, since cells within a tissue have different dissociation constants, enzymatic and mechanical manipulation do not guarantee the isolation of a homogenous population of cells. To overcome this drawback, in this research we have developed a revolutionary approach that utilizes a fully automated nanopipette technology in combination with magnetic nanoparticles to obtain high quality sequencing reads from individual cells within an intact tissue thereby eliminating the need for manual manipulation and single cell isolation. With the proposed technology, it is possible to sample an individual cell within the tissue multiple times to obtain longitudinal information. Single-cell RNAseq was achieved by aspirating only1-5% of sub-single-cell RNA content from individual cells within fresh frozen tissue samples. As a proof of concept, aspiration was carried out from 22 cells within a breast cancer tissue slice using quartz nanopipettes. The mRNA from the aspirate was then selectively captured using magnetic nanoparticles. The RNAseq data from aspiration of 22 individual cells provided high alignment rates (80%) with 2 control tissue samples. The technology is exceptionally simple, quick and efficient as the entire cell targeting and aspiration process is fully automated.
Collapse
Affiliation(s)
- John Stanley
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, United States of America
| | - Akshar Lohith
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, United States of America
| | - Lucca Debiaso
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, United States of America
| | - Kevan Wang
- NVIGEN Inc, Campbell, California, United States of America
| | - Minh Ton
- NVIGEN Inc, Campbell, California, United States of America
| | - Wenwu Cui
- NVIGEN Inc, Campbell, California, United States of America
| | - Weiwei Gu
- NVIGEN Inc, Campbell, California, United States of America
| | - Aihua Fu
- NVIGEN Inc, Campbell, California, United States of America
| | - Nader Pourmand
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
21
|
You J, Wang Y, Chen H, Jin F. RIPK2: a promising target for cancer treatment. Front Pharmacol 2023; 14:1192970. [PMID: 37324457 PMCID: PMC10266216 DOI: 10.3389/fphar.2023.1192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
As an essential mediator of inflammation and innate immunity, the receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is responsible for transducing signaling downstream of the intracellular peptidoglycan sensors nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2), which will further activate nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, leading to the transcription activation of pro-inflammatory cytokines and productive inflammatory response. Thus, the NOD2-RIPK2 signaling pathway has attracted extensive attention due to its significant role in numerous autoimmune diseases, making pharmacologic RIPK2 inhibition a promising strategy, but little is known about its role outside the immune system. Recently, RIPK2 has been related to tumorigenesis and malignant progression for which there is an urgent need for targeted therapies. Herein, we would like to evaluate the feasibility of RIPK2 being the anti-tumor drug target and summarize the research progress of RIPK2 inhibitors. More importantly, following the above contents, we will analyze the possibility of applying small molecule RIPK2 inhibitors to anti-tumor therapy.
Collapse
Affiliation(s)
- Jieqiong You
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Jin
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| |
Collapse
|
22
|
Zhang X, Wu S, Liu Z, Chen H, Liao J, Wei J, Qin Q. Grouper RIP2 inhibits Singapore grouper iridovirus infection by modulating ASC-caspase-1 interaction. Front Immunol 2023; 14:1185907. [PMID: 37223098 PMCID: PMC10200930 DOI: 10.3389/fimmu.2023.1185907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Receptor interacting protein 2 (RIP2), serves as a vital sensor of cell stress, is able to respond to cell survival or inflammation, and is involved in antiviral pathways. However, studies on the property of RIP2 in viral infections in fish have not been reported. Methods In this paper, we cloned and characterized RIP2 homolog from orange-spotted grouper (Epinephelus coioides) (EcRIP2) and further discussed the relevance of EcRIP2 to EcASC, comparing the influences of EcRIP2 and EcASC on the modulation of inflammatory factors and the NF-κB activation to reveal the mechanism of EcRIP2 in fish DNA virus infection. Results Encoded a 602 amino acid protein, EcRIP2 contained two structural domains: S-TKc and CARD. Subcellular localization signified that EcRIP2 existed in cytoplasmic filaments and dot aggregation patterns. After SGIV infection, the EcRIP2 filaments aggregated into larger clusters near the nucleus. The infection of SGIV could notably up-regulate the transcription level of the EcRIP2 gene compared with lipopolysaccharide (LPS) and red grouper nerve necrosis virus (RGNNV). Overexpression of EcRIP2 impeded SGIV replication. The elevated expression levels of inflammatory cytokines induced by SGIV were remarkably hindered by EcRIP2 treatment in a concentration-dependent manner. In contrast, EcASC treatment could up-regulate SGIV-induced cytokine expression in the presence of EcCaspase-1. Enhancing amounts of EcRIP2 could overcome the down regulatory effect of EcASC on NF-κB. Nevertheless, increasing doses of EcASC failed to restrain the NF-κB activation in the existence of EcRIP2. Subsequently, it was validated by a co-immunoprecipitation assay that EcRIP2 dose-dependently competed with EcASC binding to EcCaspase-1. With increasing time to SGIV infection, EcCaspase-1 gradually combined with more EcRIP2 than EcASC. Discussion Collectively, this paper highlighted that EcRIP2 may impede SGIV-induced hyperinflammation by competing with EcASC for binding EcCaspase-1, thereby suppressing viral replication of SGIV. Our work supplies novel viewpoints into the modulatory mechanism of RIP2-associated pathway and offers a novel view of RIP2-mediated fish diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Siting Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zetian Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Hong Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiaming Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jingguang Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
23
|
Lin Z, Liao HH, Zhou ZY, Zhang N, Li WJ, Tang QZ. RIP2 inhibition alleviates lipopolysaccharide-induced septic cardiomyopathy via regulating TAK1 signaling. Eur J Pharmacol 2023; 947:175679. [PMID: 36967078 DOI: 10.1016/j.ejphar.2023.175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE RIP2 is a member of the receptor-interacting protein family that has been associated with various pathophysiological processes, including immunity, apoptosis, and autophagy. However, no studies have hitherto reported the role of RIP2 in lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM). This study was designed to illustrate the role of RIP2 in LPS-induced SCM. METHODS C57 and RIP2 knockout mice received intraperitoneal injections of LPS to establish models of SCM. Echocardiography was used to assess the cardiac function of the mice. Real-time-PCR, cytometric bead array and immunohistochemical staining were used to detect the inflammatory response. Immunoblotting was used to determine the protein expression of relevant signaling pathways. Our findings were validated by treatment with a RIP2 inhibitor. Neonatal rats cardiomyocytes (NRCMs) and cardiac fibroblasts (CFs) were transfected with Ad-RIP2 to further explore the role of RIP2 in vitro. RESULTS RIP2 expression was upregulated in our mice models of septic cardiomyopathy and LPS-stimulated cardiomyocytes and fibroblasts. RIP2 knockout or RIP2 inhibitors attenuated LPS-induced cardiac dysfunction and reduced the inflammatory response in mice. Overexpression of RIP2 in vitro enhanced the inflammatory response, and TAK1 inhibitors attenuated the inflammatory response caused by overexpression of RIP2. CONCLUSION Our findings substantiate that RIP2 induces an inflammatory response by regulating the TAK1/IκBα/NF-κB signaling pathway. RIP2 inhibition by genetic or pharmacological approaches has huge prospects for application as a potential treatment strategy for inhibiting inflammation, alleviating cardiac dysfunction, and improving survival.
Collapse
|
24
|
Zhao W, Leng RX, Ye DQ. RIPK2 as a promising druggable target for autoimmune diseases. Int Immunopharmacol 2023; 118:110128. [PMID: 37023697 DOI: 10.1016/j.intimp.2023.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Receptor Interacting Serine/Threonine Kinase 2 (RIPK2) is an essential regulator of the inflammatory process and immune response. In innate immunity, the NOD-RIPK2 signaling axis is an important pathway that directly mediates inflammation and immune response. In adaptive immunity, RIPK2 may affect T cell proliferation, differentiation and cellular homeostasis thereby involving T cell-driven autoimmunity, but the exact mechanism remains unclear. Recent advances suggest a key role of RIPK2 in diverse autoimmune diseases (ADs) such as inflammatory bowel diseases, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, and Behcet's disease. This review aims to provide valuable therapeutic direction for ADs by focusing on the function and modulation of RIPK2 in innate and adaptive immunity, its involvement with various ADs and the application of RIPK2-related drugs in ADs. We raise the notion that drug targeting RIPK2 could be a promising therapeutic strategy for the treatment of ADs, though much work remains to be done for clinical application.
Collapse
|
25
|
Wang Y, Li X, Han Z, Meng M, Shi X, Wang L, Chen M, Chang G, Shen X. iE-DAP Induced Inflammatory Response and Tight Junction Disruption in Bovine Mammary Epithelial Cells via NOD1-Dependent NF-κB and MLCK Signaling Pathway. Int J Mol Sci 2023; 24:ijms24076263. [PMID: 37047240 PMCID: PMC10094069 DOI: 10.3390/ijms24076263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP), a bacterial cell wall component, can trigger an inflammatory response. A mammary inflammatory response causes tight junction (TJ) dysfunction. This study aimed to explore the effects and involved mechanisms of iE-DAP-induced inflammatory response on the TJ integrity in bovine mammary epithelial cells (BMECs). The results showed that iE-DAP-induced inflammatory response and TJ disruption was associated with increased expression levels of inflammatory cytokines and decreased gene expression of ZO-1 and Occludin, as well as a reduction in transepithelial electrical resistance and elevation in paracellular dextran passage. While MLCK inhibitor ML-7 reversed the TJ disruption induced by iE-DAP. NF-κB inhibitor BAY 11-7085 hindered the activation of NF-κB and MLCK signaling pathways, the inflammatory response and TJ disruption induced by iE-DAP. NOD1-specific shRNA also inhibited the activation of the NOD1/NF-κB signaling pathway and reversed the inflammatory response and TJ injury in iE-DAP-treated BMECs. Above results suggest that iE-DAP activated the NF-κB and MLCK signaling pathway in NOD1-dependent manner, which promoted the transcription of inflammatory cytokines and altered the expression and distribution of tight junction proteins, finally caused inflammatory response and TJ disruption. This study might provide theoretical basis and scientific support for the prevention and treatment of mastitis.
Collapse
|
26
|
Qian Y, Wang W, Chen D, Zhu Y, Wang Y, Wang X. Cigarette smoking induces the activation of RIP2/caspase-12/NF- κB axis in oral squamous cell carcinoma. PeerJ 2022; 10:e14330. [PMID: 36353608 PMCID: PMC9639427 DOI: 10.7717/peerj.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Cigarette smoking is one of the major risk factors for the occurrence and progression of oral squamous cell carcinoma (OSCC). Receptor-interacting protein 2 (RIP2) has been involved in mucosal immunity and homeostasis via a positive regulation of nuclear factor κB (NF-κB) transcription factor activity. Caspase-12 can bind to RIP2 and dampen mucosal immunity. However, the roles of RIP2/NF-κB and caspase-12 in OSCC induced by cigarette smoking remain unknown. Herein, we investigated the effects of cigarette smoking on the RIP2/NF-κB and caspase-12 in human OSCC tissues and OSCC cell lines (HSC-3). We first observed that RIP2 mediated NF-κB activation and caspase-12 upregulation in OSCC patients with cigarette smoking and cigarette smoke extract (CSE)-treated HSC-3 cells, respectively. Moreover, we confirmed that the downregulation of RIP2 by siRNA resulted in the reduction of caspase-12 expression and NF-κB activity in the presence of CSE treatment in vitro. In summary, our results indicated that cigarette smoking induced the activation of the RIP2/caspase-12/NF-κB axis and it played an important role in the development of OSCC. The RIP2/caspase-12/NF-κB axis could be a target for OSCC prevention and treatment in the future.
Collapse
Affiliation(s)
- Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Deyan Chen
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yanan Zhu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Xiang Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Ermine K, Yu J, Zhang L. Role of Receptor Interacting Protein (RIP) kinases in cancer. Genes Dis 2022; 9:1579-1593. [PMID: 36157481 PMCID: PMC9485196 DOI: 10.1016/j.gendis.2021.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The Receptor Interacting Protein (RIP) kinase family consists of seven Serine/Threonine kinases, which plays a key signaling role in cell survival and cell death. Each RIP family member contains a conserved kinase domain and other domains that determine the specific kinase function through protein-protein interactions. RIP1 and RIP3 are best known for their critical roles in necroptosis, programmed necrosis and a non-apoptotic inflammatory cell death process. Dysregulation of RIP kinases contributes to a variety of pathogenic conditions such as inflammatory diseases, neurological diseases, and cancer. In cancer cells, alterations of RIP kinases at genetic, epigenetic and expression levels are frequently found, and suggested to promote tumor progression and metastasis, escape of antitumor immune response, and therapeutic resistance. However, RIP kinases can be either pro-tumor or anti-tumor depending on specific tumor types and cellular contexts. Therapeutic agents for targeting RIP kinases have been tested in clinical trials mainly for inflammatory diseases. Deregulated expression of these kinases in different types of cancer suggests that they represent attractive therapeutic targets. The focus of this review is to outline the role of RIP kinases in cancer, highlighting potential opportunities to manipulate these proteins in cancer treatment.
Collapse
Affiliation(s)
- Kaylee Ermine
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
28
|
Mehto S, Jena KK, Yadav R, Priyadarsini S, Samal P, Krishna S, Dhar K, Jain A, Chauhan NR, Murmu KC, Bal R, Sahu R, Jaiswal P, Sahoo BS, Patnaik S, Kufer TA, Rusten TE, Chauhan S, Prasad P, Chauhan S. Selective autophagy of RIPosomes maintains innate immune homeostasis during bacterial infection. EMBO J 2022; 41:e111289. [PMID: 36221902 PMCID: PMC9713718 DOI: 10.15252/embj.2022111289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 01/15/2023] Open
Abstract
The NOD1/2-RIPK2 is a key cytosolic signaling complex that activates NF-κB pro-inflammatory response against invading pathogens. However, uncontrolled NF-κB signaling can cause tissue damage leading to chronic diseases. The mechanisms by which the NODs-RIPK2-NF-κB innate immune axis is activated and resolved remain poorly understood. Here, we demonstrate that bacterial infection induces the formation of endogenous RIPK2 oligomers (RIPosomes) that are self-assembling entities that coat the bacteria to induce NF-κB response. Next, we show that autophagy proteins IRGM and p62/SQSTM1 physically interact with NOD1/2, RIPK2 and RIPosomes to promote their selective autophagy and limit NF-κB activation. IRGM suppresses RIPK2-dependent pro-inflammatory programs induced by Shigella and Salmonella. Consistently, the therapeutic inhibition of RIPK2 ameliorates Shigella infection- and DSS-induced gut inflammation in Irgm1 KO mice. This study identifies a unique mechanism where the innate immune proteins and autophagy machinery are recruited together to the bacteria for defense as well as for maintaining immune homeostasis.
Collapse
Affiliation(s)
- Subhash Mehto
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | - Kautilya Kumar Jena
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Present address:
Division of Immunology, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Rina Yadav
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | | | - Pallavi Samal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | - Sivaram Krishna
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Kollori Dhar
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Ashish Jain
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Nishant Ranjan Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | - Krushna C Murmu
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Ramyasingh Bal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,School of BiotechnologyKIIT UniversityBhubaneswarIndia
| | - Rinku Sahu
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Pundrik Jaiswal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | | | | | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional MedicineUniversity of HohenheimStuttgartGermany
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Swati Chauhan
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Punit Prasad
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Santosh Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,CSIR–Centre For Cellular And Molecular Biology (CCMB)HyderabadIndia
| |
Collapse
|
29
|
Insight into the Relationship between Oral Microbiota and the Inflammatory Bowel Disease. Microorganisms 2022; 10:microorganisms10091868. [PMID: 36144470 PMCID: PMC9505529 DOI: 10.3390/microorganisms10091868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease has been a growing concern of lots of people globally, including both adults and children. As a chronic inflammatory disease of the intestine, even though the etiology of inflammatory bowel disease is still unclear, the available evidence from clinic observations has suggested a close association with microorganisms. The oral microbiota possesses the characteristics of a large number and abundant species, second only to the intestinal microbiota in the human body; as a result, it successfully attracts the attention of researchers. The highly diverse commensal oral microbiota is not only a normal part of the oral cavity but also has a pronounced impact on the pathophysiology of general health. Numerous studies have shown the potential associations between the oral microbiota and inflammatory bowel disease. Inflammatory bowel disease can affect the composition of the oral microbiota and lead to a range of oral pathologies. In turn, there are a variety of oral microorganisms involved in the development and progression of inflammatory bowel disease, including Streptococcus spp., Fusobacterium nucleatum, Porphyromonas gingivalis, Campylobacter concisus, Klebsiella pneumoniae, Saccharibacteria (TM7), and Candida albicans. Based on the above analysis, the purpose of this review is to summarize this relationship of mutual influence and give further insight into the detection of flora as a target for the diagnosis and treatment of inflammatory bowel disease to open up a novel approach in future clinical practice.
Collapse
|
30
|
Wang G, Zhang C, Jiang F, Zhao M, Xie S, Liu X. NOD2-RIP2 signaling alleviates microglial ROS damage and pyroptosis via ULK1-mediated autophagy during Streptococcus pneumonia infection. Neurosci Lett 2022; 783:136743. [PMID: 35716964 DOI: 10.1016/j.neulet.2022.136743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Meningitis occurs when S. pneumonia invade the blood-brain barrier, provoking inflammatory host response and neurological injury. Nucleotide-binding oligomerization domain 2 (NOD2) has been identified to promote microglial activation and autophagy during pneumococcal meningitis, but the mechanism remains unclear. In the present study, we investigated the passway of NOD2-mediated autophagy activation and the role of autophagy in inflammatory damage of murine microglia and mouse meningitis model. We demonstrated that autophagy was activated during S. pneumonia infection, and NOD2-RIP2 signaling was involved in the process. Treatment of microglia with GSK583, the RIP2 kinase inhibitor resulted in reduced autophagy-related protein and p-ULK1, indicating that RIP2 regulated autophagy in a kinase-dependent manner by phosphorylating ULK1. In addition, microglia with ULK1 knockdown exhibited enhanced production of ROS, leading to IL-1β and IL-18 release and cellular pyroptosis. Similar to the in vitro results, NOD2-RIP2 signaling induced autophagy in the brain in a mouse meningitis model. Moreover, ULK1 or RIP2 silencing significantly increased pyroptosis of brain and induced more inflammatory damage of pneumococcal meningitis mice. Taken together, our study demonstrate that NOD2-RIP2 signaling is involved in the activation of autophagy by promoting ULK1 phosphorylation, which alleviates microglial ROS damage and pyroptosis during S. pneumonia infection.
Collapse
Affiliation(s)
- Guan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Chen Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Fang Jiang
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.44 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Mei Zhao
- Department of Pediatrics, Shandong Maternal and Child Health Hospital, No.238 East Jingshi Road, Jinan 250000, Shandong Province, China
| | - Shaohua Xie
- Department of Pediatrics, Liaocheng People's Hospital, No.67 West Dongchang Road, Liaocheng 252000, Shandong Province, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan 250012, Shandong Province, China.
| |
Collapse
|
31
|
Yuan X, Chen Y, Tang M, Wei Y, Shi M, Yang Y, Zhou Y, Yang T, Liu J, Liu K, Deng D, Zhang C, Chen L. Discovery of Potent and Selective Receptor-Interacting Serine/Threonine Protein Kinase 2 (RIPK2) Inhibitors for the Treatment of Inflammatory Bowel Diseases (IBDs). J Med Chem 2022; 65:9312-9327. [PMID: 35709396 DOI: 10.1021/acs.jmedchem.2c00604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Receptor-interacting serine/threonine protein kinase 2 (RIPK2) has been demonstrated to be a promising target for treating inflammatory diseases. Herein, we describe the discovery and optimization of a series of RIPK2 inhibitors derived from an FLT3 inhibitor, CHMFL-FLT3-165. Compound 10w was identified to possess an IC50 value of 0.6 nM for RIPK2 and greater than 50,000-fold selectivity over its family homologous kinase RIPK1 (IC50 > 30 μM). It exhibited high kinase selectivity and inhibited RIPK2 to prevent NOD-induced cytokine production following muramyl dipeptide (MDP) stimulation. In an acute colitis model, compound 10w exerted better therapeutic effects than the JAK inhibitor filgotinib and the RIPK2 inhibitor WEHI-345. These robust results of in vitro and in vivo pharmacodynamic experiments demonstrate that RIPK2 as a therapeutic target shows potential abilities for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Xue Yuan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuhan Wei
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mingsong Shi
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yingxue Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanting Zhou
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiang Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kongjun Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dexin Deng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chufeng Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
32
|
Ghalandary M, Li Y, Fröhlich T, Magg T, Liu Y, Rohlfs M, Hollizeck S, Conca R, Schwerd T, Uhlig HH, Bufler P, Koletzko S, Muise AM, Snapper SB, Hauck F, Klein C, Kotlarz D. Valosin-containing protein-regulated endoplasmic reticulum stress causes NOD2-dependent inflammatory responses. Sci Rep 2022; 12:3906. [PMID: 35273242 PMCID: PMC8913691 DOI: 10.1038/s41598-022-07804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
NOD2 polymorphisms may affect sensing of the bacterial muramyl dipeptide (MDP) and trigger perturbed inflammatory responses. Genetic screening of a patient with immunodeficiency and enteropathy revealed a rare homozygous missense mutation in the first CARD domain of NOD2 (ENST00000300589; c.160G > A, p.E54K). Biochemical assays confirmed impaired NOD2-dependent signaling and proinflammatory cytokine production in patient's cells and heterologous cellular models with overexpression of the NOD2 mutant. Immunoprecipitation-coupled mass spectrometry unveiled the ATPase valosin-containing protein (VCP) as novel interaction partner of wildtype NOD2, while the binding to the NOD2 variant p.E54K was abrogated. Knockdown of VCP in coloncarcinoma cells led to impaired NF-κB activity and IL8 expression upon MDP stimulation. In contrast, tunicamycin-induced ER stress resulted in increased IL8, CXCL1, and CXCL2 production in cells with knockdown of VCP, while enhanced expression of these proinflammatory molecules was abolished upon knockout of NOD2. Taken together, these data suggest that VCP-mediated inflammatory responses upon ER stress are NOD2-dependent.
Collapse
Affiliation(s)
- Maryam Ghalandary
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Yue Li
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Thomas Magg
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Yanshan Liu
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Meino Rohlfs
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Sebastian Hollizeck
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Raffaele Conca
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Tobias Schwerd
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Department of Pediatrics, and Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Philip Bufler
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
- Department of Pediatrics, School of Medicine Collegium, Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center, Research Institute, Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, M5G1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G1A8, Canada
| | - Scott B Snapper
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Fabian Hauck
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany
- Gene Center, LMU Munich, Munich, Germany
- Deutsche Zentrum für Infektionsforschung (DZIF), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80337, Munich, Germany.
- VEO-IBD Consortium, University Hospital, LMU Munich, 80337, Munich, Germany.
| |
Collapse
|
33
|
Maruta N, Burdett H, Lim BYJ, Hu X, Desa S, Manik MK, Kobe B. Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics 2022; 74:5-26. [PMID: 34981187 PMCID: PMC8813719 DOI: 10.1007/s00251-021-01242-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
Animals and plants have NLRs (nucleotide-binding leucine-rich repeat receptors) that recognize the presence of pathogens and initiate innate immune responses. In plants, there are three types of NLRs distinguished by their N-terminal domain: the CC (coiled-coil) domain NLRs, the TIR (Toll/interleukin-1 receptor) domain NLRs and the RPW8 (resistance to powdery mildew 8)-like coiled-coil domain NLRs. CC-NLRs (CNLs) and TIR-NLRs (TNLs) generally act as sensors of effectors secreted by pathogens, while RPW8-NLRs (RNLs) signal downstream of many sensor NLRs and are called helper NLRs. Recent studies have revealed three dimensional structures of a CNL (ZAR1) including its inactive, intermediate and active oligomeric state, as well as TNLs (RPP1 and ROQ1) in their active oligomeric states. Furthermore, accumulating evidence suggests that members of the family of lipase-like EDS1 (enhanced disease susceptibility 1) proteins, which are uniquely found in seed plants, play a key role in providing a link between sensor NLRs and helper NLRs during innate immune responses. Here, we summarize the implications of the plant NLR structures that provide insights into distinct mechanisms of action by the different sensor NLRs and discuss plant NLR-mediated innate immune signalling pathways involving the EDS1 family proteins and RNLs.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Hayden Burdett
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK
| | - Bryan Y J Lim
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiahao Hu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sneha Desa
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammad Kawsar Manik
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
34
|
Madiraju C, Novack JP, Reed JC, Matsuzawa SI. K63 ubiquitination in immune signaling. Trends Immunol 2022; 43:148-162. [PMID: 35033428 PMCID: PMC8755460 DOI: 10.1016/j.it.2021.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Ubc13-catalyzed K63 ubiquitination is a major control point for immune signaling. Recent evidence has shown that the control of multiple immune functions, including chronic inflammation, pathogen responses, lymphocyte activation, and regulatory signaling, is altered by K63 ubiquitination. In this review, we detail the novel cellular sensors that are dependent on K63 ubiquitination for their function in the immune signaling network. Many pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can target K63 ubiquitination to inhibit pathogen immune responses; we describe novel details of the pathways involved and summarize recent clinically relevant SARS-CoV-2-specific responses. We also discuss recent evidence that regulatory T cell (Treg) versus T helper (TH) 1 and TH17 cell subset regulation might involve K63 ubiquitination. Knowledge gaps that merit future investigation and clinically relevant pathways are also addressed.
Collapse
Affiliation(s)
| | - Jeffrey P Novack
- Pacific Northwest University of Health Sciences, Yakima, WA, USA
| | - John C Reed
- Sanofi, Paris, France & University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
35
|
Steinle H, Ellwanger K, Kufer TA. Assaying RIPK2 Activation by Complex Formation. Methods Mol Biol 2022; 2523:133-150. [PMID: 35759195 DOI: 10.1007/978-1-0716-2449-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The receptor-interacting serine/threonine-protein kinase-2 (RIPK2, RIP2) is a key player in downstream signaling of nuclear oligomerization domain (NOD)-like receptor (NLR)-mediated innate immune response against bacterial infections. RIPK2 is recruited following activation of the pattern recognition receptors (PRRs) NOD1 and NOD2 by sensing bacterial peptidoglycans leading to activation of NF-κB and MAPK pathways and the production of pro-inflammatory cytokines. Upon NOD1/2 activation, RIPK2 forms complexes in the cytoplasm of human cells, also called RIPosomes. These can be induced by Shigella flexneri or by the inhibition of RIPK2 by small compounds, such as GSK583 and gefitinib.In this chapter, we describe fluorescent light microscopic and Western blot approaches to analyze the cytoplasmic aggregation of RIPK2 upon infection with the invasive, Gram-negative bacterial pathogen Shigella flexneri, or by the treatment with RIPK2 inhibitors. This method is based on HeLa cells stably expressing eGFP-tagged RIPK2 and describes a protocol to induce and visualize RIPosome formation. The described method is useful to study the deposition of RIPK2 in speck-like structures, also in living cells, using live cell imaging and can be adopted for the study of other inhibitory proteins or to further analyze the process of RIPosome structure assembly.
Collapse
Affiliation(s)
- Heidrun Steinle
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Baden-Württemberg, Germany.
| |
Collapse
|
36
|
Maharana J, Maharana D, Bej A, Sahoo BR, Panda D, Wadavrao SB, Vats A, Pradhan SK, De S. Structural Elucidation of Inter-CARD Interfaces involved in NOD2 Tandem CARD Association and RIP2 Recognition. J Phys Chem B 2021; 125:13349-13365. [PMID: 34860029 DOI: 10.1021/acs.jpcb.1c06176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleotide-binding and oligomerization domain-containing protein 2 (NOD2) recognizes the muramyl dipeptide and activates the NF-κB signaling cascade following its interaction with receptor-interacting protein 2 (RIP2) via caspase recruitment domains (CARDs). The NOD2-RIP2 interaction is not understood well due to inadequate structural information. Using comparative modeling and multimicrosecond timescale molecular dynamics simulations, we have demonstrated the association of NOD2-CARDs (CARDa-CARDb) and their interaction with RIP2CARD. Our results suggest that a negatively charged interface of NOD2CARDa and positively charged type-Ia interface of NOD2CARDb are crucial for CARDa-CARDb association and the type-Ia interface of NOD2CARDa and type-Ib interface of RIP2CARD predicted to be involved in 1:1 CARD-CARD interaction. Moreover, the direct interaction of NOD2CARDb with RIP2CARD signifies the importance of both CARDs of NOD2 in RIP2-mediated CARD-CARD interaction. Altogether, the structural results could help in understanding the underlying molecular details of the NOD2-RIP2 association in higher and lower eukaryotes.
Collapse
Affiliation(s)
- Jitendra Maharana
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751001, India
| | - Diptimayee Maharana
- AEBN Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal 700120, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Bikash R Sahoo
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Debashis Panda
- DBT-APSCS&T, Centre of Excellence for Bioresources and Sustainable Development, Kimin, Arunachal Pradesh 791121, India
| | - Sachin B Wadavrao
- OBC Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
| | - Ashutosh Vats
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sukanta K Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751001, India
| | - Sachinandan De
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| |
Collapse
|
37
|
Chauhan S, Jena KK, Mehto S, Chauhan NR, Sahu R, Dhar K, Yadav R, Krishna S, Jaiswal P, Chauhan S. Innate immunity and inflammophagy: balancing the defence and immune homeostasis. FEBS J 2021; 289:4112-4131. [PMID: 34826185 DOI: 10.1111/febs.16298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022]
Abstract
Extensive crosstalk exists between autophagy and innate immune signalling pathways. The stimuli that induce pattern recognition receptor (PRR)-mediated innate immune signalling pathways, also upregulate autophagy. The purpose of this increased autophagy is to eliminate the stimuli and/or suppress the inflammatory pathways by targeted degradation of PRRs or intermediary proteins (termed 'inflammophagy'). By executing these functions, autophagy dampens excess inflammation triggered by the innate immune signalling pathways. Thus, autophagy helps in the maintenance of the body's innate immune homeostasis to protect from inflammatory and autoimmune diseases. Many autophagy-dependent mechanisms that could control innate immune signalling have been studied over the last few years. However, still, the understanding is incomplete, and studies that are more systematic should be undertaken to delineate the mechanisms of inflammophagy. Here, we discuss the available knowledge of crosstalk between autophagy and PRR signalling pathways.
Collapse
Affiliation(s)
- Swati Chauhan
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Kautilya Kumar Jena
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Subhash Mehto
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Nishant Ranjan Chauhan
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rinku Sahu
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Kollori Dhar
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rina Yadav
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sivaram Krishna
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Pundrik Jaiswal
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Santosh Chauhan
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
38
|
Ermann J, Matmusaev M, Haley EK, Braun C, Jost F, Mayer-Wrangowski S, Hsiao P, Ting N, Li L, Terenzio D, Chime J, Lukas S, Patnaude L, Panzenbeck M, Csordas D, Zheng J, Mierz D, Simpson T, King FJ, Klimowicz AP, Mbow ML, Fine JS, Miller CA, Fogal SE, Byrne FR. The potent and selective RIPK2 inhibitor BI 706039 improves intestinal inflammation in the TRUC mouse model of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2021; 321:G500-G512. [PMID: 34494462 DOI: 10.1152/ajpgi.00163.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/30/2021] [Indexed: 01/31/2023]
Abstract
Mouse and human data implicate the NOD1 and NOD2 sensors of the intestinal microbiome and the associated signal transduction via the receptor interacting protein kinase 2 (RIPK2) as a potential key signaling node for the development of inflammatory bowel disease (IBD) and an attractive target for pharmacological intervention. The TRUC mouse model of IBD was strongly indicated for evaluating RIPK2 antagonism for its effect on intestinal inflammation based on previous knockout studies with NOD1, NOD2, and RIPK2. We identified and profiled the BI 706039 molecule as a potent and specific functional inhibitor of both human and mouse RIPK2 and with favorable pharmacokinetic properties. We dosed BI 706039 in the spontaneous TRUC mouse model from age 28 to 56 days. Oral, daily administration of BI 706039 caused dose-responsive and significant improvement in colonic histopathological inflammation, colon weight, and terminal levels of protein-normalized fecal lipocalin (all P values <0.001). These observations correlated with dose responsively increasing systemic levels of the BI 706039 compound, splenic molecular target engagement of RIPK2, and modulation of inflammatory genes in the colon. This demonstrates that a relatively low oral dose of a potent and selective RIPK2 inhibitor can modulate signaling in the intestinal immune system and significantly improve disease associated intestinal inflammation.NEW & NOTEWORTHY The RIPK2 kinase at the apex of microbiome immunosensing is an attractive target for pharmacological intervention. A low oral dose of a RIPK2 inhibitor leads to significantly improved intestinal inflammation in the murine TRUC model of colitis. A selective and potent inhibitor of the RIPK2 kinase may represent a new class of therapeutics that target microbiome-driven signaling for the treatment of IBD.
Collapse
Affiliation(s)
- Joerg Ermann
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Mederbek Matmusaev
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Emma K Haley
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Clemens Braun
- Department of Drug Discovery Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Biberach, Germany
| | - Felix Jost
- Department of Drug Discovery Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Biberach, Germany
| | - Svenja Mayer-Wrangowski
- Department of Drug Discovery Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Biberach, Germany
| | - Peng Hsiao
- Department of Drug Discovery Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Biberach, Germany
| | - Naitee Ting
- Department of Global Computational Biology and Data Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Li Li
- Department of Global Computational Biology and Data Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Donna Terenzio
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Jane Chime
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Susan Lukas
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Lori Patnaude
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Mark Panzenbeck
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - David Csordas
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Jie Zheng
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Diane Mierz
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Tom Simpson
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - F James King
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Alex P Klimowicz
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - M Lamine Mbow
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Jay S Fine
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Craig A Miller
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Steve E Fogal
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Fergus R Byrne
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| |
Collapse
|
39
|
Steinle H, Ellwanger K, Mirza N, Briese S, Kienes I, Pfannstiel J, Kufer TA. 14-3-3 and erlin proteins differentially interact with RIPK2 complexes. J Cell Sci 2021; 134:jcs258137. [PMID: 34152391 DOI: 10.1242/jcs.258137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/19/2021] [Indexed: 01/11/2023] Open
Abstract
The receptor interacting serine/threonine kinase 2 (RIPK2) is essential for signal transduction induced by the pattern recognition receptors NOD1 and NOD2 (referred to collectively as NOD1/2). Upon NOD1/2 activation, RIPK2 forms complexes in the cytoplasm of human cells. Here, we identified the molecular composition of these complexes. Infection with Shigella flexneri to activate NOD1-RIPK2 revealed that RIPK2 formed dynamic interactions with several cellular proteins, including A20 (also known as TNFAIP3), erlin-1, erlin-2 and 14-3-3. Whereas interaction of RIPK2 with 14-3-3 proteins was strongly reduced upon infection with Shigella, erlin-1 and erlin-2 (erlin-1/2) specifically bound to RIPK2 complexes. The interaction of these proteins with RIPK2 was validated using protein binding assays and immunofluorescence staining. Beside bacterial activation of NOD1/2, depletion of the E3 ubiquitin ligase XIAP and treatment with RIPK2 inhibitors also led to the formation of RIPK2 cytosolic complexes. Although erlin-1/2 were recruited to RIPK2 complexes following XIAP inhibition, these proteins did not associate with RIPK2 structures induced by RIPK2 inhibitors. While the specific recruitment of erlin-1/2 to RIPK2 suggests a role in innate immune signaling, the biological response regulated by the erlin-1/2-RIPK2 association remains to be determined.
Collapse
Affiliation(s)
- Heidrun Steinle
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Nora Mirza
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Selina Briese
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Ioannis Kienes
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim Mass Spectrometry Module, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70619 Stuttgart, Germany
| |
Collapse
|
40
|
Hu Y, Jiao B, Wang C, Wu J. Regulation of temozolomide resistance in glioma cells via the RIP2/NF-κB/MGMT pathway. CNS Neurosci Ther 2021; 27:552-563. [PMID: 33460245 PMCID: PMC8025621 DOI: 10.1111/cns.13591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Temozolomide (TMZ) is a first-line chemotherapy drug for the treatment of malignant glioma and resistance to it poses a major challenge. Receptor-interacting protein 2 (RIP2) is associated with the malignant character of cancer cells. However, it remains unclear whether RIP2 is involved in TMZ resistance in glioma. METHODS RIP2 expression was inhibited in TMZ-resistant glioma cells and normal glioma cells by using small interfering RNA (siRNA) against RIP2. Plasmid transfection method was used to overexpress RIP2. Cell counting kit-8 assays were performed to evaluate cell viability. Western blotting or immunofluorescence was performed to determine RIP2, NF-κB, and MGMT expression in cells. Flow cytometry was used to investigate cell apoptosis. TMZ-resistant glioma xenograft models were established to evaluate the role of the RIP2/NF-κB/MGMT signaling pathway in drug resistance. RESULTS We observed that RIP2 expression was upregulated in TMZ-resistant glioma cells, whereas silencing of RIP2 expression enhanced cellular sensitivity to TMZ. Similarly, upon the induction of RIP2 overexpression, glioma cells developed resistance to TMZ. The molecular mechanism underlying the process indicated that RIP2 can activate the NF-κB signaling pathway and upregulate the expression of O6-methylguanine-DNA methyltransferase (MGMT), following which the glioma cells develop drug resistance. In the TMZ-resistant glioma xenograft model, treatment with JSH-23 (an NF-κB inhibitor) and lomeguatrib (an MGMT inhibitor) could enhance the sensitivity of the transplanted tumor to TMZ. CONCLUSION We report that the RIP2/NF-κB/MGMT signaling pathway is involved in the regulation of TMZ resistance. Interference with NF-κB or MGMT activity could constitute a novel strategy for the treatment of RIP2-positive TMZ-resistant glioma.
Collapse
Affiliation(s)
- Yu‐Hua Hu
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Bao‐Hua Jiao
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Cheng‐Ye Wang
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jian‐Liang Wu
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
41
|
Huoh YS, Hur S. Death domain fold proteins in immune signaling and transcriptional regulation. FEBS J 2021; 289:4082-4097. [PMID: 33905163 DOI: 10.1111/febs.15901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Death domain fold (DDF) superfamily comprises of the death domain (DD), death effector domain (DED), caspase activation recruitment domain (CARD), and pyrin domain (PYD). By utilizing a conserved mode of interaction involving six distinct surfaces, a DDF serves as a building block that can densely pack into homomultimers or filaments. Studies of immune signaling components have revealed that DDF-mediated filament formation plays a central role in mediating signal transduction and amplification. The unique ability of DDFs to self-oligomerize upon external signals and induce oligomerization of partner molecules underlies key processes in many innate immune signaling pathways, as exemplified by RIG-I-like receptor signalosome and inflammasome assembly. Recent studies showed that DDFs are not only limited to immune signaling pathways, but also are involved with transcriptional regulation and other biological processes. Considering that DDF annotation still remains a challenge, the current list of DDFs and their functions may represent just the tip of the iceberg within the full spectrum of DDF biology. In this review, we discuss recent advances in our understanding of DDF functions, structures, and assembly architectures with a focus on CARD- and PYD-containing proteins. We also discuss areas of future research and the potential relationship of DDFs with biomolecular condensates formed by liquid-liquid phase separation (LLPS).
Collapse
Affiliation(s)
- Yu-San Huoh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| |
Collapse
|
42
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
43
|
Reinke S, Linge M, Diebner HH, Luksch H, Glage S, Gocht A, Robertson AAB, Cooper MA, Hofmann SR, Naumann R, Sarov M, Behrendt R, Roers A, Pessler F, Roesler J, Rösen-Wolff A, Winkler S. Non-canonical Caspase-1 Signaling Drives RIP2-Dependent and TNF-α-Mediated Inflammation In Vivo. Cell Rep 2021; 30:2501-2511.e5. [PMID: 32101731 DOI: 10.1016/j.celrep.2020.01.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/10/2019] [Accepted: 01/24/2020] [Indexed: 12/26/2022] Open
Abstract
Pro-inflammatory caspase-1 is a key player in innate immunity. Caspase-1 processes interleukin (IL)-1β and IL-18 to their mature forms and triggers pyroptosis. These caspase-1 functions are linked to its enzymatic activity. However, loss-of-function missense mutations in CASP1 do not prevent autoinflammation in patients, despite decreased IL-1β production. In vitro data suggest that enzymatically inactive caspase-1 drives inflammation via enhanced nuclear factor κB (NF-κB) activation, independent of IL-1β processing. Here, we report two mouse models of enzymatically inactive caspase-1-C284A, demonstrating the relevance of this pathway in vivo. In contrast to Casp1-/- mice, caspase-1-C284A mice show pronounced hypothermia and increased levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-6 when challenged with lipopolysaccharide (LPS). Caspase-1-C284A signaling is RIP2 dependent and mediated by TNF-α but independent of the NLRP3 inflammasome. LPS-stimulated whole blood from patients carrying loss-of-function missense mutations in CASP1 secretes higher amounts of TNF-α. Taken together, these results reveal non-canonical caspase-1 signaling in vivo.
Collapse
Affiliation(s)
- Sören Reinke
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mary Linge
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hans H Diebner
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hella Luksch
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Anne Gocht
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Sigrun R Hofmann
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mihail Sarov
- Genome Engineering Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Rayk Behrendt
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Axel Roers
- Institute for Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Frank Pessler
- Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joachim Roesler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan Winkler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
44
|
Gong Q, Robinson K, Xu C, Huynh PT, Chong KHC, Tan EYJ, Zhang J, Boo ZZ, Teo DET, Lay K, Zhang Y, Lim JSY, Goh WI, Wright G, Zhong FL, Reversade B, Wu B. Structural basis for distinct inflammasome complex assembly by human NLRP1 and CARD8. Nat Commun 2021; 12:188. [PMID: 33420028 PMCID: PMC7794362 DOI: 10.1038/s41467-020-20319-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Nod-like receptor (NLR) proteins activate pyroptotic cell death and IL-1 driven inflammation by assembling and activating the inflammasome complex. Closely related sensor proteins NLRP1 and CARD8 undergo unique auto-proteolysis-dependent activation and are implicated in auto-inflammatory diseases; however, their mechanisms of activation are not understood. Here we report the structural basis of how the activating domains (FIINDUPA-CARD) of NLRP1 and CARD8 self-oligomerize to assemble distinct inflammasome complexes. Recombinant FIINDUPA-CARD of NLRP1 forms a two-layered filament, with an inner core of oligomerized CARD surrounded by an outer ring of FIINDUPA. Biochemically, self-assembled NLRP1-CARD filaments are sufficient to drive ASC speck formation in cultured human cells-a process that is greatly enhanced by NLRP1-FIINDUPA which forms oligomers in vitro. The cryo-EM structures of NLRP1-CARD and CARD8-CARD filaments, solved here at 3.7 Å, uncover unique structural features that enable NLRP1 and CARD8 to discriminate between ASC and pro-caspase-1. In summary, our findings provide structural insight into the mechanisms of activation for human NLRP1 and CARD8 and reveal how highly specific signaling can be achieved by heterotypic CARD interactions within the inflammasome complexes.
Collapse
Affiliation(s)
- Qin Gong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 636921, Singapore
| | - Kim Robinson
- Skin Research Institute (SRIS), Agency of Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore, Singapore
| | - Chenrui Xu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 636921, Singapore
| | - Phuong Thao Huynh
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 636921, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, 308232, Singapore, Singapore
| | - Kelvin Han Chung Chong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 636921, Singapore
| | - Eddie Yong Jun Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 636921, Singapore
| | - Jiawen Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 636921, Singapore
| | - Zhao Zhi Boo
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 636921, Singapore
| | - Daniel Eng Thiam Teo
- Institute of Molecular and Cell Biology, Agency of Science Technology and Research (A*STAR), 61 Biopolis Dr, 138673, Singapore, Singapore
| | - Kenneth Lay
- Institute of Molecular and Cell Biology, Agency of Science Technology and Research (A*STAR), 61 Biopolis Dr, 138673, Singapore, Singapore
| | - Yaming Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 636921, Singapore
| | - John Soon Yew Lim
- Skin Research Institute (SRIS), Agency of Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore, Singapore
| | - Wah Ing Goh
- Skin Research Institute (SRIS), Agency of Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore, Singapore
| | - Graham Wright
- Institute of Molecular and Cell Biology, Agency of Science Technology and Research (A*STAR), 61 Biopolis Dr, 138673, Singapore, Singapore
| | - Franklin L Zhong
- Skin Research Institute (SRIS), Agency of Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technology University, 11 Mandalay Road, 308232, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency of Science Technology and Research (A*STAR), 61 Biopolis Dr, 138673, Singapore, Singapore.
| | - Bruno Reversade
- Institute of Molecular and Cell Biology, Agency of Science Technology and Research (A*STAR), 61 Biopolis Dr, 138673, Singapore, Singapore.
- Genome Institute of Singapore, Agency of Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore, Singapore.
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, 117597, Singapore, Singapore.
- The Medical Genetics Department, School of Medicine (KUSoM), Koç University, 34010, Istanbul, Turkey.
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 636921, Singapore.
| |
Collapse
|
45
|
Topal Y, Gyrd-Hansen M. RIPK2 NODs to XIAP and IBD. Semin Cell Dev Biol 2021; 109:144-150. [DOI: 10.1016/j.semcdb.2020.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
|
46
|
Roy AC, Chang G, Roy S, Ma N, Gao Q, Shen X. γ-d-Glutamyl-meso-diaminopimelic acid induces autophagy in bovine hepatocytes during nucleotide-binding oligomerization domain 1-mediated inflammation. J Cell Physiol 2020; 236:5212-5234. [PMID: 33368240 DOI: 10.1002/jcp.30227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/07/2022]
Abstract
Autophagy is a crucial cellular homeostatic process and an important part of the host defense system. Dysfunction in autophagy enhances tissue susceptibility to infection and multiple diseases. However, the role of nucleotide oligomerization domain 1 (NOD1) in autophagy in bovine hepatocytes is not well known. Therefore, our aim was to study the contribution of NOD1 to autophagy during inflammation in response to a specific ligand γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP). To achieve this aim, hepatocytes separated from cows at ∼160 days in milk (DIM) were divided into six groups: the nontreated control (CON) group, the rapamycin-treated (RAP) group as a positive control, the iE-DAP-treated (DAP) group, the 3-MA-treated (MA) group, the rapamycin with 3-MA (RM) group, and the iE-DAP with 3-MA (DM) group. iE-DAP administration significantly increased the mRNA expression of NOD1, ATG16L1, RIPK2, ULK1, AMBRA1, DFCP1, WIPI1, ATG5, ATG7, ATG10, ATG4A, IκBα, NF-κB, CXCL1, IL-8, and STAT6 and significantly decreased PIK3C3. The protein expression of NOD1, p-IκBα, p-NF-κB/p-p65, LC3-II, ATG5, and beclin 1 were significantly upregulated and that of SQSTM1/p62, p-mTOR, and FOXA2 were significantly downregulated in response to iE-DAP. iE-DAP also induced the formation of LC3-GFP autophagic puncta in bovine hepatocytes. We also knocked down the NOD1 with siRNA. NOD1 silencing suppressed the autophagy and inflammation-related genes and proteins. The application of the autophagy inhibitor increased the expression of inflammatory molecules and alleviated autophagy-associated molecules. Taken together, these findings suggest that NOD1 is a key player for regulating both ATG16L1 and RIPK2-ULK1 directed autophagy during inflammation in response to iE-DAP in bovine hepatocytes.
Collapse
Affiliation(s)
- Animesh Chandra Roy
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shipra Roy
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qianyun Gao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
47
|
Hofmann SR, Girschick L, Stein R, Schulze F. Immune modulating effects of receptor interacting protein 2 (RIP2) in autoinflammation and immunity. Clin Immunol 2020; 223:108648. [PMID: 33310070 DOI: 10.1016/j.clim.2020.108648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/29/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Receptor-interacting protein 2 (RIP2) is a kinase that is involved in downstream signaling of nuclear oligomerization domain (NOD)-like receptors NOD1 and 2 sensing bacterial peptidoglycans. RIP2-deficiency or targeting of RIP2 by pharmaceutical inhibitors partially ameliorates inflammatory diseases by reducing pro-inflammatory signaling in response to peptidoglycans. However, RIP2 is widely expressed and interacts with several other proteins suggesting additional functions outside the NOD-signaling pathway. In this review, we discuss the immunological functions of RIP2 and its possible role in autoinflammation and immunity.
Collapse
Affiliation(s)
- Sigrun Ruth Hofmann
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Leonie Girschick
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Stein
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Schulze
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
48
|
Issaka Salia O, Mitchell DM. Bioinformatic analysis and functional predictions of selected regeneration-associated transcripts expressed by zebrafish microglia. BMC Genomics 2020; 21:870. [PMID: 33287696 PMCID: PMC7720500 DOI: 10.1186/s12864-020-07273-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Unlike mammals, zebrafish have a remarkable capacity to regenerate a variety of tissues, including central nervous system tissue. The function of macrophages in tissue regeneration is of great interest, as macrophages respond and participate in the landscape of events that occur following tissue injury in all vertebrate species examined. Understanding macrophage populations in regenerating tissue (such as in zebrafish) may inform strategies that aim to regenerate tissue in humans. We recently published an RNA-seq experiment that identified genes enriched in microglia/macrophages in regenerating zebrafish retinas. Interestingly, a small number of transcripts differentially expressed by retinal microglia/macrophages during retinal regeneration did not have predicted orthologs in human or mouse. We reasoned that at least some of these genes could be functionally important for tissue regeneration, but most of these genes have not been studied experimentally and their functions are largely unknown. To reveal their possible functions, we performed a variety of bioinformatic analyses aimed at identifying the presence of functional protein domains as well as orthologous relationships to other species. RESULTS Our analyses identified putative functional domains in predicted proteins for a number of selected genes. For example, we confidently predict kinase function for one gene, cytokine/chemokine function for another, and carbohydrate enzymatic function for a third. Predicted orthologs were identified for some, but not all, genes in species with described regenerative capacity, and functional domains were consistent with identified orthologs. Comparison to other published gene expression datasets suggest that at least some of these genes could be important in regenerative responses in zebrafish and not necessarily in response to microbial infection. CONCLUSIONS This work reveals previously undescribed putative function of several genes implicated in regulating tissue regeneration. This will inform future work to experimentally determine the function of these genes in vivo, and how these genes may be involved in microglia/macrophage roles in tissue regeneration.
Collapse
Affiliation(s)
- Ousseini Issaka Salia
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.,Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, USA.,Present affiliation: Kellog Biological Station and Department of Plant Biology, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI, 49060, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
49
|
Heim VJ, Dagley LF, Stafford CA, Hansen FM, Clayer E, Bankovacki A, Webb AI, Lucet IS, Silke J, Nachbur U. A regulatory region on RIPK2 is required for XIAP binding and NOD signaling activity. EMBO Rep 2020; 21:e50400. [PMID: 32954645 DOI: 10.15252/embr.202050400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 01/01/2023] Open
Abstract
Signaling via the intracellular pathogen receptors nucleotide-binding oligomerization domain-containing proteins NOD1 and NOD2 requires receptor interacting kinase 2 (RIPK2), an adaptor kinase that can be targeted for the treatment of various inflammatory diseases. However, the molecular mechanisms of how RIPK2 contributes to NOD signaling are not completely understood. We generated FLAG-tagged RIPK2 knock-in mice using CRISPR/Cas9 technology to study NOD signaling mechanisms at the endogenous level. Using cells from these mice, we were able to generate a detailed map of post-translational modifications on RIPK2. Similar to other reports, we did not detect ubiquitination of RIPK2 lysine 209 during NOD2 signaling. However, using site-directed mutagenesis we identified a new regulatory region on RIPK2, which dictates the crucial interaction with the E3 ligase XIAP and downstream signaling outcomes.
Collapse
Affiliation(s)
- Valentin J Heim
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Che A Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elise Clayer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Aleksandra Bankovacki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
50
|
The diverse roles of RIP kinases in host-pathogen interactions. Semin Cell Dev Biol 2020; 109:125-143. [PMID: 32859501 PMCID: PMC7448748 DOI: 10.1016/j.semcdb.2020.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
Receptor Interacting Protein Kinases (RIPKs) are cellular signaling molecules that are critical for homeostatic signaling in both communicable and non-communicable disease processes. In particular, RIPK1, RIPK2, RIPK3 and RIPK7 have emerged as key mediators of intracellular signal transduction including inflammation, autophagy and programmed cell death, and are thus essential for the early control of many diverse pathogenic organisms. In this review, we discuss the role of each RIPK in host responses to bacterial and viral pathogens, with a focus on studies that have used pathogen infection models rather than artificial stimulation with purified pathogen associated molecular patterns. We also discuss the intricate mechanisms of host evasion by pathogens that specifically target RIPKs for inactivation, and finally, we will touch on the controversial issue of drug development for kinase inhibitors to treat chronic inflammatory and neurological disorders, and the implications this may have on the outcome of pathogen infections.
Collapse
|