1
|
Wang B, Wang Y, Pan T, Zhou L, Ran Y, Zou J, Yan X, Wen Z, Lin S, Ren A, Wang F, Liu Z, Liu T, Lu H, Yang B, Zhou F, Zhang L. Targeting a key disulfide linkage to regulate RIG-I condensation and cytosolic RNA-sensing. Nat Cell Biol 2025; 27:817-834. [PMID: 40229436 DOI: 10.1038/s41556-025-01646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025]
Abstract
Maintaining innate immune homeostasis is critical for preventing infections and autoimmune diseases but effective interventions are lacking. Here we identified C864-C869-mediated intermolecular disulfide-linkage formation as a critical step for human RIG-I activation that can be bidirectionally regulated to control innate immune homeostasis. The viral-stimulated C864-C869 disulfide linkage mediates conjugation of an SDS-resistant RIG-I oligomer, which prevents RIG-I degradation by E3 ubiquitin-ligase MIB2 and is necessary for RIG-I to perform liquid-liquid phase separation to compartmentalize downstream signalsome, thereby stimulating type I interferon signalling. The corresponding C865S 'knock-in' caused an oligomerization defect and liquid-liquid phase separation in mouse RIG-I, which inhibited innate immunity, resulting in increased viral load and mortality in mice. Using unnatural amino acids to generate covalent C864-C869 linkage and the development of an interfering peptide to block C864-C869 residues, we bidirectionally regulated RIG-I activities in human diseases. These findings provide in-depth insights on mechanism of RIG-I activation, allowing for the development of methodologies that hold promising implications in clinics.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation Oncology and the State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College Nanchang University, Nanchang, China
| | - Yongqiang Wang
- Institutes of Biology and Medical Sciences, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Ting Pan
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Lili Zhou
- Institutes of Biology and Medical Sciences, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yu Ran
- Department of Radiation Oncology and the State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institutes of Biology and Medical Sciences, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jing Zou
- Department of Radiation Oncology and the State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaohua Yan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College Nanchang University, Nanchang, China
| | - Zhenke Wen
- Institutes of Biology and Medical Sciences, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Shixian Lin
- Department of Radiation Oncology and the State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Aiming Ren
- Department of Radiation Oncology and the State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangwei Wang
- Department of Radiation Oncology and the State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhuang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Ting Liu
- Departments of Cell Biology and General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Huasong Lu
- Department of Radiation Oncology and the State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- Department of Radiation Oncology and the State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Long Zhang
- Department of Radiation Oncology and the State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College Nanchang University, Nanchang, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
2
|
Agostini M, Traldi P, Hamdan M. Proteomic Investigation of Immune Checkpoints and Some of Their Inhibitors. Int J Mol Sci 2024; 25:9276. [PMID: 39273224 PMCID: PMC11395526 DOI: 10.3390/ijms25179276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Immune checkpoints are crucial molecules for the maintenance of antitumor immune responses. The activation or inhibition of these molecules is dependent on the interactions between receptors and ligands; such interactions can provide inhibitory or stimulatory signals to the various components of the immune system. Over the last 10 years, the inhibition of immune checkpoints, such as cytotoxic T lymphocyte antigen-4, programmed cell death-1, and programmed cell death ligand-1, has taken a leading role in immune therapy. This relatively recent therapy regime is based on the use of checkpoint inhibitors, which enhance the immune response towards various forms of cancer. For a subset of patients with specific forms of cancer, these inhibitors can induce a durable response to therapy; however, the medium response rate to such therapy remains relatively poor. Recent research activities have demonstrated that the disease response to this highly promising therapy resembles the response of many forms of cancer to chemotherapy, where an encouraging initial response is followed by acquired resistance to treatment and progress of the disease. That said, these inhibitors are now used as single agents or in combination with chemotherapies as first or second lines of treatment for about 50 types of cancer. The prevailing opinion regarding immune therapy suggests that for this approach of therapy to deliver on its promise, a number of challenges have to be circumvented. These challenges include understanding the resistance mechanisms to immune checkpoint blockade, the identification of more efficient inhibitors, extending their therapeutic benefits to a wider audience of cancer patients, better management of immune-related adverse side effects, and, more urgently the identification of biomarkers, which would help treating oncologists in the identification of patients who are likely to respond positively to the immune therapies and, last but not least, the prices of therapy which can be afforded by the highest number of patients. Numerous studies have demonstrated that understanding the interaction between these checkpoints and the immune system is essential for the development of efficient checkpoint inhibitors and improved immune therapies. In the present text, we discuss some of these checkpoints, their inhibitors, and some works in which mass spectrometry-based proteomic analyses were applied.
Collapse
Affiliation(s)
- Marco Agostini
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| | - Mahmoud Hamdan
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy
| |
Collapse
|
3
|
Solotchi M, Patel SS. Proofreading mechanisms of the innate immune receptor RIG-I: distinguishing self and viral RNA. Biochem Soc Trans 2024; 52:1131-1148. [PMID: 38884803 PMCID: PMC11346460 DOI: 10.1042/bst20230724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.
Collapse
Affiliation(s)
- Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
- Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, U.S.A
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
| |
Collapse
|
4
|
Wang Y, Feng H, Li X, Ruan Y, Guo Y, Cui X, Zhang P, Li Y, Wang X, Wang X, Wei L, Yi Y, Zhang L, Yang X, Liu H. Dampening of ISGylation of RIG-I by ADAP regulates type I interferon response of macrophages to RNA virus infection. PLoS Pathog 2024; 20:e1012230. [PMID: 38776321 PMCID: PMC11111093 DOI: 10.1371/journal.ppat.1012230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-β and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-β transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.
Collapse
Affiliation(s)
- Yan Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Haixia Feng
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao Li
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Yina Ruan
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yueping Guo
- Department of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xinxing Cui
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Pengchao Zhang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Yanli Li
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xinning Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xingran Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Luxin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yulan Yi
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Lifeng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Luan X, Wang L, Song G, Zhou W. Innate immune responses to RNA: sensing and signaling. Front Immunol 2024; 15:1287940. [PMID: 38343534 PMCID: PMC10854198 DOI: 10.3389/fimmu.2024.1287940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Nucleic acids are among the most essential PAMPs (pathogen-associated molecular patterns). Animals have evolved numerous sensors to recognize nucleic acids and trigger immune signaling against pathogen replication, cellular stress and cancer. Many sensor proteins (e.g., cGAS, AIM2, and TLR9) recognize the molecular signature of infection or stress and are responsible for the innate immune response to DNA. Remarkably, recent evidence demonstrates that cGAS-like receptors acquire the ability to sense RNA in some forms of life. Compared with the nucleic-acid sensing by cGAS, innate immune responses to RNA are based on various RNA sensors, including RIG-I, MDA5, ADAR1, TLR3/7/8, OAS1, PKR, NLRP1/6, and ZBP1, via a broad-spectrum signaling axis. Importantly, new advances have brought to light the potential clinical application of targeting these signaling pathways. Here, we highlight the latest discoveries in the field. We also summarize the activation and regulatory mechanisms of RNA-sensing signaling. In addition, we discuss how RNA sensing is tightly controlled in cells and why the disruption of immune homeostasis is linked to disease.
Collapse
Affiliation(s)
- Xiaohan Luan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangji Song
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Shen S, Zhang LS. The regulation of antiviral innate immunity through non-m 6A RNA modifications. Front Immunol 2023; 14:1286820. [PMID: 37915585 PMCID: PMC10616867 DOI: 10.3389/fimmu.2023.1286820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The post-transcriptional RNA modifications impact the dynamic regulation of gene expression in diverse biological and physiological processes. Host RNA modifications play an indispensable role in regulating innate immune responses against virus infection in mammals. Meanwhile, the viral RNAs can be deposited with RNA modifications to interfere with the host immune responses. The N6-methyladenosine (m6A) has boosted the recent emergence of RNA epigenetics, due to its high abundance and a transcriptome-wide widespread distribution in mammalian cells, proven to impact antiviral innate immunity. However, the other types of RNA modifications are also involved in regulating antiviral responses, and the functional roles of these non-m6A RNA modifications have not been comprehensively summarized. In this Review, we conclude the regulatory roles of 2'-O-methylation (Nm), 5-methylcytidine (m5C), adenosine-inosine editing (A-to-I editing), pseudouridine (Ψ), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), and N4-acetylcytidine (ac4C) in antiviral innate immunity. We provide a systematic introduction to the biogenesis and functions of these non-m6A RNA modifications in viral RNA, host RNA, and during virus-host interactions, emphasizing the biological functions of RNA modification regulators in antiviral responses. Furthermore, we discussed the recent research progress in the development of antiviral drugs through non-m6A RNA modifications. Collectively, this Review conveys knowledge and inspiration to researchers in multiple disciplines, highlighting the challenges and future directions in RNA epitranscriptome, immunology, and virology.
Collapse
Affiliation(s)
- Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| | - Li-Sheng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Straub S, Sampaio NG. Activation of cytosolic RNA sensors by endogenous ligands: roles in disease pathogenesis. Front Immunol 2023; 14:1092790. [PMID: 37292201 PMCID: PMC10244536 DOI: 10.3389/fimmu.2023.1092790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Early detection of infection is a central and critical component of our innate immune system. Mammalian cells have developed specialized receptors that detect RNA with unusual structures or of foreign origin - a hallmark of many virus infections. Activation of these receptors induces inflammatory responses and an antiviral state. However, it is increasingly appreciated that these RNA sensors can also be activated in the absence of infection, and that this 'self-activation' can be pathogenic and promote disease. Here, we review recent discoveries in sterile activation of the cytosolic innate immune receptors that bind RNA. We focus on new aspects of endogenous ligand recognition uncovered in these studies, and their roles in disease pathogenesis.
Collapse
Affiliation(s)
- Sarah Straub
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Natalia G. Sampaio
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
9
|
Peng J, Wang Y, Han X, Zhang C, Chen X, Jin Y, Yang Z, An Y, Zhang J, Liu Z, Chen Y, Gao E, Zhang Y, Xu F, Zheng C, Zhou Q, Liu Z. Clinical Implications of a New DDX58 Pathogenic Variant That Causes Lupus Nephritis due to RIG-I Hyperactivation. J Am Soc Nephrol 2023; 34:258-272. [PMID: 36261300 PMCID: PMC10103098 DOI: 10.1681/asn.2022040477] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus, with heterogeneous phenotypes and different responses to therapy. Identifying genetic causes of LN can facilitate more individual treatment strategies. METHODS We performed whole-exome sequencing in a cohort of Chinese patients with LN and identified variants of a disease-causing gene. Extensive biochemical, immunologic, and functional analyses assessed the effect of the variant on type I IFN signaling. We further investigated the effectiveness of targeted therapy using single-cell RNA sequencing. RESULTS We identified a novel DDX58 pathogenic variant, R109C, in five unrelated families with LN. The DDX58 R109C variant is a gain-of-function mutation, elevating type I IFN signaling due to reduced autoinhibition, which leads to RIG-I hyperactivation, increased RIG-I K63 ubiquitination, and MAVS aggregation. Transcriptome analysis revealed an increased IFN signature in patient monocytes. Initiation of JAK inhibitor therapy (baricitinib 2 mg/d) effectively suppressed the IFN signal in one patient. CONCLUSIONS A novel DDX58 R109C variant that can cause LN connects IFNopathy and LN, suggesting targeted therapy on the basis of pathogenicity. PODCAST This article contains a podcast at.
Collapse
Affiliation(s)
- Jiahui Peng
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yusha Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xu Han
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Xiang Chen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
| | - Ying Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Zhaohui Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yu An
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhengzhao Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yinghua Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Yangyang Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Life Sciences Institute, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhihong Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
10
|
Yadav R, Courouble VV, Dey SK, Harrison JJE, Timm J, Hopkins JB, Slack RL, Sarafianos SG, Ruiz FX, Griffin PR, Arnold E. Biochemical and structural insights into SARS-CoV-2 polyprotein processing by Mpro. SCIENCE ADVANCES 2022; 8:eadd2191. [PMID: 36490335 PMCID: PMC9733933 DOI: 10.1126/sciadv.add2191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2, a human coronavirus, is the causative agent of the COVID-19 pandemic. Its genome is translated into two large polyproteins subsequently cleaved by viral papain-like protease and main protease (Mpro). Polyprotein processing is essential yet incompletely understood. We studied Mpro-mediated processing of the nsp7-11 polyprotein, whose mature products include cofactors of the viral replicase, and identified the order of cleavages. Integrative modeling based on mass spectrometry (including hydrogen-deuterium exchange and cross-linking) and x-ray scattering yielded a nsp7-11 structural ensemble, demonstrating shared secondary structural elements with individual nsps. The pattern of cross-links and HDX footprint of the C145A Mpro and nsp7-11 complex demonstrate preferential binding of the enzyme active site to the polyprotein junction sites and additional transient contacts to help orient the enzyme on its substrate for cleavage. Last, proteolysis assays were used to characterize the effect of inhibitors/binders on Mpro processing/inhibition using the nsp7-11 polyprotein as substrate.
Collapse
Affiliation(s)
- Ruchi Yadav
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Valentine V. Courouble
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - Sanjay K. Dey
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | | | - Jennifer Timm
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ, USA
| | - Jesse B. Hopkins
- BioCAT, Department of Physics, Illinois Institute of Technology, Chicago, IL, USA
| | - Ryan L. Slack
- Division of Laboratory of Biochemical Pharmacology and Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G. Sarafianos
- Division of Laboratory of Biochemical Pharmacology and Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Francesc X. Ruiz
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM), Rutgers University, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
11
|
Wang W, Pyle AM. The RIG-I receptor adopts two different conformations for distinguishing host from viral RNA ligands. Mol Cell 2022; 82:4131-4144.e6. [DOI: 10.1016/j.molcel.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/09/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
|
12
|
Fundamentals of HDX-MS. Essays Biochem 2022; 67:301-314. [PMID: 36251047 PMCID: PMC10070489 DOI: 10.1042/ebc20220111] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is becoming part of the standard repertoire of techniques used by molecular biologists to investigate protein structure and dynamics. This is partly due to the increased use of automation in all stages of the technique and its versatility of application-many proteins that present challenges with techniques such as X-ray crystallography and cryoelectron microscopy are amenable to investigation with HDX-MS. The present review is aimed at scientists who are curious about the technique, and how it may aid their research. It describes the fundamental basis of solvent exchange, the basics of a standard HDX-MS experiment, as well as highlighting emerging novel experimental advances, which point to where the field is heading.
Collapse
|
13
|
Lei Y, Fei P, Song B, Shi W, Luo C, Luo D, Li D, Chen W, Zheng J. A loosened gating mechanism of RIG-I leads to autoimmune disorders. Nucleic Acids Res 2022; 50:5850-5863. [PMID: 35580046 PMCID: PMC9177982 DOI: 10.1093/nar/gkac361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/12/2022] Open
Abstract
DDX58 encodes RIG-I, a cytosolic RNA sensor that ensures immune surveillance of nonself RNAs. Individuals with RIG-IE510V and RIG-IQ517H mutations have increased susceptibility to Singleton-Merten syndrome (SMS) defects, resulting in tissue-specific (mild) and classic (severe) phenotypes. The coupling between RNA recognition and conformational changes is central to RIG-I RNA proofreading, but the molecular determinants leading to dissociated disease phenotypes remain unknown. Herein, we employed hydrogen/deuterium exchange mass spectrometry (HDX-MS) and single molecule magnetic tweezers (MT) to precisely examine how subtle conformational changes in the helicase insertion domain (HEL2i) promote impaired ATPase and erroneous RNA proofreading activities. We showed that the mutations cause a loosened latch-gate engagement in apo RIG-I, which in turn gradually dampens its self RNA (Cap2 moiety:m7G cap and N1-2-2′-O-methylation RNA) proofreading ability, leading to increased immunopathy. These results reveal HEL2i as a unique checkpoint directing two specialized functions, i.e. stabilizing the CARD2-HEL2i interface and gating the helicase from incoming self RNAs; thus, these findings add new insights into the role of HEL2i in the control of antiviral innate immunity and autoimmunity diseases.
Collapse
Affiliation(s)
- Yixuan Lei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.,The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Panyu Fei
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Bin Song
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjia Shi
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Cheng Luo
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,The Chemical Biology Center, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, Zhejiang, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, NTU Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, 636921, Singapore
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jie Zheng
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
14
|
Schweibenz BD, Devarkar SC, Solotchi M, Craig C, Zheng J, Pascal BD, Gokhale S, Xie P, Griffin PR, Patel SS. The intrinsically disordered CARDs-Helicase linker in RIG-I is a molecular gate for RNA proofreading. EMBO J 2022; 41:e109782. [PMID: 35437807 PMCID: PMC9108607 DOI: 10.15252/embj.2021109782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023] Open
Abstract
The innate immune receptor RIG-I provides a first line of defense against viral infections. Viral RNAs are recognized by RIG-I's C-terminal domain (CTD), but the RNA must engage the helicase domain to release the signaling CARD (Caspase Activation and Recruitment Domain) domains from their autoinhibitory CARD2:Hel2i interactions. Because the helicase itself lacks RNA specificity, mechanisms to proofread RNAs entering the helicase domain must exist. Although such mechanisms would be crucial in preventing aberrant immune responses by non-specific RNAs, they remain largely uncharacterized to date. This study reveals a previously unknown proofreading mechanism through which RIG-I ensures that the helicase engages RNAs explicitly recognized by the CTD. A crucial part of this mechanism involves the intrinsically disordered CARDs-Helicase Linker (CHL), which connects the CARDs to the helicase subdomain Hel1. CHL uses its negatively charged regions to antagonize incoming RNAs electrostatically. In addition to this RNA gating function, CHL is essential for stabilization of the CARD2:Hel2i interface. Overall, we uncover that the CHL and CARD2:Hel2i interface work together to establish a tunable gating mechanism that allows CTD-chosen RNAs to bind the helicase domain, while at the same time blocking non-specific RNAs. These findings also indicate that CHL could represent a novel target for RIG-I-based therapeutics.
Collapse
Affiliation(s)
- Brandon D Schweibenz
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Graduate Program in Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Swapnil C Devarkar
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Graduate Program in Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Cell and Development Biology, Rutgers University, Piscataway, NJ, USA
| | - Candice Craig
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Graduate Program in Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Bruce D Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.,Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, USA
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.,Department of Integrative Structural and Computational Biology, Jupiter, FL, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Hydrogen-Deuterium Exchange Mass Spectrometry Reveals a Novel Binding Region of a Neutralizing Fully Human Monoclonal Antibody to Anthrax Protective Antigen. Toxins (Basel) 2022; 14:toxins14020092. [PMID: 35202120 PMCID: PMC8877668 DOI: 10.3390/toxins14020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
Anthrax vaccine adsorbed (AVA) containing protective antigen (PA) is the only FDA-approved anthrax vaccine in the United States. Characterization of the binding of AVA-induced anti-PA human antibodies against the PA antigen after vaccination is crucial to understanding mechanisms of the AVA-elicited humoral immune response. Hydrogen deuterium exchange mass spectrometry (HDX-MS) is often coupled with a short liquid chromatography gradient (e.g., 5–10 min) for the characterization of protein interactions. We recently developed a long-gradient (e.g., 90 min), sub-zero temperature, ultra-high performance liquid chromatography HDX-MS (UPLC-HDX-MS) platform that has significantly increased separation power and limited back-exchange for the analysis of protein samples with high complexity. In this study, we demonstrated the utility of this platform for mapping antibody–antigen epitopes by examining four fully human monoclonal antibodies to anthrax PA. Antibody p1C03, with limited neutralizing activity in vivo, bound to a region on domain 1A of PA. p6C04 and p1A06, with no neutralizing activities, bound to the same helix on domain 3 to prevent oligomerization of PA. We found p6C01 strongly bound to domain 3 on a different helix region. We also identified a secondary epitope for p6C01, which likely leads to the blocking of furin cleavage of PA after p6C01 binding. This novel binding of p6C01 results in highly neutralizing activity. This is the first report of this distinct binding mechanism for a highly neutralizing fully human antibody to anthrax protective antigen. Studying such epitopes can facilitate the development of novel therapeutics against anthrax.
Collapse
|
16
|
Song B, Chen Y, Liu X, Yuan F, Tan EYJ, Lei Y, Song N, Han Y, Pascal BD, Griffin PR, Luo C, Wu B, Luo D, Zheng J. Ordered assembly of the cytosolic RNA-sensing MDA5-MAVS signaling complex via binding to unanchored K63-linked poly-ubiquitin chains. Immunity 2021; 54:2218-2230.e5. [PMID: 34644557 DOI: 10.1016/j.immuni.2021.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/05/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022]
Abstract
The RNA sensor MDA5 recruits the signaling adaptor MAVS to initiate type I interferon signaling and downstream antiviral responses, a process that requires K63-linked polyubiquitin chains. Here, we examined the mechanisms whereby K63-polyUb chain regulate MDA5 activation. Only long unanchored K63-polyUbn (n ≥ 8) could mediate tetramerization of the caspase activation and recruitment domains of MDA5 (MDA5CARDs). Cryoelectron microscopy structures of a polyUb13-bound MDA5CARDs tetramer and a polyUb11-bound MDA5CARDs-MAVSCARD assembly revealed a tower-like formation, wherein eight Ubs tethered along the outer rim of the helical shell, bridging MDA5CARDs and MAVSCARD tetramers into proximity. ATP binding and hydrolysis promoted the stabilization of RNA-bound MDA5 prior to MAVS activation via allosteric effects on CARDs-polyUb complex. Abundant ATP prevented basal activation of apo MDA5. Our findings reveal the ordered assembly of a MDA5 signaling complex competent to recruit and activate MAVS and highlight differences with RIG-I in terms of CARD orientation and Ub sensing that suggest different abilities to induce antiviral responses.
Collapse
Affiliation(s)
- Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Chen
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Eddie Yong Jun Tan
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore
| | - Yixuan Lei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinqi Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Patrick R Griffin
- The Scripps Research Institute, Department of Molecular Medicine, Jupiter, FL 33458, USA
| | - Cheng Luo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bin Wu
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
17
|
Thoresen D, Wang W, Galls D, Guo R, Xu L, Pyle AM. The molecular mechanism of RIG-I activation and signaling. Immunol Rev 2021; 304:154-168. [PMID: 34514601 PMCID: PMC9293153 DOI: 10.1111/imr.13022] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
RIG‐I is our first line of defense against RNA viruses, serving as a pattern recognition receptor that identifies molecular features common among dsRNA and ssRNA viral pathogens. RIG‐I is maintained in an inactive conformation as it samples the cellular space for pathogenic RNAs. Upon encounter with the triphosphorylated terminus of blunt‐ended viral RNA duplexes, the receptor changes conformation and releases a pair of signaling domains (CARDs) that are selectively modified and interact with an adapter protein (MAVS), thereby triggering a signaling cascade that stimulates transcription of interferons. Here, we describe the structural determinants for specific RIG‐I activation by viral RNA, and we describe the strategies by which RIG‐I remains inactivated in the presence of host RNAs. From the initial RNA triggering event to the final stages of interferon expression, we describe the experimental evidence underpinning our working knowledge of RIG‐I signaling. We draw parallels with behavior of related proteins MDA5 and LGP2, describing evolutionary implications of their collective surveillance of the cell. We conclude by describing the cell biology and immunological investigations that will be needed to accurately describe the role of RIG‐I in innate immunity and to provide the necessary foundation for pharmacological manipulation of this important receptor.
Collapse
Affiliation(s)
- Daniel Thoresen
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Wenshuai Wang
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Drew Galls
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Rong Guo
- Chemistry, Yale University, New Haven, CT, USA
| | - Ling Xu
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Anna Marie Pyle
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Chemistry, Yale University, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
18
|
Chen K, Xiao F, Hu D, Ge W, Tian M, Wang W, Pan P, Wu K, Wu J. SARS-CoV-2 Nucleocapsid Protein Interacts with RIG-I and Represses RIG-Mediated IFN-β Production. Viruses 2020; 13:E47. [PMID: 33396605 PMCID: PMC7823417 DOI: 10.3390/v13010047] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
SARS-CoV-2 is highly pathogenic in humans and poses a great threat to public health worldwide. Clinical data shows a disturbed type I interferon (IFN) response during the virus infection. In this study, we discovered that the nucleocapsid (N) protein of SARS-CoV-2 plays an important role in the inhibition of interferon beta (IFN-β) production. N protein repressed IFN-β production induced by poly(I:C) or upon Sendai virus (SeV) infection. We noted that N protein also suppressed IFN-β production, induced by several signaling molecules downstream of the retinoic acid-inducible gene I (RIG-I) pathway, which is the crucial pattern recognition receptor (PRR) responsible for identifying RNA viruses. Moreover, our data demonstrated that N protein interacted with the RIG-I protein through the DExD/H domain, which has ATPase activity and plays an important role in the binding of immunostimulatory RNAs. These results suggested that SARS-CoV-2 N protein suppresses the IFN-β response through targeting the initial step, potentially the cellular PRR-RNA-recognition step in the innate immune pathway. Therefore, we propose that the SARS-CoV-2 N protein represses IFN-β production by interfering with RIG-I.
Collapse
Affiliation(s)
- Keli Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Feng Xiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Weiwei Ge
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (P.P.)
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (P.P.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (K.C.); (F.X.); (D.H.); (W.G.); (M.T.); (K.W.)
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (W.W.); (P.P.)
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| |
Collapse
|
19
|
Zhao MM, Wang RS, Zhou YL, Yang ZG. Emerging relationship between RNA helicases and autophagy. J Zhejiang Univ Sci B 2020; 21:767-778. [PMID: 33043643 PMCID: PMC7606199 DOI: 10.1631/jzus.b2000245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/10/2020] [Indexed: 01/15/2023]
Abstract
RNA helicases, the largest family of proteins that participate in RNA metabolism, stabilize the intracellular environment through various processes, such as translation and pre-RNA splicing. These proteins are also involved in some diseases, such as cancers and viral diseases. Autophagy, a self-digestive and cytoprotective trafficking process in which superfluous organelles and cellular garbage are degraded to stabilize the internal environment or maintain basic cellular survival, is associated with human diseases. Interestingly, similar to autophagy, RNA helicases play important roles in maintaining cellular homeostasis and are related to many types of diseases. According to recent studies, RNA helicases are closely related to autophagy, participate in regulating autophagy, or serve as a bridge between autophagy and other cellular activities that widely regulate some pathophysiological processes or the development and progression of diseases. Here, we summarize the most recent studies to understand how RNA helicases function as regulatory proteins and determine their association with autophagy in various diseases.
Collapse
Affiliation(s)
- Miao-miao Zhao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Ru-sha Wang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Yan-lin Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zheng-gang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
20
|
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are key sensors of virus infection, mediating the transcriptional induction of type I interferons and other genes that collectively establish an antiviral host response. Recent studies have revealed that both viral and host-derived RNAs can trigger RLR activation; this can lead to an effective antiviral response but also immunopathology if RLR activities are uncontrolled. In this Review, we discuss recent advances in our understanding of the types of RNA sensed by RLRs in the contexts of viral infection, malignancies and autoimmune diseases. We further describe how the activity of RLRs is controlled by host regulatory mechanisms, including RLR-interacting proteins, post-translational modifications and non-coding RNAs. Finally, we discuss key outstanding questions in the RLR field, including how our knowledge of RLR biology could be translated into new therapeutics.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Malik G, Zhou Y. Innate Immune Sensing of Influenza A Virus. Viruses 2020; 12:E755. [PMID: 32674269 PMCID: PMC7411791 DOI: 10.3390/v12070755] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza virus infection triggers host innate immune response by stimulating various pattern recognition receptors (PRRs). Activation of these PRRs leads to the activation of a plethora of signaling pathways, resulting in the production of interferon (IFN) and proinflammatory cytokines, followed by the expression of interferon-stimulated genes (ISGs), the recruitment of innate immune cells, or the activation of programmed cell death. All these antiviral approaches collectively restrict viral replication inside the host. However, influenza virus also engages in multiple mechanisms to subvert the innate immune responses. In this review, we discuss the role of PRRs such as Toll-like receptors (TLRs), Retinoic acid-inducible gene I (RIG-I), NOD-, LRR-, pyrin domain-containing protein 3 (NLRP3), and Z-DNA binding protein 1 (ZBP1) in sensing and restricting influenza viral infection. Further, we also discuss the mechanisms influenza virus utilizes, especially the role of viral non-structure proteins NS1, PB1-F2, and PA-X, to evade the host innate immune responses.
Collapse
Affiliation(s)
- Gaurav Malik
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
22
|
van der Made CI, Hoischen A, Netea MG, van de Veerdonk FL. Primary immunodeficiencies in cytosolic pattern-recognition receptor pathways: Toward host-directed treatment strategies. Immunol Rev 2020; 297:247-272. [PMID: 32640080 DOI: 10.1111/imr.12898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
In the last decade, the paradigm of primary immunodeficiencies (PIDs) as rare recessive familial diseases that lead to broad, severe, and early-onset immunological defects has shifted toward collectively more common, but sporadic autosomal dominantly inherited isolated defects in the immune response. Patients with PIDs constitute a formidable area of research to study the genetics and the molecular mechanisms of complex immunological pathways. A significant subset of PIDs affect the innate immune response, which is a crucial initial host defense mechanism equipped with pattern-recognition receptors. These receptors recognize pathogen- and damage-associated molecular patterns in both the extracellular and intracellular space. In this review, we will focus on primary immunodeficiencies caused by genetic defects in cytosolic pattern-recognition receptor pathways. We discuss these PIDs organized according to their mutational mechanisms and consequences for the innate host response. The advanced understanding of these pathways obtained by the study of PIDs creates the opportunity for the development of new host-directed treatment strategies.
Collapse
Affiliation(s)
- Caspar I van der Made
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Lu M, Zhang Z, Xue M, Zhao BS, Harder O, Li A, Liang X, Gao TZ, Xu Y, Zhou J, Feng Z, Niewiesk S, Peeples ME, He C, Li J. N 6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol 2020; 5:584-598. [PMID: 32015498 PMCID: PMC7137398 DOI: 10.1038/s41564-019-0653-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Internal N6-methyladenosine (m6A) modification is one of the most common and abundant modifications of RNA. However, the biological roles of viral RNA m6A remain elusive. Here, using human metapneumovirus (HMPV) as a model, we demonstrate that m6A serves as a molecular marker for innate immune discrimination of self from non-self RNAs. We show that HMPV RNAs are m6A methylated and that viral m6A methylation promotes HMPV replication and gene expression. Inactivating m6A addition sites with synonymous mutations or demethylase resulted in m6A-deficient recombinant HMPVs and virion RNAs that induced increased expression of type I interferon, which was dependent on the cytoplasmic RNA sensor RIG-I, and not on melanoma differentiation-associated protein 5 (MDA5). Mechanistically, m6A-deficient virion RNA induces higher expression of RIG-I, binds more efficiently to RIG-I and facilitates the conformational change of RIG-I, leading to enhanced interferon expression. Furthermore, m6A-deficient recombinant HMPVs triggered increased interferon in vivo and were attenuated in cotton rats but retained high immunogenicity. Collectively, our results highlight that (1) viruses acquire m6A in their RNA as a means of mimicking cellular RNA to avoid detection by innate immunity and (2) viral RNA m6A can serve as a target to attenuate HMPV for vaccine purposes.
Collapse
Affiliation(s)
- Mijia Lu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Zijie Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Miaoge Xue
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Boxuan Simen Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Olivia Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Anzhong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas Z Gao
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Yunsheng Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiyong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zongdi Feng
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Hausmann S, Geiser J, Vadas O, Ducret V, Perron K, Valentini M. Auxiliary domains of the HrpB bacterial DExH-box helicase shape its RNA preferences. RNA Biol 2020; 17:637-650. [PMID: 32050838 PMCID: PMC7237152 DOI: 10.1080/15476286.2020.1720376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RNA helicases are fundamental players in RNA metabolism: they remodel RNA secondary structures and arrange ribonucleoprotein complexes. While DExH-box RNA helicases function in ribosome biogenesis and splicing in eukaryotes, information is scarce about bacterial homologs. HrpB is the only bacterial DExH-box protein whose structure is solved. Besides the catalytic core, HrpB possesses three accessory domains, conserved in all DExH-box helicases, plus a unique C-terminal extension (CTE). The function of these auxiliary domains remains unknown. Here, we characterize genetically and biochemically Pseudomonas aeruginosa HrpB homolog. We reveal that the auxiliary domains shape HrpB RNA preferences, affecting RNA species recognition and catalytic activity. We show that, among several types of RNAs, the single-stranded poly(A) and the highly structured MS2 RNA strongly stimulate HrpB ATPase activity. In addition, deleting the CTE affects only stimulation by structured RNAs like MS2 and rRNAs, while deletion of accessory domains results in gain of poly(U)-dependent activity. Finally, using hydrogen-deuterium exchange, we dissect the molecular details of HrpB interaction with poly(A) and MS2 RNAs. The catalytic core interacts with both RNAs, triggering a conformational change that reorients HrpB. Regions within the accessory domains and CTE are, instead, specifically responsive to MS2. Altogether, we demonstrate that in bacteria, like in eukaryotes, DExH-box helicase auxiliary domains are indispensable for RNA handling.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Johan Geiser
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Protein Production Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Dickey TH, Song B, Pyle AM. RNA binding activates RIG-I by releasing an autorepressed signaling domain. SCIENCE ADVANCES 2019; 5:eaax3641. [PMID: 31616790 PMCID: PMC6774723 DOI: 10.1126/sciadv.aax3641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The retinoic acid-inducible gene I (RIG-I) innate immune receptor is an important immunotherapeutic target, but we lack approaches for monitoring the physical basis for its activation in vitro. This gap in our understanding has led to confusion about mechanisms of RIG-I activation and difficulty discovering agonists and antagonists. We therefore created a novel fluorescence resonance energy transfer-based method for measuring RIG-I activation in vitro using dual site-specific fluorescent labeling of the protein. This approach enables us to measure the conformational change that releases the signaling domain during the first step of RIG-I activation, making it possible to understand the role of stimulatory ligands. We have found that RNA alone is sufficient to eject the signaling domain, ejection is reversible, and adenosine triphosphate plays but a minor role in this process. These findings help explain RIG-I dysfunction in autoimmune disease, and they inform the design of therapeutics targeting RIG-I.
Collapse
Affiliation(s)
- T. H. Dickey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - B. Song
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - A. M. Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
26
|
Zheng J, Strutzenberg T, Pascal BD, Griffin PR. Protein dynamics and conformational changes explored by hydrogen/deuterium exchange mass spectrometry. Curr Opin Struct Biol 2019; 58:305-313. [DOI: 10.1016/j.sbi.2019.06.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 06/15/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
|
27
|
Brisse M, Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front Immunol 2019; 10:1586. [PMID: 31379819 PMCID: PMC6652118 DOI: 10.3389/fimmu.2019.01586] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
RIG-I (Retinoic acid-inducible gene I) and MDA5 (Melanoma Differentiation-Associated protein 5), collectively known as the RIG-I-like receptors (RLRs), are key protein sensors of the pathogen-associated molecular patterns (PAMPs) in the form of viral double-stranded RNA (dsRNA) motifs to induce expression of type 1 interferons (IFN1) (IFNα and IFNβ) and other pro-inflammatory cytokines during the early stage of viral infection. While RIG-I and MDA5 share many genetic, structural and functional similarities, there is increasing evidence that they can have significantly different strategies to recognize different pathogens, PAMPs, and in different host species. This review article discusses the similarities and differences between RIG-I and MDA5 from multiple perspectives, including their structures, evolution and functional relationships with other cellular proteins, their differential mechanisms of distinguishing between host and viral dsRNAs and interactions with host and viral protein factors, and their immunogenic signaling. A comprehensive comparative analysis can help inform future studies of RIG-I and MDA5 in order to fully understand their functions in order to optimize potential therapeutic approaches targeting them.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| |
Collapse
|