1
|
Zhou P, Jia Y, Zhang T, Abudukeremu A, He X, Zhang X, Liu C, Li W, Li Z, Sun L, Guang S, Zhou Z, Yuan Z, Lu X, Yu Y. Red Light-Activated Reversible Inhibition of Protein Functions by Assembled Trap. ACS Synth Biol 2025. [PMID: 40304578 DOI: 10.1021/acssynbio.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Red light, characterized by superior tissue penetration and minimal phototoxicity, represents an ideal wavelength for optogenetic applications. However, the existing tools for reversible protein inhibition by red light remain limited. Here, we introduce R-LARIAT (red light-activated reversible inhibition by assembled trap), a novel optogenetic system enabling precise spatiotemporal control of protein function via 660 nm red-light-induced protein clustering. Our system harnesses the rapid and reversible binding of engineered light-dependent binders (LDBs) to the bacterial phytochrome DrBphP, which utilizes the endogenous mammalian biliverdin chromophore for red light absorption. By fusing LDBs with single-domain antibodies targeting epitope-tagged proteins (e.g., GFP), R-LARIAT enables the rapid sequestration of diverse proteins into light-responsive clusters. This approach demonstrates high light sensitivity, clustering efficiency, and sustained stability. As a proof of concept, R-LARIAT-mediated sequestration of tubulin inhibits cell cycle progression in HeLa cells. This system expands the optogenetic toolbox for studying dynamic biological processes with high spatial and temporal resolution and holds the potential for applications in living tissues.
Collapse
Affiliation(s)
- Peng Zhou
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongkang Jia
- School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Tianyu Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Abasi Abudukeremu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuan He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaozhong Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zengpeng Li
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen 361005, China
| | - Ling Sun
- Center for Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Shouhong Guang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhiheng Yuan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Lu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Nakajima T, Kuwasaki Y, Yamamoto S, Otabe T, Sato M. A Red Light-Activatable Endogenous Gene Transcription System with Red-CPTS. Methods Mol Biol 2025; 2840:45-55. [PMID: 39724343 DOI: 10.1007/978-1-0716-4047-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Red light penetrates deep into mammalian tissues and has low phototoxicity. We developed a red light-activatable photoswitch (MagRed) for deep tissue optogenetics. Using MagRed, we developed a red light-activatable endogenous gene transcription system (Red-CPTS) based on CRISPR-Cas9. Here we provide a detailed protocol for endogenous gene activation using Red-CPTS in cultured mammalian cells and living mice in vivo.
Collapse
Affiliation(s)
- Takahiro Nakajima
- Kanagawa Institute of Industrial Science and Technology, Kawasaki-shi, Kanagawa, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuto Kuwasaki
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shota Yamamoto
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Otabe
- Kanagawa Institute of Industrial Science and Technology, Kawasaki-shi, Kanagawa, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Moritoshi Sato
- Kanagawa Institute of Industrial Science and Technology, Kawasaki-shi, Kanagawa, Japan.
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Jafarbeglou F, Dunlop MJ. Red Light Responsive Cre Recombinase for Bacterial Optogenetics. ACS Synth Biol 2024; 13:3991-4001. [PMID: 39558834 DOI: 10.1021/acssynbio.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Optogenetic tools have been used in a wide range of microbial engineering applications that benefit from the tunable, spatiotemporal control that light affords. However, the majority of current optogenetic constructs for bacteria respond to blue light, limiting the potential for multichromatic control. In addition, other wavelengths offer potential benefits over blue light, including improved penetration of dense cultures and reduced potential for toxicity. In this study, we introduce OptoCre-REDMAP, a red light inducible Cre recombinase system in Escherichia coli. This system harnesses the plant photoreceptors PhyA and FHY1 and a split version of Cre recombinase to achieve precise control over gene expression and DNA excision. We optimized the design by modifying the start codon of Cre and characterized the impact of different levels of induction to find conditions that produced minimal basal expression in the dark and induced full activation within 4 h of red light exposure. We characterized the system's sensitivity to ambient light, red light intensity, and exposure time, finding OptoCre-REDMAP to be reliable and flexible across a range of conditions. In coculture experiments with OptoCre-REDMAP and the blue light responsive OptoCre-VVD, we found that the systems responded orthogonally to red and blue light inputs. Direct comparisons between red and blue light induction with OptoCre-REDMAP and OptoCre-VVD demonstrated the superior penetration properties of red light. OptoCre-REDMAP's robust and selective response to red light makes it suitable for advanced synthetic biology applications, particularly those requiring precise multichromatic control.
Collapse
Affiliation(s)
- Fereshteh Jafarbeglou
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| | - Mary J Dunlop
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
4
|
Morikawa K, Nagasaki A, Sun L, Kawase E, Ebihara T, Shirayoshi Y. Optogenetic control of early embryos labeling using photoactivatable Cre recombinase 3.0. FEBS Open Bio 2024; 14:1888-1898. [PMID: 39223831 PMCID: PMC11532978 DOI: 10.1002/2211-5463.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
Establishing a highly efficient photoactivatable Cre recombinase PA-Cre3.0 can allow spatiotemporal control of Cre recombinase activity. This technique may help to elucidate cell lineages, as well as facilitate gene and cell function analysis during development. This study examined the blue light-mediated optical regulation of Cre-loxP recombination using PA-Cre3.0 transgenic early mouse pre-implantation embryos. We found that inducing PA-Cre3.0 expression in the heterozygous state did not show detectable recombination activation with blue light. Conversely, in homozygous embryos, DNA recombination by PA-Cre3.0 was successfully induced by blue light and resulted in the activation of the red fluorescent protein reporter gene, while almost no leaks of Cre recombination activity were detected in embryos without light illumination. Thus, we characterize the conditions under which the PA-Cre3.0 system functions efficiently in early mouse embryos. These results are expected to provide a new optogenetic tool for certain biological studies, such as developmental process analysis and lineage tracing in early mouse embryos.
Collapse
Affiliation(s)
- Kumi Morikawa
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Akira Nagasaki
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Lue Sun
- Health and Medical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Eihachiro Kawase
- Institute for Life and Medical SciencesKyoto UniversityKyotoJapan
| | - Tatsuhiko Ebihara
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Yasuaki Shirayoshi
- Division of Regenerative Medicine and Therapeutics, Department of Genomic Medicine and Regenerative Therapy, Faculty of MedicineTottori UniversityYonagoJapan
| |
Collapse
|
5
|
Yamazaki H, Sugawara R, Takayama Y. Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light. Front Bioeng Biotechnol 2024; 12:1324757. [PMID: 39465004 PMCID: PMC11502365 DOI: 10.3389/fbioe.2024.1324757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Gene expression is a fundamental process that regulates diverse biological activities across all life stages. Given its vital role, there is an urgent need to develop innovative methodologies to effectively control gene expression. Light-controlled gene expression is considered a favorable approach because of its ability to provide precise spatiotemporal control. However, current light-controlled technologies rely on photosensitive molecular tags, making their practical use challenging. In this study, we review current technologies for light-controlled gene expression and propose the development of label-free light-controlled technologies using mid-infrared (mid-IR) and terahertz light.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ryusei Sugawara
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yurito Takayama
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
6
|
Xu Y, Wang B, Bush I, Saunders HAJ, Wildonger J, Han C. In vivo optogenetic manipulations of endogenous proteins reveal spatiotemporal roles of microtubule and kinesin in dendrite patterning. SCIENCE ADVANCES 2024; 10:eadp0138. [PMID: 39213355 PMCID: PMC11364106 DOI: 10.1126/sciadv.adp0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
During animal development, the spatiotemporal properties of molecular events largely determine the biological outcomes. Conventional gene analysis methods lack the spatiotemporal resolution for precise dissection of developmental mechanisms. Although optogenetic tools exist for manipulating designer proteins in cultured cells, few have been successfully applied to endogenous proteins in live animals. Here, we report OptoTrap, a light-inducible clustering system for manipulating endogenous proteins of diverse sizes, subcellular locations, and functions in Drosophila. This system turns on fast, is reversible in minutes or hours, and contains variants optimized for neurons and epithelial cells. By using OptoTrap to disrupt microtubules and inhibit kinesin-1 in neurons, we show that microtubules support the growth of highly dynamic dendrites and that kinesin-1 is required for patterning of low- and high-order dendritic branches in differential spatiotemporal domains. OptoTrap allows for precise manipulation of endogenous proteins in a spatiotemporal manner and thus holds promise for studying developmental mechanisms in a wide range of cell types and developmental stages.
Collapse
Affiliation(s)
- Yineng Xu
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Inle Bush
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Harriet AJ Saunders
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI 53706, USA
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI 53706, USA
- Pediatrics Department and Biological Sciences Division, Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Elsaid R, Mikdache A, Diabangouaya P, Gros G, Hernández PP. A noninvasive photoactivatable split-Cre recombinase system for genome engineering in zebrafish. iScience 2024; 27:110476. [PMID: 39129833 PMCID: PMC11315165 DOI: 10.1016/j.isci.2024.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
The cyclic recombinase (Cre)/loxP recombination system is a powerful technique for in vivo cell labeling and tracking. However, achieving high spatiotemporal precision in cell tracking using this system is challenging due to the requirement for reliable tissue-specific promoters. In contrast, light-inducible systems offer superior regional confinement, tunability, and non-invasiveness compared to conventional lineage-tracing methods. Here, we took advantage of the unique strengths of the zebrafish to develop an easy-to-use highly efficient, genetically encoded, magnets-based, light-inducible transgenic Cre/loxP system. We demonstrate that our system does not exhibit phototoxicity or leakiness in the dark, and it enables efficient and robust Cre/loxP recombination in various tissues and cell types at different developmental stages through noninvasive illumination with blue light. Our newly developed tool is expected to open novel opportunities for light-controlled tracking of cell fate and migration in vivo.
Collapse
Affiliation(s)
- Ramy Elsaid
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Aya Mikdache
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Patricia Diabangouaya
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Gwendoline Gros
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Pedro P. Hernández
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
8
|
Kong D, Zhou Y, Wei Y, Wang X, Huang Q, Gao X, Wan H, Liu M, Kang L, Yu G, Yin J, Guan N, Ye H. Exploring plant-derived phytochrome chaperone proteins for light-switchable transcriptional regulation in mammals. Nat Commun 2024; 15:4894. [PMID: 38849338 PMCID: PMC11161646 DOI: 10.1038/s41467-024-49254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Synthetic biology applications require finely tuned gene expression, often mediated by synthetic transcription factors (sTFs) compatible with the human genome and transcriptional regulation mechanisms. While various DNA-binding and activation domains have been developed for different applications, advanced artificially controllable sTFs with improved regulatory capabilities are required for increasingly sophisticated applications. Here, in mammalian cells and mice, we validate the transactivator function and homo-/heterodimerization activity of the plant-derived phytochrome chaperone proteins, FHY1 and FHL. Our results demonstrate that FHY1/FHL form a photosensing transcriptional regulation complex (PTRC) through interaction with the phytochrome, ΔPhyA, that can toggle between active and inactive states through exposure to red or far-red light, respectively. Exploiting this capability, we develop a light-switchable platform that allows for orthogonal, modular, and tunable control of gene transcription, and incorporate it into a PTRC-controlled CRISPRa system (PTRCdcas) to modulate endogenous gene expression. We then integrate the PTRC with small molecule- or blue light-inducible regulatory modules to construct a variety of highly tunable systems that allow rapid and reversible control of transcriptional regulation in vitro and in vivo. Validation and deployment of these plant-derived phytochrome chaperone proteins in a PTRC platform have produced a versatile, powerful tool for advanced research and biomedical engineering applications.
Collapse
Affiliation(s)
- Deqiang Kong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- Wuhu Hospital, Health Science Center, East China Normal University, Middle Jiuhua Road 263, Wuhu City, China
| | - Yu Wei
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Xinyi Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Qin Huang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Xianyun Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Hang Wan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Mengyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Liping Kang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Guiling Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jianli Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Ningzi Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
- Wuhu Hospital, Health Science Center, East China Normal University, Middle Jiuhua Road 263, Wuhu City, China.
| |
Collapse
|
9
|
Wang X, Kang L, Kong D, Wu X, Zhou Y, Yu G, Dai D, Ye H. A programmable protease-based protein secretion platform for therapeutic applications. Nat Chem Biol 2024; 20:432-442. [PMID: 37872400 DOI: 10.1038/s41589-023-01433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/02/2023] [Indexed: 10/25/2023]
Abstract
Cell-based therapies represent potent enabling technologies in biomedical science. However, current genetic control systems for engineered-cell therapies are predominantly based on the transcription or translation of therapeutic outputs. Here we report a protease-based rapid protein secretion system (PASS) that regulates the secretion of pretranslated proteins retained in the endoplasmic reticulum (ER) owing to an ER-retrieval signal. Upon cleavage by inducible proteases, these proteins are secreted. Three PASS variants (chemPASS, antigenPASS and optoPASS) are developed. With chemPASS, we demonstrate the reversal of hyperglycemia in diabetic mice within minutes via drug-induced insulin secretion. AntigenPASS-equipped cells recognize the tumor antigen and secrete granzyme B and perforin, inducing targeted cell apoptosis. Finally, results from mouse models of diabetes, hypertension and inflammatory pain demonstrate light-induced, optoPASS-mediated therapeutic peptide secretion within minutes, conferring anticipated therapeutic benefits. PASS is a flexible platform for rapid delivery of therapeutic proteins that can facilitate the development and adoption of cell-based precision therapies.
Collapse
Affiliation(s)
- Xinyi Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liping Kang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Deqiang Kong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yang Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Wuhu Hospital, Health Science Center, East China Normal University, Wuhu City, China
| | - Guiling Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Di Dai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
10
|
Cautereels C, Smets J, De Saeger J, Cool L, Zhu Y, Zimmermann A, Steensels J, Gorkovskiy A, Jacobs TB, Verstrepen KJ. Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts. Nat Commun 2024; 15:1113. [PMID: 38326330 PMCID: PMC10850332 DOI: 10.1038/s41467-024-44996-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Site-specific recombinases such as the Cre-LoxP system are routinely used for genome engineering in both prokaryotes and eukaryotes. Importantly, recombinases complement the CRISPR-Cas toolbox and provide the additional benefit of high-efficiency DNA editing without generating toxic DNA double-strand breaks, allowing multiple recombination events at the same time. However, only a handful of independent, orthogonal recombination systems are available, limiting their use in more complex applications that require multiple specific recombination events, such as metabolic engineering and genetic circuits. To address this shortcoming, we develop 63 symmetrical LoxP variants and test 1192 pairwise combinations to determine their cross-reactivity and specificity upon Cre activation. Ultimately, we establish a set of 16 orthogonal LoxPsym variants and demonstrate their use for multiplexed genome engineering in both prokaryotes (E. coli) and eukaryotes (S. cerevisiae and Z. mays). Together, this work yields a significant expansion of the Cre-LoxP toolbox for genome editing, metabolic engineering and other controlled recombination events, and provides insights into the Cre-LoxP recombination process.
Collapse
Affiliation(s)
- Charlotte Cautereels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Jolien Smets
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Lloyd Cool
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Yanmei Zhu
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Jan Steensels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Anton Gorkovskiy
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium.
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium.
| |
Collapse
|
11
|
Devarajan A. Optically Controlled CRISPR-Cas9 and Cre Recombinase for Spatiotemporal Gene Editing: A Review. ACS Synth Biol 2024; 13:25-44. [PMID: 38134336 DOI: 10.1021/acssynbio.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
CRISPR-Cas9 and Cre recombinase, two tools extensively used for genome interrogation, have catalyzed key breakthroughs in our understanding of complex biological processes and diseases. However, the immense complexity of biological systems and off-target effects hinder clinical applications, necessitating the development of platforms to control gene editing over spatial and temporal dimensions. Among the strategies developed for inducible control, light is particularly attractive as it is noninvasive and affords high spatiotemporal resolution. The principles for optical control of Cas9 and Cre recombinase are broadly similar and involve photocaged enzymes and small molecules, engineered split- and single-chain constructs, light-induced expression, and delivery by light-responsive nanocarriers. Few systems enable spatiotemporal control with a high dynamic range without loss of wild-type editing efficiencies. Such systems posit the promise of light-activatable systems in the clinic. While the prospect of clinical applications is palpably exciting, optimization and extensive preclinical validation are warranted. Judicious integration of optically activated CRISPR and Cre, tailored for the desired application, may help to bridge the "bench-to-bedside" gap in therapeutic gene editing.
Collapse
Affiliation(s)
- Archit Devarajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India - 462066
| |
Collapse
|
12
|
Hyeon B, Lee H, Kim N, Heo WD. Optogenetic dissection of RET signaling reveals robust activation of ERK and enhanced filopodia-like protrusions of regenerating axons. Mol Brain 2023; 16:56. [PMID: 37403137 DOI: 10.1186/s13041-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
RET (REarranged during Transfection) is a receptor tyrosine kinase that transduces various external stimuli into biological functions, such as survival and differentiation, in neurons. In the current study, we developed an optogenetic tool for modulating RET signaling, termed optoRET, combining the cytosolic region of human RET with a blue-light-inducible homo-oligomerizing protein. By varying the duration of photoactivation, we were able to dynamically modulate RET signaling. Activation of optoRET recruited Grb2 (growth factor receptor-bound protein 2) and stimulated AKT and ERK (extracellular signal-regulated kinase) in cultured neurons, evoking robust and efficient ERK activation. By locally activating the distal part of the neuron, we were able to retrogradely transduce the AKT and ERK signal to the soma and trigger formation of filopodia-like F-actin structures at stimulated regions through Cdc42 (cell division control 42) activation. Importantly, we successfully modulated RET signaling in dopaminergic neurons of the substantia nigra in the mouse brain. Collectively, optoRET has the potential to be developed as a future therapeutic intervention, modulating RET downstream signaling with light.
Collapse
Affiliation(s)
- Bobae Hyeon
- Department of Life Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea
| | - Heeyoung Lee
- Department of Life Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea
| | - Nury Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Won Do Heo
- Department of Life Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea.
- Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for the BioCentury, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
13
|
Grzelka K, Wilhelms H, Dodt S, Dreisow ML, Madara JC, Walker SJ, Wu C, Wang D, Lowell BB, Fenselau H. A synaptic amplifier of hunger for regaining body weight in the hypothalamus. Cell Metab 2023; 35:770-785.e5. [PMID: 36965483 PMCID: PMC10160008 DOI: 10.1016/j.cmet.2023.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/15/2022] [Accepted: 03/01/2023] [Indexed: 03/27/2023]
Abstract
Restricting caloric intake effectively reduces body weight, but most dieters fail long-term adherence to caloric deficit and eventually regain lost weight. Hypothalamic circuits that control hunger drive critically determine body weight; yet, how weight loss sculpts these circuits to motivate food consumption until lost weight is regained remains unclear. Here, we probe the contribution of synaptic plasticity in discrete excitatory afferents on hunger-promoting AgRP neurons. We reveal a crucial role for activity-dependent, remarkably long-lasting amplification of synaptic activity originating from paraventricular hypothalamus thyrotropin-releasing (PVHTRH) neurons in long-term body weight control. Silencing PVHTRH neurons inhibits the potentiation of excitatory input to AgRP neurons and diminishes concomitant regain of lost weight. Brief stimulation of the pathway is sufficient to enduringly potentiate this glutamatergic hunger synapse and triggers an NMDAR-dependent gaining of body weight that enduringly persists. Identification of this activity-dependent synaptic amplifier provides a previously unrecognized target to combat regain of lost weight.
Collapse
Affiliation(s)
- Katarzyna Grzelka
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Hannah Wilhelms
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Stephan Dodt
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Marie-Luise Dreisow
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samuel J Walker
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chen Wu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daqing Wang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
14
|
Ding J, Lu J, Zhang Q, Xu Y, Song B, Wu Y, Shi H, Chu B, Wang H, He Y. Camouflage Nanoparticles Enable in Situ Bioluminescence-Driven Optogenetic Therapy of Retinoblastoma. ACS NANO 2023; 17:7750-7764. [PMID: 37022677 DOI: 10.1021/acsnano.3c00470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Optogenetic therapy has emerged as a promising technique for the treatment of ocular diseases; however, most optogenetic tools rely on external blue light to activate the photoswitch, whose relatively strong phototoxicity may induce retinal damage. Herein, we present the demonstration of camouflage nanoparticle-based vectors for in situ bioluminescence-driven optogenetic therapy of retinoblastoma. In biomimetic vectors, the photoreceptor CRY2 and its interacting partner CIB1 plasmid are camouflaged with folic acid ligands and luciferase NanoLuc-modified macrophage membranes. To conduct proof-of-concept research, this study employs a mouse model of retinoblastoma. In comparison to external blue light irradiation, the developed system enables an in situ bioluminescence-activated apoptotic pathway to inhibit tumor growth with greater therapeutic efficacy, resulting in a significant reduction in ocular tumor size. Furthermore, unlike external blue light irradiation, which causes retinal damage and corneal neovascularization, the camouflage nanoparticle-based optogenetic system maintains retinal structural integrity while avoiding corneal neovascularization.
Collapse
Affiliation(s)
- Jiali Ding
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Jianping Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Qian Zhang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yanan Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yuqi Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Luo G, Zhang J, Song Z, Wang Y, Wang X, Qu H, Wang F, Liu C, Gao F. Effectiveness of non-pharmacological therapies on cognitive function in patients with dementia-A network meta-analysis of randomized controlled trials. Front Aging Neurosci 2023; 15:1131744. [PMID: 36967820 PMCID: PMC10035791 DOI: 10.3389/fnagi.2023.1131744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Objective Non-pharmacological therapies (NPTs) have received increasing attention from researchers as a category of treatment to improve cognitive impairment in patients with dementia because of their fewer side effects. In this study, photobiomodulation (PBM), enriched environment (EE), exercise therapy (ET), computerized cognitive training (CCT), and cognitive stimulation therapy (CST) were selected to compare the effects of NPTs that improve dementia by quantifying information from randomized controlled trials (RCTs). Methods We did a systematic review and network meta-analysis. We searched PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), China National Knowledge Infrastructure Database, Wan Fang Database, Chinese Biomedical Literature Database, Web of Science, and VIP Database from the time of database creation to 1 August 2022. Two investigators independently screened the literature, extracted information, and assessed the RCTs' quality with the Cochrane Collaboration Network Risk of Bias 2.0. Network meta-analysis was performed using R language (X64 version 4.1.3) and STATA 17.0. Results We identified 1,268 citations and of these included 38 trials comprising 3,412 participants. For improving dementia, the results of the network meta-analysis showed that compared with the control group (CON), PBM (SMD = 0.90, 95% CI: 0.43-1.37), EE (SMD = 0.71, 95% CI: 0.02-1.41), ET (SMD = 0.42, 95% CI: 0.16-0.68), and CST (SMD = 0.36, 95% CI: 0.11-0.62) were significantly different (P < 0.05); There was no significant difference in CCT (SMD = 0.41, 95% CI: -0.07-0.88) (P > 0.05). The ranked results showed that PBM has more potential to be the best intervention (P = 0.90). In addition, there was a significant difference between PBM and CST in improving cognitive function (SMD = 0.54, 95% CI: 0.00; 1.08, P < 0.05). Conclusion In this study, NPTs have excellent potential to improve cognition in people with dementia, and PBM may have more significant benefits in improving cognition than the other four NPTs. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022363746.
Collapse
Affiliation(s)
- Guangxin Luo
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Junqiu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zeyi Song
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Ying Wang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaojing Wang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Haifeng Qu
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Fang Wang
- Department of Psychology, The Fourth People’s Hospital of Wuhu, Wuhu, China
| | - Chengjiang Liu
- Department of General Medicine, Affiliated Anqing First People’s Hospital of Anhui Medical University, Anqing, China
| | - Fujia Gao
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
16
|
Huang DF, Lin CW, Yang TY, Lien CC, Yang CH, Huang HS. An intersectional genetic approach for simultaneous cell type-specific labelling and gene knockout in the mouse. Development 2023; 150:287021. [PMID: 36786332 DOI: 10.1242/dev.201198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Precise genome manipulation in specific cell types and subtypes in vivo is crucial for neurobiological research because of the cellular heterogeneity of the brain. Site-specific recombinase systems in the mouse, such as Cre-loxP, improve cell type-specific genome manipulation; however, undesirable expression of cell type-specific Cre can occur. This could be due to transient expression during early development, natural expression in more than one cell type, kinetics of recombinases, sensitivity of the Cre reporter, and disruption in cis-regulatory elements by transgene insertion. Moreover, cell subtypes cannot be distinguished in cell type-specific Cre mice. To address these issues, we applied an intersectional genetic approach in mouse using triple recombination systems (Cre-loxP, Flp-FRT and Dre-rox). As a proof of principle, we labelled heterogeneous cell subtypes and deleted target genes within given cell subtypes by labelling neuropeptide Y (NPY)-, calretinin (calbindin 2) (CR)- and cholecystokinin (CCK)-expressing GABAergic neurons in the brain followed by deletion of RNA-binding Fox-1 homolog 3 (Rbfox3) in our engineered mice. Together, our study applies an intersectional genetic approach in vivo to generate engineered mice serving dual purposes of simultaneous cell subtype-specific labelling and gene knockout.
Collapse
Affiliation(s)
- De-Fong Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chao-Wen Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100229, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Tzu-Yin Yang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100229, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
17
|
Nagasaki SC, Fukuda TD, Yamada M, Suzuki YIII, Kakutani R, Guy AT, Imayoshi I. Enhancement of Vivid-based photo-activatable Gal4 transcription factor in mammalian cells. Cell Struct Funct 2023; 48:31-47. [PMID: 36529516 PMCID: PMC10721950 DOI: 10.1247/csf.22074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vector-mediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms.Key words: optogenetics, Gal4/UAS system, transcription, gene expression, Vivid.
Collapse
Affiliation(s)
- Shinji C. Nagasaki
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori D. Fukuda
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Mayumi Yamada
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Cell Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke III Suzuki
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryo Kakutani
- Laboratory of Cell Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Adam T. Guy
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Science Communication, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Itaru Imayoshi
- Laboratory of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Deconstruction of Stem Cells, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
18
|
Lan TH, He L, Huang Y, Zhou Y. Optogenetics for transcriptional programming and genetic engineering. Trends Genet 2022; 38:1253-1270. [PMID: 35738948 PMCID: PMC10484296 DOI: 10.1016/j.tig.2022.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.
Collapse
Affiliation(s)
- Tien-Hung Lan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Li H, Wu Y, Qiu Y, Li X, Guan Y, Cao X, Liu M, Zhang D, Huang S, Lin L, Hui L, Ma X, Liu M, Zhang X, Wang L, Li D. Stable Transgenic Mouse Strain with Enhanced Photoactivatable Cre Recombinase for Spatiotemporal Genome Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201352. [PMID: 36266974 PMCID: PMC9731692 DOI: 10.1002/advs.202201352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Optogenetic genome engineering is a powerful technology for high-resolution spatiotemporal genetic manipulation, especially for in vivo studies. It is difficult to generate stable transgenic animals carrying a tightly regulated optogenetic system, as its long-term expression induces high background activity. Here, the generation of an enhanced photoactivatable Cre recombinase (ePA-Cre) transgenic mouse strain with stringent light responsiveness and high recombination efficiency is reported. Through serial optimization, ePA-Cre is developed to generate a transgenic mouse line that exhibits 175-fold induction upon illumination. Efficient light-dependent recombination is detected in embryos and various adult tissues of ePA-Cre mice crossed with the Ai14 tdTomato reporter. Importantly, no significant background Cre activity is detected in the tested tissues except the skin. Moreover, efficient light-inducible cell ablation is achieved in ePA-Cre mice crossed with Rosa26-LSL-DTA mice. In conclusion, ePA-Cre mice offer a tightly inducible, highly efficient, and spatiotemporal-specific genome engineering tool for multiple applications.
Collapse
Affiliation(s)
- Huiying Li
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
- Southern Medical University Affiliated Fengxian HospitalShanghai201499China
| | - Yingyin Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yuhao Qiu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Xinru Li
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Xiya Cao
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Meizhen Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Sijie Huang
- Key Laboratory of Brain Functional Genomics (Ministry of Education)Institute of Brain Functional GenomicsEast China Normal UniversityShanghai200062China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics (Ministry of Education)Institute of Brain Functional GenomicsEast China Normal UniversityShanghai200062China
| | - Lijian Hui
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xueyun Ma
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Xueli Zhang
- Southern Medical University Affiliated Fengxian HospitalShanghai201499China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| |
Collapse
|
20
|
Williams JD, Voziyanova E, Voziyanov Y. The bacteriophage lambda integrase catalytic domain can be modified to act with the regulatory domain as a recombination-competent binary recombinase. J Biol Chem 2022; 299:102721. [PMID: 36410432 PMCID: PMC9791396 DOI: 10.1016/j.jbc.2022.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Site-specific recombinase Int mediates integration of the bacteriophage λ genome into the Escherichia coli chromosome. Integration occurs once the Int tetramer, assisted by the integration host factor IHF, forms the intasome, a higher order structure, within which Int, a heterobivalent protein, interacts with two nonhomologous DNA sequences: the core recombination sites and the accessory arm sites. The binding to these sites is mediated by the catalytic C-terminal domain (CTD) and the regulatory N-terminal domain (NTD) of Int, respectively. Within Int, the NTD can activate or inhibit the recombination activity of the CTD depending on whether the NTD is bound to the arm sites. The CTD alone cannot mediate recombination, and even when the NTD and the CTD are mixed together as individual polypeptides, the NTD cannot trigger recombination in the CTD. In this work, we set to determine what modifications can unlock the recombination activity in the CTD alone and how the CTD can be modified to respond to recombination-triggering signals from the NTD. For this, we performed a series of genetic analyses, which showed that a single mutation that stabilizes the CTD on DNA, E174K, allows the CTD to recombine the core DNA sequences. When the NTD is paired with the CTD (E174K) that also bears a short polypeptide from the C terminus of the NTD, the resulting binary Int can recombine arm-bearing substrates. Our results provide insights into the molecular basis of the regulation of the Int activity and suggest how binary recombinases of the integrase type can be engineered.
Collapse
Affiliation(s)
- Joe D Williams
- School of Biosciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Eugenia Voziyanova
- School of Biosciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Yuri Voziyanov
- School of Biosciences, Louisiana Tech University, Ruston, Louisiana, USA.
| |
Collapse
|
21
|
A red light-responsive photoswitch for deep tissue optogenetics. Nat Biotechnol 2022; 40:1672-1679. [PMID: 35697806 DOI: 10.1038/s41587-022-01351-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Red light penetrates deep into mammalian tissues and has low phototoxicity, but few optogenetic tools that use red light have been developed. Here we present MagRed, a red light-activatable photoswitch that consists of a red light-absorbing bacterial phytochrome incorporating a mammalian endogenous chromophore, biliverdin and a photo-state-specific binder that we developed using Affibody library selection. Red light illumination triggers the binding of the two components of MagRed and the assembly of split-proteins fused to them. Using MagRed, we developed a red light-activatable Cre recombinase, which enables light-activatable DNA recombination deep in mammalian tissues. We also created red light-inducible transcriptional regulators based on CRISPR-Cas9 that enable an up to 378-fold activation (average, 135-fold induction) of multiple endogenous target genes. MagRed will facilitate optogenetic applications deep in mammalian organisms in a variety of biological research areas.
Collapse
|
22
|
Choi JE, Choi DI, Lee J, Kim J, Kim MJ, Hong I, Jung H, Sung Y, Kim JI, Kim T, Yu NK, Lee SH, Choe HK, Koo JW, Kim JH, Kaang BK. Synaptic ensembles between raphe and D 1R-containing accumbens shell neurons underlie postisolation sociability in males. SCIENCE ADVANCES 2022; 8:eabo7527. [PMID: 36223467 PMCID: PMC9555785 DOI: 10.1126/sciadv.abo7527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Social animals expend considerable energy to maintain social bonds throughout their life. Male and female mice show sexually dimorphic behaviors, yet the underlying neural mechanisms of sociability and their dysregulation during social disconnection remain unknown. Dopaminergic neurons in dorsal raphe nucleus (DRNTH) is known to contribute to a loneliness-like state and modulate sociability. We identified that activated subpopulations in DRNTH and nucleus accumbens shell (NAcsh) during 24 hours of social isolation underlie the increase in isolation-induced sociability in male but not in female mice. This effect was reversed by chemogenetically and optogenetically inhibiting the DRNTH-NAcsh circuit. Moreover, synaptic connectivity among the activated neuronal ensembles in this circuit was increased, primarily in D1 receptor-expressing neurons in NAcsh. The increase in synaptic density functionally correlated with elevated dopamine release into NAcsh. Overall, specific synaptic ensembles in DRNTH-NAcsh mediate sex differences in isolation-induced sociability, indicating that sex-dependent circuit dynamics underlie the expression of sexually dimorphic behaviors.
Collapse
Affiliation(s)
- Ja Eun Choi
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Dong Il Choi
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jisu Lee
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jooyoung Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Min Jung Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ilgang Hong
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyunsu Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Yongmin Sung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ji-il Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - TaeHyun Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Nam-Kyung Yu
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Technojoongang-daero, Dalseong-gun, Daegu 42988, South Korea
| | - Ja Wook Koo
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-Gu, Pohang 37673, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
23
|
Hong J, Jeong Y, Heo WD. The Neurotrophic Receptor Tyrosine Kinase in MEC-mPFC Neurons Contributes to Remote Memory Consolidation. J Neurosci 2022; 42:6605-6619. [PMID: 35863892 PMCID: PMC9410758 DOI: 10.1523/jneurosci.2433-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
The PFC is thought to be the region where remote memory is recalled. However, the neurotrophic receptors that underlie the remote memory remain largely unknown. Here, we benefited from auto-assembly split Cre to accomplish the neural projection-specific recombinase activity without spontaneous leakage. Deletion of tropomyosin receptor kinase B (TrkB) in neurons projecting from the medial entorhinal cortex to the mPFC displayed reduced remote memory recall from the male mice, but the recent recall was intact. We found that the TrkB deletion attenuates the participation of mPFC cells in the remote fear memory recall. The disruption of remote recall was attributed to reduced reactivation of cells in the mPFC. Notably, TrkB deletion seriously inhibited experience-dependent maturation of oligodendroglia in the PFC, resulting in defects in remote recall that were rescued by clemastine administration. Together, our data suggest that TrkB in intercortical circuits functions in remote memory consolidation.SIGNIFICANCE STATEMENT Retrieving the past experiences or events is essential for the ones to lead life. The investigations performed in the rodent model have disclosed that the systems consolidation of memory accompanying changes of cortical circuits and transcriptome is required for maintaining the memory for a long time. In this study, the split Cre with TrkBflox/flox mice were subjected to discover that TrkB in the neurons plays a role in remote memory consolidation. We evaluated the contextual fear memory and labeled cells, which revealed deletion of TrkB interrupts newborn oligodendrocyte and reactivation of cells in mPFC at remote recall. Our data provide the implication that remote memory is relevant to neurotrophic receptor signaling as well as its influence on non-neuronal cells.
Collapse
Affiliation(s)
- Jongryul Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yeonji Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Korea Advanced Institute of Science and Technology Institute for the BioCentury, Daejeon, 34141, Republic of Korea
| |
Collapse
|
24
|
Efficient spatially targeted gene editing using a near-infrared activatable protein-conjugated nanoparticle for brain applications. Nat Commun 2022; 13:4135. [PMID: 35840564 PMCID: PMC9287341 DOI: 10.1038/s41467-022-31791-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 07/05/2022] [Indexed: 12/27/2022] Open
Abstract
Spatial control of gene expression is critical to modulate cellular functions and deconstruct the function of individual genes in biological processes. Light-responsive gene-editing formulations have been recently developed; however, they have shown limited applicability in vivo due to poor tissue penetration, limited cellular transfection and the difficulty in evaluating the activity of the edited cells. Here, we report a formulation composed of upconversion nanoparticles conjugated with Cre recombinase enzyme through a photocleavable linker, and a lysosomotropic agent that facilitates endolysosomal escape. This formulation allows in vitro spatial control in gene editing after activation with near-infrared light. We further demonstrate the potential of this formulation in vivo through three different paradigms: (i) gene editing in neurogenic niches, (ii) gene editing in the ventral tegmental area to facilitate monitoring of edited cells by precise optogenetic control of reward and reinforcement, and (iii) gene editing in a localized brain region via a noninvasive administration route (i.e., intranasal). Spatial control of gene expression allows precise control over biological processes. Here, the authors develop an efficient light-responsive formulation based on upconversion nanoparticles, and demonstrate on-demand genetic manipulation in deep brain tissue.
Collapse
|
25
|
Shen Y, Luchetti A, Fernandes G, Do Heo W, Silva AJ. The emergence of molecular systems neuroscience. Mol Brain 2022; 15:7. [PMID: 34983613 PMCID: PMC8728933 DOI: 10.1186/s13041-021-00885-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Systems neuroscience is focused on how ensemble properties in the brain, such as the activity of neuronal circuits, gives rise to internal brain states and behavior. Many of the studies in this field have traditionally involved electrophysiological recordings and computational approaches that attempt to decode how the brain transforms inputs into functional outputs. More recently, systems neuroscience has received an infusion of approaches and techniques that allow the manipulation (e.g., optogenetics, chemogenetics) and imaging (e.g., two-photon imaging, head mounted fluorescent microscopes) of neurons, neurocircuits, their inputs and outputs. Here, we will review novel approaches that allow the manipulation and imaging of specific molecular mechanisms in specific cells (not just neurons), cell ensembles and brain regions. These molecular approaches, with the specificity and temporal resolution appropriate for systems studies, promise to infuse the field with novel ideas, emphases and directions, and are motivating the emergence of a molecularly oriented systems neuroscience, a new discipline that studies how the spatial and temporal patterns of molecular systems modulate circuits and brain networks, and consequently shape the properties of brain states and behavior.
Collapse
Affiliation(s)
- Yang Shen
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Giselle Fernandes
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Mol Psychiatry 2022; 27:422-435. [PMID: 34561609 DOI: 10.1038/s41380-021-01292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The mammalian brain is composed of a large number of highly diverse cell types with different molecular, anatomical, and functional features. Distinct cellular identities are generated during development under the regulation of intricate genetic programs and manifested through unique combinations of gene expression. Recent advancements in our understanding of the molecular and cellular mechanisms underlying the assembly, function, and pathology of the brain circuitry depend on the invention and application of genetic strategies that engage intrinsic gene regulatory mechanisms. Here we review the strategies for gene regulation on DNA, RNA, and protein levels and their applications in cell type targeting and neural circuit dissection. We highlight newly emerged strategies and emphasize the importance of combinatorial approaches. We also discuss the potential caveats and pitfalls in current methods and suggest future prospects to improve their comprehensiveness and versatility.
Collapse
|
27
|
di Pietro F, Herszterg S, Huang A, Bosveld F, Alexandre C, Sancéré L, Pelletier S, Joudat A, Kapoor V, Vincent JP, Bellaïche Y. Rapid and robust optogenetic control of gene expression in Drosophila. Dev Cell 2021; 56:3393-3404.e7. [PMID: 34879263 PMCID: PMC8693864 DOI: 10.1016/j.devcel.2021.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Deciphering gene function requires the ability to control gene expression in space and time. Binary systems such as the Gal4/UAS provide a powerful means to modulate gene expression and to induce loss or gain of function. This is best exemplified in Drosophila, where the Gal4/UAS system has been critical to discover conserved mechanisms in development, physiology, neurobiology, and metabolism, to cite a few. Here we describe a transgenic light-inducible Gal4/UAS system (ShineGal4/UAS) based on Magnet photoswitches. We show that it allows efficient, rapid, and robust activation of UAS-driven transgenes in different tissues and at various developmental stages in Drosophila. Furthermore, we illustrate how ShineGal4 enables the generation of gain and loss-of-function phenotypes at animal, organ, and cellular levels. Thanks to the large repertoire of UAS-driven transgenes, ShineGal4 enriches the Drosophila genetic toolkit by allowing in vivo control of gene expression with high temporal and spatial resolutions.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Anqi Huang
- Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Floris Bosveld
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Lucas Sancéré
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Amina Joudat
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Varun Kapoor
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
28
|
Mocellin P, Mikulovic S. The Role of the Medial Septum-Associated Networks in Controlling Locomotion and Motivation to Move. Front Neural Circuits 2021; 15:699798. [PMID: 34366795 PMCID: PMC8340000 DOI: 10.3389/fncir.2021.699798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022] Open
Abstract
The Medial Septum and diagonal Band of Broca (MSDB) was initially studied for its role in locomotion. However, the last several decades were focussed on its intriguing function in theta rhythm generation. Early studies relied on electrical stimulation, lesions and pharmacological manipulation, and reported an inconclusive picture regarding the role of the MSDB circuits. Recent studies using more specific methodologies have started to elucidate the differential role of the MSDB's specific cell populations in controlling both theta rhythm and behaviour. In particular, a novel theory is emerging showing that different MSDB's cell populations project to different brain regions and control distinct aspects of behaviour. While the majority of these behaviours involve movement, increasing evidence suggests that MSDB-related networks govern the motivational aspect of actions, rather than locomotion per se. Here, we review the literature that links MSDB, theta activity, and locomotion and propose open questions, future directions, and methods that could be employed to elucidate the diverse roles of the MSDB-associated networks.
Collapse
Affiliation(s)
- Petra Mocellin
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
- International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Sanja Mikulovic
- Research Group Cognition and Emotion, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
29
|
Wichert N, Witt M, Blume C, Scheper T. Clinical applicability of optogenetic gene regulation. Biotechnol Bioeng 2021; 118:4168-4185. [PMID: 34287844 DOI: 10.1002/bit.27895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/27/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022]
Abstract
The field of optogenetics is rapidly growing in relevance and number of developed tools. Among other things, the optogenetic repertoire includes light-responsive ion channels and methods for gene regulation. This review will be confined to the optogenetic control of gene expression in mammalian cells as suitable models for clinical applications. Here optogenetic gene regulation might offer an excellent method for spatially and timely regulated gene and protein expression in cell therapeutic approaches. Well-known systems for gene regulation, such as the LOV-, CRY2/CIB-, PhyB/PIF-systems, as well as other, in mammalian cells not yet fully established systems, will be described. Advantages and disadvantages with regard to clinical applications are outlined in detail. Among the many unanswered questions concerning the application of optogenetics, we discuss items such as the use of exogenous chromophores and their effects on the biology of the cells and methods for a gentle, but effective gene transfection method for optogenetic tools for in vivo applications.
Collapse
Affiliation(s)
- Nina Wichert
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Martin Witt
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Cornelia Blume
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Thomas Scheper
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| |
Collapse
|
30
|
Abstract
Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.
Collapse
Affiliation(s)
- Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea;
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
31
|
Oh TJ, Fan H, Skeeters SS, Zhang K. Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives. Adv Biol (Weinh) 2021; 5:e2000180. [PMID: 34028216 PMCID: PMC8218620 DOI: 10.1002/adbi.202000180] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Indexed: 12/24/2022]
Abstract
Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub-micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever-increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
Collapse
Affiliation(s)
- Teak-Jung Oh
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Huaxun Fan
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Savanna S Skeeters
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Kai Zhang
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| |
Collapse
|
32
|
Forlani G, Di Ventura B. A light way for nuclear cell biologists. J Biochem 2021; 169:273-286. [PMID: 33245128 PMCID: PMC8053400 DOI: 10.1093/jb/mvaa139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The nucleus is a very complex organelle present in eukaryotic cells. Having the crucial task to safeguard, organize and manage the genetic information, it must tightly control its molecular constituents, its shape and its internal architecture at any given time. Despite our vast knowledge of nuclear cell biology, much is yet to be unravelled. For instance, only recently we came to appreciate the existence of a dynamic nuclear cytoskeleton made of actin filaments that regulates processes such as gene expression, DNA repair and nuclear expansion. This suggests further exciting discoveries ahead of us. Modern cell biologists embrace a new methodology relying on precise perturbations of cellular processes that require a reversible, highly spatially confinable, rapid, inexpensive and tunEable external stimulus: light. In this review, we discuss how optogenetics, the state-of-the-art technology that uses genetically encoded light-sensitive proteins to steer biological processes, can be adopted to specifically investigate nuclear cell biology.
Collapse
Affiliation(s)
- Giada Forlani
- Spemann Graduate School of Biology and Medicine (SGBM)
- Centers for Biological Signalling Studies BIOSS and CIBSS
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Barbara Di Ventura
- Centers for Biological Signalling Studies BIOSS and CIBSS
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Huang X, Wang M, Liu Y, Gui Y. Synthesis of RNA-based gene regulatory devices for redirecting cellular signaling events mediated by p53. Am J Cancer Res 2021; 11:4688-4698. [PMID: 33754021 PMCID: PMC7978309 DOI: 10.7150/thno.55856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/12/2021] [Indexed: 11/05/2022] Open
Abstract
Rationale: The p53 gene is a well-known tumor suppressor, and its mutation often contributes to the occurrence and development of tumors. Due to the diversity and complexity of p53 mutations, there is still no effective p53 gene therapy. In this study, we designed and constructed an aptazyme switch that could effectively sense cellular wild-type p53 protein and regulate downstream gene function flexibly. The application of this artificial device in combination with Cre-LoxP and dCas9-VP64 tools achieved a precisely targeted killing effect on tumor cells. Methods: The affinity of the aptamer to p53 protein was verified by SPR. p53 aptazyme and gene circuits were chemically synthesized. The function of the gene circuit was detected by cell proliferation assay, apoptosis assay and Western blot. The nude mouse transplantation tumor experiment was used to evaluate the inhibitory effect of gene circuits on tumor cells in vivo. Results: The results of the SPR experiment showed that the p53 aptamer RNA sequence had a robust binding effect with p53 protein. The p53 aptazyme could efficiently sense wild-type p53 protein and initiate self-cleavage in cells. The Cre-p53 aptazyme gene circuit and dCas9-VP64/sgRNA mediated gene circuit designed based on p53 aptazyme significantly inhibited the growth and promoted the apoptosis of wild-type p53-deficient cancer cells in vitro. In addition, the gene circuits also had a significant inhibitory effect on tumors in vivo. Conclusion: The study developed a novel and efficient ribozyme switch for p53-specific recognition and provided a modular strategy for aptazyme binding to cellular proteins. In addition, the p53 aptazyme successfully inhibited tumor growth through a combined application with other synthetic biological tools, providing a new perspective for cancer therapy.
Collapse
|
34
|
Photoreaction Mechanisms of Flavoprotein Photoreceptors and Their Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:189-206. [PMID: 33398814 DOI: 10.1007/978-981-15-8763-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Three classes of flavoprotein photoreceptors, cryptochromes (CRYs), light-oxygen-voltage (LOV)-domain proteins, and blue light using FAD (BLUF)-domain proteins, have been identified that control various physiological processes in multiple organisms. Accordingly, signaling activities of photoreceptors have been intensively studied and the related mechanisms have been exploited in numerous optogenetic tools. Herein, we summarize the current understanding of photoactivation mechanisms of the flavoprotein photoreceptors and review their applications.
Collapse
|
35
|
Yoshimi K, Yamauchi Y, Tanaka T, Shimada T, Sato M, Mashimo T. Photoactivatable Cre knock-in mice for spatiotemporal control of genetic engineering in vivo. J Transl Med 2021; 101:125-135. [PMID: 32892213 DOI: 10.1038/s41374-020-00482-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022] Open
Abstract
Although the Cre-loxP recombination system has been extensively used to analyze gene function in vivo, spatiotemporal control of Cre activity is a critical limitation for easy and precise recombination. Here, we established photoactivatable-Cre (PA-Cre) knock-in (KI) mice at a safe harbor locus for the spatial and temporal regulation of Cre recombinase activity. The mice showed whole-body Cre recombination activity following light exposure for only 1 h. Almost no leaks of Cre recombination activity were detected in the KI mice under natural light conditions. Spot irradiation could induce locus-specific recombination noninvasively, enabling us to compare phenotypes on the left and right sides in the same mouse. Furthermore, long-term irradiation using an implanted wireless LED substantially improved Cre recombination activity, especially in the brain. These results demonstrate that PA-Cre KI mice can facilitate the spatiotemporal control of genetic engineering and provide a useful resource to elucidate gene function in vivo with Cre-loxP.
Collapse
Affiliation(s)
- Kazuto Yoshimi
- Laboratory Animal Research Center, Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- Center for Experimental Medicine and Systems Biology, Division of Genome Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yuko Yamauchi
- Laboratory Animal Research Center, Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | | | | | - Moritoshi Sato
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Tomoji Mashimo
- Laboratory Animal Research Center, Division of Animal Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Center for Experimental Medicine and Systems Biology, Division of Genome Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
36
|
Hartmann D, Smith JM, Mazzotti G, Chowdhry R, Booth MJ. Controlling gene expression with light: a multidisciplinary endeavour. Biochem Soc Trans 2020; 48:1645-1659. [PMID: 32657338 PMCID: PMC7458398 DOI: 10.1042/bst20200014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022]
Abstract
The expression of a gene to a protein is one of the most vital biological processes. The use of light to control biology offers unparalleled spatiotemporal resolution from an external, orthogonal signal. A variety of methods have been developed that use light to control the steps of transcription and translation of specific genes into proteins, for cell-free to in vivo biotechnology applications. These methods employ techniques ranging from the modification of small molecules, nucleic acids and proteins with photocages, to the engineering of proteins involved in gene expression using naturally light-sensitive proteins. Although the majority of currently available technologies employ ultraviolet light, there has been a recent increase in the use of functionalities that work at longer wavelengths of light, to minimise cellular damage and increase tissue penetration. Here, we discuss the different chemical and biological methods employed to control gene expression, while also highlighting the central themes and the most exciting applications within this diverse field.
Collapse
Affiliation(s)
- Denis Hartmann
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Jefferson M. Smith
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Giacomo Mazzotti
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Razia Chowdhry
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
37
|
RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations. Nat Methods 2020; 17:422-429. [PMID: 32203389 PMCID: PMC7135964 DOI: 10.1038/s41592-020-0774-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 02/11/2020] [Indexed: 11/11/2022]
Abstract
Brain circuits comprise vast numbers of intricately interconnected neurons with diverse molecular, anatomical and physiological properties. To allow “user-defined” targeting of individual neurons for structural and functional studies, we created light-inducible site-specific DNA recombinases (SSRs) based on Cre, Dre and Flp (RecVs). RecVs can induce genomic modifications by one-photon or two-photon light induction in vivo. They can produce targeted, sparse and strong labeling of individual neurons by modifying multiple loci within mouse and zebrafish genomes. In combination with other genetic strategies, they allow intersectional targeting of different neuronal classes. In the mouse cortex they enable sparse labeling and whole-brain morphological reconstructions of individual neurons. Furthermore, these enzymes allow single-cell two-photon targeted genetic modifications and can be used in combination with functional optical indicators with minimal interference. In summary, RecVs enable spatiotemporally-precise optogenomic modifications that can facilitate detailed single-cell analysis of neural circuits by linking genetic identity, morphology, connectivity and function.
Collapse
|
38
|
Cardot-Ruffino V, Chauvet V, Caligaris C, Bertrand-Chapel A, Chuvin N, Pommier RM, Valcourt U, Vincent D, Martel S, Aires S, Kaniewski B, Dubus P, Cassier P, Sentis S, Bartholin L. Generation of an Fsp1 (fibroblast-specific protein 1)-Flpo transgenic mouse strain. Genesis 2020; 58:e23359. [PMID: 32191380 PMCID: PMC7317532 DOI: 10.1002/dvg.23359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
Recombination systems represent a major breakthrough in the field of genetic model engineering. The Flp recombinases (Flp, Flpe, and Flpo) bind and cleave DNA Frt sites. We created a transgenic mouse strain ([Fsp1‐Flpo]) expressing the Flpo recombinase in fibroblasts. This strain was obtained by random insertion inside mouse zygotes after pronuclear injection. Flpo expression was placed under the control of the promoter of Fsp1 (fibroblast‐specific protein 1) gene, whose expression starts after gastrulation at Day 8.5 in cells of mesenchymal origin. We verified the correct expression and function of the Flpo enzyme by several ex vivo and in vivo approaches. The [Fsp1‐Flpo] strain represents a genuine tool to further target the recombination of transgenes with Frt sites specifically in cells of mesenchymal origin or with a fibroblastic phenotype.
Collapse
Affiliation(s)
- Victoire Cardot-Ruffino
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Véronique Chauvet
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Cassandre Caligaris
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Adrien Bertrand-Chapel
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Nicolas Chuvin
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Roxane M Pommier
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Ulrich Valcourt
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - David Vincent
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France.,Beatson Institute for Cancer Research, Glasgow, UK
| | - Sylvie Martel
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Sophie Aires
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Bastien Kaniewski
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Pierre Dubus
- INSERM, Univ Bordeaux UMR1053 Bordeaux Research in Translational Oncology, Bordeaux, France.,CHU de Bordeaux, Bordeaux, France
| | - Philippe Cassier
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France.,Departement d'Oncologie Médicale, Centre Léon Bérard, Lyon, France
| | - Stéphanie Sentis
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Laurent Bartholin
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| |
Collapse
|
39
|
Light-mediated control of Gene expression in mammalian cells. Neurosci Res 2020; 152:66-77. [DOI: 10.1016/j.neures.2019.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
40
|
Abstract
Optogenetic tools can provide direct and programmable control of gene expression. Light-inducible recombinases, in particular, offer a powerful method for achieving precise spatiotemporal control of DNA modification. However, to-date this technology has been largely limited to eukaryotic systems. Here, we develop optogenetic recombinases for Escherichia coli that activate in response to blue light. Our approach uses a split recombinase coupled with photodimers, where blue light brings the split protein together to form a functional recombinase. We tested both Cre and Flp recombinases, Vivid and Magnet photodimers, and alternative protein split sites in our analysis. The optimal configuration, Opto-Cre-Vvd, exhibits strong blue light-responsive excision and low ambient light sensitivity. For this system we characterize the effect of light intensity and the temporal dynamics of light-induced recombination. These tools expand the microbial optogenetic toolbox, offering the potential for precise control of DNA excision with light-inducible recombinases in bacteria.
Collapse
Affiliation(s)
- Michael B Sheets
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Biological Design Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Wilson W Wong
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Biological Design Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Mary J Dunlop
- Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States
- Biological Design Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
41
|
Hong J, Heo WD. Optogenetic Modulation of TrkB Signaling in the Mouse Brain. J Mol Biol 2020; 432:815-827. [PMID: 31962123 DOI: 10.1016/j.jmb.2020.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Optogenetic activation of receptors has advantages compared with chemical or ligand treatment because of its high spatial and temporal precision. Especially in the brain, the use of a genetically encoded light-tunable receptor is superior to direct infusion or systemic drug treatment. We applied light-activatable TrkB receptors in the mouse brain with reduced basal activity by incorporating Cry2PHR mutant, Opto-cytTrkB(E281A). Upon AAV mediated gene delivery, this form was expressed at sufficient levels in the mouse hippocampus (HPC) and medial entorhinal cortex (MEC) retaining normal canonical signal transduction by the blue light stimulus, even by delivery of noninvasive LED light on the mouse head. Within target cells, where its expression was driven by a cell type-specific promoter, Opto-cytTrkB(E281A)-mediated TrkB signaling could be controlled by adjusting light-stimulating conditions. We further demonstrated that Opto-cytTrkB(E281A) could locally induce TrkB signaling in axon terminals in the MEC-HPC. In summary, Opto-cytTrkB(E281A) will be useful for elucidating time- and region-specific roles of TrkB signaling ranging from cellular function to neural circuit mechanisms.
Collapse
Affiliation(s)
- Jongryul Hong
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Won Do Heo
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea; Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
42
|
Kwon E, Heo WD. Optogenetic tools for dissecting complex intracellular signaling pathways. Biochem Biophys Res Commun 2020; 527:331-336. [PMID: 31948753 DOI: 10.1016/j.bbrc.2019.12.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 01/15/2023]
Abstract
Intracellular signaling forms complicated networks that involve dynamic alterations of the protein-protein interactions occurring inside a cell. To dissect these complex networks, light-inducible optogenetic technologies have offered a novel approach for modulating the function of intracellular machineries in space and time. Optogenetic approaches combine genetic and optical methods to initiate and control protein functions within live cells. In this review, we provide an overview of the optical strategies that can be used to manipulate intracellular signaling proteins and secondary messengers at the molecular level. We briefly address how an optogenetic actuator can be engineered to enhance homo- or hetero-interactions, survey various optical tools and targeting strategies for controlling cell-signaling pathways, examine their extension to in vivo systems and discuss the future prospects for the field.
Collapse
Affiliation(s)
- Eury Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea.
| |
Collapse
|
43
|
Kim S, Kyung T, Chung JH, Kim N, Keum S, Lee J, Park H, Kim HM, Lee S, Shin HS, Do Heo W. Non-invasive optical control of endogenous Ca 2+ channels in awake mice. Nat Commun 2020; 11:210. [PMID: 31924789 PMCID: PMC6954201 DOI: 10.1038/s41467-019-14005-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
Optogenetic approaches for controlling Ca2+ channels provide powerful means for modulating diverse Ca2+-specific biological events in space and time. However, blue light-responsive photoreceptors are, in principle, considered inadequate for deep tissue stimulation unless accompanied by optic fiber insertion. Here, we present an ultra-light-sensitive optogenetic Ca2+ modulator, named monSTIM1 encompassing engineered cryptochrome2 for manipulating Ca2+ signaling in the brain of awake mice through non-invasive light delivery. Activation of monSTIM1 in either excitatory neurons or astrocytes of mice brain is able to induce Ca2+-dependent gene expression without any mechanical damage in the brain. Furthermore, we demonstrate that non-invasive Ca2+ modulation in neurons can be sufficiently and effectively translated into changes in behavioral phenotypes of awake mice. Optogenetic applications in the brain of live animals often require the use of optic fibers due to poor tissue-penetration of blue light. Here the authors present monSTIM1, an improved high sensitivity optogenetic tool able to modulate Ca2+ signaling in the brain of awake mice using non-invasive light stimulation.
Collapse
Affiliation(s)
- Sungsoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Taeyoon Kyung
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jae-Hee Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Nury Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sehoon Keum
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jinsu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyerim Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. .,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea. .,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
44
|
Sources of off-target expression from recombinase-dependent AAV vectors and mitigation with cross-over insensitive ATG-out vectors. Proc Natl Acad Sci U S A 2019; 116:27001-27010. [PMID: 31843925 DOI: 10.1073/pnas.1915974116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In combination with transgenic mouse lines expressing Cre or Flp recombinases in defined cell types, recombinase-dependent adeno-associated viruses (AAVs) have become the tool of choice for localized cell-type-targeted gene expression. Unfortunately, applications of this technique when expressing highly sensitive transgenes are impeded by off-target, or "leak" expression, from recombinase-dependent AAVs. We investigated this phenomenon and find that leak expression is mediated by both infrequent transcription from the inverted transgene in recombinant-dependent AAV designs and recombination events during bacterial AAV plasmid production. Recombination in bacteria is mediated by homology across the antiparallel recombinase-specific recognition sites present in recombinase-dependent designs. To address both of these issues we designed an AAV vector that uses mutant "cross-over insensitive" recognition sites combined with an "ATG-out" design. We show that these CIAO (cross-over insensitive ATG-out) vectors virtually eliminate leak expression. CIAO vectors provide reliable and targeted transgene expression and are extremely useful for recombinase-dependent expression of highly sensitive transgenes.
Collapse
|
45
|
Weinberg BH, Cho JH, Agarwal Y, Pham NTH, Caraballo LD, Walkosz M, Ortega C, Trexler M, Tague N, Law B, Benman WKJ, Letendre J, Beal J, Wong WW. High-performance chemical- and light-inducible recombinases in mammalian cells and mice. Nat Commun 2019; 10:4845. [PMID: 31649244 PMCID: PMC6813296 DOI: 10.1038/s41467-019-12800-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/30/2019] [Indexed: 11/10/2022] Open
Abstract
Site-specific DNA recombinases are important genome engineering tools. Chemical- and light-inducible recombinases, in particular, enable spatiotemporal control of gene expression. However, inducible recombinases are scarce due to the challenge of engineering high performance systems, thus constraining the sophistication of genetic circuits and animal models that can be created. Here we present a library of >20 orthogonal inducible split recombinases that can be activated by small molecules, light and temperature in mammalian cells and mice. Furthermore, we engineer inducible split Cre systems with better performance than existing systems. Using our orthogonal inducible recombinases, we create a genetic switchboard that can independently regulate the expression of 3 different cytokines in the same cell, a tripartite inducible Flp, and a 4-input AND gate. We quantitatively characterize the inducible recombinases for benchmarking their performances, including computation of distinguishability of outputs. This library expands capabilities for multiplexed mammalian gene expression control.
Collapse
Affiliation(s)
- Benjamin H Weinberg
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Jang Hwan Cho
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Yash Agarwal
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - N T Hang Pham
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Leidy D Caraballo
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Maciej Walkosz
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Charina Ortega
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Micaela Trexler
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Nathan Tague
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Billy Law
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - William K J Benman
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Justin Letendre
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Jacob Beal
- Raytheon BBN Technologies, Cambridge, MA, 02138, USA.
| | - Wilson W Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
46
|
Krueger D, Izquierdo E, Viswanathan R, Hartmann J, Pallares Cartes C, De Renzis S. Principles and applications of optogenetics in developmental biology. Development 2019; 146:146/20/dev175067. [PMID: 31641044 PMCID: PMC6914371 DOI: 10.1242/dev.175067] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of multicellular organisms is controlled by highly dynamic molecular and cellular processes organized in spatially restricted patterns. Recent advances in optogenetics are allowing protein function to be controlled with the precision of a pulse of laser light in vivo, providing a powerful new tool to perturb developmental processes at a wide range of spatiotemporal scales. In this Primer, we describe the most commonly used optogenetic tools, their application in developmental biology and in the nascent field of synthetic morphogenesis.
Collapse
Affiliation(s)
- Daniel Krueger
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Emiliano Izquierdo
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ranjith Viswanathan
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Heidelberg University, Faculty of Biosciences, Heidelberg, 69117, Germany
| | - Jonas Hartmann
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Cristina Pallares Cartes
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stefano De Renzis
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
47
|
Cheng H, Cui P, Wang F, Ding L, Wang H. High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium. Angew Chem Int Ed Engl 2019; 58:15541-15547. [DOI: 10.1002/anie.201910658] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Hui Cheng
- School of Chemistry and Chemical EngineeringSouth China University of Technology No. 381 Wushan Road Guangzhou 510640 China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution RemediationInstitute of Soil Sciencethe Chinese Academy of Sciences Nanjing 210008 China
| | - Fangrui Wang
- School of Chemistry and Chemical EngineeringSouth China University of Technology No. 381 Wushan Road Guangzhou 510640 China
| | - Liang‐Xin Ding
- School of Chemistry and Chemical EngineeringSouth China University of Technology No. 381 Wushan Road Guangzhou 510640 China
| | - Haihui Wang
- School of Chemistry and Chemical EngineeringSouth China University of Technology No. 381 Wushan Road Guangzhou 510640 China
| |
Collapse
|
48
|
High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910658] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|