1
|
Takase D, Shirai T, Misawa K, Matsunami H, Yoshikawa K. An odorant receptor for a key odor constituent of ambergris. Commun Biol 2025; 8:792. [PMID: 40410270 PMCID: PMC12102163 DOI: 10.1038/s42003-025-08229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025] Open
Abstract
Ambergris, a substance derived from the digestive system of sperm whales, has been valued for centuries for its unique aromatic properties. However, historical accounts indicate that certain human populations, particularly in East Asia, utilized ambergris without regard for its odor quality. These observations suggest that ambergris offers a model for studying how pleasant olfactory perception and its regional variations are constructed. Despite its historical and cultural significance, the molecular basis of ambergris perception has remained unclear. Here, we identified OR7A17 as an odorant receptor tuned to (-)-Ambroxide, a key odorant in ambergris. Analysis of genetic and functional variations in OR7A17 revealed that non-functional alleles of this receptor are prevalent in human populations, especially in East Asia. Individuals lacking functional OR7A17 alleles could still detect (-)-Ambroxide but found its scent less pleasant compared to those with functional alleles. These findings elucidate a molecular mechanism that influences the perceived pleasantness of ambergris and shed light on its enduring legacy in perfumery.
Collapse
Affiliation(s)
- Dan Takase
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, 321-3497, Japan
| | - Tomohiro Shirai
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, 321-3497, Japan
| | - Kensuke Misawa
- Biological Material Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, 321-3497, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA
| | - Keiichi Yoshikawa
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, 321-3497, Japan.
| |
Collapse
|
2
|
Yu Z, Meng T, Que T, Yu L, Zhou Y, He M, Wang H, Li Y, Liu L, Liu W, Wang Y, Ren B. Muscone-specific olfactory protein MjavOBP3 identified as the putative scent-marking pheromone in the Sunda pangolin (Manis javanica). Commun Biol 2025; 8:498. [PMID: 40140630 PMCID: PMC11947183 DOI: 10.1038/s42003-025-07925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Pangolins are mammals of important conservation interest, as only eight extant species remain globally and all are considered to be at risk of extinction. The Sunda pangolin (Manis javanica) is a burrowing and nocturnal animal with poor vision, thus intraspecies communication such as mating, warning, and scent-marking relies on olfaction. The specific pheromone involved in intraspecies communication in pangolins remains unknown. In this study, all odorant-binding proteins in Sunda pangolins are functionally expressed and screened against a panel of 32 volatiles that derived from the pangolin urine, feces, and anal gland secretions. Using reverse chemical ecology, we reveal that M. javanica odorant-binding protein 3 (MjavOBP3) possesses the highest binding affinity to muscone. We also apply a behavior-tracking assay to show that muscone is more attractive to male individuals than to females, suggesting that muscone is a scent-marking pheromone in the Sunda pangolin. Further, our molecular modeling shows that Tyr117 contributes the most to muscone binding, which is further validated by site-directed mutagenesis. These findings identify the scent-marking mechanism in pangolins, highlighting the potential of muscone to support monitoring and conservation of this endangered animal.
Collapse
Affiliation(s)
- Zhongbo Yu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Tao Meng
- Guangxi Forestry Inventory and Planning Institute, Nanning, 530011, China
| | - Tengcheng Que
- Guangxi Zhuang Autonomous Terrestrial Wildlife Rescue Research and Epidemic Diseases Monitoring Center, Nanning, 530003, China
- Faculty of Data Science City, University of Macau, Macau, 999078, China
| | - Luyao Yu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yichen Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Meihong He
- Guangxi Zhuang Autonomous Terrestrial Wildlife Rescue Research and Epidemic Diseases Monitoring Center, Nanning, 530003, China
| | - Haijing Wang
- Guangxi Forestry Inventory and Planning Institute, Nanning, 530011, China
| | - Yingjiao Li
- Guangxi Zhuang Autonomous Terrestrial Wildlife Rescue Research and Epidemic Diseases Monitoring Center, Nanning, 530003, China
| | - Liling Liu
- Guangxi Zhuang Autonomous Terrestrial Wildlife Rescue Research and Epidemic Diseases Monitoring Center, Nanning, 530003, China
| | - Wenjian Liu
- Faculty of Data Science City, University of Macau, Macau, 999078, China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun, 130024, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Science, Northeast Normal University, Changchun, 130024, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
3
|
Hossain K, Smith M, Rufenacht KE, O’Rourke R, Santoro SW. In mice, discrete odors can selectively promote the neurogenesis of sensory neuron subtypes that they stimulate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.10.579748. [PMID: 38405728 PMCID: PMC10888860 DOI: 10.1101/2024.02.10.579748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In mammals, olfactory sensory neurons (OSNs) are born throughout life, ostensibly solely to replace neurons lost via turnover or injury. This assumption follows from the hypothesis that olfactory neurogenesis is stochastic with respect to neuron subtype, as defined by the single odorant receptor that each neural precursor stochastically chooses out of hundreds of possibilities. This assumption is challenged, however, by recent findings that the birthrates of a fraction of OSN subtypes are selectively reduced by olfactory deprivation. These findings raise questions about how, and why, olfactory stimuli are required to accelerate the neurogenesis rates of some subtypes, including whether the stimuli are specific (e.g., discrete odorants) or generic (e.g., broadly activating odors or mechanical stimuli). Based on previous findings that the exposure of mice to sex-specific odors can increase the representations of subtypes responsive to those odors, we hypothesized that the neurogenic stimuli comprise discrete odorants that selectively stimulate OSNs of the same subtypes whose birthrates are accelerated. In support of this, we have found, using scRNA-seq and subtype-specific OSN birthdating, that exposure to male and exogenous musk odors can accelerate the birthrates of subtypes responsive to those odors. These findings reveal that certain odor experiences can selectively 'amplify' specific OSN subtypes and suggest that persistent OSN neurogenesis serves, in part, an adaptive function.
Collapse
Affiliation(s)
- Kawsar Hossain
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
- Current affiliation: Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Madeline Smith
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karlin E. Rufenacht
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rebecca O’Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Stephen W. Santoro
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
4
|
Wachowiak M, Dewan A, Bozza T, O'Connell TF, Hong EJ. Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations. J Neurosci 2025; 45:e1872242024. [PMID: 40044450 PMCID: PMC11884396 DOI: 10.1523/jneurosci.1872-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 03/09/2025] Open
Abstract
Sensory systems enable organisms to detect and respond to environmental signals relevant for their survival and reproduction. A crucial aspect of any sensory signal is its intensity; understanding how sensory signals guide behavior requires probing sensory system function across the range of stimulus intensities naturally experienced by an organism. In olfaction, defining the range of natural odorant concentrations is difficult. Odors are complex mixtures of airborne chemicals emitting from a source in an irregular pattern that varies across time and space, necessitating specialized methods to obtain an accurate measurement of concentration. Perhaps as a result, experimentalists often choose stimulus concentrations based on empirical considerations rather than with respect to ecological or behavioral context. Here, we attempt to determine naturally relevant concentration ranges for olfactory stimuli by reviewing and integrating data from diverse disciplines. We compare odorant concentrations used in experimental studies in rodents and insects with those reported in different settings including ambient natural environments, the headspace of natural sources, and within the sources themselves. We also compare these values to psychophysical measurements of odorant detection threshold in rodents, where thresholds have been extensively measured. Odorant concentrations in natural regimes rarely exceed a few parts per billion, while most experimental studies investigating olfactory coding and behavior exceed these concentrations by several orders of magnitude. We discuss the implications of this mismatch and the importance of testing odorants in their natural concentration range for understanding neural mechanisms underlying olfactory sensation and odor-guided behaviors.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Adam Dewan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Tom F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
5
|
Li W, Wu T, Zhu K, Ba G, Liu J, Zhou P, Li S, Wang L, Liu H, Ren W, Yu H, Yu Y. A single-cell transcriptomic census of mammalian olfactory epithelium aging. Dev Cell 2024; 59:3043-3058.e8. [PMID: 39173624 DOI: 10.1016/j.devcel.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
Mammalian olfactory epithelium has the capacity of self-renewal throughout life. Aging is one of the major causes leading to the olfactory dysfunction. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis on young and aged murine olfactory epithelium (OE) and identified aging-related differentially expressed genes (DEGs) throughout 21 cell types. Aging led to the presence of activated horizontal basal cells (HBCs) in the OE and promoted cellular interaction between HBCs and neutrophils. Aging enhanced the expression of Egr1 and Fos in sustentacular cell differentiation from multipotent progenitors, whereas Bcl11b was downregulated during the sensory neuronal homeostasis in the aged OE. Egr1 and Cebpb were predictive core regulatory factors of the transcriptional network in the OE. Overexpression of Egr1 in aged OE organoids promoted cell proliferation and neuronal differentiation. Moreover, aging altered expression levels and frequencies of olfactory receptors. These findings provide a cellular and molecular framework of OE aging at the single-cell resolution.
Collapse
Affiliation(s)
- Weihao Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Tingting Wu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Kesen Zhu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Guangyi Ba
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jinxia Liu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ping Zhou
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shengjv Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Li Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Huanhai Liu
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China.
| | - Wenwen Ren
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China.
| | - Hongmeng Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Yiqun Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
6
|
Saad MZH, Ryan V WG, Edwards CA, Szymanski BN, Marri AR, Jerow LG, McCullumsmith R, Bamber BA. Olfactory combinatorial coding supports risk-reward decision making in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599745. [PMID: 39484578 PMCID: PMC11526860 DOI: 10.1101/2024.06.19.599745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Olfactory-driven behaviors are essential for animal survival, but mechanisms for decoding olfactory inputs remain poorly understood. We have used whole-network Ca ++ imaging to study olfactory coding in Caenorhabditis elegans. We show that the odorant 1-octanol is encoded combinatorially in the periphery as both an attractant and a repellant. These inputs are integrated centrally, and their relative strengths determine the sensitivity and valence of the behavioral response through modulation of locomotory reversals and speed. The balance of these pathways also dictates the activity of the locomotory command interneurons, which control locomotory reversals. This balance serves as a regulatory node for response modulation, allowing C. elegans to weigh opportunities and hazards in its environment when formulating behavioral responses. Thus, an odorant can be encoded simultaneously as inputs of opposite valence, focusing attention on the integration of these inputs in determining perception, response, and plasticity.
Collapse
|
7
|
Wang F, Sun H, Chen M, Feng B, Lu Y, Lyu M, Cui D, Zhai Y, Zhang Y, Zhu Y, Wang C, Wu H, Ma X, Zhu F, Wang Q, Li Y. The thalamic reticular nucleus orchestrates social memory. Neuron 2024; 112:2368-2385.e11. [PMID: 38701789 DOI: 10.1016/j.neuron.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/12/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Social memory has been developed in humans and other animals to recognize familiar conspecifics and is essential for their survival and reproduction. Here, we demonstrated that parvalbumin-positive neurons in the sensory thalamic reticular nucleus (sTRNPvalb) are necessary and sufficient for mice to memorize conspecifics. sTRNPvalb neurons receiving glutamatergic projections from the posterior parietal cortex (PPC) transmit individual information by inhibiting the parafascicular thalamic nucleus (PF). Mice in which the PPCCaMKII→sTRNPvalb→PF circuit was inhibited exhibited a disrupted ability to discriminate familiar conspecifics from novel ones. More strikingly, a subset of sTRNPvalb neurons with high electrophysiological excitability and complex dendritic arborizations is involved in the above corticothalamic pathway and stores social memory. Single-cell RNA sequencing revealed the biochemical basis of these subset cells as a robust activation of protein synthesis. These findings elucidate that sTRNPvalb neurons modulate social memory by coordinating a hitherto unknown corticothalamic circuit and inhibitory memory engram.
Collapse
Affiliation(s)
- Feidi Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huan Sun
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingyue Chen
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Yu Lu
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mi Lyu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dongqi Cui
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Zhang
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yaomin Zhu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
8
|
Yuan XS, Xiang Z, Jiang JB, Yuan F, Zhang MT, Zhang KY, Chen ZY, Qu WM, Li WS, Huang ZL. Leptin receptor neurons in the ventral premammillary nucleus modulate emotion-induced insomnia. Cell Discov 2024; 10:59. [PMID: 38830876 PMCID: PMC11148181 DOI: 10.1038/s41421-024-00676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Affiliation(s)
- Xiang-Shan Yuan
- Department of Anatomy and Histoembryology, and Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhe Xiang
- Department of Anatomy and Histoembryology, and Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian-Bo Jiang
- Department of Anatomy and Histoembryology, and Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mu-Tian Zhang
- Department of Anatomy and Histoembryology, and Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai-Ying Zhang
- Department of Anatomy and Histoembryology, and Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-Yi Chen
- Department of Anatomy and Histoembryology, and Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Anatomy and Histoembryology, and Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Sheng Li
- Department of Anatomy and Histoembryology, and Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhi-Li Huang
- Department of Anatomy and Histoembryology, and Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Mori K, Sakano H. Circuit formation and sensory perception in the mouse olfactory system. Front Neural Circuits 2024; 18:1342576. [PMID: 38434487 PMCID: PMC10904487 DOI: 10.3389/fncir.2024.1342576] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
In the mouse olfactory system, odor information is converted to a topographic map of activated glomeruli in the olfactory bulb (OB). Although the arrangement of glomeruli is genetically determined, the glomerular structure is plastic and can be modified by environmental stimuli. If the pups are exposed to a particular odorant, responding glomeruli become larger recruiting the dendrites of connecting projection neurons and interneurons. This imprinting not only increases the sensitivity to the exposed odor, but also imposes the positive quality on imprinted memory. External odor information represented as an odor map in the OB is transmitted to the olfactory cortex (OC) and amygdala for decision making to elicit emotional and behavioral outputs using two distinct neural pathways, innate and learned. Innate olfactory circuits start to work right after birth, whereas learned circuits become functional later on. In this paper, the recent progress will be summarized in the study of olfactory circuit formation and odor perception in mice. We will also propose new hypotheses on the timing and gating of olfactory circuit activity in relation to the respiration cycle.
Collapse
Affiliation(s)
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
10
|
Huang L, Zhang W, Tong D, Lu L, Zhou W, Tian D, Liu G, Shi W. Triclosan and triclocarban weaken the olfactory capacity of goldfish by constraining odorant recognition, disrupting olfactory signal transduction, and disturbing olfactory information processing. WATER RESEARCH 2023; 233:119736. [PMID: 36801581 DOI: 10.1016/j.watres.2023.119736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, increased production and consumption of disinfectants such as triclosan (TCS) and triclocarban (TCC) have led to massive pollution of the environment, which draws global concern over the potential risk to aquatic organisms. However, the olfactory toxicity of disinfectants in fish remains elusive to date. In the present study, the impact of TCS and TCC on the olfactory capacity of goldfish was assessed by neurophysiological and behavioral approaches. As shown by the reduced distribution shifts toward amino acid stimuli and hampered electro-olfactogram responses, our results demonstrated that TCS/TCC treatment would cause deterioration of the olfactory ability of goldfish. Our further analysis found that TCS/TCC exposure suppressed the expression of olfactory G protein-coupled receptors in the olfactory epithelium, restricted the transformation of odorant stimulation into electrical responses by disturbing the cAMP signaling pathway and ion transportation, and induced apoptosis and inflammation in the olfactory bulb. In conclusion, our results demonstrated that an environmentally realistic level of TCS/TCC would weaken the olfactory capacity of goldfish by constraining odorant recognition efficiency, disrupting olfactory signal generation and transduction, and disturbing olfactory information processing.
Collapse
Affiliation(s)
- Lin Huang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China.
| |
Collapse
|
11
|
Tsuneki H, Sugiyama M, Ito T, Sato K, Matsuda H, Onishi K, Yubune K, Matsuoka Y, Nagai S, Yamagishi T, Maeda T, Honda K, Okekawa A, Watanabe S, Yaku K, Okuzaki D, Otsubo R, Nomoto M, Inokuchi K, Nakagawa T, Wada T, Yasui T, Sasaoka T. Food odor perception promotes systemic lipid utilization. Nat Metab 2022; 4:1514-1531. [PMID: 36376564 DOI: 10.1038/s42255-022-00673-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
Abstract
Food cues during fasting elicit Pavlovian conditioning to adapt for anticipated food intake. However, whether the olfactory system is involved in metabolic adaptations remains elusive. Here we show that food-odor perception promotes lipid metabolism in male mice. During fasting, food-odor stimulation is sufficient to increase serum free fatty acids via adipose tissue lipolysis in an olfactory-memory-dependent manner, which is mediated by the central melanocortin and sympathetic nervous systems. Additionally, stimulation with a food odor prior to refeeding leads to enhanced whole-body lipid utilization, which is associated with increased sensitivity of the central agouti-related peptide system, reduced sympathetic activity and peripheral tissue-specific metabolic alterations, such as an increase in gastrointestinal lipid absorption and hepatic cholesterol turnover. Finally, we show that intermittent fasting coupled with food-odor stimulation improves glycemic control and prevents insulin resistance in diet-induced obese mice. Thus, olfactory regulation is required for maintaining metabolic homeostasis in environments with either an energy deficit or energy surplus, which could be considered as part of dietary interventions against metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan.
| | - Masanori Sugiyama
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Toshihiro Ito
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Kiyofumi Sato
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Hiroki Matsuda
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Kengo Onishi
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Koharu Yubune
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Yukina Matsuoka
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Sanaka Nagai
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Towa Yamagishi
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Takahiro Maeda
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Kosuke Honda
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Akira Okekawa
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Shiro Watanabe
- Division of Nutritional Biochemistry, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, University of Toyama, Toyama, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryota Otsubo
- Laboratory of Infectious Diseases and Immunity, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
- Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Masanori Nomoto
- Department of Biochemistry, University of Toyama, Toyama, Japan
- Research Centre for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, University of Toyama, Toyama, Japan
- Research Centre for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, University of Toyama, Toyama, Japan
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Teruhito Yasui
- Laboratory of Infectious Diseases and Immunity, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan.
- Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan.
- Laboratory of Pharmaceutical Integrated Omics, Department of Pharmaceutical Engineering, Facility of Engineering, Toyama Prefectural University, Toyama, Japan.
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan.
| |
Collapse
|
12
|
The facets of olfactory learning. Curr Opin Neurobiol 2022; 76:102623. [PMID: 35998474 DOI: 10.1016/j.conb.2022.102623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Volatile chemicals in the environment provide ethologically important information to many animals. However, how animals learn to use this information is only beginning to be understood. This review highlights recent experimental advances elucidating olfactory learning in rodents, ranging from adaptations to the environment to task-dependent refinement and multisensory associations. The broad range of phenomena, mechanisms, and brain areas involved demonstrate the complex and multifaceted nature of olfactory learning.
Collapse
|
13
|
Burton SD, Brown A, Eiting TP, Youngstrom IA, Rust TC, Schmuker M, Wachowiak M. Mapping odorant sensitivities reveals a sparse but structured representation of olfactory chemical space by sensory input to the mouse olfactory bulb. eLife 2022; 11:e80470. [PMID: 35861321 PMCID: PMC9352350 DOI: 10.7554/elife.80470] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
In olfactory systems, convergence of sensory neurons onto glomeruli generates a map of odorant receptor identity. How glomerular maps relate to sensory space remains unclear. We sought to better characterize this relationship in the mouse olfactory system by defining glomeruli in terms of the odorants to which they are most sensitive. Using high-throughput odorant delivery and ultrasensitive imaging of sensory inputs, we imaged responses to 185 odorants presented at concentrations determined to activate only one or a few glomeruli across the dorsal olfactory bulb. The resulting datasets defined the tuning properties of glomeruli - and, by inference, their cognate odorant receptors - in a low-concentration regime, and yielded consensus maps of glomerular sensitivity across a wide range of chemical space. Glomeruli were extremely narrowly tuned, with ~25% responding to only one odorant, and extremely sensitive, responding to their effective odorants at sub-picomolar to nanomolar concentrations. Such narrow tuning in this concentration regime allowed for reliable functional identification of many glomeruli based on a single diagnostic odorant. At the same time, the response spectra of glomeruli responding to multiple odorants was best predicted by straightforward odorant structural features, and glomeruli sensitive to distinct odorants with common structural features were spatially clustered. These results define an underlying structure to the primary representation of sensory space by the mouse olfactory system.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Audrey Brown
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Thomas P Eiting
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Isaac A Youngstrom
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Thomas C Rust
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| | - Michael Schmuker
- Biocomputation Group, Centre of Data Innovation Research, Department of Computer Science, University of HertfordshireHertfordshireUnited Kingdom
| | - Matt Wachowiak
- Department of Neurobiology, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
14
|
Khan M, Hartmann AH, O’Donnell MP, Piccione M, Pandey A, Chao PH, Dwyer ND, Bargmann CI, Sengupta P. Context-dependent reversal of odorant preference is driven by inversion of the response in a single sensory neuron type. PLoS Biol 2022; 20:e3001677. [PMID: 35696430 PMCID: PMC9232122 DOI: 10.1371/journal.pbio.3001677] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/24/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
The valence and salience of individual odorants are modulated by an animal’s innate preferences, learned associations, and internal state, as well as by the context of odorant presentation. The mechanisms underlying context-dependent flexibility in odor valence are not fully understood. Here, we show that the behavioral response of Caenorhabditis elegans to bacterially produced medium-chain alcohols switches from attraction to avoidance when presented in the background of a subset of additional attractive chemicals. This context-dependent reversal of odorant preference is driven by cell-autonomous inversion of the response to these alcohols in the single AWC olfactory neuron pair. We find that while medium-chain alcohols inhibit the AWC olfactory neurons to drive attraction, these alcohols instead activate AWC to promote avoidance when presented in the background of a second AWC-sensed odorant. We show that these opposing responses are driven via engagement of distinct odorant-directed signal transduction pathways within AWC. Our results indicate that context-dependent recruitment of alternative intracellular signaling pathways within a single sensory neuron type conveys opposite hedonic valences, thereby providing a robust mechanism for odorant encoding and discrimination at the periphery.
Collapse
Affiliation(s)
- Munzareen Khan
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Anna H. Hartmann
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael P. O’Donnell
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Madeline Piccione
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Anjali Pandey
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Pin-Hao Chao
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Noelle D. Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Functional analysis of human olfactory receptors with a high basal activity using LNCaP cell line. PLoS One 2022; 17:e0267356. [PMID: 35446888 PMCID: PMC9022881 DOI: 10.1371/journal.pone.0267356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Humans use a family of more than 400 olfactory receptors (ORs) to detect odorants. However, deorphanization of ORs is a critical issue because the functional properties of more than 80% of ORs remain unknown, thus, hampering our understanding of the relationship between receptor function and perception. HEK293 cells are the most commonly used heterologous expression system to determine the function of a given OR; however, they cannot functionally express a majority of ORs probably due to a lack of factor(s) required in cells in which ORs function endogenously. Interestingly, ORs have been known to be expressed in a variety of cells outside the nose and play critical physiological roles. These findings prompted us to test the capacity of cells to functionally express a specific repertoire of ORs. In this study, we selected three cell lines that endogenously express functional ORs. We demonstrated that human prostate carcinoma (LNCaP) cell lines successfully identified novel ligands for ORs that were not recognized when expressed in HEK293 cells. Further experiments suggested that the LNCaP cell line was effective for functional expression of ORs, especially with a high basal activity, which impeded the sensitive detection of ligand-mediated activity of ORs. This report provides an efficient functional assay system for a specific repertoire of ORs that cannot be characterized in current cell systems.
Collapse
|
16
|
Osakada T, Abe T, Itakura T, Mori H, Ishii KK, Eguchi R, Murata K, Saito K, Haga-Yamanaka S, Kimoto H, Yoshihara Y, Miyamichi K, Touhara K. Hemoglobin in the blood acts as a chemosensory signal via the mouse vomeronasal system. Nat Commun 2022; 13:556. [PMID: 35115521 PMCID: PMC8814178 DOI: 10.1038/s41467-022-28118-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
The vomeronasal system plays an essential role in sensing various environmental chemical cues. Here we show that mice exposed to blood and, consequently, hemoglobin results in the activation of vomeronasal sensory neurons expressing a specific vomeronasal G protein-coupled receptor, Vmn2r88, which is mediated by the interaction site, Gly17, on hemoglobin. The hemoglobin signal reaches the medial amygdala (MeA) in both male and female mice. However, it activates the dorsal part of ventromedial hypothalamus (VMHd) only in lactating female mice. As a result, in lactating mothers, hemoglobin enhances digging and rearing behavior. Manipulation of steroidogenic factor 1 (SF1)-expressing neurons in the VMHd is sufficient to induce the hemoglobin-mediated behaviors. Our results suggest that the oxygen-carrier hemoglobin plays a role as a chemosensory signal, eliciting behavioral responses in mice in a state-dependent fashion.
Collapse
Affiliation(s)
- Takuya Osakada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Takayuki Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Takumi Itakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiromi Mori
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro K Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Ryo Eguchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Ken Murata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kosuke Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Sachiko Haga-Yamanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroko Kimoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Yoshihara
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Kazunari Miyamichi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan.
| |
Collapse
|
17
|
Patel R, Hallem EA. Olfaction: One receptor drives opposite behaviors. Curr Biol 2022; 32:R93-R96. [PMID: 35077699 DOI: 10.1016/j.cub.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many odorants are attractive at low concentrations but repulsive at higher concentrations. A new study demonstrates that, in Caenorhabditis elegans, a single odorant receptor acts in two different neuron pairs to mediate both attractive and repulsive responses to an odorant.
Collapse
Affiliation(s)
- Ruhi Patel
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Abstract
Measures of behavioral sensitivity provide an important guide for choosing the stimulus concentrations used in functional experiments. This information is particularly valuable in the olfactory system as the neural representation of an odorant changes with concentration. This study focuses on acetate esters because they are commonly used to survey neural activity in a variety of olfactory regions, probe the behavioral limits of odor discrimination, and assess odor structure–activity relationships in mice. Despite their frequent use, the relative sensitivity of these odorants in mice is not available. Thus, we assayed the ability of C57BL/6J mice to detect seven different acetates (propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, octyl acetate, isobutyl acetate, and isoamyl acetate) using a head-fixed Go/No-Go operant conditioning assay combined with highly reproducible stimulus delivery. To aid in the accessibility and applicability of our data, we have estimated the vapor-phase concentrations of these odorants in five different solvents using a photoionization detector-based approach. The resulting liquid-/vapor-phase equilibrium equations successfully corrected for behavioral sensitivity differences observed in animals tested with the same odorant in different solvents. We found that mice are most sensitive to isobutyl acetate and least sensitive to propyl acetate. These updated measures of sensitivity will hopefully guide experimenters in choosing appropriate stimulus concentrations for experiments using these odorants.
Collapse
Affiliation(s)
- Liam Jennings
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Ellie Williams
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Marta Avlas
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| | - Adam Dewan
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
19
|
A single chemosensory GPCR is required for a concentration-dependent behavioral switching in C. elegans. Curr Biol 2021; 32:398-411.e4. [PMID: 34906353 DOI: 10.1016/j.cub.2021.11.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
Animals detect and discriminate countless environmental chemicals for their well-being and survival. Although a single chemical can trigger opposing behavioral responses depending on its concentration, the mechanisms underlying such a concentration-dependent switching remain poorly understood. Here, we show that C. elegans exhibits either attraction or avoidance of the bacteria-derived volatile chemical dimethyl trisulfide (DMTS) depending on its concentration. This behavioral switching is mediated by two different types of chemosensory neurons, both of which express the DMTS-sensitive seven-transmembrane G protein-coupled receptor (GPCR) SRI-14. These two sensory neurons share downstream interneurons that process and translate DMTS signals via distinct glutamate receptors to generate the appropriate behavioral outcome. Thus, our results present one mechanism by which an animal connects two distinct types of chemosensory neurons detecting a common ligand to alternate downstream circuitry, thus efficiently switching between specific behavioral programs based on ligand concentration.
Collapse
|
20
|
Kryklywy JH, Manaligod MGM, Todd RM. Within and beyond an integrated framework of attentional capture: A perspective from cognitive-affective neuroscience. VISUAL COGNITION 2021. [DOI: 10.1080/13506285.2021.1935371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- James H. Kryklywy
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | | | - Rebecca M. Todd
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Abstract
Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.
Collapse
Affiliation(s)
- David H Brann
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
22
|
Marcinek P, Haag F, Geithe C, Krautwurst D. An evolutionary conserved olfactory receptor for foodborne and semiochemical alkylpyrazines. FASEB J 2021; 35:e21638. [PMID: 34047404 DOI: 10.1096/fj.202100224r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Molecular recognition is a fundamental principle in biological systems. The olfactory detection of both food and predators via ecological relevant odorant cues are abilities of eminent evolutionary significance for many species. Pyrazines are such volatile cues, some of which act as both human-centered key food odorants (KFOs) and semiochemicals. A pyrazine-selective odorant receptor has been elusive. Here we screened 2,3,5-trimethylpyrazine, a KFO and semiochemical, and 2,5-dihydro-2,4,5-trimethylthiazoline, an innate fear-associated non-KFO, against 616 human odorant receptor variants, in a cell-based luminescence assay. OR5K1 emerged as sole responding receptor. Tested against a comprehensive collection of 178 KFOs, we newly identified 18 pyrazines and (2R/2S)-4-methoxy-2,5-dimethylfuran-3(2H)-one as agonists. Notably, OR5K1 orthologs in mouse and domesticated species displayed a human-like, potency-ranked activation pattern of pyrazines, suggesting a domestication-led co-evolution of OR5K1 and its orthologs. In summary, OR5K1 is a specialized olfactory receptor across mammals for the detection of pyrazine-based key food odors and semiochemicals.
Collapse
Affiliation(s)
- Patrick Marcinek
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Hamilton Germany GmbH, Gräfelfing, Germany
| | - Franziska Haag
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Christiane Geithe
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
23
|
Olfaction: How mixing masks privilege. Curr Biol 2021; 31:R439-R442. [PMID: 33974870 DOI: 10.1016/j.cub.2021.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For many organisms, certain odorants trigger instinctive responses that are essential for survival. A new study shows that mixing odorants interferes with this innate valence, demonstrating that innate odor information does not follow a privileged path through the brain.
Collapse
|
24
|
Deconstructing the mouse olfactory percept through an ethological atlas. Curr Biol 2021; 31:2809-2818.e3. [PMID: 33957076 DOI: 10.1016/j.cub.2021.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/09/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Odor perception in non-humans is poorly understood. Here, we generated the most comprehensive mouse olfactory ethological atlas to date, consisting of behavioral responses to a diverse panel of 73 odorants, including 12 at multiple concentrations. These data revealed that mouse behavior is incredibly diverse and changes in response to odorant identity and concentration. Using only behavioral responses observed in other mice, we could predict which of two odorants was presented to a held-out mouse 82% of the time. Considering all 73 possible odorants, we could uniquely identify the target odorant from behavior on the first try 20% of the time and 46% within five attempts. Although mouse behavior is difficult to predict from human perception, they share three fundamental properties: first, odor valence parameters explained the highest variance of olfactory perception. Second, physicochemical properties of odorants can be used to predict the olfactory percept. Third, odorant concentration quantitatively and qualitatively impacts olfactory perception. These results increase our understanding of mouse olfactory behavior and how it compares to human odor perception and provide a template for future comparative studies of olfactory percepts among species.
Collapse
|
25
|
Qiu Q, Wu Y, Ma L, Yu CR. Encoding innately recognized odors via a generalized population code. Curr Biol 2021; 31:1813-1825.e4. [PMID: 33651991 PMCID: PMC8119320 DOI: 10.1016/j.cub.2021.01.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/25/2020] [Accepted: 01/27/2021] [Indexed: 01/19/2023]
Abstract
Odors carrying intrinsic values often trigger instinctive aversive or attractive responses. It is not known how innate valence is encoded. An intuitive model suggests that the information is conveyed through specific channels in hardwired circuits along the olfactory pathway, insulated from influences of other odors, to trigger innate responses. Here, we show that in mice, mixing innately aversive or attractive odors with a neutral odor and, surprisingly, mixing two odors with the same valence, abolish the innate behavioral responses. Recordings from the olfactory bulb indicate that odors are not masked at the level of peripheral activation and glomeruli independently encode components in the mixture. In contrast, crosstalk among the mitral and tufted (M/T) cells changes their patterns of activity such that those elicited by the mixtures can no longer be linearly decoded as separate components. The changes in behavioral and M/T cell responses are associated with reduced activation of brain areas linked to odor preferences. Thus, crosstalk among odor channels at the earliest processing stage in the olfactory pathway leads to re-coding of odor identity to abolish valence associated with the odors. These results are inconsistent with insulated labeled lines and support a model of a common mechanism of odor recognition for both innate and learned valence associations.
Collapse
Affiliation(s)
- Qiang Qiu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yunming Wu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Limei Ma
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - C Ron Yu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
26
|
Horii-Hayashi N, Nomoto K, Endo N, Yamanaka A, Kikusui T, Nishi M. Hypothalamic perifornical Urocortin-3 neurons modulate defensive responses to a potential threat stimulus. iScience 2021; 24:101908. [PMID: 33385113 PMCID: PMC7770982 DOI: 10.1016/j.isci.2020.101908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/31/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Defensive behaviors are evolved responses to threat stimuli, and a potential threat elicits risk assessment (RA) behavior. However, neural mechanisms underlying RA behavior are hardly understood. Urocortin-3 (Ucn3) is a member of corticotropin-releasing factor peptide family and here, we report that Ucn3 neurons in the hypothalamic perifornical area (PeFA) are involved in RA of a novel object, a potential threat stimulus, in mice. Histological and in vivo fiber photometry studies revealed that the activity of PeFA Ucn3 neurons was associated with novel object investigation involving the stretch-attend posture, a behavioral marker for RA. Chemogenetic activation of these neurons increased RA and burying behaviors toward a novel object without affecting anxiety and corticosterone levels. Ablation of these neurons caused the abnormal behaviors of gnawing and direct contacts with novel objects, especially in a home-cage. These results suggest that PeFA Ucn3 neurons modulate defensive responses to a potential threat stimulus.
Collapse
Affiliation(s)
- Noriko Horii-Hayashi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| | - Kensaku Nomoto
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252–5201, Japan
- Department of Physiology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Nozomi Endo
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Takefumi Kikusui
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252–5201, Japan
| | - Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 643-8521, Japan
| |
Collapse
|
27
|
Dewan A. Olfactory signaling via trace amine-associated receptors. Cell Tissue Res 2020; 383:395-407. [PMID: 33237477 DOI: 10.1007/s00441-020-03331-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 01/30/2023]
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors that function as odorant receptors in the main olfactory system of vertebrates. TAARs are monoallelically expressed in primary sensory neurons where they couple to the same transduction cascade as canonical olfactory receptors and are mapped onto glomeruli within a specific region of the olfactory bulb. TAARs have a high affinity for volatile amines, a class of chemicals that are generated during the decomposition of proteins and are ubiquitous physiological metabolites that are found in body fluids. Thus, amines are proposed to play an important role in intra- and interspecific communication such as signaling the sex of the conspecific, the quality of the food source, or even the proximity of a predator. TAARs have a crucial role in the perception of these behaviorally relevant compounds as the genetic deletion of all or even individual olfactory TAARs can alter the behavioral response and reduce the sensitivity to amines. The small size of this receptor family combined with the ethological relevance of their ligands makes the TAARs an attractive model system for probing olfactory perception. This review will summarize the current knowledge on the olfactory TAARs and discuss whether they represent a unique subsystem within the main olfactory system.
Collapse
Affiliation(s)
- Adam Dewan
- Department of Psychology, Florida State University, 1107 W. Call St, Tallahassee, FL, 32306, USA.
| |
Collapse
|
28
|
Abstract
In mammals, odor information detected by olfactory sensory neurons is converted to a topographic map of activated glomeruli in the olfactory bulb. Mitral cells and tufted cells transmit signals sequentially to the olfactory cortex for behavioral outputs. To elicit innate behavioral responses, odor signals are directly transmitted by distinct subsets of mitral cells from particular functional domains in the olfactory bulb to specific amygdala nuclei. As for the learned decisions, input signals are conveyed by tufted cells as well as by mitral cells to the olfactory cortex. Behavioral scene cells link the odor information to the valence cells in the amygdala to elicit memory-based behavioral responses. Olfactory decision and perception take place in relation to the respiratory cycle. How is the sensory quality imposed on the olfactory inputs for behavioral outputs? How are the two types of odor signals, innate and learned, processed during respiration? Here, we review recent progress on the study of neural circuits involved in decision making in the mouse olfactory system.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan;
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1197, Japan;
| |
Collapse
|
29
|
Kryklywy JH, Ehlers MR, Anderson AK, Todd RM. From Architecture to Evolution: Multisensory Evidence of Decentralized Emotion. Trends Cogn Sci 2020; 24:916-929. [DOI: 10.1016/j.tics.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
|
30
|
Colle R, El Asmar K, Verstuyft C, Lledo PM, Lazarini F, Chappell K, Deflesselle E, Ait Tayeb AEK, Falissard B, Duron E, Rotenberg S, Costemale-Lacoste JF, David DJ, Gressier F, Gardier AM, Hummel T, Becquemont L, Corruble E. The olfactory deficits of depressed patients are restored after remission with venlafaxine treatment. Psychol Med 2020; 52:1-9. [PMID: 33087184 DOI: 10.1017/s0033291720003918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND It is unclear whether olfactory deficits improve after remission in depressed patients. Therefore, we aimed to assess in drug-free patients the olfactory performance of patients with major depressive episodes (MDE) and its change after antidepressant treatment. METHODS In the DEP-ARREST-CLIN study, 69 drug-free patients with a current MDE in the context of major depressive disorder (MDD) were assessed for their olfactory performances and depression severity, before and after 1 (M1) and 3 (M3) months of venlafaxine antidepressant treatment. They were compared to 32 age- and sex-matched healthy controls (HCs). Olfaction was assessed with a psychophysical test, the Sniffin' Sticks test (Threshold: T score; Discrimination: D score; Identification: I score; total score: T + D + I = TDI score) and Pleasantness (pleasantness score: p score; neutral score: N score; unpleasantness score: U score). RESULTS As compared to HCs, depressed patients had lower TDI olfactory scores [mean (s.d.) 30.0(4.5) v. 33.3(4.2), p < 0.001], T scores [5.6(2.6) v. 7.4(2.6), p < 0.01], p scores [7.5(3.0) v. 9.8(2.8), p < 0.001)] and higher N scores [3.5(2.6) v. 2.1(1.8), p < 0.01]. T, p and N scores at baseline were independent from depression and anhedonia severity. After venlafaxine treatment, significant increases of T scores [M1: 7.0(2.6) and M3: 6.8(3.1), p < 0.01] and p scores [M1: 8.1(3.0) and M3: 8.4(3.3), p < 0.05] were evidenced, in remitters only (T: p < 0.01; P: p < 0.01). Olfaction improvement was mediated by depression improvement. CONCLUSIONS The olfactory signature of MDE is restored after venlafaxine treatment. This olfaction improvement is mediated by depression improvement.
Collapse
Affiliation(s)
- Romain Colle
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Khalil El Asmar
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Céline Verstuyft
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Pierre-Marie Lledo
- Unité Perception et Mémoire, Institut Pasteur, CNRS UMR3571, Paris, F-75015, France
| | - Françoise Lazarini
- Service de Génétique moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Kenneth Chappell
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Eric Deflesselle
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Abd El Kader Ait Tayeb
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Bruno Falissard
- Département de Biostatistiques, Université Paris-Sud, Hôpital Paul Brousse, Assistance Publique Hôpitaux de Paris, Villejuif94400, France
| | - Emmanuelle Duron
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Samuel Rotenberg
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Jean-Francois Costemale-Lacoste
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
| | - Denis J David
- Equipe Moods, INSERM UMR-1178, CESP, Univ. Paris-Sud, Fac. Pharmacie, Inserm, Université Paris-Saclay, Chatenay Malabry92290, France
| | - Florence Gressier
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Alain M Gardier
- Equipe Moods, INSERM UMR-1178, CESP, Univ. Paris-Sud, Fac. Pharmacie, Inserm, Université Paris-Saclay, Chatenay Malabry92290, France
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Dresden, TU, Germany
| | - Laurent Becquemont
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Centre de recherche clinique, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- Equipe Moods, INSERM UMR-1178, CESP, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, F-94276, France
- Service Hospitalo-Universitaire de Psychiatrie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| |
Collapse
|
31
|
Inhalation of odors containing DMHF generated by the Maillard reaction affects physiological parameters in rats. Sci Rep 2020; 10:13931. [PMID: 32811855 PMCID: PMC7434782 DOI: 10.1038/s41598-020-70843-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
The effects of odors generated by the Maillard reaction from amino acids and reducing sugars on physiological parameters (blood pressure, heart rate, and oxidative stress levels) in Wistar rats were investigated in the present study. The Maillard reaction samples were obtained from glycine, arginine, or lysine of 1.0 mol/L and glucose of 1.0 mol/L with heat treatment. The odor-active compounds in the Maillard reaction samples were identified using the aroma extract dilution analysis. Among the odor-active compounds identified, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF, FURANEOL and strawberry furanone) had the highest odor activity and its concentration was affected by amino acid types. The Maillard reaction odors generated from glycine or arginine significantly decreased systolic blood pressure and heart rate in rats when inhaled. These physiological effects were associated with DMHF. Furthermore, oxidative stress marker levels in rat plasma were decreased by the inhalation of DMHF. The inhalation of DMHF appears to at least partly affect physiological parameters by decreasing oxidative stress.
Collapse
|
32
|
Kontaris I, East BS, Wilson DA. Behavioral and Neurobiological Convergence of Odor, Mood and Emotion: A Review. Front Behav Neurosci 2020; 14:35. [PMID: 32210776 PMCID: PMC7076187 DOI: 10.3389/fnbeh.2020.00035] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
The affective state is the combination of emotion and mood, with mood reflecting a running average of sequential emotional events together with an underlying internal affective state. There is now extensive evidence that odors can overtly or subliminally modulate mood and emotion. Relying primarily on neurobiological literature, here we review what is known about how odors can affect emotions/moods and how emotions/moods may affect odor perception. We take the approach that form can provide insight into function by reviewing major brain regions and neural circuits underlying emotion and mood, and then reviewing the olfactory pathway in the context of that emotion/mood network. We highlight the extensive neuroanatomical opportunities for odor-emotion/mood convergence, as well as functional data demonstrating reciprocal interactions between these processes. Finally, we explore how the odor- emotion/mood interplay is, or could be, used in medical and/or commercial applications.
Collapse
Affiliation(s)
- Ioannis Kontaris
- Givaudan UK Limited, Health and Well-being Centre of Excellence, Ashford, United Kingdom
| | - Brett S East
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NC, United States.,Child and Adolescent Psychiatry, NYU School of Medicine, New York University, New York, NY, United States
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NC, United States.,Child and Adolescent Psychiatry, NYU School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
33
|
de March CA, Titlow WB, Sengoku T, Breheny P, Matsunami H, McClintock TS. Modulation of the combinatorial code of odorant receptor response patterns in odorant mixtures. Mol Cell Neurosci 2020; 104:103469. [PMID: 32061665 DOI: 10.1016/j.mcn.2020.103469] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/01/2023] Open
Abstract
The perception of odors relies on combinatorial codes consisting of odorant receptor (OR) response patterns to encode odor identity. Modulation of these patterns by odorant interactions at ORs potentially explains several olfactory phenomena: mixture suppression, unpredictable sensory outcomes, and the perception of odorant mixtures as unique objects. We determined OR response patterns to 4 odorants and 3 binary mixtures in vivo in mice, identifying 30 responsive ORs. These patterns typically had a few strongly responsive ORs and a greater number of weakly responsive ORs. ORs responsive to an odorant were often unrelated sequences distributed across several OR subfamilies. Mixture responses predicted pharmacological interactions between odorants, which were tested in vitro by heterologous expression of ORs in cultured cells, providing independent evidence confirming odorant agonists for 13 ORs and identifying both suppressive and additive effects. This included 11 instances of antagonism of ORs by an odorant, 1 instance of additive responses to a binary mixture, 1 instance of suppression of a strong agonist by a weak agonist, and the discovery of an inverse agonist for an OR. Interactions between odorants at ORs are common even when the odorants are not known to interact perceptually in humans, and in some cases interactions at mouse ORs correlate with the ability of humans to perceive an odorant in a mixture.
Collapse
Affiliation(s)
- Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William B Titlow
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Tomoko Sengoku
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Patrick Breheny
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA.
| | - Timothy S McClintock
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA.
| |
Collapse
|
34
|
Grigoletto L, Brito LF, Mattos EC, Eler JP, Bussiman FO, Silva BDCA, da Silva RP, Carvalho FE, Berton MP, Baldi F, Ferraz JBS. Genome-wide associations and detection of candidate genes for direct and maternal genetic effects influencing growth traits in the Montana Tropical® Composite population. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Cichy A, Shah A, Dewan A, Kaye S, Bozza T. Genetic Depletion of Class I Odorant Receptors Impacts Perception of Carboxylic Acids. Curr Biol 2019; 29:2687-2697.e4. [PMID: 31378611 DOI: 10.1016/j.cub.2019.06.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
The mammalian main olfactory pathway detects myriad volatile chemicals using >1,000 odorant receptor (OR) genes, which are organized into two phylogenetically distinct classes (class I and class II). An important question is how these evolutionarily conserved classes contribute to odor perception. Here, we report functional inactivation of a large number of class I ORs in mice via identification and deletion of a local cis-acting enhancer in the class I gene cluster. This manipulation reduced expression of half of the 131 intact class I genes. The resulting class I-depleted mice exhibited a significant reduction in the number of glomeruli responding to carboxylic acids-chemicals associated with microbial action and body odors. These mice also exhibit a change in odor perception marked by a selective loss of behavioral aversion to these compounds. Together, our data demonstrate that class I ORs play a critical role in representing a class of biologically relevant chemosignals.
Collapse
Affiliation(s)
- Annika Cichy
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Ami Shah
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Adam Dewan
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Sarah Kaye
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
| |
Collapse
|