1
|
Arida BL, Pinheiro F, Laccetti L, Camargo MGG, Freitas AVL, Scopece G. The consequences of flower colour polymorphism on the reproductive success of a neotropical deceptive orchid. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:515-527. [PMID: 40162514 DOI: 10.1111/plb.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
Deceptive plants often exhibit elevated levels of polymorphism. The basis of the association between flower polymorphism and deceptive strategies, however, remains unclear. Epidendrum fulgens, a Neotropical deceptive orchid pollinated by butterflies, has an unexplored intrapopulation flower colour polymorphism. Here, we investigate the consequences of this polymorphism on its reproductive success. We performed field and common garden experiments, aiming to detect pollinator-mediated selection strength and direction over time, and test whether the presence of multiple colour morphs increases species' reproductive success. In the field, we monitored plant reproductive success and floral morphology on two populations over two flowering seasons and performed selection gradient analyses. In the common garden, we assembled plots of cultivated plants with same and different flower colour individuals (i.e., mono- and polymorphic plots), exposed them to pollinators and monitored their reproductive success. In both sites we also monitored the local pollinator community. In the field, colour morphs performed equally, but we found coherences between morphological differentiation and the direction of selection, which was very dynamic. In the common garden, mono- and polymorphic plots also performed equally, with highly variable reproductive success over time. We also found a highly diverse pollinator community. Our results suggest that flower polymorphism in E. fulgens is maintained by a combination of factors, including varying pollinator-mediated selection, assortative mating due to differential pollinator preferences and different phenotype heritability. Natural selection varied across time and space, indicating a dynamic interplay between pollinators and flower morphs.
Collapse
Affiliation(s)
- B L Arida
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - F Pinheiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - L Laccetti
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
| | - M G G Camargo
- Center for Research on Biodiversity Dynamics and Climate Change and Department of Biodiversity, Phenology Lab, São Paulo State University, Biosciences Institute, Rio Claro, Brazil
| | - A V L Freitas
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - G Scopece
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
| |
Collapse
|
2
|
Liu S, Smith SD. Recruitment of Sugar Transport and Scent Volatile Genes for Prey Attraction in the Nectar Spoon of Heliamphora tatei. Evol Dev 2025; 27:e70009. [PMID: 40411424 PMCID: PMC12103071 DOI: 10.1111/ede.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2025] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/26/2025]
Abstract
Prey attraction is an integral component of the carnivorous syndrome, yet its molecular adaptations have remained largely unexplored. Our study utilized tissue-specific transcriptomic data from the South American marsh pitcher plant, Heliamphora tatei, to explore the molecular and developmental basis of prey attraction. Carnivorous plants often present specialized structures associated with prey attraction and in Heliamphora, that function is carried out by the nectar spoon, a colorful extension of the top of the pitcher that is densely covered in nectaries. Through comparisons of gene expression in the nectar spoon with the rest of the pitcher, we identified a suite of differentially expressed genes that likely contribute to prey attraction, including enzymes involved in volatile synthesis and sugar transporters. We found that one lineage of sugar transporters, the 14a clade of SWEETs (Sugars Will Eventually Be Exported Transporters), is highly upregulated in the nectar spoon and has evolved more rapidly in Sarraceniaceae, consistent with specialization for nectar transport as part of prey attraction. Among the genes related to volatile production, we found several enzymes best known for their role in floral scent. These results suggest that, similar to prey digestion, ancient genes are repurposed for novel functions during the transition to carnivory and may facilitate the repeated convergent origins of carnivory across angiosperms.
Collapse
Affiliation(s)
- Sukuan Liu
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Stacey D. Smith
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
3
|
Wenzell KE, Neequaye M, Paajanen P, Hill L, Brett P, Byers KJRP. Within-species floral evolution reveals convergence in adaptive walks during incipient pollinator shift. Nat Commun 2025; 16:2721. [PMID: 40108138 PMCID: PMC11923230 DOI: 10.1038/s41467-025-57639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Understanding how evolution proceeds from molecules to organisms to interactions requires integrative studies spanning biological levels. Linking phenotypes with associated genes and fitness illuminates how adaptive walks move organisms between fitness peaks. Floral evolution can confer rapid reproductive isolation, often converging in association with pollinator guilds. Within the monkeyflowers (Mimulus sect. Erythranthe), yellow flowers within red hummingbird-pollinated species have arisen at least twice, suggesting possible pollinator shifts. We compare two yellow-flowered forms of M. cardinalis and M. verbenaceus to their red counterparts in floral phenotypes, biochemistry, transcriptomic and genomic variation, and pollinator interactions. We find convergence in ongoing adaptive walks of both yellow morphs, with consistent changes in traits of large effect (floral pigments, associated gene expression), resulting in strong preference for yellow flowers by bumblebees. Shifts in scent emission and floral opening size also favor bee adaptation, suggesting smaller-effect steps from hummingbird to bee pollination. By examining intraspecific, incipient pollinator shifts in two related species, we elucidate adaptive walks at early stages, revealing how convergent large effect mutations (floral color) may drive pollinator attraction, followed by smaller effect changes for mechanical fit and reward access. Thus, ongoing adaptive walks may impact reproductive isolation and incipient speciation via convergent evolution.
Collapse
Affiliation(s)
- Katherine E Wenzell
- John Innes Centre, Norwich, UK
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
- California Academy of Sciences, San Francisco, CA, USA
- University of Maryland, College Park, MD, USA
| | | | | | | | | | | |
Collapse
|
4
|
Duan L, Wang J, Li H, Li J, Tong H, Du C, Zhang H. Reproductive strategies of two color morphs of Paeonia delavayi. FRONTIERS IN PLANT SCIENCE 2025; 16:1531186. [PMID: 40177018 PMCID: PMC11961923 DOI: 10.3389/fpls.2025.1531186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
The diversity in floral coloration results from a complex reproductive system, which has evolved in response to multiple pollinators and is intricately linked to the development of pollination mechanisms. To investigate how floral trait variations influence reproduction in Paeonia delavayi, we conducted pollination experiments, observed insect visitation, measured floral traits, estimated petal and anther colors as perceived by pollinators and analyzed floral scent for two floral morphs (red and yellow) at two distinct sites. P. delavayi depended on insect pollinators for seed production. Multiple comparisons revealed that seed yields and seed sets under natural pollination were significantly higher than those under artificial pollination (homogamy and geitonogamy) and anemophilous pollination. However, there was no significant difference in seed yields(LWS, p = 0.487; XGLL, p = 0.702) and seed set (LWS, p = 0.077; XGLL, p = 0.251) between two floral morphs under natural pollination. Both morphs shared common pollinators, primarily honeybees, bumblebees, and syrphid flies. Major pollinators visited the yellow morph more frequently than the red morph, although there was no significant difference in the duration time of visits between the two morphs. Studies utilizing insect vision models, based on color reflection spectra, revealed that major pollinators could distinguish differences in petal and anther colors between the two morphs. However, there is variation in how pollinators perceive their flower colors. On the one hand, the yellow morphs contrast against the leaves background, enhancing their visual attractiveness to bees and flies. On the other hand, the red-flowered morph compensates for its visual disadvantage through olfactory cues, ensuring successful reproduction despite lower visual attractiveness. This study highlights the intricate interplay between visual and olfactory signals in plant-pollinator interactions, emphasizing their combined influence on reproductive outcomes.
Collapse
Affiliation(s)
- Lijun Duan
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Juan Wang
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Haiqing Li
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
| | - Jin Li
- Institute of Forestry Industry, Yunnan, Academy of Forestry and Grassland, Kunming, China
| | - Haizhen Tong
- College of Biological and Food Engineering, Southwest Forestry University, Kunming, China
| | - Chun Du
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Huaibi Zhang
- New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
5
|
Guo D, Gao H, Yan T, Xia C, Lin B, Xiang X, Cai B, Geng Z. Proteomic and metabolomic insights into the impact of topping treatment on cigar tobacco. FRONTIERS IN PLANT SCIENCE 2025; 15:1425154. [PMID: 40052119 PMCID: PMC11882365 DOI: 10.3389/fpls.2024.1425154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/07/2024] [Indexed: 03/09/2025]
Abstract
Top removal is a widely utilized method in production process of tobacco, but little is known regarding the way it impacts protein and metabolic regulation. In this study, we investigated the underlying processes of alterations in cigar tobacco leaves with and without top removal, using a combined proteomic and metabolomic approach. The results revealed that: (1) Topping significantly affected superoxide anion (O2 -) levels, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content, (2) In the cigar tobacco proteome, 385 differentially expressed proteins (DEPs) were identified, with 228 proteins upregulated and 156 downregulated. Key pathways enriched included flavonoid biosynthesis, porphyrin and chlorophyll metabolism, cysteine and methionine metabolism, and amino acid biosynthesis and metabolism. A network of 161 nodes interconnected by 102 significantly altered proteins was established, (3) In the cigar tobacco metabolome, 247 significantly different metabolites (DEMs) were identified, with 120 upregulated and 128 downregulated metabolites, mainly comprising lipids and lipid-like molecules, phenylpropanoids and polyketides, organic acids and derivatives, and organic heterocyclic compounds, (4) KEGG pathway enrichment revealed upregulation of proteins such as chalcone synthase (CHS), chalcone isomerase (CHI), naringenin 3-dioxygenase (F3H), and flavonoid 3'-monooxygenase (F3'H), along with metabolites like pinocembrin, kaempferol, trifolin, rutin, and quercetin, enhancing the pathways of 'flavonoid' and 'flavone and flavonol' biosynthesis. This study sheds light on the metabolic and proteomic responses of cigar tobacco after topping.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Cai
- Haikou Cigar Research Institute, Hainan Province Company, China National Tobacco
Corporation, Haikou, China
| | - Zhaoliang Geng
- Haikou Cigar Research Institute, Hainan Province Company, China National Tobacco
Corporation, Haikou, China
| |
Collapse
|
6
|
Wen Z, Liu H, Zhang Q, Lu X, Jiang K, Bao Q, Zhang Z, Yang G, Wang ZY. Integrated Analyses of the Mechanism of Flower Color Formation in Alfalfa ( Medicago sativa). Metabolites 2025; 15:135. [PMID: 39997760 PMCID: PMC11857827 DOI: 10.3390/metabo15020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa) is one of the most valuable forages in the world. As an outcrossing species, it needs bright flowers to attract pollinators to deal with self-incompatibility. Although various flower colors have been observed and described in alfalfa a long time ago, the biochemical and molecular mechanism of its color formation is still unclear. METHODS By analyzing alfalfa lines with five contrasting flower colors including white (cream-colored), yellow, lavender (purple), dark purple and dark blue, various kinds and levels of anthocyanins, carotenoids and other flavonoids were detected in different colored petals, and their roles in color formation were revealed. RESULTS Notably, the content of delphinidin-3,5-O-diglucoside in lines 3, 4 and 5 was 58.88, 100.80 and 94.07 times that of line 1, respectively. Delphinidin-3,5-O-diglucoside was the key factor for purple and blue color formation. Lutein and β-carotene were the main factors for the yellow color formation. By analyzing differentially expressed genes responsible for specific biochemical pathways and compounds, 27 genes were found to be associated with purple and blue color formation, and 14 genes were found to play an important role in yellow color formation. CONCLUSIONS The difference in petal color between white, purple and blue petals was mainly caused by the accumulation of delphinidin-3,5-O-diglucoside. The difference in petal color between white and yellow petals was mainly affected by the production of lutein and β-carotene. These findings provide a basis for understanding the biochemical and molecular mechanism of alfalfa flower color formation.
Collapse
Affiliation(s)
- Zhaozhu Wen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China (Z.Z.)
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Huancheng Liu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuran Lu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Jiang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Qinyan Bao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhifei Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China (Z.Z.)
| | - Guofeng Yang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zeng-Yu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
7
|
Saabna N, Keasar T, Sapir Y. The roles of florivory and herbivory in maintaining intra-population flower colour variation in Anemone coronaria. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:163-171. [PMID: 39607790 DOI: 10.1111/plb.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/26/2024] [Indexed: 11/30/2024]
Abstract
Most flowering plants are colour monomorphic, while within-population flower colour variation is rare. Multiple selection agents on flower colour, each favouring a different colour morph, may drive such uncommon polymorphisms. We tested the role of biotic antagonistic interactions in maintaining flower colour variation in Anemone coronaria (Ranunculaceae), in colour-polymorphic populations comprised of red, purple, and white flowers. We estimated the extent of leaf herbivory and petal florivory in each flower colour morph in three populations over two flowering seasons. We categorized types of damage to four groups of herbivores and estimated the plant maternal fitness. We tested pollinator response to different levels (0-30%) of simulated florivory in experimental flower arrays. Leaf and petal damage did not differ between white- and purple-flowering plants. Red-flowering plants had higher leaf damage than white-flowering plants and higher petal damage than purple-flowering plants. Nevertheless, all colour morphs had similar fitness. Red flowers exhibited more petal scratches (attributed to glaphyrid beetles), but fewer petal bites (attributed to caterpillars or grasshoppers), than white and purple flowers. Experimentally induced florivory did not reduce visits by potential pollinators in any colour morph. Glaphyrid beetles are the major pollinators of red anemone flowers, suggesting that their service to red flowers as mutualists (pollinators) should be weighed against their disservice as antagonists (florivores). A balance between pollination service and petal scratch damage of red flowers, both mediated by Glaphyird beetles, may equalize fitness between the red and the purple/white colour morphs, contributing to colour polymorphism.
Collapse
Affiliation(s)
- N Saabna
- Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - T Keasar
- Department Biology and the Environment, University of Haifa-Oranim, Tivon, Israel
| | - Y Sapir
- Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Rodríguez-Castañeda NL, Buide ML, Arista M, Narbona E, Ortiz PL. Pollinator response to yellow UV-patterned versus white UV-patternless flower dimorphism in Anemone palmata. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:929-943. [PMID: 39222355 DOI: 10.1111/plb.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Flower colour polymorphisms are uncommon but widespread among angiosperms and can be maintained by a variety of balancing selection mechanisms. Anemone palmata is mostly yellow-flowered, but white-flowered plants coexist in some populations. We analysed the distribution of colour morphs of A. palmata across its range. We also characterised their colours and compared their vegetative and sexual reproductive traits, pollinator attention and fitness. The range of A. palmata is limited to the Western Mediterranean, while white-flowered plants are restricted to Portugal and SW Spain, where they occur at low proportions. Yellow flowers have a characteristic UV pattern, with a UV-absorbing centre and UV-reflecting periphery, which is absent in the white morph. Colour features of both morphs were highly delineated, making it easy for pollinators to distinguish them. Both morphs were protogynous, with the same duration of sexual stages, and the main floral traits related to pollinator attraction, apart from flower colour, were similar. Hymenoptera and Diptera were the main pollinators, showing preference for the yellow morph, clear partitioning of pollinator groups between the two colour morphs and a marked constancy to flower colour during foraging. Both morphs combined clonal propagation with sexual reproduction, but sexual reproductive potential was lower in white-flowered plants. Finally, female fitness was higher in the yellow morph. Pollinator partitioning and colour constancy could maintain this polymorphism, despite the lower visitation rate and fitness of white-flowered plants, which could facilitate their clonal propagation.
Collapse
Affiliation(s)
- N L Rodríguez-Castañeda
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - M L Buide
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - M Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - E Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - P L Ortiz
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
9
|
Lu Z, He J, Fu J, Huang Y, Wang X. WRKY75 regulates anthocyanin accumulation in juvenile citrus tissues. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:52. [PMID: 39130615 PMCID: PMC11315850 DOI: 10.1007/s11032-024-01490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The anthocyanin accumulation in juvenile tissues can enhance the ornamental value, attract pollinators, and help improve abiotic stress. Although transcriptional regulation studies of anthocyanin have been relatively extensive, there are few reports on the mechanism of anthocyanin accumulation in young tissues. This study reveals that many juvenile citrus tissues (flowers, leaves, and pericarp) undergo transient accumulation of anthocyanins, exhibiting a red coloration. Using weighted gene co-expression network analysis (WGCNA) identified CitWRKY75 as a candidate gene. After detecting the expression levels of CitWRKY75 in various citrus juvenile tissues, the expression trend of CitWRKY75 was highly consistent with the red exhibiting and fading. Overexpression of CitWRKY75 in tobacco significantly increased the anthocyanin content. LUC and yeast one-hybrid assay demonstrated that CitWRKY75 could bind to the promoter of CitRuby1(encoding the key transcription factor promoting anthocyanin accumulation) and promote its expression. Finally, comparing the expression levels of CitWRKY75 and CitRuby1 in the late development stage of blood orange found that CitWRKY75 was not the main regulatory factor for anthocyanin accumulation in the later stage. This study used reverse genetics to identify a transcription factor, CitWRKY75, upstream of CitRuby1, which promotes anthocyanin accumulation in citrus juvenile tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01490-9.
Collapse
Affiliation(s)
- Zhihao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Jialing Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Yuping Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
10
|
Anghelescu NE, Balogh L, Balogh M, Kigyossy N, Georgescu MI, Petra SA, Toma F, Peticila AG. Gymnadenia winkeliana-A New Orchid Species to Romanian Flora. PLANTS (BASEL, SWITZERLAND) 2024; 13:1363. [PMID: 38794434 PMCID: PMC11125076 DOI: 10.3390/plants13101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
A novel species, Gymnadenia winkeliana, has been identified in the Bucegi Natural Park ROSCI0013, located in the Southern Carpathians of Central Romania. Two moderately sized populations of Gymnadenia winkeliana, totalling 120-140 individuals, were discovered inhabiting the alpine grasslands of the park, situated 2.000 m above sea level. To describe this newly found population as comprehensively as possible, 44 vegetative and floral organs/organ parts were directly studied and measured from living plants. Special attention was focused on the characteristics that proved to have taxonomic significance, particularly those involving distinctive details in the morphology of the leaves, perianth, labellum and gynostemium. A total of 223 characteristics were analysed encompassing the morphology of every organ of the plant, cytology and breeding system. Furthermore, comprehensive taxonomic treatment and description, accompanied by colour photographs illustrating the holotype, are provided. Voucher specimens were deposited at the Herbarium of the University of Agriculture and Veterinary Medicine, Bucharest (USAMVB Herbarium barcode: 40102, NEA); Gymnadenia winkeliana, a (micro)endemic species, is characterized as a putative allogamous, facultatively apomict that significantly differs from other Gymnadenia R.Br. species found in Romania. Notably, it distinguishes itself through its smaller habitus (reaching heights of up to 8-10 cm), its two-coloured, rounded/hemispherical inflorescence displaying a gradient of pink hues in an acropetal fashion (ranging from whitish-pink at the base to vivid-pink at the topmost flowers), and its limited distribution in high-altitude areas, encompassing approximately 8-10 km2 in the central area of the Bucegi Natural Park. This species has been under observation since 2005, with observed population numbers showing a significant increase over time, from ca. 50-55 (counted at the time of its discovery) to 120-140 individuals (counted in June 2023). Additionally, comprehensive information regarding the habitat, ecology, phenology and IUCN conservation assessments of Gymnadenia winkeliana are provided, including maps illustrating its distribution.
Collapse
Affiliation(s)
- Nora E. Anghelescu
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania
| | - Lori Balogh
- Association “Comori de pe Valea Prahovei”, 106100 Sinaia, Romania
| | - Mihaela Balogh
- Association “Comori de pe Valea Prahovei”, 106100 Sinaia, Romania
| | | | - Mihaela I. Georgescu
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania
| | - Sorina A. Petra
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania
| | - Florin Toma
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania
| | - Adrian G. Peticila
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania
| |
Collapse
|
11
|
Wong DCJ, Wang Z, Perkins J, Jin X, Marsh GE, John EG, Peakall R. The road less taken: Dihydroflavonol 4-reductase inactivation and delphinidin anthocyanin loss underpins a natural intraspecific flower colour variation. Mol Ecol 2024:e17334. [PMID: 38651763 DOI: 10.1111/mec.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Visual cues are of critical importance for the attraction of animal pollinators, however, little is known about the molecular mechanisms underpinning intraspecific floral colour variation. Here, we combined comparative spectral analysis, targeted metabolite profiling, multi-tissue transcriptomics, differential gene expression, sequence analysis and functional analysis to investigate a bee-pollinated orchid species, Glossodia major with common purple- and infrequent white-flowered morphs. We found uncommon and previously unreported delphinidin-based anthocyanins responsible for the conspicuous and pollinator-perceivable colour of the purple morph and three genetic changes underpinning the loss of colour in the white morph - (1) a loss-of-function (LOF; frameshift) mutation affecting dihydroflavonol 4-reductase (DFR1) coding sequence due to a unique 4-bp insertion, (2) specific downregulation of functional DFR1 expression and (3) the unexpected discovery of chimeric Gypsy transposable element (TE)-gene (DFR) transcripts with potential consequences to the genomic stability and post-transcriptional or epigenetic regulation of DFR. This is one of few known cases where regulatory changes and LOF mutation in an anthocyanin structural gene, rather than transcription factors, are important. Furthermore, if TEs prove to be a frequent source of mutation, the interplay between environmental stress-induced TE evolution and pollinator-mediated selection for adaptive colour variation may be an overlooked mechanism maintaining floral colour polymorphism in nature.
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - James Perkins
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Grace Emma Marsh
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Emma Grace John
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
12
|
Ledder M, Nakadera Y, Staikou A, Koene JM. Dominant gingers - Discovery and inheritance of a new shell polymorphism in the great pond snail Lymnaea stagnalis. Ecol Evol 2023; 13:e10678. [PMID: 38077508 PMCID: PMC10701294 DOI: 10.1002/ece3.10678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/16/2024] Open
Abstract
Color polymorphism is a classic study system for evolutionary genetics. One of the most color-polymorphic animal taxa is mollusks, but the investigation of the genetic basis of color determination is often hindered by their life history and the limited availability of genetic resources. Here, we report on the discovery of shell color polymorphism in a much-used model species, the great pond snail Lymnaea stagnalis. While their shell is usually beige, some individuals from a Greek population show a distinct red shell color, which we nicknamed Ginger. Moreover, we found that the inheritance fits simple, single-locus Mendelian inheritance with dominance of the Ginger allele. We also compared crucial life-history traits between Ginger and wild-type individuals, and found no differences between morphs. We conclude that the relative simplicity of this polymorphism will provide new opportunities for a deeper understanding of the genetic basis of shell color polymorphism and its evolutionary origin.
Collapse
Affiliation(s)
- Matthijs Ledder
- Ecology and Evolution A-LIFE, Vrije Universiteit Amsterdam Amsterdam the Netherlands
| | - Yumi Nakadera
- Ecology and Evolution A-LIFE, Vrije Universiteit Amsterdam Amsterdam the Netherlands
| | - Alexandra Staikou
- Department of Zoology, School of Biology Aristotle University of Thessaloniki Thessaloniki Greece
| | - Joris M Koene
- Ecology and Evolution A-LIFE, Vrije Universiteit Amsterdam Amsterdam the Netherlands
- Evolutionary Ecology Naturalis Biodiversity Centre Leiden the Netherlands
| |
Collapse
|
13
|
Lanzino M, Palermo AM, Pellegrino G. Pollination mechanism in Serapias with no pollinaria reconfiguration. AOB PLANTS 2023; 15:plad054. [PMID: 37899971 PMCID: PMC10601389 DOI: 10.1093/aobpla/plad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/09/2023] [Indexed: 10/31/2023]
Abstract
Orchidaceae, one of the most numerous families in the world's flora, have evolved various pollination strategies to favour cross-pollination, such as deceptive pollination and pollinarium reconfiguration. Among the terrestrial orchids of the Mediterranean, only species belonging to the genus Serapias show a strategy defined as shelter imitation. The floral elements form a tubular structure that insects use during their resting phases. The purpose of this article was to clarify the mechanisms that guarantee pollination with particular attention to the morphological interactions between orchids and pollinators and whether pollinaria reconfiguration is necessary in the promotion of cross-pollination in Serapias. Breeding system experiments and hand-pollination treatments indicated that Serapias was highly self-compatible, shows low value of natural fruit set and is pollinator limited. Time-lapse photos showed that the pollinarium had no refolding of the stipe or caudicle after its removal from the flower. The morphology of the flower determined the attack of the pollinarium on the occiput/vertex of insect. When the insect left the flower, the pollinarium was unable to encounter the stigma. When the insect made a second visit to another flower, the pollen masses of the first pollinarium ended up on the stigma and at the same time, the insect picked up a second pollinarium. Our observations and analyses suggested that morphological interactions between flower and pollinator are crucial to the success of pollination and to prevent self-pollination and thus that pollinarium reconfiguration is unnecessary in shelter deceptive orchids, such as Serapias species, for the promotion of cross-pollination. Serapias represent a case of interactions between plant and pollinator; the formation of the tubular shape of the flower is an essential preadaptation for the development of resting site mimicry originating exclusively in Serapias among Mediterranean orchids.
Collapse
Affiliation(s)
- Micaela Lanzino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Cosenza, Italy
| | - Anna Maria Palermo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Cosenza, Italy
| | - Giuseppe Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Cosenza, Italy
| |
Collapse
|
14
|
Wong DCJ, Pichersky E, Peakall R. Many different flowers make a bouquet: Lessons from specialized metabolite diversity in plant-pollinator interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102332. [PMID: 36652780 DOI: 10.1016/j.pbi.2022.102332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 06/10/2023]
Abstract
Flowering plants have evolved extraordinarily diverse metabolites that underpin the floral visual and olfactory signals enabling plant-pollinator interactions. In some cases, these metabolites also provide unusual rewards that specific pollinators depend on. While some metabolites are shared by most flowering plants, many have evolved in restricted lineages in response to the specific selection pressures encountered within different niches. The latter are designated as specialized metabolites. Recent investigations continue to uncover a growing repertoire of unusual specialized metabolites. Increased accessibility to cutting-edge multi-omics technologies (e.g. genome, transcriptome, proteome, metabolome) is now opening new doors to simultaneously uncover the molecular basis of their synthesis and their evolution across diverse plant lineages. Drawing upon the recent literature, this perspective discusses these aspects and, where known, their ecological and evolutionary relevance. A primer on omics-guided approaches to discover the genetic and biochemical basis of functional specialized metabolites is also provided.
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | - Eran Pichersky
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
van der Niet T, Egan PA, Schlüter PM. Evolutionarily inspired solutions to the crop pollination crisis. Trends Ecol Evol 2023; 38:435-445. [PMID: 36737302 DOI: 10.1016/j.tree.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023]
Abstract
The global decline in insect diversity threatens pollination services, potentially impacting crop production and food security. Here, we argue that this looming pollination crisis is generally approached from an ecological standpoint, and that consideration of evolutionary principles offers a novel perspective. First, we outline that wild plant species have overcome 'pollination crises' throughout evolutionary history, and show how associated principles can be applied to crop pollination. We then highlight technological advances that can be used to adapt crop flowers for optimal pollination by local wild pollinators, especially by increasing generalization in pollination systems. Thus, synergies among fundamental evolutionary research, genetic engineering, and agro-ecological science provide a promising template for addressing a potential pollination crisis, complementing much-needed strategies focused on pollinator conservation.
Collapse
Affiliation(s)
- Timotheüs van der Niet
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, P. Bag X01, 3209, Scottsville, Pietermaritzburg, South Africa.
| | - Paul A Egan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Philipp M Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
16
|
Wong DCJ, Perkins J, Peakall R. Conserved pigment pathways underpin the dark insectiform floral structures of sexually deceptive Chiloglottis (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:976283. [PMID: 36275580 PMCID: PMC9581149 DOI: 10.3389/fpls.2022.976283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2022] [Indexed: 06/10/2023]
Abstract
Sexually deceptive plants achieve pollination by enticing specific male insects as pollinators using a combination of olfactory, visual, and morphological mimicry. The sexually deceptive orchid genus Chiloglottis is comprised of some 30 species with predominantly dull green-red flowers except for the dark insectiform calli/callus structure from the labellum lamina. This unique structure mimics the female of the pollinator and potentially enhances the visibility of the mimic. However, the chemical and genetic basis for the color of these structures remains poorly understood across the genus. The goal of this study was to investigate the flower color biochemistry and patterns of gene expression across the anthocyanin and flavonol glycoside biosynthetic pathway within the calli structures across the three distinct clades of Chiloglottis (Formicifera, Reflexa, and Valida) using chemical and transcriptome analysis. Our phylogenomic analysis confirmed the close sister relationship between the Reflexa/Formicifera clades and reaffirms the basal position of the Valida clade. Additionally, the biochemical basis of the dark calli/callus structures is conserved across the genus. Nonetheless, the proportion of methoxylated anthocyanin and flavonol glycoside derivatives and the mean gene expression levels appear to differentiate the Reflexa and Formicifera clades from the Valida clade. In future studies, it will be of interest to tease apart the role of phylogeny, environment, pollinators, and other factors as potential drivers of the observed biochemistry and gene expression differences. It will also be important to characterize the function of candidate genes such as DFR, LDOX, and FLS in this fascinating case of flower color mimicry.
Collapse
|
17
|
Berardi AE, Betancourt Morejón AC, Hopkins R. Convergence without divergence in North American red-flowering Silene. FRONTIERS IN PLANT SCIENCE 2022; 13:945806. [PMID: 36147235 PMCID: PMC9485837 DOI: 10.3389/fpls.2022.945806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Combinations of correlated floral traits have arisen repeatedly across angiosperms through convergent evolution in response to pollinator selection to optimize reproduction. While some plant groups exhibit very distinct combinations of traits adapted to specific pollinators (so-called pollination syndromes), others do not. Determining how floral traits diverge across clades and whether floral traits show predictable correlations in diverse groups of flowering plants is key to determining the extent to which pollinator-mediated selection drives diversification. The North American Silene section Physolychnis is an ideal group to investigate patterns of floral evolution because it is characterized by the evolution of novel red floral color, extensive floral morphological variation, polyploidy, and exposure to a novel group of pollinators (hummingbirds). We test for correlated patterns of trait evolution that would be consistent with convergent responses to selection in the key floral traits of color and morphology. We also consider both the role of phylogenic distance and geographic overlap in explaining patterns of floral trait variation. Inconsistent with phenotypically divergent pollination syndromes, we find very little clustering of North American Silene into distinct floral morphospace. We also find little evidence that phylogenetic history or geographic overlap explains patterns of floral diversity in this group. White- and pink-flowering species show extensive phenotypic diversity but are entirely overlapping in morphological variation. However, red-flowering species have much less phenotypic disparity and cluster tightly in floral morphospace. We find that red-flowering species have evolved floral traits that align with a traditional hummingbird syndrome, but that these trait values overlap with several white and pink species as well. Our findings support the hypothesis that convergent evolution does not always proceed through comparative phenotypic divergence, but possibly through sorting of standing ancestral variation.
Collapse
Affiliation(s)
- Andrea E. Berardi
- Harvard University Herbaria, Cambridge, MA, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- The Arnold Arboretum, Boston, MA, United States
| | - Ana C. Betancourt Morejón
- Department of Biology, University of Puerto Rico - Rio Piedras Campus, San Juan, Puerto Rico
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- The Arnold Arboretum, Boston, MA, United States
| |
Collapse
|
18
|
Berger A, Latimer S, Stutts LR, Soubeyrand E, Block AK, Basset GJ. Kaempferol as a precursor for ubiquinone (coenzyme Q) biosynthesis: An atypical node between specialized metabolism and primary metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102165. [PMID: 35026487 DOI: 10.1016/j.pbi.2021.102165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 05/23/2023]
Abstract
Ubiquinone (coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. Studies have shown that plants derive approximately a quarter of 4-hydroxybenzoate, which serves as the direct ring precursor of ubiquinone, from the catabolism of kaempferol. Biochemical and genetic evidence suggests that the release of 4-hydroxybenzoate from kaempferol is catalyzed by heme-dependent peroxidases and that 3-O-glycosylations of kaempferol act as a negative regulator of this process. These findings not only represent an atypical instance of primary metabolite being derived from specialized metabolism but also raise the question as to whether ubiquinone contributes to the ROS scavenging and signaling functions already established for flavonols.
Collapse
Affiliation(s)
- Antoine Berger
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren R Stutts
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, Chemistry Research Unit, ARS, USDA, Gainesville, FL, 32608, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
19
|
Wong DCJ, Perkins J, Peakall R. Anthocyanin and Flavonol Glycoside Metabolic Pathways Underpin Floral Color Mimicry and Contrast in a Sexually Deceptive Orchid. FRONTIERS IN PLANT SCIENCE 2022; 13:860997. [PMID: 35401591 PMCID: PMC8983864 DOI: 10.3389/fpls.2022.860997] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/10/2023]
Abstract
Sexually deceptive plants secure pollination by luring specific male insects as pollinators using a combination of olfactory, visual, and morphological mimicry. Flower color is a key component to this attraction, but its chemical and genetic basis remains poorly understood. Chiloglottis trapeziformis is a sexually deceptive orchid which has predominantly dull green-red flowers except for the central black callus projecting from the labellum lamina. The callus mimics the female of the pollinator and the stark color contrast between the black callus and dull green or red lamina is thought to enhance the visibility of the mimic. The goal of this study was to investigate the chemical composition and genetic regulation of temporal and spatial color patterns leading to visual mimicry, by integrating targeted metabolite profiling and transcriptomic analysis. Even at the very young bud stage, high levels of anthocyanins were detected in the dark callus, with peak accumulation by the mature bud stage. In contrast, anthocyanin levels in the lamina peaked as the buds opened and became reddish-green. Coordinated upregulation of multiple genes, including dihydroflavonol reductase and leucoanthocyanidin dioxygenase, and the downregulation of flavonol synthase genes (FLS) in the callus at the very young bud stage underpins the initial high anthocyanin levels. Conversely, within the lamina, upregulated FLS genes promote flavonol glycoside over anthocyanin production, with the downstream upregulation of flavonoid O-methyltransferase genes further contributing to the accumulation of methylated flavonol glycosides, whose levels peaked in the mature bud stage. Finally, the peak anthocyanin content of the reddish-green lamina of the open flower is underpinned by small increases in gene expression levels and/or differential upregulation in the lamina in select anthocyanin genes while FLS patterns showed little change. Differential expression of candidate genes involved in specific transport, vacuolar acidification, and photosynthetic pathways may also assist in maintaining the distinct callus and contrasting lamina color from the earliest bud stage through to the mature flower. Our findings highlight that flower color in this sexually deceptive orchid is achieved by complex tissue-specific coordinated regulation of genes and biochemical pathways across multiple developmental stages.
Collapse
|
20
|
Fark SN, Gerber S, Alonzo SH, Kindsvater HK, Meier JI, Seehausen O. Multispecies colour polymorphisms associated with contrasting microhabitats in two Mediterranean wrasse radiations. J Evol Biol 2022; 35:633-647. [PMID: 35304789 PMCID: PMC9311657 DOI: 10.1111/jeb.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 12/01/2022]
Abstract
Intraspecific colour polymorphisms (CPs) present unique opportunities to study fundamental evolutionary questions, such as the link between ecology and phenotype, mechanisms maintaining genetic diversity and their putative role in speciation. Wrasses are highly diverse in ecology and morphology and harbour a variety of colour‐polymorphic species. In the Mediterranean Sea, wrasses of the tribe Labrini evolved two species radiations each harbouring several species with a brown and a green morph. The colour morphs occur in complete sympatry in mosaic habitats with rocky outcrops and Neptune grass patches. Morph‐specific differences had not been characterized yet and the evolutionary forces maintaining them remained unknown. With genome‐wide data for almost all Labrini species, we show that species with CPs are distributed across the phylogeny, but show evidence of hybridization. This suggests that the colour morphs are either ancient and have been lost repeatedly, that they have evolved repeatedly or have been shared via hybridization. Focusing on two polymorphic species, we find that each colour morph is more common in the microhabitat providing the best colour match and that the morphs exhibit additional behavioural and morphological differences further improving crypsis in their respective microhabitats. We find little evidence for genetic differentiation between the morphs in either species. Therefore, we propose that these colour morphs represent a multi‐niche polymorphism as an adaptation to the highly heterogeneous habitat. Our study highlights how colour polymorphism (CP) can be advantageous in mosaic habitats and that Mediterranean wrasses are an ideal system to study trans‐species polymorphisms, i.e. polymorphisms maintained across several species, in adaptive radiations.
Collapse
Affiliation(s)
- Sarya N Fark
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Steve Gerber
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Suzanne H Alonzo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - Holly K Kindsvater
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Joana I Meier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Department of Zoology, University of Cambridge, Cambridge, UK.,Center of Ecology, Evolution & Biogeochemistry, Swiss Institute for Environmental Sciences and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Center of Ecology, Evolution & Biogeochemistry, Swiss Institute for Environmental Sciences and Technology (EAWAG), Kastanienbaum, Switzerland
| |
Collapse
|
21
|
Cabin Z, Derieg NJ, Garton A, Ngo T, Quezada A, Gasseholm C, Simon M, Hodges SA. Non-pollinator selection for a floral homeotic mutant conferring loss of nectar reward in Aquilegia coerulea. Curr Biol 2022; 32:1332-1341.e5. [PMID: 35176226 DOI: 10.1016/j.cub.2022.01.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Here, we describe a polymorphic population of Aquilegia coerulea with a naturally occurring floral homeotic mutant, A. coerulea var. daileyae, where the characteristic petals with nectar spurs are replaced with a second set of sepals. Although it would be expected that this loss of pollinator reward would be disadvantageous to the mutant, we find that it has reached relatively high frequency (∼25%) and is under strong, positive selection across multiple seasons (s = 0.17-0.3) primarily due to reduced floral herbivory. We identify the underlying locus (APETALA3-3) and multiple causal loss-of-function mutations indicating an ongoing soft sweep. Elevated linkage disequilibrium around the two most common causal alleles indicates that positive selection has been occurring for many generations. Lastly, genotypic frequencies at AqAP3-3 indicate a degree of positive assortative mating by morphology. Together, these data provide both a compelling example that large-scale discontinuous morphological changes differentiating taxa can occur due to single mutations and a particularly clear example of linking genotype, phenotype, and fitness.
Collapse
Affiliation(s)
- Zachary Cabin
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Nathan J Derieg
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alexandra Garton
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Timothy Ngo
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ashley Quezada
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Constantine Gasseholm
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mark Simon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Scott A Hodges
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
22
|
Ahmad S, Chen J, Chen G, Huang J, Zhou Y, Zhao K, Lan S, Liu Z, Peng D. Why Black Flowers? An Extreme Environment and Molecular Perspective of Black Color Accumulation in the Ornamental and Food Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:885176. [PMID: 35498642 PMCID: PMC9047182 DOI: 10.3389/fpls.2022.885176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 05/04/2023]
Abstract
Pollinators are attracted to vibrant flower colors. That is why flower color is the key agent to allow successful fruit set in food or ornamental crops. However, black flower color is the least attractive to pollinators, although a number of plant species produce black flowers. Cyanidin-based anthocyanins are thought to be the key agents to induce black color in the ornamental and fruit crops. R2R3-MYB transcription factors (TFs) play key roles for the tissue-specific accumulation of anthocyanin. MYB1 and MYB11 are the key TFs regulating the expression of anthocyanin biosynthesis genes for black color accumulation. Post-transcriptional silencing of flavone synthase II (FNS) gene is the technological method to stimulate the accumulation of cyanidin-based anthocyanins in black cultivars. Type 1 promoter of DvIVS takes the advantage of FNS silencing to produce large amounts of black anthocyanins. Exogenous ethylene application triggers anthocyanin accumulation in the fruit skin at ripening. Environment cues have been the pivotal regulators to allow differential accumulation of anthocyanins to regulate black color. Heat stress is one of the most important environmental stimulus that regulates concentration gradient of anthocyanins in various plant parts, thereby affecting the color pattern of flowers. Stability of black anthocyanins in the extreme environments can save the damage, especially in fruits, caused by abiotic stress. White flowers without anthocyanin face more damages from abiotic stress than dark color flowers. The intensity and pattern of flower color accumulation determine the overall fruit set, thereby controlling crop yield and human food needs. This review paper presents comprehensive knowledge of black flower regulation as affected by high temperature stress, and the molecular regulators of anthocyanin for black color in ornamental and food crops. It also discusses the black color-pollination interaction pattern affected by heat stress for food and ornamental crops.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zhongjian Liu,
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Donghui Peng,
| |
Collapse
|
23
|
Narbona E, del Valle JC, Arista M, Buide ML, Ortiz PL. Major Flower Pigments Originate Different Colour Signals to Pollinators. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.743850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Flower colour is mainly due to the presence and type of pigments. Pollinator preferences impose selection on flower colour that ultimately acts on flower pigments. Knowing how pollinators perceive flowers with different pigments becomes crucial for a comprehensive understanding of plant-pollinator communication and flower colour evolution. Based on colour space models, we studied whether main groups of pollinators, specifically hymenopterans, dipterans, lepidopterans and birds, differentially perceive flower colours generated by major pigment groups. We obtain reflectance data and conspicuousness to pollinators of flowers containing one of the pigment groups more frequent in flowers: chlorophylls, carotenoids and flavonoids. Flavonoids were subsequently classified in UV-absorbing flavonoids, aurones-chalcones and the anthocyanins cyanidin, pelargonidin, delphinidin, and malvidin derivatives. We found that flower colour loci of chlorophylls, carotenoids, UV-absorbing flavonoids, aurones-chalcones, and anthocyanins occupied different regions of the colour space models of these pollinators. The four groups of anthocyanins produced a unique cluster of colour loci. Interestingly, differences in colour conspicuousness among the pigment groups were almost similar in the bee, fly, butterfly, and bird visual space models. Aurones-chalcones showed the highest chromatic contrast values, carotenoids displayed intermediate values, and chlorophylls, UV-absorbing flavonoids and anthocyanins presented the lowest values. In the visual model of bees, flowers with UV-absorbing flavonoids (i.e., white flowers) generated the highest achromatic contrasts. Ours findings suggest that in spite of the almost omnipresence of floral anthocyanins in angiosperms, carotenoids and aurones-chalcones generates higher colour conspicuousness for main functional groups of pollinators.
Collapse
|
24
|
Berardi AE, Esfeld K, Jäggi L, Mandel T, Cannarozzi GM, Kuhlemeier C. Complex evolution of novel red floral color in Petunia. THE PLANT CELL 2021; 33:2273-2295. [PMID: 33871652 PMCID: PMC8364234 DOI: 10.1093/plcell/koab114] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/12/2021] [Indexed: 05/20/2023]
Abstract
Red flower color has arisen multiple times and is generally associated with hummingbird pollination. The majority of evolutionary transitions to red color proceeded from purple lineages and tend to be genetically simple, almost always involving a few loss-of-function mutations of major phenotypic effect. Here we report on the complex evolution of a novel red floral color in the hummingbird-pollinated Petunia exserta (Solanaceae) from a colorless ancestor. The presence of a red color is remarkable because the genus cannot synthesize red anthocyanins and P. exserta retains a nonfunctional copy of the key MYB transcription factor AN2. We show that moderate upregulation and a shift in tissue specificity of an AN2 paralog, DEEP PURPLE, restores anthocyanin biosynthesis in P. exserta. An essential shift in anthocyanin hydroxylation occurred through rebalancing the expression of three hydroxylating genes. Furthermore, the downregulation of an acyltransferase promotes reddish hues in typically purple pigments by preventing acyl group decoration of anthocyanins. This study presents a rare case of a genetically complex evolutionary transition toward the gain of a novel red color.
Collapse
Affiliation(s)
- Andrea E. Berardi
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Korinna Esfeld
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Lea Jäggi
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | | | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
- Author for correspondence:
| |
Collapse
|
25
|
Cozzolino S, Scopece G, Lussu M, Cortis P, Schiestl FP. Do floral and ecogeographic isolation allow the co-occurrence of two ecotypes of Anacamptis papilionacea (Orchidaceae)? Ecol Evol 2021; 11:9917-9931. [PMID: 34367549 PMCID: PMC8328454 DOI: 10.1002/ece3.7432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 11/08/2022] Open
Abstract
Ecotypes are relatively frequent in flowering plants and considered central in ecological speciation as local adaptation can promote the insurgence of reproductive isolation. Without geographic isolation, gene flow usually homogenizes the allopatrically generated phenotypic and ecological divergences, unless other forms of reproductive isolation keep them separated. Here, we investigated two orchid ecotypes with marked phenotypic floral divergence that coexist in contact zones. We found that the two ecotypes show different ecological habitat preferences with one being more climatically restricted than the other. The ecotypes remain clearly morphologically differentiated both in allopatry and in sympatry and differed in diverse floral traits. Despite only slightly different flowering times, the two ecotypes achieved floral isolation thanks to different pollination strategies. We found that both ecotypes attract a wide range of insects, but the ratio of male/female attracted by the two ecotypes was significantly different, with one ecotype mainly attracts male pollinators, while the other mainly attracts female pollinators. As a potential consequence, the two ecotypes show different pollen transfer efficiency. Experimental plots with pollen staining showed a higher proportion of intra- than interecotype movements confirming floral isolation between ecotypes in sympatry while crossing experiments excluded evident postmating barriers. Even if not completely halting the interecotypes pollen flow in sympatry, such incipient switch in pollination strategy between ecotypes may represent a first step on the path toward evolution of sexual mimicry in Orchidinae.
Collapse
Affiliation(s)
| | - Giovanni Scopece
- Department of BiologyUniversity Federico II of NaplesNapoliItaly
| | - Michele Lussu
- Department of Life and Environmental SciencesUniversity of CagliariCagliariItaly
- Istituto Regionale per la Floricoltura (IRF)SanremoItaly
| | - Pierluigi Cortis
- Department of Life and Environmental SciencesUniversity of CagliariCagliariItaly
| | - Florian P. Schiestl
- Department of Systematic and Evolutionary Botany and Botanical GardensUniversity of ZurichZurichSwitzerland
| |
Collapse
|
26
|
Significant habitat loss of the black vanilla orchid (Nigritella nigra s.l., Orchidaceae) and shifts in its pollinators availability as results of global warming. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
Estévez D, Galindo J, Rolán‐Alvarez E. Negative frequency-dependent selection maintains shell banding polymorphisms in two marine snails ( Littorina fabalis and Littorina saxatilis). Ecol Evol 2021; 11:6381-6390. [PMID: 34141225 PMCID: PMC8207376 DOI: 10.1002/ece3.7489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/09/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
The presence of shell bands is common in gastropods. Both the marine snails Littorina fabalis and Lttorina saxatilis are polymorphic for this trait. Such polymorphism would be expected to be lost by the action of genetic drift or directional selection, but it appears to be widespread at relatively constant frequencies. This suggests it is maintained by balancing selection on the trait or on a genetically linked trait. Using long time series of empirical data, we compared potential effects of genetic drift and negative frequency-dependent selection (NFDS) in the two species. The contribution of genetic drift to changes in the frequency of bands in L. fabalis was estimated using the effective population size estimated from microsatellite data, while the effect of genetic drift in L. saxatilis was derived from previously published study. Frequency-dependent selection was assessed by comparing the cross-product estimator of fitness with the frequency of the polymorphism across years using a regression analysis. Both studied species showed patterns of NFDS. In addition, in L. fabalis, contributions from genetic drift could explain some of the changes in banding frequency. Overdominance and heterogeneous selection did not fit well to our data. The possible biological explanations resulting in the maintenance of the banding polymorphism are discussed.
Collapse
Affiliation(s)
- Daniel Estévez
- Departamento de BioquímicaGenética e Inmunología y Centro de Investigación Mariña (CIM‐UVIGO)Universidade de VigoVigoSpain
- Greenland Institute of Natural ResourcesDepartment of Fish and ShellfishNuukGreenland
| | - Juan Galindo
- Departamento de BioquímicaGenética e Inmunología y Centro de Investigación Mariña (CIM‐UVIGO)Universidade de VigoVigoSpain
| | - Emilio Rolán‐Alvarez
- Departamento de BioquímicaGenética e Inmunología y Centro de Investigación Mariña (CIM‐UVIGO)Universidade de VigoVigoSpain
| |
Collapse
|
28
|
Glémin S. Balancing selection in self-fertilizing populations. Evolution 2021; 75:1011-1029. [PMID: 33675041 DOI: 10.1111/evo.14194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 11/30/2022]
Abstract
Self-fertilization commonly occurs in hermaphroditic species, either occasionally or as the main reproductive mode. It strongly affects the genetic functioning of a population by increasing homozygosity and genetic drift and reducing the effectiveness of recombination. Balancing selection is a form of selection that maintains polymorphism, which has been extensively studied in outcrossing species. Yet, despite recent developments, the analysis of balancing selection in partially selfing species is limited to specific cases and a general treatment is still lacking. In particular, it is unclear whether selfing globally reduced the efficacy of balancing selection as in the well-known case of overdominance. I provide a unifying framework, quantify how selfing affects the maintenance of polymorphism and the efficacy of the different form of balancing selection, and show that they can be classified into two main categories: overdominance-like selection (including true overdominance, selection variable in space and time, and antagonistic selection), which is strongly affected by selfing, and negative frequency dependent selection, which is barely affected by selfing, even at multiple loci. I also provide simple analytical results for all cases under the assumption of weak selection. This framework provides theoretical background to analyze the genomic signature of balancing selection in partially selfing species. It also sheds new light on the evolution of selfing species, including the evolution of selfing syndrome, the interaction with pathogens, and the evolutionary fate of selfing lineages.
Collapse
Affiliation(s)
- Sylvain Glémin
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution), University of Rennes 1, UMR 6553, Rennes, France.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
29
|
Kron P, Loureiro J, Castro S, Čertner M. Flow cytometric analysis of pollen and spores: An overview of applications and methodology. Cytometry A 2021; 99:348-358. [PMID: 33625767 DOI: 10.1002/cyto.a.24330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Pollen grains are the male gametophytes in a seed-plant life cycle. Their small, particulate nature and crucial role in plant reproduction have made them an attractive object of study using flow cytometry (FCM), with a wide range of applications existing in the literature. While methodological considerations for many of these overlap with those for other tissue types (e.g., general considerations for the measurement of nuclear DNA content), the relative complexity of pollen compared to single cells presents some unique challenges. We consider these here in the context of both the identification and isolation of pollen and its subunits, and the types of research applications. While the discussion here mostly concerns pollen, the general principles described here can be extended to apply to spores in ferns, lycophytes, and bryophytes. In addition to recommendations provided in more general studies, some recurring and notable issues related specifically to pollen and spores are highlighted.
Collapse
Affiliation(s)
- Paul Kron
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Martin Čertner
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Evolutionary Plant Biology, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| |
Collapse
|
30
|
Bateman RM. Phenotypic versus genotypic disparity in the Eurasian orchid genus Gymnadenia: exploring the limits of phylogeny reconstruction. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1877845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richard M. Bateman
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, Surrey, UK
| |
Collapse
|
31
|
Sapir Y, Gallagher MK, Senden E. What Maintains Flower Colour Variation within Populations? Trends Ecol Evol 2021; 36:507-519. [PMID: 33663870 DOI: 10.1016/j.tree.2021.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Natural selection acts on phenotypic trait variation. Understanding the mechanisms that create and maintain trait variation is fundamental to understanding the breadth of diversity seen on Earth. Flower colour is among the most conspicuous and highly diverse traits in nature. Most flowering plant populations have uniform floral colours, but a minority exhibit within-population colour variation, either discrete (polymorphic) or continuous. Colour variation is commonly maintained by balancing selection through multiple pollinators, opposing selection regimes, or fluctuating selection. Variation can also be maintained by heterozygote advantage or frequency-dependent selection. Neutral processes, or a lack of selection, may maintain variation, although this remains largely untested. We suggest several prospective research directions that may provide insight into the evolutionary drivers of trait variation.
Collapse
Affiliation(s)
- Yuval Sapir
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | - M Kate Gallagher
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Esther Senden
- The Botanical Garden, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
32
|
Sánchez-Cabrera M, Jiménez-López FJ, Narbona E, Arista M, Ortiz PL, Romero-Campero FJ, Ramanauskas K, Igić B, Fuller AA, Whittall JB. Changes at a Critical Branchpoint in the Anthocyanin Biosynthetic Pathway Underlie the Blue to Orange Flower Color Transition in Lysimachia arvensis. FRONTIERS IN PLANT SCIENCE 2021; 12:633979. [PMID: 33692818 PMCID: PMC7937975 DOI: 10.3389/fpls.2021.633979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 05/27/2023]
Abstract
Anthocyanins are the primary pigments contributing to the variety of flower colors among angiosperms and are considered essential for survival and reproduction. Anthocyanins are members of the flavonoids, a broader class of secondary metabolites, of which there are numerous structural genes and regulators thereof. In western European populations of Lysimachia arvensis, there are blue- and orange-petaled individuals. The proportion of blue-flowered plants increases with temperature and daylength yet decreases with precipitation. Here, we performed a transcriptome analysis to characterize the coding sequences of a large group of flavonoid biosynthetic genes, examine their expression and compare our results to flavonoid biochemical analysis for blue and orange petals. Among a set of 140 structural and regulatory genes broadly representing the flavonoid biosynthetic pathway, we found 39 genes with significant differential expression including some that have previously been reported to be involved in similar flower color transitions. In particular, F3'5'H and DFR, two genes at a critical branchpoint in the ABP for determining flower color, showed differential expression. The expression results were complemented by careful examination of the SNPs that differentiate the two color types for these two critical genes. The decreased expression of F3'5'H in orange petals and differential expression of two distinct copies of DFR, which also exhibit amino acid changes in the color-determining substrate specificity region, strongly correlate with the blue to orange transition. Our biochemical analysis was consistent with the transcriptome data indicating that the shift from blue to orange petals is caused by a change from primarily malvidin to largely pelargonidin forms of anthocyanins. Overall, we have identified several flavonoid biosynthetic pathway loci likely involved in the shift in flower color in L. arvensis and even more loci that may represent the complex network of genetic and physiological consequences of this flower color polymorphism.
Collapse
Affiliation(s)
- Mercedes Sánchez-Cabrera
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | | | - Eduardo Narbona
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Montserrat Arista
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | - Pedro L. Ortiz
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | - Francisco J. Romero-Campero
- Institute for Plant Biochemistry and Photosynthesis, University of Seville – Centro Superior de Investigación Científica, Seville, Spain
- Department of Computer Science and Artificial Intelligence, University of Seville, Seville, Spain
| | - Karolis Ramanauskas
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Boris Igić
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Amelia A. Fuller
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Justen B. Whittall
- Department of Biology, College of Arts and Sciences, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
33
|
Dyer AG, Jentsch A, Burd M, Garcia JE, Giejsztowt J, Camargo MGG, Tjørve E, Tjørve KMC, White P, Shrestha M. Fragmentary Blue: Resolving the Rarity Paradox in Flower Colors. FRONTIERS IN PLANT SCIENCE 2021; 11:618203. [PMID: 33552110 PMCID: PMC7859648 DOI: 10.3389/fpls.2020.618203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 05/05/2023]
Abstract
Blue is a favored color of many humans. While blue skies and oceans are a common visual experience, this color is less frequently observed in flowers. We first review how blue has been important in human culture, and thus how our perception of blue has likely influenced the way of scientifically evaluating signals produced in nature, including approaches as disparate as Goethe's Farbenlehre, Linneaus' plant taxonomy, and current studies of plant-pollinator networks. We discuss the fact that most animals, however, have different vision to humans; for example, bee pollinators have trichromatic vision based on UV-, Blue-, and Green-sensitive photoreceptors with innate preferences for predominantly short-wavelength reflecting colors, including what we perceive as blue. The subsequent evolution of blue flowers may be driven by increased competition for pollinators, both because of a harsher environment (as at high altitude) or from high diversity and density of flowering plants (as in nutrient-rich meadows). The adaptive value of blue flowers should also be reinforced by nutrient richness or other factors, abiotic and biotic, that may reduce extra costs of blue-pigments synthesis. We thus provide new perspectives emphasizing that, while humans view blue as a less frequently evolved color in nature, to understand signaling, it is essential to employ models of biologically relevant observers. By doing so, we conclude that short wavelength reflecting blue flowers are indeed frequent in nature when considering the color vision and preferences of bees.
Collapse
Affiliation(s)
- Adrian G. Dyer
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Anke Jentsch
- Department of Disturbance Ecology, Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Jair E. Garcia
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Justyna Giejsztowt
- Department of Disturbance Ecology, Bayreuth Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Maria G. G. Camargo
- Phenology Lab, Biosciences Institute, Department of Biodiversity, UNESP – São Paulo State University, São Paulo, Brazil
| | - Even Tjørve
- Inland Norway University of Applied Sciences, Lillehammer, Norway
| | | | - Peter White
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mani Shrestha
- School of Media and Communication, RMIT University, Melbourne, VIC, Australia
- Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Rodríguez-Castañeda NL, Ortiz PL, Arista M, Narbona E, Buide ML. Indirect Selection on Flower Color in Silene littorea. FRONTIERS IN PLANT SCIENCE 2020; 11:588383. [PMID: 33424884 PMCID: PMC7785944 DOI: 10.3389/fpls.2020.588383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/07/2023]
Abstract
Flower color, as other floral traits, may suffer conflicting selective pressures mediated by both mutualists and antagonists. The maintenance of intraspecific flower color variability has been usually explained as a result of direct selection by biotic agents. However, flower color might also be under indirect selection through correlated traits, since correlations among flower traits are frequent. In this study, we aimed to find out how flower color variability is maintained in two nearby populations of Silene littorea that consistently differ in the proportions of white-flowered plants. To do that, we assessed natural selection on floral color and correlated traits by means of phenotypic selection analysis and path analysis. Strong directional selection on floral display and flower production was found in both populations through either male or female fitness. Flower color had a negative indirect effect on the total male and female fitness in Melide population, as plants with lighter corollas produced more flowers. In contrast, in Barra population, plants with darker corollas produced more flowers and have darker calices, which in turn were selected. Our results suggest that the prevalence of white-flowered plants in Melide and pink-flowered plants in Barra is a result of indirect selection through correlated flower traits and not a result of direct selection of either pollinators or herbivores on color.
Collapse
Affiliation(s)
| | - Pedro L. Ortiz
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - Mª Luisa Buide
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
35
|
Dellinger AS. Pollination syndromes in the 21 st century: where do we stand and where may we go? THE NEW PHYTOLOGIST 2020; 228:1193-1213. [PMID: 33460152 DOI: 10.1111/nph.16793] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/31/2020] [Indexed: 06/12/2023]
Abstract
Pollination syndromes, recurring suites of floral traits appearing in connection with specific functional pollinator groups, have served for decades to organise floral diversity under a functional-ecological perspective. Some potential caveats, such as over-simplification of complex plant-animal interactions or lack of empirical observations, have been identified and discussed in recent years. Which of these caveats do indeed cause problems, which have been solved and where do future possibilities lie? I address these questions in a review of the pollination-syndrome literature of 2010 to 2019. I show that the majority of studies was based on detailed empirical pollinator observations and could reliably predict pollinators based on a few floral traits such as colour, shape or reward. Some traits (i.e. colour) were less reliable in predicting pollinators than others (i.e. reward, corolla width), however. I stress that future studies should consider floral traits beyond those traditionally recorded to expand our understanding of mechanisms of floral evolution. I discuss statistical methods suitable for objectively analysing the interplay of system-specific evolutionary constraints, pollinator-mediated selection and adaptive trade-offs at microecological and macroecological scales. I exemplify my arguments on an empirical dataset of floral traits of a neotropical plant radiation in the family Melastomataceae.
Collapse
|
36
|
Jamie GA, Meier JI. The Persistence of Polymorphisms across Species Radiations. Trends Ecol Evol 2020; 35:795-808. [DOI: 10.1016/j.tree.2020.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
|
37
|
Jacquemyn H, Brys R. Lack of strong selection pressures maintains wide variation in floral traits in a food-deceptive orchid. ANNALS OF BOTANY 2020; 126:445-453. [PMID: 32333761 PMCID: PMC7424767 DOI: 10.1093/aob/mcaa080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/23/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Angiosperms vary remarkably in traits such as colour, size and shape of flowers, yet such variation generally tends to be low within species. In deceptive orchids, however, large variation in floral traits has been described, not only between but also within populations. Nonetheless, the factors driving variation in floral traits in deceptive orchids remain largely unclear. METHODS To identify determinants of variation in floral traits, we investigated patterns of fruit set and selection gradients in the food-deceptive orchid Orchis purpurea, which typically presents large within-population variation in the colour and size of the flowers. Using long-term data, fruit set was quantified in two populations over 16 consecutive years (2004-2019). Artificial hand pollination was performed to test the hypothesis that fruit set was pollinator-limited and that selfing led to decreased seed set and viability. Annual variation (2016-2019) in selection gradients was calculated for three colour traits (brightness, contrast and the number of spots on the labellum), flower size (spur length, labellum length and width) and plant size (number of flowers, plant height). KEY RESULTS Fruit set was, on average, low (~12 %) and severely pollinator-limited. Opportunities for selection varied strongly across years, but we found only weak evidence for selection on floral traits. In contrast, there was strong and consistent positive selection on floral display. Selfing led to reduced production of viable seeds and hence severe inbreeding depression (δ = 0.38). CONCLUSION Overall, these results demonstrate that the large variation in flower colour and size that is regularly observed in natural O. purpurea populations is maintained by the consistent lack of strong selection pressures on these traits through time.
Collapse
Affiliation(s)
- Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Rein Brys
- Research Institute for Forest and Nature, Geraardsbergen, Belgium
| |
Collapse
|
38
|
Piatkowski BT, Imwattana K, Tripp EA, Weston DJ, Healey A, Schmutz J, Shaw AJ. Phylogenomics reveals convergent evolution of red-violet coloration in land plants and the origins of the anthocyanin biosynthetic pathway. Mol Phylogenet Evol 2020; 151:106904. [PMID: 32645485 DOI: 10.1016/j.ympev.2020.106904] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022]
Abstract
The flavonoids, one of the largest classes of plant secondary metabolites, are found in lineages that span the land plant phylogeny and play important roles in stress responses and as pigments. Perhaps the most well-studied flavonoids are the anthocyanins that have human health benefits and help plants attract pollinators, regulate hormone production, and confer resistance to abiotic and biotic stresses. The canonical biochemical pathway responsible for the production of these pigments is well-characterized for flowering plants yet its conservation across deep divergences in land plants remains debated and poorly understood. Many early land plants such as mosses, liverworts, and ferns produce flavonoid pigments, but their biosynthetic origins and homologies to the anthocyanin pathway remain uncertain. We conducted phylogenetic analyses using full genome sequences representing nearly all major green plant lineages to reconstruct the evolutionary history of the anthocyanin biosynthetic pathway then test the hypothesis that genes in this pathway are present in early land plants. We found that the entire pathway was not intact until the most recent common ancestor of seed plants and that orthologs of many downstream enzymes are absent from seedless plants including mosses, liverworts, and ferns. Our results also highlight the utility of phylogenetic inference, as compared to pairwise sequence similarity, in orthology assessment within large gene families that have complex duplication-loss histories. We suggest that the production of red-violet flavonoid pigments widespread in seedless plants, including the 3-deoxyanthocyanins, requires the activity of novel, as-yet discovered enzymes, and represents convergent evolution of red-violet coloration across land plants.
Collapse
Affiliation(s)
- Bryan T Piatkowski
- Department of Biology, Duke University, Durham, NC 27708, United States.
| | - Karn Imwattana
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - Erin A Tripp
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Adam Healey
- HudsonAlpha Institute of Biotechnology, Huntsville, AL 35806, United States
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, AL 35806, United States; Department of Energy Joint Genome Institute, Berkeley, CA 94720, United States
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC 27708, United States
| |
Collapse
|
39
|
Orteu A, Jiggins CD. The genomics of coloration provides insights into adaptive evolution. Nat Rev Genet 2020; 21:461-475. [PMID: 32382123 DOI: 10.1038/s41576-020-0234-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 01/31/2023]
Abstract
Coloration is an easily quantifiable visual trait that has proven to be a highly tractable system for genetic analysis and for studying adaptive evolution. The application of genomic approaches to evolutionary studies of coloration is providing new insight into the genetic architectures underlying colour traits, including the importance of large-effect mutations and supergenes, the role of development in shaping genetic variation and the origins of adaptive variation, which often involves adaptive introgression. Improved knowledge of the genetic basis of traits can facilitate field studies of natural selection and sexual selection, making it possible for strong selection and its influence on the genome to be demonstrated in wild populations.
Collapse
Affiliation(s)
- Anna Orteu
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
40
|
Côté K, Simons AM. Genotype-environment interaction and the maintenance of genetic variation: an empirical study of Lobelia inflata (Campanulaceae). ROYAL SOCIETY OPEN SCIENCE 2020; 7:191720. [PMID: 32269800 PMCID: PMC7137973 DOI: 10.1098/rsos.191720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/19/2020] [Indexed: 05/13/2023]
Abstract
High levels of genetic variation are often observed in natural populations, suggesting the action of processes such as frequency-dependent selection, heterozygote advantage and variable selection. However, the maintenance of genetic variation in fitness-related traits remains incompletely explained. The extent of genetic variation in obligately self-fertilizing populations of Lobelia inflata (Campanulaceae L.) strongly implies balancing selection. Lobelia inflata thus offers an exceptional opportunity for an empirical test of genotype-environment interaction (G × E) as a variance-maintaining mechanism under fluctuating selection: L. inflata is monocarpic and reproduces only by seed, facilitating assessment of lifetime fitness; genome-wide homozygosity precludes some mechanisms of balancing selection, and microsatellites are, in effect, genotypic lineage markers. Here, we find support for the temporal G × E hypothesis using a manipulated space-for-time approach across four environments: a field environment, an outdoor experimental plot and two differing growth-chamber environments. High genetic variance was confirmed: 83 field-collected individuals consisted of 45 distinct microsatellite lineages with, on average, 4.5 alleles per locus. Rank-order fitness, measured as lifetime fruit production in 16 replicated multilocus genotypes, changed significantly across environments. Phenotypic differences among microsatellite lineages were detected. Results thus support the G × E hypothesis in principle. However, the evaluation of the effect size of this mechanism and fitness effects of life-history traits will require a long-term study of fluctuating selection on labelled genotypes in the field.
Collapse
Affiliation(s)
| | - Andrew M. Simons
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, CanadaK1S 5B6
| |
Collapse
|
41
|
Zhang Y, Zhou T, Dai Z, Dai X, Li W, Cao M, Li C, Tsai WC, Wu X, Zhai J, Liu Z, Wu S. Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a Pleione limprichtii Orchid Population. Int J Mol Sci 2019; 21:E247. [PMID: 31905846 PMCID: PMC6982098 DOI: 10.3390/ijms21010247] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Floral color polymorphism can provide great insight into species evolution from a genetic and ecological standpoint. Color variations between species are often mediated by pollinators and are fixed characteristics, indicating their relevance to adaptive evolution, especially between plants within a single population or between similar species. The orchid genus Pleione has a wide variety of flower colors, from violet, rose-purple, pink, to white, but their color formation and its evolutionary mechanism are unclear. Here, we selected the P. limprichtii population in Huanglong, Sichuan Province, China, which displayed three color variations: Rose-purple, pink, and white, providing ideal material for exploring color variations with regard to species evolution. We investigated the distribution pattern of the different color morphs. The ratio of rose-purple:pink:white-flowered individuals was close to 6:3:1. We inferred that the distribution pattern may serve as a reproductive strategy to maintain the population size. Metabolome analysis was used to reveal that cyanindin derivatives and delphidin are the main color pigments involved. RNA sequencing was used to characterize anthocyanin biosynthetic pathway-related genes and reveal different color formation pathways and transcription factors in order to identify differentially-expressed genes and explore their relationship with color formation. In addition, qRT-PCR was used to validate the expression patterns of some of the genes. The results show that PlFLS serves as a crucial gene that contributes to white color formation and that PlANS and PlUFGT are related to the accumulation of anthocyanin which is responsible for color intensity, especially in pigmented flowers. Phylogenetic and co-expression analyses also identified a R2R3-MYB gene PlMYB10, which is predicted to combine with PlbHLH20 or PlbHLH26 along with PlWD40-1 to form an MBW protein complex (MYB, bHLH, and WDR) that regulates PlFLS expression and may serve as a repressor of anthocyanin accumulation-controlled color variations. Our results not only explain the molecular mechanism of color variation in P. limprichtii, but also contribute to the exploration of a flower color evolutionary model in Pleione, as well as other flowering plants.
Collapse
Affiliation(s)
- Yiyi Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Tinghong Zhou
- Huanglong National Scenic Reserve, Songpan 623300, China;
| | - Zhongwu Dai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Xiaoyu Dai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Wei Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Mengxia Cao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Chengru Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Wen-Chieh Tsai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan City 701, China
| | - Xiaoqian Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| | - Shasha Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.D.); (X.D.); (W.L.); (M.C.); (C.L.); (W.-C.T.); (X.W.); (J.Z.)
| |
Collapse
|
42
|
Piñeiro Fernández L, Byers KJR.P, Cai J, Sedeek KEM, Kellenberger RT, Russo A, Qi W, Aquino Fournier C, Schlüter PM. A Phylogenomic Analysis of the Floral Transcriptomes of Sexually Deceptive and Rewarding European Orchids, Ophrys and Gymnadenia. FRONTIERS IN PLANT SCIENCE 2019; 10:1553. [PMID: 31850034 PMCID: PMC6895147 DOI: 10.3389/fpls.2019.01553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/07/2019] [Indexed: 05/30/2023]
Abstract
The orchids (Orchidaceae) constitute one of the largest and most diverse families of flowering plants. They have evolved a great variety of adaptations to achieve pollination by a diverse group of pollinators. Many orchids reward their pollinators, typically with nectar, but the family is also well-known for employing deceptive pollination strategies in which there is no reward for the pollinator, in the most extreme case by mimicking sexual signals of pollinators. In the European flora, two examples of these different pollination strategies are the sexually deceptive genus Ophrys and the rewarding genus Gymnadenia, which differ in their level of pollinator specialization; Ophrys is typically pollinated by pseudo-copulation of males of a single insect species, whilst Gymnadenia attracts a broad range of floral visitors. Here, we present and describe the annotated floral transcriptome of Ophrys iricolor, an Andrena-pollinated representative of the genus Ophrys that is widespread throughout the Aegean. Furthermore, we present additional floral transcriptomes of both sexually deceptive and rewarding orchids, specifically the deceptive Ophrys insectifera, Ophrys aymoninii, and an updated floral transcriptome of Ophrys sphegodes, as well as the floral transcriptomes of the rewarding orchids Gymnadenia conopsea, Gymnadenia densiflora, Gymnadenia odoratissima, and Gymnadenia rhellicani (syn. Nigritella rhellicani). Comparisons of these novel floral transcriptomes reveal few annotation differences between deceptive and rewarding orchids. Since together, these transcriptomes provide a representative sample of the genus-wide taxonomic diversity within Ophrys and Gymnadenia (Orchidoideae: Orchidinae), we employ a phylogenomic approach to address open questions of phylogenetic relationships within the genera. Specifically, this includes the controversial placement of O. insectifera within the Ophrys phylogeny and the placement of "Nigritella"-type morphologies within the phylogeny of Gymnadenia. Whereas in Gymnadenia, several conflicting topologies are supported by a similar number of gene trees, a majority of Ophrys gene topologies clearly supports a placement of O. insectifera as sister to a clade containing O. sphegodes.
Collapse
Affiliation(s)
- Laura Piñeiro Fernández
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Kelsey J. R .P. Byers
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jing Cai
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Khalid E. M. Sedeek
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza, Egypt
| | - Roman T. Kellenberger
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alessia Russo
- Institute of Botany, University of Hohenheim, Stuttgart, Germany
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Centre Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
43
|
Del Valle JC, Alcalde-Eon C, Escribano-Bailón MT, Buide ML, Whittall JB, Narbona E. Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues. BMC PLANT BIOLOGY 2019; 19:496. [PMID: 31726989 PMCID: PMC6854811 DOI: 10.1186/s12870-019-2082-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/17/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Anthocyanins are the primary source of colour in flowers and also accumulate in vegetative tissues, where they have multiple protective roles traditionally attributed to early compounds of the metabolic pathway (flavonols, flavones, etc.). Petal-specific loss of anthocyanins in petals allows plants to escape from the negative pleiotropic effects of flavonoid and anthocyanins loss in vegetative organs, where they perform a plethora of essential functions. Herein, we investigate the degree of pleiotropy at the biochemical scale in a pink-white flower colour polymorphism in the shore campion, Silene littorea. We report the frequencies of pink and white individuals across 21 populations and underlying biochemical profiles of three flower colour variants: anthocyanins present in all tissues (pink petals), petal-specific loss of anthocyanins (white petals), and loss of anthocyanins in all tissues (white petals). RESULTS Individuals lacking anthocyanins only in petals represent a stable polymorphism in two populations at the northern edge of the species range (mean frequency 8-21%). Whereas, individuals lacking anthocyanins in the whole plant were found across the species range, yet always at very low frequencies (< 1%). Biochemically, the flavonoids detected were anthocyanins and flavones; in pigmented individuals, concentrations of flavones were 14-56× higher than anthocyanins across tissues with differences of > 100× detected in leaves. Loss of anthocyanin pigmentation, either in petals or in the whole plant, does not influence the ability of these phenotypes to synthesize flavones, and this pattern was congruent among all sampled populations. CONCLUSIONS We found that all colour variants showed similar flavone profiles, either in petals or in the whole plant, and only the flower colour variant with anthocyanins in photosynthetic tissues persists as a stable flower colour polymorphism. These findings suggest that anthocyanins in photosynthetic tissues, not flavonoid intermediates, are the targets of non-pollinator mediated selection.
Collapse
Affiliation(s)
- José Carlos Del Valle
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, 41013, Seville, Spain.
| | - Cristina Alcalde-Eon
- Grupo de Investigación en Polifenoles (GIP), University of Salamanca, 37007, Salamanca, Spain
| | | | - Mª Luisa Buide
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, 41013, Seville, Spain
| | - Justen B Whittall
- Department of Biology, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Eduardo Narbona
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, 41013, Seville, Spain
| |
Collapse
|
44
|
van der Kooi CJ, Kevan PG, Koski MH. The thermal ecology of flowers. ANNALS OF BOTANY 2019; 124:343-353. [PMID: 31206146 PMCID: PMC6798827 DOI: 10.1093/aob/mcz073] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/27/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Obtaining an optimal flower temperature can be crucial for plant reproduction because temperature mediates flower growth and development, pollen and ovule viability, and influences pollinator visitation. The thermal ecology of flowers is an exciting, yet understudied field of plant biology. SCOPE This review focuses on several attributes that modify exogenous heat absorption and retention in flowers. We discuss how flower shape, orientation, heliotropic movements, pubescence, coloration, opening-closing movements and endogenous heating contribute to the thermal balance of flowers. Whenever the data are available, we provide quantitative estimates of how these floral attributes contribute to heating of the flower, and ultimately plant fitness. OUTLOOK Future research should establish form-function relationships between floral phenotypes and temperature, determine the fitness effects of the floral microclimate, and identify broad ecological correlates with heat capture mechanisms.
Collapse
Affiliation(s)
- Casper J van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Peter G Kevan
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Matthew H Koski
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
45
|
Palmer NA, Chowda-Reddy RV, Muhle AA, Tatineni S, Yuen G, Edmé SJ, Mitchell RB, Sarath G. Transcriptome divergence during leaf development in two contrasting switchgrass (Panicum virgatum L.) cultivars. PLoS One 2019; 14:e0222080. [PMID: 31513611 PMCID: PMC6742388 DOI: 10.1371/journal.pone.0222080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/21/2019] [Indexed: 01/09/2023] Open
Abstract
The genetics and responses to biotic stressors of tetraploid switchgrass (Panicum virgatum L.) lowland cultivar 'Kanlow' and upland cultivar Summer are distinct and can be exploited for trait improvement. In general, there is a paucity of data on the basal differences in transcription across tissue developmental times for switchgrass cultivars. Here, the changes in basal and temporal expression of genes related to leaf functions were evaluated for greenhouse grown 'Kanlow', and 'Summer' plants. Three biological replicates of the 4th leaf pooled from 15 plants per replicate were harvested at regular intervals beginning from leaf emergence through senescence. Increases and decreases in leaf chlorophyll and N content were similar for both cultivars. Likewise, multidimensional scaling (MDS) analysis indicated both cultivar-independent and cultivar-specific gene expression. Cultivar-independent genes and gene-networks included those associated with leaf function, such as growth/senescence, carbon/nitrogen assimilation, photosynthesis, chlorophyll biosynthesis, and chlorophyll degradation. However, many genes encoding nucleotide-binding leucine rich repeat (NB-LRRs) proteins and wall-bound kinases associated with detecting and responding to environmental signals were differentially expressed. Several of these belonged to unique cultivar-specific gene co-expression networks. Analysis of genomic resequencing data provided several examples of NB-LRRs genes that were not expressed and/or apparently absent in the genomes of Summer plants. It is plausible that cultivar (ecotype)-specific genes and gene-networks could be one of the drivers for the documented differences in responses to leaf-borne pathogens between these two cultivars. Incorporating broad resistance to plant pathogens in elite switchgrass germplasm could improve sustainability of biomass production under low-input conditions.
Collapse
Affiliation(s)
- Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United states of America
| | - R. V. Chowda-Reddy
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United states of America
| | - Anthony A. Muhle
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United states of America
| | - Satyanarayana Tatineni
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United states of America
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United states of America
| | - Gary Yuen
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United states of America
| | - Serge J. Edmé
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United states of America
| | - Robert B. Mitchell
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United states of America
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, Nebraska, United states of America
| |
Collapse
|
46
|
Brandrud MK, Paun O, Lorenz R, Baar J, Hedrén M. Restriction-site associated DNA sequencing supports a sister group relationship of Nigritella and Gymnadenia (Orchidaceae). Mol Phylogenet Evol 2019; 136:21-28. [PMID: 30914398 DOI: 10.1016/j.ympev.2019.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
The orchid genus Nigritella is closely related to Gymnadenia and has from time to time been merged with the latter. Although Nigritella is morphologically distinct, it has been suggested that the separating characters are easily modifiable and subject to rapid evolutionary change. So far, molecular phylogenetic studies have either given support for the inclusion of Nigritella in Gymnadenia, or for their separation as different genera. To resolve this issue, we analysed data obtained from Restriction-site associated DNA sequencing, RADseq, which provides a large number of SNPs distributed across the entire genome. To analyse samples of different ploidies, we take an analytical approach of building a reduced genomic reference based on de novo RADseq loci reconstructed from diploid accessions only, which we further use to map and call variants across both diploid and polyploid accessions. We found that Nigritella is distinct from Gymnadenia forming a well-supported separate clade, and that genetic diversity within Gymnadenia is high. Within Gymnadenia, taxa characterized by an ITS-E ribotype (G. conopsea s.str. (early flowering) and G. odoratissima), are divergent from taxa characterized by ITS-L ribotype (G. frivaldii, G. densiflora and late flowering G. conopsea). Gymnigritella runei is confirmed to have an allopolyploid origin from diploid Gymnadenia conopsea and tetraploid N. nigra ssp. nigra on the basis of RADseq data. Within Nigritella the aggregation of polyploid members into three clear-cut groups as suggested by allozyme and nuclear microsatellite data was further supported.
Collapse
Affiliation(s)
- Marie K Brandrud
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Richard Lorenz
- AHO Baden-Württemberg, Leibnizstrasse 1, D-69459 Weinheim, Germany
| | - Juliane Baar
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mikael Hedrén
- Department of Biology, University of Lund, Sölvegatan 37, SE-223 62 Lund, Sweden.
| |
Collapse
|