1
|
Lysandrou M, Zeiser R. Strategies to enhance anti-leukaemia immunotherapy. Curr Opin Pharmacol 2025; 82:102525. [PMID: 40267742 DOI: 10.1016/j.coph.2025.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Acute myeloid leukaemia (AML) was an incurable disease prior to allogeneic haematopoietic cell transplantation (allo-HCT), which was proven to be a potent cellular immunotherapy-approach. However, allo-HCT has major side effects, with disease relapse presenting as a frequent complication. Novel immunotherapies aim to reduce toxicity and increase the anti-leukaemia activity of allo-HCT. Technological advancements in genetic engineering approaches enable potent immunotherapeutic activity while limiting toxicities. A biology-driven application of small molecules that target AML vulnerabilities holds promise to enhance anti-leukaemia immunotherapy. Extensive preclinical testing of these approaches is essential to reduce toxicity and to find the ideal combination partners for future clinical testing.
Collapse
Affiliation(s)
- Memnon Lysandrou
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University Freiburg, Albert-Ludwigs University of Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University Freiburg, Albert-Ludwigs University of Freiburg, Germany.
| |
Collapse
|
2
|
Ho NHJG, Talvard-Balland N, Köhler N, Zeiser R. Immune Escape of Acute Myeloid Leukemia after Transplantation. Blood Cancer Discov 2025; 6:168-181. [PMID: 40168448 PMCID: PMC12050969 DOI: 10.1158/2643-3230.bcd-24-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Accepted: 01/22/2025] [Indexed: 04/03/2025] Open
Abstract
SIGNIFICANCE We discuss the mechanisms of AML immune evasion including loss or downregulation of MHC class I and II, reduced TRAIL receptor expression, inhibitory metabolite production, inhibitory ligand expression, impaired proinflammatory cytokine production, and AML niche alterations.
Collapse
Affiliation(s)
- Nguyen Huong Jenny Giang Ho
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| | - Nana Talvard-Balland
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| | - Natalie Köhler
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signaling Studies, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| |
Collapse
|
3
|
Cui J, Liu W, Zhong S, Fang Y, Xu P, Xu C, Wang R, Hu X, Zhou W, Li K, Hong M, Qian S, Sun Q. Blockade of TIGAR prevents CD8 + T cell dysfunction and elicits anti-AML immunity. Cancer Immunol Immunother 2025; 74:183. [PMID: 40285889 PMCID: PMC12033161 DOI: 10.1007/s00262-025-04042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
Acute myeloid leukemia (AML) cells and activated T cells rely on aerobic glycolysis for energy metabolism. The TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits glycolysis and protects AML cells from apoptosis. Preliminary studies suggest that combining TIGAR inhibition with the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) may offer a therapeutic strategy for AML. However, it remains unclear whether silencing TIGAR can enhance T cell function and thereby improve AML prognosis. This study aims to investigate whether TIGAR silencing in host can eliminate AML cells and rejuvenate dysfunctional T cells with mouse models. TIGAR knockout mice on the C57BL/6J background were generated and AML mouse models were established through intravenous injection of C1498 cells. We found that TIGAR depletion enhanced CD8+ T cell counts and raised CD4/CD8 ratio, downregulating CD44 and immune checkpoints CTLA-4, LAG-3, PD-1 on cell surface of CD8+ T cells. TIGAR depletion boosted cytokine secretion (IFN-γ, perforin, granzyme B, TNF-α) by CD8+ T cells and IL-2, TNF-α by CD4+ T cells, improving cytotoxicity against AML cells, proliferation, and reducing apoptosis. TIGAR suppression in host with 2-DG prolonged AML mouse survival, decreased tumor burden, and leukemic infiltration. TIGAR suppression restored thymic T cell development and peripheral immune balance. Single-cell RNA sequencing analysis also revealed that high TIGAR expression influences the glycolysis pathway, and correlates with markers of T cell exhaustion. This study indicates that blocking TIGAR prevents CD8+ T cell dysfunction and induces anti-AML immunity.
Collapse
Affiliation(s)
- Jialin Cui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wenjie Liu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Shiyang Zhong
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian, China
| | - Yiran Fang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Pei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Cheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Rong Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xingfei Hu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian, China
| | - Wanting Zhou
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian, China
| | - Kening Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian, China
| | - Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Sixuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| | - Qian Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| |
Collapse
|
4
|
Ciantra Z, Paraskevopoulou V, Aifantis I. The rewired immune microenvironment in leukemia. Nat Immunol 2025; 26:351-365. [PMID: 40021898 DOI: 10.1038/s41590-025-02096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/15/2025] [Indexed: 03/03/2025]
Abstract
Leukemias are a class of human cancers that originate from hematopoietic progenitors and are characterized by extensive remodeling of the immune microenvironment. Leukemic cells, on transformation, acquire the ability to evade immune recognition but, despite undergoing genetic and epigenetic changes, retain their characteristic immature immune signature. For this and other reasons, leukemias are often refractory to immune therapies. In the present Review, we cover these areas as a means of improving outcomes from a deeper understanding of immune rewiring, inflammatory signaling and the barriers to successful implementation of immune therapies.
Collapse
Affiliation(s)
- Zoe Ciantra
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Varvara Paraskevopoulou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Tasis A, Spyropoulos T, Mitroulis I. The Emerging Role of CD8 + T Cells in Shaping Treatment Outcomes of Patients with MDS and AML. Cancers (Basel) 2025; 17:749. [PMID: 40075597 PMCID: PMC11898900 DOI: 10.3390/cancers17050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
CD8+ T cells are critical players in anti-tumor immunity against solid tumors, targeted by immunotherapies. Emerging evidence suggests that CD8+ T cells also play a crucial role in anti-tumor responses and determining treatment outcomes in hematologic malignancies like myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). In this review, we focus on the implication of CD8+ T cells in the treatment response of patients with MDS and AML. First, we review reported studies of aberrant functionality and clonality of CD8+ T cells in MDS and AML, often driven by the immunosuppressive bone marrow microenvironment, which can hinder effective antitumor immunity. Additionally, we discuss the potential use of CD8+ T cell subpopulations, including memory and senescent-like subsets, as predictive biomarkers for treatment response to a variety of treatment regimens, such as hypomethylating agents, which is the standard of care for patients with higher-risk MDS, and chemotherapy which is the main treatment of patients with AML. Understanding the multifaceted role of CD8+ T cells and their interaction with malignant cells in MDS and AML will provide useful insights into their potential as prognostic/predictive biomarkers, but also uncover alternative approaches to novel treatment strategies that could reshape the therapeutic landscape, thus improving treatment efficacy, aiding in overcoming treatment resistance and improving patient survival in these challenging myeloid neoplasms.
Collapse
Affiliation(s)
- Athanasios Tasis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Theodoros Spyropoulos
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Ioannis Mitroulis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
6
|
Barakos GP, Georgoulis V, Koumpis E, Hatzimichael E. Elucidating the Role of the T Cell Receptor Repertoire in Myelodysplastic Neoplasms and Acute Myeloid Leukemia. Diseases 2025; 13:19. [PMID: 39851483 PMCID: PMC11765071 DOI: 10.3390/diseases13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
T cells, as integral components of the adaptive immune system, recognize diverse antigens through unique T cell receptors (TCRs). To achieve this, during T cell maturation, the thymus generates a wide repertoire of TCRs. This is essential for understanding cancer evolution, progression, and the efficacy of immunotherapies. Myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML) are hematological neoplasms that are characterized by immune evasion mechanisms, with immunotherapy giving only modest results thus far. Our review of TCR repertoire dynamics in these diseases reveals distinct patterns: MDS patients show increased TCR clonality with disease progression, while AML exhibits varied TCR signatures depending on disease stage and treatment response. Understanding these patterns has important clinical implications, as TCR repertoire metrics may serve as potential biomarkers for disease progression and treatment response, particularly in the context of immunotherapy and stem cell transplantation. These insights could guide patient stratification and treatment selection, ultimately improving therapeutic outcomes in MDS and AML.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Vasileios Georgoulis
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| | - Epameinondas Koumpis
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (V.G.); (E.K.)
| |
Collapse
|
7
|
Gielis S, Flumens D, van der Heijden S, Versteven M, De Reu H, Bartholomeus E, Schippers J, Campillo-Davo D, Berneman ZN, Anguille S, Smits E, Ogunjimi B, Lion E, Laukens K, Meysman P. Analysis of Wilms' tumor protein 1 specific TCR repertoire in AML patients uncovers higher diversity in patients in remission than in relapsed. Ann Hematol 2025; 104:317-333. [PMID: 39259326 PMCID: PMC11868354 DOI: 10.1007/s00277-024-05919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/26/2024] [Indexed: 09/13/2024]
Abstract
The Wilms' tumor protein 1 (WT1) is a well-known and prioritized tumor-associated antigen expressed in numerous solid and blood tumors. Its abundance and immunogenicity have led to the development of different WT1-specific immune therapies. The driving player in these therapies, the WT1-specific T-cell receptor (TCR) repertoire, has received much less attention. Importantly, T cells with high affinity against the WT1 self-antigen are normally eliminated after negative selection in the thymus and are thus rare in peripheral blood. Here, we developed computational models for the robust and fast identification of WT1-specific TCRs from TCR repertoire data. To this end, WT137-45 (WT1-37) and WT1126-134 (WT1-126)-specific T cells were isolated from WT1 peptide-stimulated blood of healthy individuals. The TCR repertoire from these WT1-specific T cells was sequenced and used to train a pattern recognition model for the identification of WT1-specific TCR patterns for the WT1-37 or WT1-126 epitopes. The resulting computational models were applied on an independent published dataset from acute myeloid leukemia (AML) patients, treated with hematopoietic stem cell transplantation, to track WT1-specific TCRs in silico. Several WT1-specific TCRs were found in AML patients. Subsequent clustering analysis of all repertoires indicated the presence of more diverse TCR patterns within the WT1-specific TCR repertoires of AML patients in complete remission in contrast to relapsing patients. We demonstrate the possibility of tracking WT1-37 and WT1-126-specific TCRs directly from TCR repertoire data using computational methods, eliminating the need for additional blood samples and experiments for the two studied WT1 epitopes.
Collapse
MESH Headings
- Humans
- WT1 Proteins/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/blood
- Female
- Remission Induction
- Male
- Middle Aged
- Adult
- Recurrence
- Epitopes, T-Lymphocyte/immunology
- Hematopoietic Stem Cell Transplantation
Collapse
Affiliation(s)
- Sofie Gielis
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Donovan Flumens
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Sanne van der Heijden
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Esther Bartholomeus
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Jolien Schippers
- Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR) department, University of Antwerp, Edegem, Belgium
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
- Center for Cell Therapy & Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
- Center for Cell Therapy & Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
- Division of Hematology, Antwerp University Hospital, Edegem, Belgium
| | - Evelien Smits
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy & Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Benson Ogunjimi
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium
- Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Eva Lion
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
- Center for Cell Therapy & Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium.
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium.
- Biomedical Informatics Research Network Antwerp (Biomina), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
8
|
Orofino G, Vago L. Biology of post-transplant relapse: actionable features. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:736-743. [PMID: 39644002 DOI: 10.1182/hematology.2024000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
In patients receiving allogeneic hematopoietic cell transplantation to cure acute myeloid leukemia (AML), recurrence of the underlying disease, or relapse, represents a crucial unanswered issue and prominent cause of mortality. Still, over recent years, advancements in omic technologies have allowed us to gain new insights into the dynamic changes occurring in cancer and the host over the course of treatments, providing a novel evolutionary perspective on the issue of disease relapse. In this review, we summarize current knowledge on the molecular features of relapsing AML, with a specific focus on changes in the mutational asset of the disease and in the interplay between the tumor and the donor-derived immune system. In particular, we discuss how this information can be translated into relevant indications for monitoring transplanted patients and selecting the most appropriate therapeutic options to prevent and treat relapse.
Collapse
Affiliation(s)
- Giorgio Orofino
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
9
|
Hu Y, Wang Y, Min K, Zhou H, Gao X. The influence of immune checkpoint blockade on the outcomes of allogeneic hematopoietic stem cell transplantation. Front Immunol 2024; 15:1491330. [PMID: 39635535 PMCID: PMC11614800 DOI: 10.3389/fimmu.2024.1491330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
The principle of immune checkpoint blockade therapy is based on the activation of T cells. Immune checkpoint inhibitors (ICIs), such as anti-PD-1/PD-L1 and anti-CTLA-4 antibodies, have demonstrated effectiveness in treating solid tumors by reinvigorating the immune system to recognize and eliminate malignant cells. In recent years, ICIs have shown promise in certain patients with relapsed or refractory lymphoma and myeloid malignancies. Allogeneic hematopoietic stem cell transplant (allo-HCT) currently remains the only curative immunotherapy option for eligible patients with these hematologic malignancies. An increasing number of patients with indications for allo-HCT have received treatment with ICIs either before the procedure or as a therapy for relapse after allo-HCT. Nevertheless, initial reports suggest that patients exposed to immune checkpoint inhibitors either before or after allo-HCT are at an increased risk of developing severe graft-versus-host disease and other immune-related adverse events, likely due to the persistent effects of immune checkpoint blocking. Maximizing therapeutic benefits while minimizing side effects of the combination of checkpoint blockade immunotherapy and allo-HCT is an active area of research aimed at improving the prognosis of relapsed or refractory hematologic malignancies. However, there is still a lack of rational design strategies to optimize the combined use of these two different types of immunotherapies. In this review, we addressed the scientific rationale behind ICIs for treating lymphoma and myeloid malignancies. We also summarized the evidence supporting the use of ICIs as salvage therapy before and after allo-HCT. Additionally, we offered insights into current approaches for preventing and treating graft-versus-host disease and other immune-related adverse events during the procedure.
Collapse
Affiliation(s)
- Yalei Hu
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Yuxin Wang
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Kaili Min
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Huisheng Zhou
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Xiaoning Gao
- Senior Department of Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- State Key Laboratory of Experimental Hematology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Short SM, Perez MD, Morse AE, Jennings RD, Howard DS, Foureau D, Chojecki A, David C, Blaha L, Shaw Y, Lee CJ, Park N, Marsac C, D'Agostino R, Khuri N, Grayson JM. High-dimensional Immune Profiles and Machine Learning May Predict Acute Myeloid Leukemia Relapse Early following Transplant. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1441-1451. [PMID: 39373568 DOI: 10.4049/jimmunol.2300827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Identification of early immune signatures associated with acute myeloid leukemia (AML) relapse following hematopoietic stem cell transplant (HSCT) is critical for patient outcomes. We analyzed PBMCs from 58 patients with AML undergoing HSCT, focusing on T cell subsets and functional profiles. High-dimensional flow cytometry coupled with Uniform Manifold Approximation and Projection dimensionality reduction and PhenoGraph clustering revealed distinct changes in CD4+ and CD8+ T cell populations in 16 patients who relapsed within 1 y of HSCT. We observed increased IL-2, IL-10, and IL-17-producing CD4+ T cells, alongside decreased CD8+ T cell function early in relapsing patients. Notably, relapsing patients exhibited increased TCF-1intermediate cells, which lacked granzyme B or IFN-γ production in the CD4+ T cell compartment. We then developed a supervised machine learning algorithm that predicted AML relapse with 90% accuracy within 30 d after HSCT using high-throughput assays. The algorithm leverages condensed immune phenotypic data, alongside the ADASYN algorithm, for data balancing and 100 rounds of XGBoost supervised learning. This approach holds potential for detecting relapse-associated immune signatures months before clinical manifestation. Our findings demonstrate a distinct immunological signature potentially capable of predicting AML relapse as early as 30 d after HSCT.
Collapse
Affiliation(s)
- Samantha M Short
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Mildred D Perez
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alexis E Morse
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Rebecca Damron Jennings
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, One Medical Center Boulevard, Winston-Salem, NC
| | - Dianna S Howard
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, One Medical Center Boulevard, Winston-Salem, NC
| | - David Foureau
- Immune Monitoring Core Laboratory, Levine Cancer Institute Atrium Health, Charlotte, NC
| | - Aleksander Chojecki
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute Atrium Health, Charlotte, NC
| | - Camille David
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Lauren Blaha
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yolanda Shaw
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - C Jiah Lee
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Nuri Park
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Caitlyn Marsac
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ralph D'Agostino
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, One Medical Center Boulevard, Winston-Salem, NC
| | - Natalia Khuri
- Department of Computer Science, Wake Forest University, Winston-Salem, NC
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
11
|
Wang CY, Lin SC, Chang KJ, Cheong HP, Wu SR, Lee CH, Chuang MW, Chiou SH, Hsu CH, Ko PS. Immunoediting in acute myeloid leukemia: Reappraising T cell exhaustion and the aberrant antigen processing machinery in leukemogenesis. Heliyon 2024; 10:e39731. [PMID: 39568858 PMCID: PMC11577197 DOI: 10.1016/j.heliyon.2024.e39731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Acute myeloid leukemia (AML) establishes an immunosuppressive microenvironment that favors leukemic proliferation. The immune-suppressive cytokines altered antigen processing, and presentation collectively assist AML cells in escaping cytotoxic T-cell surveillance. These CD8+ T cell dysfunction features are emerging therapeutic targets in relapsed/refractory AML patients. Besides, CD8+ T cell exhaustion is a hotspot in recent clinical oncology studies, but its pathophysiology has yet to be elucidated in AML. In this review, we summarize high-quality original studies encompassing the phenotypic and genomic characteristics of T cell exhaustion events in the leukemia progression, emphasize the surface immuno-peptidome that dynamically tunes the fate of T cells to function or dysfunction states, and revisit the biochemical and biophysical properties of type 1 MHC antigen processing mechanism (APM) that pivots in the phenomenon of leukemia antigen dampening.
Collapse
Affiliation(s)
- Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kao-Jung Chang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Sin-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hao Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Po-Shen Ko
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024; 17:797-818. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
13
|
Mo X, Zhang W, Fu G, Chang Y, Zhang X, Xu L, Wang Y, Yan C, Shen M, Wei Q, Yan C, Huang X. Single-cell immune landscape of measurable residual disease in acute myeloid leukemia. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2309-2322. [PMID: 39034351 DOI: 10.1007/s11427-024-2666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Measurable residual disease (MRD) is a powerful prognostic factor of relapse in acute myeloid leukemia (AML). We applied the single-cell RNA sequencing to bone marrow (BM) samples from patients with (n=20) and without (n=12) MRD after allogeneic hematopoietic stem cell transplantation. A comprehensive immune landscape with 184,231 cells was created. Compared with CD8+ T cells enriched in the MRD-negative group (MRD-_CD8), those enriched in the MRD-positive group (MRD+_CD8) showed lower expression levels of cytotoxicity-related genes. Three monocyte clusters (i.e., MRD+_M) and three B-cell clusters (i.e., MRD+_B) were enriched in the MRD-positive group. Conversion from an MRD-positive state to an MRD-negative state was accompanied by an increase in MRD-_CD8 clusters and vice versa. MRD-enriched cell clusters employed the macrophage migration inhibitory factor pathway to regulate MRD-_CD8 clusters. These findings revealed the characteristics of the immune cell landscape in MRD positivity, which will allow for a better understanding of the immune mechanisms for MRD conversion.
Collapse
Affiliation(s)
- Xiaodong Mo
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Guomei Fu
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Yingjun Chang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaohui Zhang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Lanping Xu
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Yu Wang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Chenhua Yan
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Mengzhu Shen
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Qiuxia Wei
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaojun Huang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 100044, China.
| |
Collapse
|
14
|
Notarantonio AB, Robin M, D'Aveni M. Current challenges in conditioning regimens for MDS transplantation. Blood Rev 2024; 67:101223. [PMID: 39089962 DOI: 10.1016/j.blre.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Myelodysplastic syndrome (MDS) is a very heterogeneous clonal disorder. Patients with "higher-risk" MDS, defined by specific recurrent genetic abnormalities, have a poor prognosis because of a high risk of progression to secondary acute myeloid leukemia with low chemosensitivity. Allogeneic hematopoietic stem cell transplantation remains the only treatment that offers durable disease control because the donor immune system allows graft-versus-MDS effects. In terms of preparation steps before transplantation, targeting the malignant clone by increasing the conditioning regimen intensity is still a matter of intense debate. MDS is mainly diagnosed in older patients, and high toxicity related to common myeloablative conditioning regimens has been reported. Efforts to include new drugs in the conditioning regimen to achieve the best malignant clone control without increasing toxicity have been made over the past 20 years. We summarized these retrospective and prospective studies and evaluated the limitations of the available evidence to delineate the ideal conditioning regimen.
Collapse
Affiliation(s)
- A B Notarantonio
- Hematology Department, University Hospital of Nancy, France; CNRS 7365, IMoPA, University of Lorraine, F-54000, France
| | - M Robin
- Hematology Department, Saint-Louis Hospital, APHP, Paris, France
| | - M D'Aveni
- Hematology Department, University Hospital of Nancy, France; CNRS 7365, IMoPA, University of Lorraine, F-54000, France.
| |
Collapse
|
15
|
Chang PS, Chen YC, Hua WK, Hsu JC, Tsai JC, Huang YW, Kao YH, Wu PH, Wang PN, Chang YF, Chang MC, Chang YC, Jian SL, Lai JS, Lai MT, Yang WC, Shen CN, Wen KLK, Wu SCY. Manufacturing CD20/CD19-targeted iCasp9 regulatable CAR-TSCM cells using a Quantum pBac-based CAR-T engineering system. PLoS One 2024; 19:e0309245. [PMID: 39190688 DOI: 10.1371/journal.pone.0309245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
CD19-targeted chimeric antigen receptor (CAR) T cell therapies have driven a paradigm shift in the treatment of relapsed/refractory B-cell malignancies. However, >50% of CD19-CAR-T-treated patients experience progressive disease mainly due to antigen escape and low persistence. Clinical prognosis is heavily influenced by CAR-T cell function and systemic cytokine toxicities. Furthermore, it remains a challenge to efficiently, cost-effectively, and consistently manufacture clinically relevant numbers of virally engineered CAR-T cells. Using a highly efficient piggyBac transposon-based vector, Quantum pBac™ (qPB), we developed a virus-free cell-engineering system for development and production of multiplex CAR-T therapies. Here, we demonstrate in vitro and in vivo that consistent, robust and functional CD20/CD19 dual-targeted CAR-T stem cell memory (CAR-TSCM) cells can be efficiently produced for clinical application using qPB™. In particular, we showed that qPB™-manufactured CAR-T cells from cancer patients expanded efficiently, rapidly eradicated tumors, and can be safely controlled via an iCasp9 suicide gene-inducing drug. Therefore, the simplicity of manufacturing multiplex CAR-T cells using the qPB™ system has the potential to improve efficacy and broaden the accessibility of CAR-T therapies.
Collapse
Affiliation(s)
- Peter S Chang
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Yi-Chun Chen
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Wei-Kai Hua
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Jeff C Hsu
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Jui-Cheng Tsai
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Yi-Wun Huang
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Yi-Hsin Kao
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Pei-Hua Wu
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | - Po-Nan Wang
- Division of Hematology, Chang Gung Medical Foundation, Linkou Branch, Taipei City, Taiwan (R.O.C.)
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan (R.O.C.)
- Department of Medical Research, Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui District, New Taipei City, Taiwan (R.O.C.)
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan (R.O.C.)
| | - Ming-Chih Chang
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan (R.O.C.)
| | - Yu-Cheng Chang
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan (R.O.C.)
- Department of Medical Research, Laboratory of Good Clinical Research Center, Mackay Memorial Hospital, Tamsui District, New Taipei City, Taiwan (R.O.C.)
| | | | | | | | | | - Chia-Ning Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan (R.O.C.)
- Genomics Research Center, Academia Sinica, Taipei, Taiwan (R.O.C.)
| | - Kuo-Lan Karen Wen
- GenomeFrontier Therapeutics TW Co., Ltd., Taipei City, Taiwan (R.O.C.)
| | | |
Collapse
|
16
|
Braidotti S, Granzotto M, Curci D, Faganel Kotnik B, Maximova N. Advancing Allogeneic Hematopoietic Stem Cell Transplantation Outcomes through Immunotherapy: A Comprehensive Review of Optimizing Non-CAR Donor T-Lymphocyte Infusion Strategies. Biomedicines 2024; 12:1853. [PMID: 39200317 PMCID: PMC11351482 DOI: 10.3390/biomedicines12081853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Optimized use of prophylactic or therapeutic donor lymphocyte infusions (DLI) is aimed at improving clinical outcomes in patients with malignant and non-malignant hematological diseases who have undergone allogeneic hematopoietic stem cell transplantation (allo-HSCT). Memory T-lymphocytes (CD45RA-/CD45RO+) play a crucial role in immune reconstitution post-HSCT. The infusion of memory T cells is proven to be safe and effective in improving outcomes due to the enhanced reconstitution of immunity and increased protection against viremia, without exacerbating graft-versus-host disease (GVHD) risks. Studies indicate their persistence and efficacy in combating viral pathogens, suggesting a viable therapeutic avenue for patients. Conversely, using virus-specific T cells for viremia control presents challenges, such as regulatory hurdles, cost, and production time compared to CD45RA-memory T lymphocytes. Additionally, the modulation of regulatory T cells (Tregs) for therapeutic use has become an important area of investigation in GVHD, playing a pivotal role in immune tolerance modulation, potentially mitigating GVHD and reducing pharmacological immunosuppression requirements. Finally, donor T cell-mediated graft-versus-leukemia immune responses hold promise in curbing relapse rates post-HSCT, providing a multifaceted approach to therapeutic intervention in high-risk disease scenarios. This comprehensive review underscores the multifaceted roles of T lymphocytes in HSCT outcomes and identifies avenues for further research and clinical application.
Collapse
Affiliation(s)
- Stefania Braidotti
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Marilena Granzotto
- Azienda Sanitaria Universitaria Giuliano Isontina (ASU GI), 34125 Trieste, Italy;
| | - Debora Curci
- Advanced Translational Diagnostic Laboratory, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Barbara Faganel Kotnik
- Department of Hematology and Oncology, University Children’s Hospital, 1000 Ljubljana, Slovenia;
| | - Natalia Maximova
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| |
Collapse
|
17
|
Zuo S, Li C, Sun X, Deng B, Zhang Y, Han Y, Ling Z, Xu J, Duan J, Wang Z, Yu X, Zheng Q, Xu X, Zong J, Tian Z, Shan L, Tang K, Huang H, Song Y, Niu Q, Zhou D, Feng S, Han Z, Wang G, Wu T, Pan J, Feng X. C-JUN overexpressing CAR-T cells in acute myeloid leukemia: preclinical characterization and phase I trial. Nat Commun 2024; 15:6155. [PMID: 39039086 PMCID: PMC11263573 DOI: 10.1038/s41467-024-50485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells show suboptimal efficacy in acute myeloid leukemia (AML). We find that CAR T cells exposed to myeloid leukemia show impaired activation and cytolytic function, accompanied by impaired antigen receptor downstream calcium, ZAP70, ERK, and C-JUN signaling, compared to those exposed to B-cell leukemia. These defects are caused in part by the high expression of CD155 by AML. Overexpressing C-JUN, but not other antigen receptor downstream components, maximally restores anti-tumor function. C-JUN overexpression increases costimulatory molecules and cytokines through reinvigoration of ERK or transcriptional activation, independent of anti-exhaustion. We conduct an open-label, non-randomized, single-arm, phase I trial of C-JUN-overexpressing CAR-T in AML (NCT04835519) with safety and efficacy as primary and secondary endpoints, respectively. Of the four patients treated, one has grade 4 (dose-limiting toxicity) and three have grade 1-2 cytokine release syndrome. Two patients have no detectable bone marrow blasts and one patient has blast reduction after treatment. Thus, overexpressing C-JUN endows CAR-T efficacy in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Middle Aged
- Male
- Female
- Proto-Oncogene Proteins c-jun/metabolism
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Aged
- Adult
- Cell Line, Tumor
- Mice
Collapse
Affiliation(s)
- Shiyu Zuo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Chuo Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Central laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaolei Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Biping Deng
- Cytology Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Yibing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yajing Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhuojun Ling
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jinlong Xu
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jiajia Duan
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Zelin Wang
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Xinjian Yu
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Qinlong Zheng
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Xiuwen Xu
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jiao Zong
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Zhenglong Tian
- Gobroad Research Center, Gobroad Medical Group, Beijing, China
| | - Lingling Shan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Kaiting Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huifang Huang
- Central laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanzhi Song
- Department of Bone Marrow Transplantation, Beijing GoBroad Boren Hospital, Beijing, China
| | - Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhongchao Han
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, China
| | - Guoling Wang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| | - Tong Wu
- Department of Bone Marrow Transplantation, Beijing GoBroad Boren Hospital, Beijing, China.
| | - Jing Pan
- State Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
- Central laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
18
|
Sun K, Shi ZY, Wang YZ, Xie DH, Liu YR, Jiang Q, Jiang H, Huang XJ, Qin YZ. The profile and prognostic significance of bone marrow T-cell differentiation subsets in adult AML at diagnosis. Front Immunol 2024; 15:1418792. [PMID: 39100667 PMCID: PMC11294180 DOI: 10.3389/fimmu.2024.1418792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Background T lymphocytes in tumor microenvironment play a pivotal role in the anti-tumor immunity, and the memory of T cells contributes to the long-term protection against tumor antigens. Compared to solid tumors, studies focusing on the T-cell differentiation in the acute myeloid leukemia (AML) bone marrow (BM) microenvironment remain limited. Patients and methods Fresh BM specimens collected from 103 adult AML patients at diagnosis and 12 healthy donors (HDs) were tested T-cell differentiation subsets by multi-parameter flow cytometry. Results CD4 and CD8 T-cell compartments had different constituted profiles of T-cell differentiated subsets, which was similar between AML patients and HDs. Compared to HDs, AML patients as a whole had a significantly higher proportion of CD8 effector T cells (Teff, P = 0.048). Moreover, the T-cell compartment of AML patients with no DNMT3A mutations skewed toward terminal differentiation at the expense of memory T cells (CD4 Teff: P = 0.034; CD8 Teff: P = 0.030; CD8 memory T: P = 0.017), whereas those with mutated DNMT3A had a decrease in CD8 naïve T (Tn) and CD4 effector memory T cells (Tem) as well as an increase in CD4 central memory T cells (Tcm) (P = 0.037, 0.053 and 0.053). Adverse ELN genetic risk correlated with a lower proportion of CD8 Tn. In addition, the low proportions of CD4 Tem and CD8 Tn independently predicted poorer relapse-free survival (RFS, HR [95%CI]: 5.7 (1.4-22.2), P = 0.017 and 4.8 [1.3-17.4], P = 0.013) and event-free survival (EFS, HR [95% CI]: 3.3 (1.1-9.5), P = 0.029; 4.0 (1.4-11.5), P = 0.010), respectively. Conclusions AML patients had abnormal profiles of BM T-cell differentiation subsets at diagnosis, which was related to DNMT3A mutations. The low proportions of CD4 Tem and CD8 Tn predicted poor outcomes.
Collapse
|
19
|
Li XP, Song JT, Dai YT, Zhang WN, Zhao BT, Mao JY, Gao Y, Jiang L, Liang Y. Integrative single-cell analysis of longitudinal t(8;21) AML reveals heterogeneous immune cell infiltration and prognostic signatures. Front Immunol 2024; 15:1424933. [PMID: 39086485 PMCID: PMC11288856 DOI: 10.3389/fimmu.2024.1424933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Immunotherapies targeting T cells in solid cancers are revolutionizing clinical treatment. Novel immunotherapies have had extremely limited benefit for acute myeloid leukemia (AML). Here, we characterized the immune microenvironment of t(8;21) AML patients to determine how immune cell infiltration status influenced prognosis. Methods Through multi-omics studies of primary and longitudinal t(8;21) AML samples, we characterized the heterogeneous immune cell infiltration in the tumor microenvironment and their immune checkpoint gene expression. Further external cohorts were also included in this research. Results CD8+ T cells were enriched and HAVCR2 and TIGIT were upregulated in the CD34+CD117dim%-High group; these features are known to be associated with immune exhaustion. Data integration analysis of single-cell dynamics revealed that a subset of T cells (cluster_2) (highly expressing GZMB, NKG7, PRF1 and GNLY) evolved and expanded markedly in the drug-resistant stage after relapse. External cohort analysis confirmed that the cluster_2 T-cell signature could be utilized to stratify patients by overall survival outcome. Discussion In conclusion, we discovered a distinct T-cell signature by scRNA-seq that was correlated with disease progression and drug resistance. Our research provides a novel system for classifying patients based on their immune microenvironment.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Single-Cell Analysis/methods
- Prognosis
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Chromosomes, Human, Pair 8/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Female
- Translocation, Genetic
- Chromosomes, Human, Pair 21/genetics
- CD8-Positive T-Lymphocytes/immunology
- Adult
- Middle Aged
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Xue-Ping Li
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang-Tao Song
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Na Zhang
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Bai-Tian Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Ying Mao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
20
|
Restelli C, Ruella M, Paruzzo L, Tarella C, Pelicci PG, Colombo E. Recent Advances in Immune-Based Therapies for Acute Myeloid Leukemia. Blood Cancer Discov 2024; 5:234-248. [PMID: 38904305 PMCID: PMC11215380 DOI: 10.1158/2643-3230.bcd-23-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Despite advancements, acute myeloid leukemia (AML) remains unconquered by current therapies. Evidence of immune evasion during AML progression, such as HLA loss and T-cell exhaustion, suggests that antileukemic immune responses contribute to disease control and could be harnessed by immunotherapy. In this review, we discuss a spectrum of AML immunotherapy targets, encompassing cancer cell-intrinsic and surface antigens as well as targeting in the leukemic milieu, and how they can be tailored for personalized approaches. These targets are overviewed across major immunotherapy modalities applied to AML: immune checkpoint inhibitors, antibody-drug conjugates, therapeutic vaccines, bispecific/trispecific antibodies, and chimeric antigen receptor (CAR)-T and CAR-NK cells. Significance: Immune therapies in AML treatment show evolving promise. Ongoing research aims to customize approaches for varied patient profiles and clinical scenarios. This review covers immune surveillance mechanisms, therapy options like checkpoint inhibitors, antibodies, CAR-T/NK cells, and vaccines, as well as resistance mechanisms and microenvironment considerations.
Collapse
Affiliation(s)
- Cecilia Restelli
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
| | - Marco Ruella
- Center for Cellular Immunotherapies and Cellular Therapy and Transplant, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
| | - Luca Paruzzo
- Center for Cellular Immunotherapies and Cellular Therapy and Transplant, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
| | - Corrado Tarella
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Emanuela Colombo
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
21
|
Mosna F. The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View. Cancers (Basel) 2024; 16:2359. [PMID: 39001421 PMCID: PMC11240611 DOI: 10.3390/cancers16132359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The potential of the immune system to eradicate leukemic cells has been consistently demonstrated by the Graft vs. Leukemia effect occurring after allo-HSCT and in the context of donor leukocyte infusions. Various immunotherapeutic approaches, ranging from the use of antibodies, antibody-drug conjugates, bispecific T-cell engagers, chimeric antigen receptor (CAR) T-cells, and therapeutic infusions of NK cells, are thus currently being tested with promising, yet conflicting, results. This review will concentrate on various types of immunotherapies in preclinical and clinical development, from the point of view of a clinical hematologist. The most promising therapies for clinical translation are the use of bispecific T-cell engagers and CAR-T cells aimed at lineage-restricted antigens, where overall responses (ORR) ranging from 20 to 40% can be achieved in a small series of heavily pretreated patients affected by refractory or relapsing leukemia. Toxicity consists mainly in the occurrence of cytokine-release syndrome, which is mostly manageable with step-up dosing, the early use of cytokine-blocking agents and corticosteroids, and myelosuppression. Various cytokine-enhanced natural killer products are also being tested, mainly as allogeneic off-the-shelf therapies, with a good tolerability profile and promising results (ORR: 20-37.5% in small trials). The in vivo activation of T lymphocytes and NK cells via the inhibition of their immune checkpoints also yielded interesting, yet limited, results (ORR: 33-59%) but with an increased risk of severe Graft vs. Host disease in transplanted patients. Therefore, there are still several hurdles to overcome before the widespread clinical use of these novel compounds.
Collapse
Affiliation(s)
- Federico Mosna
- Hematology and Bone Marrow Transplantation Unit (BMTU), Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of Paracelsus Medical University (PMU), 39100 Bolzano, Italy
| |
Collapse
|
22
|
Vadakekolathu J, Rutella S. Escape from T-cell-targeting immunotherapies in acute myeloid leukemia. Blood 2024; 143:2689-2700. [PMID: 37467496 PMCID: PMC11251208 DOI: 10.1182/blood.2023019961] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
ABSTRACT Single-cell and spatial multimodal technologies have propelled discoveries of the solid tumor microenvironment (TME) molecular features and their correlation with clinical response and resistance to immunotherapy. Computational tools are incessantly being developed to characterize tumor-infiltrating immune cells and to model tumor immune escape. These advances have led to substantial research into T-cell hypofunctional states in the TME and their reinvigoration with T-cell-targeting approaches, including checkpoint inhibitors (CPIs). Until recently, we lacked a high-dimensional picture of the acute myeloid leukemia (AML) TME, including compositional and functional differences in immune cells between disease onset and postchemotherapy or posttransplantation relapse, and the dynamic interplay between immune cells and AML blasts at various maturation stages. AML subgroups with heightened interferon gamma (IFN-γ) signaling were shown to derive clinical benefit from CD123×CD3-bispecific dual-affinity retargeting molecules and CPIs, while being less likely to respond to standard-of-care cytotoxic chemotherapy. In this review, we first highlight recent progress into deciphering immune effector states in AML (including T-cell exhaustion and senescence), oncogenic signaling mechanisms that could reduce the susceptibility of AML cells to T-cell-mediated killing, and the dichotomous roles of type I and II IFN in antitumor immunity. In the second part, we discuss how this knowledge could be translated into opportunities to manipulate the AML TME with the aim to overcome resistance to CPIs and other T-cell immunotherapies, building on recent success stories in the solid tumor field, and we provide an outlook for the future.
Collapse
Affiliation(s)
- Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
23
|
Tameni A, Toffalori C, Vago L. Tricking the trickster: precision medicine approaches to counteract leukemia immune escape after transplant. Blood 2024; 143:2710-2721. [PMID: 38728431 DOI: 10.1182/blood.2023019962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Over the last decades, significant improvements in reducing the toxicities of allogeneic hematopoietic cell transplantation (allo-HCT) have widened its use as consolidation or salvage therapy for high-risk hematological malignancies. Nevertheless, relapse of the original malignant disease remains an open issue with unsatisfactory salvage options and limited rationales to select among them. In the last years, several studies have highlighted that relapse is often associated with specific genomic and nongenomic mechanisms of immune escape. In this review we summarize the current knowledge about these modalities of immune evasion, focusing on the mechanisms that leverage antigen presentation and pathologic rewiring of the bone marrow microenvironment. We present examples of how this biologic information can be translated into specific approaches to treat relapse, discuss the status of the clinical trials for patients who relapsed after a transplant, and show how dissecting the complex immunobiology of allo-HCT represents a crucial step toward developing new personalized approaches to improve clinical outcomes.
Collapse
Affiliation(s)
- Annalisa Tameni
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Toffalori
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
Talvard-Balland N, Braun LM, Dixon KO, Zwick M, Engel H, Hartmann A, Duquesne S, Penter L, Andrieux G, Rindlisbacher L, Acerbis A, Ehmann J, Köllerer C, Ansuinelli M, Rettig A, Moschallski K, Apostolova P, Brummer T, Illert AL, Schramm MA, Cheng Y, Köttgen A, Duyster J, Menssen HD, Ritz J, Blazar BR, Boerries M, Schmitt-Gräff A, Sariipek N, Van Galen P, Buescher JM, Cabezas-Wallscheid N, Pahl HL, Pearce EL, Soiffer RJ, Wu CJ, Vago L, Becher B, Köhler N, Wertheimer T, Kuchroo VK, Zeiser R. Oncogene-induced TIM-3 ligand expression dictates susceptibility to anti-TIM-3 therapy in mice. J Clin Invest 2024; 134:e177460. [PMID: 38916965 PMCID: PMC11324309 DOI: 10.1172/jci177460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting T cell (Tc) immunoglobulin and mucin-containing molecule 3 (TIM-3) for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ Tc enhanced Tc activation, proliferation, and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion, and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3 treatment-mediated GVL effects are Tc induced. In contrast to anti-programmed cell death protein 1 (anti-PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We decipher the connections between oncogenic mutations found in AML and TIM-3 ligand expression and identify anti-TIM-3 treatment as a strategy for enhancing GVL effects via metabolic and transcriptional Tc reprogramming without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Ab in patients with AML relapse after allo-HCT.
Collapse
MESH Headings
- Animals
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Mice
- Hematopoietic Stem Cell Transplantation
- Graft vs Leukemia Effect/immunology
- Graft vs Leukemia Effect/genetics
- Humans
- Allografts
- Ligands
- Oncogenes
- CD8-Positive T-Lymphocytes/immunology
- Mice, Knockout
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Nana Talvard-Balland
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Lukas M. Braun
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Karen O. Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Melissa Zwick
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Alina Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Sandra Duquesne
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andrea Acerbis
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Jule Ehmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Christoph Köllerer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Michela Ansuinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Andres Rettig
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Kevin Moschallski
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Petya Apostolova
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tilman Brummer
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Freiburg, Germany
| | - Anna L. Illert
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | | | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Blazar
- University of Minnesota, Department of Pediatrics, Division of Blood and Marrow Transplant & Cellular Therapy, Minneapolis, Minnesota, USA
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Nurefsan Sariipek
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Peter Van Galen
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joerg M. Buescher
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Heike L. Pahl
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Erika L. Pearce
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Natalie Köhler
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Tobias Wertheimer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vijay K. Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Zeiser
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Zhang Y, Chen S, Tang X, Peng Y, Jiang T, Zhang X, Li J, Liu Y, Yang Z. The role of KLRG1: a novel biomarker and new therapeutic target. Cell Commun Signal 2024; 22:337. [PMID: 38898461 PMCID: PMC11186184 DOI: 10.1186/s12964-024-01714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Killer cell lectin-like receptor G1 (KLRG1) is an immune checkpoint receptor expressed predominantly in NK and T-cell subsets that downregulates the activation and proliferation of immune cells and participates in cell-mediated immune responses. Accumulating evidence has demonstrated the importance of KLRG1 as a noteworthy disease marker and therapeutic target that can influence disease onset, progression, and prognosis. Blocking KLRG1 has been shown to effectively mitigate the effects of downregulation in various mouse tumor models, including solid tumors and hematologic malignancies. However, KLRG1 inhibitors have not yet been approved for human use, and the understanding of KLRG1 expression and its mechanism of action in various diseases remains incomplete. In this review, we explore alterations in the distribution, structure, and signaling pathways of KLRG1 in immune cells and summarize its expression patterns and roles in the development and progression of autoimmune diseases, infectious diseases, and cancers. Additionally, we discuss the potential applications of KLRG1 as a tool for tumor immunotherapy.
Collapse
Affiliation(s)
- Yakun Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shuang Chen
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xinyi Tang
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yu Peng
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Jiang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Zailin Yang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
26
|
Zhang Y, Huang X, Yu M, Zhang M, Zhao L, Yan Y, Zhang L, Wang X. The integrate profiling of single-cell and spatial transcriptome RNA-seq reveals tumor heterogeneity, therapeutic targets, and prognostic subtypes in ccRCC. Cancer Gene Ther 2024; 31:917-932. [PMID: 38480978 DOI: 10.1038/s41417-024-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 06/23/2024]
Abstract
Clear-cell renal cell carcinoma (ccRCC) is the most common type of RCC; however, the intratumoral heterogeneity in ccRCC remains unclear. We first identified markers and biological features of each cell cluster using bioinformatics analysis based on single-cell and spatial transcriptome RNA-sequencing data. We found that gene copy number loss on chromosome 3p and amplification on chromosome 5q were common features in ccRCC cells. Meanwhile, NNMT and HILPDA, which are associated with the response to hypoxia and metabolism, are potential therapeutic targets for ccRCC. In addition, CD8+ exhausted T cells (LAG3+ HAVCR2+), CD8+ proliferated T cells (STMN+), and M2-like macrophages (CD68+ CD163+ APOC1+), which are closely associated with immunosuppression, played vital roles in ccRCC occurrence and development. These results were further verified by whole exome sequencing, cell line and xenograft experiments, and immunofluorescence staining. Finally, we divide patients with ccRCC into three subtypes using unsupervised cluster analysis. and generated a classifier to reproduce these subtypes using the eXtreme Gradient Boosting algorithm. Our classifier can help clinicians evaluate prognosis and design personalized treatment strategies for ccRCC. In summary, our work provides a new perspective for understanding tumor heterogeneity and will aid in the design of antitumor therapeutic strategies for ccRCC.
Collapse
Affiliation(s)
- Yanlong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuefeng Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Minghang Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Menghan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Li Zhao
- Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Yong Yan
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Liyun Zhang
- Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, Shanxi, China.
| | - Xi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Beijing Institute of Infectious Diseases, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
27
|
Kinsella FAM, Maroto MAL, Loke J, Craddock C. Strategies to reduce relapse risk in patients undergoing allogeneic stem cell transplantation for acute myeloid leukaemia. Br J Haematol 2024; 204:2173-2183. [PMID: 38602216 DOI: 10.1111/bjh.19463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Allogeneic stem cell transplantation is a centrally important curative strategy in adults with acute myeloid leukaemia; however, relapse occurs in a significant proportion of patients and remains the leading cause of treatment failure. The prognosis for patients who relapse post-transplant remains poor, and the development of new strategies with the ability to reduce disease recurrence without increasing transplant toxicity remains a priority. In this review, within the context of our understanding of disease biology and the graft-versus-leukaemia (GVL) effect, we will discuss established, evolving and novel approaches for increasing remission rates, decreasing measurable residual disease pretransplant, future methods to augment the GVL effect and the opportunities for post-transplant maintenance. Future progress depends upon the development of innovative trials and networks, which will ensure the rapid assessment of emerging therapies in prospective clinical trials.
Collapse
Affiliation(s)
- Francesca A M Kinsella
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Maria A L Maroto
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Justin Loke
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - Charles Craddock
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Clinical Trials Unit, University of Warwick, Warwick, UK
| |
Collapse
|
28
|
Sayitoglu EC, Luca BA, Boss AP, Thomas BC, Freeborn RA, Uyeda MJ, Chen PP, Nakauchi Y, Waichler C, Lacayo N, Bacchetta R, Majeti R, Gentles AJ, Cepika AM, Roncarolo MG. AML/T cell interactomics uncover correlates of patient outcomes and the key role of ICAM1 in T cell killing of AML. Leukemia 2024; 38:1246-1255. [PMID: 38724673 PMCID: PMC11147760 DOI: 10.1038/s41375-024-02255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024]
Abstract
T cells are important for the control of acute myeloid leukemia (AML), a common and often deadly malignancy. We observed that some AML patient samples are resistant to killing by human-engineered cytotoxic CD4+ T cells. Single-cell RNA-seq of primary AML samples and CD4+ T cells before and after their interaction uncovered transcriptional programs that correlate with AML sensitivity or resistance to CD4+ T cell killing. Resistance-associated AML programs were enriched in AML patients with poor survival, and killing-resistant AML cells did not engage T cells in vitro. Killing-sensitive AML potently activated T cells before being killed, and upregulated ICAM1, a key component of the immune synapse with T cells. Without ICAM1, killing-sensitive AML became resistant to killing by primary ex vivo-isolated CD8+ T cells in vitro, and engineered CD4+ T cells in vitro and in vivo. While AML heterogeneity implies that multiple factors may determine their sensitivity to T cell killing, these data show that ICAM1 acts as an immune trigger, allowing T cell killing, and could play a role in AML patient survival in vivo.
Collapse
Affiliation(s)
- Ece Canan Sayitoglu
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bogdan A Luca
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Allison Paige Boss
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Benjamin Craig Thomas
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Robert Arthur Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Molly Javier Uyeda
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Pauline Ping Chen
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yusuke Nakauchi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Colin Waichler
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Norman Lacayo
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ravindra Majeti
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andrew J Gentles
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alma-Martina Cepika
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
29
|
Parveen M, Karaosmanoglu B, Sucularli C, Uner A, Taskiran EZ, Esendagli G. Acquired immune resistance is associated with interferon signature and modulation of KLF6/c-MYB transcription factors in myeloid leukemia. Eur J Immunol 2024; 54:e2350717. [PMID: 38462943 DOI: 10.1002/eji.202350717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 03/12/2024]
Abstract
Resistance to immunity is associated with the selection of cancer cells with superior capacities to survive inflammatory reactions. Here, we tailored an ex vivo immune selection model for acute myeloid leukemia (AML) and isolated the residual subpopulations as "immune-experienced" AML (ieAML) cells. We confirmed that upon surviving the immune reactions, the malignant blasts frequently decelerated proliferation, displayed features of myeloid differentiation and activation, and lost immunogenicity. Transcriptomic analyses revealed a limited number of commonly altered pathways and differentially expressed genes in all ieAML cells derived from distinct parental cell lines. Molecular signatures predominantly associated with interferon and inflammatory cytokine signaling were enriched in the AML cells resisting the T-cell-mediated immune reactions. Moreover, the expression and nuclear localization of the transcription factors c-MYB and KLF6 were noted as the putative markers for immune resistance and identified in subpopulations of AML blasts in the patients' bone marrow aspirates. The immune modulatory capacities of ieAML cells lasted for a restricted period when the immune selection pressure was omitted. In conclusion, myeloid leukemia cells harbor subpopulations that can adapt to the harsh conditions established by immune reactions, and a previous "immune experience" is marked with IFN signature and may pave the way for susceptibility to immune intervention therapies.
Collapse
Affiliation(s)
- Mubaida Parveen
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Türkiye
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ceren Sucularli
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Türkiye
| |
Collapse
|
30
|
Mensurado S, Condeço C, Sánchez-Martínez D, Shirley S, Coelho RML, Tirado N, Vinyoles M, Blanco-Domínguez R, Barros L, Galvão B, Custódio N, Gomes da Silva M, Menéndez P, Silva-Santos B. CD155/PVR determines acute myeloid leukemia targeting by Delta One T cells. Blood 2024; 143:1488-1495. [PMID: 38437507 PMCID: PMC11033583 DOI: 10.1182/blood.2023022992] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
ABSTRACT Relapsed or refractory acute myeloid leukemia (AML) remains a major therapeutic challenge. We have recently developed a Vδ1+ γδ T cell-based product for adoptive immunotherapy, named Delta One T (DOT) cells, and demonstrated their cytolytic capacity to eliminate AML cell lines and primary blasts in vitro and in vivo. However, the molecular mechanisms responsible for the broad DOT-cell recognition of AML cells remain poorly understood. Here, we dissected the role of natural killer (NK) cell receptor ligands in AML cell recognition by DOT cells. Screening of multiple AML cell lines highlighted a strong upregulation of the DNAM-1 ligands, CD155/pulmonary vascular resistance (PVR), CD112/nectin-2, as well as the NKp30 ligand, B7-H6, in contrast with NKG2D ligands. CRISPR-mediated ablation revealed key nonredundant and synergistic contributions of PVR and B7-H6 but not nectin-2 to DOT-cell targeting of AML cells. We further demonstrate that PVR and B7-H6 are critical for the formation of robust immunological synapses between AML and DOT cells. Importantly, PVR but not B7-H6 expression in primary AML samples predicted their elimination by DOT cells. These data provide new mechanistic insight into tumor targeting by DOT cells and suggest that assessing PVR expression levels may be highly relevant to DOT cell-based clinical trials.
Collapse
Affiliation(s)
- Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Condeço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diego Sánchez-Martínez
- Josep Carreras Leukaemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terapias Avanzadas, Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RD21/0017/0029), Madrid, Spain
- Aragon Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
- Aragon I+D Foundation, Zaragoza, Spain
| | - Sara Shirley
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rui M. L. Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Néstor Tirado
- Josep Carreras Leukaemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terapias Avanzadas, Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RD21/0017/0029), Madrid, Spain
| | - Meritxell Vinyoles
- Josep Carreras Leukaemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terapias Avanzadas, Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RD21/0017/0029), Madrid, Spain
| | - Rafael Blanco-Domínguez
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Leandro Barros
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Beatriz Galvão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Noélia Custódio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Red Española de Terapias Avanzadas, Instituto de Salud Carlos III, Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RD21/0017/0029), Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología, Instituto de Salud Carlos III, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
31
|
Iness AN, Bachireddy P. GPR56 in GVL: marker or mechanism? Blood 2024; 143:1206-1207. [PMID: 38546637 PMCID: PMC10997899 DOI: 10.1182/blood.2023023448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
|
32
|
Mathioudaki A, Wang X, Sedloev D, Huth R, Kamal A, Hundemer M, Liu Y, Vasileiou S, Lulla P, Müller-Tidow C, Dreger P, Luft T, Sauer T, Schmitt M, Zaugg JB, Pabst C. The remission status of AML patients after allo-HCT is associated with a distinct single-cell bone marrow T-cell signature. Blood 2024; 143:1269-1281. [PMID: 38197505 PMCID: PMC10997908 DOI: 10.1182/blood.2023021815] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Acute myeloid leukemia (AML) is a hematologic malignancy for which allogeneic hematopoietic cell transplantation (allo-HCT) often remains the only curative therapeutic approach. However, incapability of T cells to recognize and eliminate residual leukemia stem cells might lead to an insufficient graft-versus-leukemia (GVL) effect and relapse. Here, we performed single-cell RNA-sequencing (scRNA-seq) on bone marrow (BM) T lymphocytes and CD34+ cells of 6 patients with AML 100 days after allo-HCT to identify T-cell signatures associated with either imminent relapse (REL) or durable complete remission (CR). We observed a higher frequency of cytotoxic CD8+ effector and gamma delta (γδ) T cells in CR vs REL samples. Pseudotime and gene regulatory network analyses revealed that CR CD8+ T cells were more advanced in maturation and had a stronger cytotoxicity signature, whereas REL samples were characterized by inflammatory tumor necrosis factor/NF-κB signaling and an immunosuppressive milieu. We identified ADGRG1/GPR56 as a surface marker enriched in CR CD8+ T cells and confirmed in a CD33-directed chimeric antigen receptor T cell/AML coculture model that GPR56 becomes upregulated on T cells upon antigen encounter and elimination of AML cells. We show that GPR56 continuously increases at the protein level on CD8+ T cells after allo-HCT and confirm faster interferon gamma (IFN-γ) secretion upon re-exposure to matched, but not unmatched, recipient AML cells in the GPR56+ vs GPR56- CD8+ T-cell fraction. Together, our data provide a single-cell reference map of BM-derived T cells after allo-HCT and propose GPR56 expression dynamics as a surrogate for antigen encounter after allo-HCT.
Collapse
Affiliation(s)
- Anna Mathioudaki
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Xizhe Wang
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - David Sedloev
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Richard Huth
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Aryan Kamal
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Hundemer
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Yi Liu
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital-Texas Children's Hospital, Houston, TX
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital-Texas Children's Hospital, Houston, TX
| | - Carsten Müller-Tidow
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Dreger
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Luft
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tim Sauer
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Schmitt
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Judith B. Zaugg
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Caroline Pabst
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
Giovenzana A, Bezzecchi E, Bichisecchi A, Cardellini S, Ragogna F, Pedica F, Invernizzi F, Di Filippo L, Tomajer V, Aleotti F, Scotti GM, Socci C, Cesana G, Olmi S, Morelli MJ, Falconi M, Giustina A, Bonini C, Piemonti L, Ruggiero E, Petrelli A. Fat-to-blood recirculation of partially dysfunctional PD-1 +CD4 Tconv cells is associated with dysglycemia in human obesity. iScience 2024; 27:109032. [PMID: 38380252 PMCID: PMC10877684 DOI: 10.1016/j.isci.2024.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Obesity is characterized by the accumulation of T cells in insulin-sensitive tissues, including the visceral adipose tissue (VAT), that can interfere with the insulin signaling pathway eventually leading to insulin resistance (IR) and type 2 diabetes. Here, we found that PD-1+CD4 conventional T (Tconv) cells, endowed with a transcriptomic and functional profile of partially dysfunctional cells, are diminished in VAT of obese patients with dysglycemia (OB-Dys), without a concomitant increase in apoptosis. These cells showed enhanced capacity to recirculate into the bloodstream and had a non-restricted TCRβ repertoire divergent from that of normoglycemic obese and lean individuals. PD-1+CD4 Tconv were reduced in the circulation of OB-Dys, exhibited an altered migration potential, and were detected in the liver of patients with non-alcoholic steatohepatitis. The findings suggest a potential role for partially dysfunctional PD-1+CD4 Tconv cells as inter-organ mediators of IR in obese patients with dysglycemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stefano Olmi
- San Marco Hospital GSD, Zingonia, Bergamo, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Massimo Falconi
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Bonini
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | | |
Collapse
|
34
|
Giannotti F, De Ramon Ortiz C, Simonetta F, Morin S, Bernardi C, Masouridi-Levrat S, Chalandon Y, Mamez AC. Remission of relapsed/refractory classical Hodgkin lymphoma induced by brentuximab vedotin and pembrolizumab combination after allogeneic hematopoietic stem cell transplantation: a case report. Front Immunol 2024; 15:1360275. [PMID: 38510239 PMCID: PMC10950903 DOI: 10.3389/fimmu.2024.1360275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment option for patients with highly chemorefractory Hodgkin lymphoma (HL). The CD30-targeting antibody-drug conjugate Brentuximab-Vedotin (BV) and programmed cell death protein-1 (PD-1) blocking agents have demonstrated clinical activity with durable responses in relapsed/refractory (r/r) HL. However, patients with a history of allo-HSCT were frequently excluded from clinical trials due to concerns about the risk of graft-versus-host disease (GVHD). We report the clinical history of a patient with refractory classical HL who underwent two allo-HSCTs (first from matched unrelated and second from haploidentical donor) after relapsing on BV and nivolumab and for whom durable remission was finally obtained using BV-pembrolizumab combination for relapse after haploidentical HSCT. Such treatment was associated with the onset of GVHD after only two cycles which led to treatment discontinuation. However, the side effects were rapidly controlled, and after 2 years of follow-up, the patient is still in remission. Our data support the feasibility and efficacy of combining PD-1 blockade with BV to enhance the graft-versus-lymphoma effect after allo-HSCT.
Collapse
Affiliation(s)
- Federica Giannotti
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Carmen De Ramon Ortiz
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sarah Morin
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chiara Bernardi
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stavroula Masouridi-Levrat
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yves Chalandon
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne-Claire Mamez
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
35
|
Manfredi F, Stasi L, Buonanno S, Marzuttini F, Noviello M, Mastaglio S, Abbati D, Potenza A, Balestrieri C, Cianciotti BC, Tassi E, Feola S, Toffalori C, Punta M, Magnani Z, Camisa B, Tiziano E, Lupo-Stanghellini MT, Branca RM, Lehtiö J, Sikanen TM, Haapala MJ, Cerullo V, Casucci M, Vago L, Ciceri F, Bonini C, Ruggiero E. Harnessing T cell exhaustion and trogocytosis to isolate patient-derived tumor-specific TCR. SCIENCE ADVANCES 2023; 9:eadg8014. [PMID: 38039364 PMCID: PMC10691777 DOI: 10.1126/sciadv.adg8014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023]
Abstract
To study and then harness the tumor-specific T cell dynamics after allogeneic hematopoietic stem cell transplant, we typed the frequency, phenotype, and function of lymphocytes directed against tumor-associated antigens (TAAs) in 39 consecutive transplanted patients, for 1 year after transplant. We showed that TAA-specific T cells circulated in 90% of patients but display a limited effector function associated to an exhaustion phenotype, particularly in the subgroup of patients deemed to relapse, where exhausted stem cell memory T cells accumulated. Accordingly, cancer-specific cytolytic functions were relevant only when the TAA-specific T cell receptors (TCRs) were transferred into healthy, genome-edited T cells. We then exploited trogocytosis and ligandome-on-chip technology to unveil the specificities of tumor-specific TCRs retrieved from the exhausted T cell pool. Overall, we showed that harnessing circulating TAA-specific and exhausted T cells allow to isolate TCRs against TAAs and previously not described acute myeloid leukemia antigens, potentially relevant for T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Francesco Manfredi
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Lorena Stasi
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Silvia Buonanno
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Francesca Marzuttini
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Maddalena Noviello
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Sara Mastaglio
- IRCCS San Raffaele Scientific Institute, Hematology and Hematopoietic Stem Cell Transplantation Unit, via Olgettina 60, Milan 20132, Italy
| | - Danilo Abbati
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Alessia Potenza
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Chiara Balestrieri
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy
| | - Beatrice Claudia Cianciotti
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Elena Tassi
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Sara Feola
- University of Helsinki, ImmunoVirotherapy Lab, Yliopistonkatu 4, 00100 Helsinki, Finland
| | - Cristina Toffalori
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Unit of Immunogenetics, Leukemia Genomics and Immunobiology, via Olgettina 60, Milan 20132, Italy
| | - Marco Punta
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Unit of Immunogenetics, Leukemia Genomics and Immunobiology, via Olgettina 60, Milan 20132, Italy
| | - Zulma Magnani
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Barbara Camisa
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Elena Tiziano
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| | - Maria Teresa Lupo-Stanghellini
- IRCCS San Raffaele Scientific Institute, Hematology and Hematopoietic Stem Cell Transplantation Unit, via Olgettina 60, Milan 20132, Italy
| | - Rui Mamede Branca
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, 171 65 Solna, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, 171 65 Solna, Sweden
| | - Tiina M. Sikanen
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, Helsinki University,, Viikinkaari 5E, 00014 Helsinki, Finland
| | - Markus J. Haapala
- Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, Helsinki University,, Viikinkaari 5E, 00014 Helsinki, Finland
| | - Vincenzo Cerullo
- University of Helsinki, ImmunoVirotherapy Lab, Yliopistonkatu 4, 00100 Helsinki, Finland
| | - Monica Casucci
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Innovative Immunotherapies Unit, via Olgettina 60, Milan 20132, Italy
| | - Luca Vago
- IRCCS San Raffaele Scientific Institute, Hematology and Hematopoietic Stem Cell Transplantation Unit, via Olgettina 60, Milan 20132, Italy
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Unit of Immunogenetics, Leukemia Genomics and Immunobiology, via Olgettina 60, Milan 20132, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Fabio Ciceri
- IRCCS San Raffaele Scientific Institute, Hematology and Hematopoietic Stem Cell Transplantation Unit, via Olgettina 60, Milan 20132, Italy
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Innovative Immunotherapies Unit, via Olgettina 60, Milan 20132, Italy
| | - Chiara Bonini
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation and Infectious Disease, Innovative Immunotherapies Unit, via Olgettina 60, Milan 20132, Italy
| | - Eliana Ruggiero
- IRCCS San Raffaele Scientific Institute, Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, via Olgettina 60, Milan 20132, Italy
| |
Collapse
|
36
|
Herrity E, Pereira MP, Kim DDH. Acute myeloid leukaemia relapse after allogeneic haematopoietic stem cell transplantation: Mechanistic diversity and therapeutic directions. Br J Haematol 2023; 203:722-735. [PMID: 37787151 DOI: 10.1111/bjh.19121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Emerging biological and clinical data, along with advances in new technologies, have exposed the mechanistic diversity in post-haematopoietic stem cell transplant (HCT) relapse. Post-HCT relapse mechanisms are relevant for guiding sophisticated selection of therapeutic interventions and identification of areas for further research. Clonal evolution and emergence of resistant leukemic strains is a common mechanism shared by relapse post-chemotherapy and post-HCT, other mechanisms such as leukemic immune escape and donor T cell exhaustion are unique entities to post-HCT relapse. Due to diversity in the mechanisms behind post-HCT relapse, the subsequent clinical approach relies on clinician discretion, rather than objective evidence. Lack of standardized selection based on post-HCT relapse mechanism(s) could be a contributing factor to observed poor outcomes. Therapeutic strategies including donor lymphocyte infusion (DLI), second transplant, immunotherapies, hypomethylating agents, and targeted strategies are supported options and efficacy may be enhanced when post-HCT AML relapse mechanism is established and guides treatment selection. This review aims, through compilation of supporting studies, to describe mechanisms of post-HCT relapse and their implications for subsequent treatment selection and inspiration for future research.
Collapse
Affiliation(s)
- Elizabeth Herrity
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mariana Pinto Pereira
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Dennis Dong Hwan Kim
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Leukemia Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Sauerer T, Velázquez GF, Schmid C. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: immune escape mechanisms and current implications for therapy. Mol Cancer 2023; 22:180. [PMID: 37951964 PMCID: PMC10640763 DOI: 10.1186/s12943-023-01889-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the expansion of immature myeloid cells in the bone marrow (BM) and peripheral blood (PB) resulting in failure of normal hematopoiesis and life-threating cytopenia. Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an established therapy with curative potential. Nevertheless, post-transplant relapse is common and associated with poor prognosis, representing the major cause of death after allo-HCT. The occurrence of relapse after initially successful allo-HCT indicates that the donor immune system is first able to control the leukemia, which at a later stage develops evasion strategies to escape from immune surveillance. In this review we first provide a comprehensive overview of current knowledge regarding immune escape in AML after allo-HCT, including dysregulated HLA, alterations in immune checkpoints and changes leading to an immunosuppressive tumor microenvironment. In the second part, we draw the line from bench to bedside and elucidate to what extend immune escape mechanisms of relapsed AML are yet exploited in treatment strategies. Finally, we give an outlook how new emerging technologies could help to improve the therapy for these patients, and elucidate potential new treatment options.
Collapse
Affiliation(s)
- Tatjana Sauerer
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Giuliano Filippini Velázquez
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany.
| |
Collapse
|
38
|
Jia B, Zhao C, Minagawa K, Shike H, Claxton DF, Ehmann WC, Rybka WB, Mineishi S, Wang M, Schell TD, Prabhu KS, Paulson RF, Zhang Y, Shultz LD, Zheng H. Acute Myeloid Leukemia Causes T Cell Exhaustion and Depletion in a Humanized Graft-versus-Leukemia Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1426-1437. [PMID: 37712758 DOI: 10.4049/jimmunol.2300111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is, in many clinical settings, the only curative treatment for acute myeloid leukemia (AML). The clinical benefit of alloSCT greatly relies on the graft-versus-leukemia (GVL) effect. However, AML relapse remains the top cause of posttransplant death; this highlights the urgent need to enhance GVL. Studies of human GVL have been hindered by the lack of optimal clinically relevant models. In this article, we report, the successful establishment of a novel (to our knowledge) humanized GVL model system by transplanting clinically paired donor PBMCs and patient AML into MHC class I/II knockout NSG mice. We observed significantly reduced leukemia growth in humanized mice compared with mice that received AML alone, demonstrating a functional GVL effect. Using this model system, we studied human GVL responses against human AML cells in vivo and discovered that AML induced T cell depletion, likely because of increased T cell apoptosis. In addition, AML caused T cell exhaustion manifested by upregulation of inhibitory receptors, increased expression of exhaustion-related transcription factors, and decreased T cell function. Importantly, combined blockade of human T cell-inhibitory pathways effectively reduced leukemia burden and reinvigorated CD8 T cell function in this model system. These data, generated in a highly clinically relevant humanized GVL model, not only demonstrate AML-induced inhibition of alloreactive T cells but also identify promising therapeutic strategies targeting T cell depletion and exhaustion for overcoming GVL failure and treating AML relapse after alloSCT.
Collapse
Affiliation(s)
- Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Kentaro Minagawa
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Hiroko Shike
- Department of Pathology, Penn State University College of Medicine, Hershey, PA
| | - David F Claxton
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - W Christopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Witold B Rybka
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Shin Mineishi
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Todd D Schell
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA
| | - Yi Zhang
- Center for Discovery and Innovation, Hackensack Meridian Health, Edison, NJ
| | - Leonard D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, ME
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA
| |
Collapse
|
39
|
Abstract
SUMMARY In this issue of Blood Cancer Discovery, Nelde and colleagues used a sensitive mass spectrometry-based immunopeptidomics approach to characterize the antigenic landscape of acute myeloid leukemia (AML) and were able to identify immunogenic peptides presented by both leukemia stem cells (LSC) and bulk primary AML blasts. These immunogenic peptides elicit primarily CD4 T-cell responses and the diversity of the HLA class II immunopeptidome and presence of CD4 memory T-cell responses were both associated with improved clinical outcome. See related article by Nelde et al., p. 468 (1) .
Collapse
Affiliation(s)
- Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Schroeder T, Stelljes M, Christopeit M, Esseling E, Scheid C, Mikesch JH, Rautenberg C, Jäger P, Cadeddu RP, Drusenheimer N, Holtick U, Klein S, Trenschel R, Haas R, Germing U, Kröger N, Kobbe G. Azacitidine, lenalidomide and donor lymphocyte infusions for relapse of myelodysplastic syndrome, acute myeloid leukemia and chronic myelomonocytic leukemia after allogeneic transplant: the Azalena-Trial. Haematologica 2023; 108:3001-3010. [PMID: 37259567 PMCID: PMC10620594 DOI: 10.3324/haematol.2022.282570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Azacitidine (Aza) combined with donor lymphocyte infusions (DLI) is an established treatment for relapse of myeloid malignancies after allogeneic transplantation. Based on its immunomodulatory and anti-leukemic properties we considered Lenalidomide (Lena) to act synergistically with Aza/DLI to improve outcome. We, therefore, prospectively investigated tolerability and efficacy of this combination as first salvage therapy for adults with post-transplant relapse of acute myeloid leukemia, myelodysplastic syndromes and chronic myelomonocytic leukemia. Patients were scheduled for eight cycles Aza (75 mg/m2 day 1-7), Lena (2.5 or 5 mg, days 1-21) and up to three DLI with increasing T-cell dosages (0.5×106-1.5×107 cells/kg). Primary endpoint was safety, while secondary endpoints included response, graft-versus-host disease (GvHD) and overall survival (OS). Fifty patients with molecular (52%) or hematological (48%) relapse of myelodysplastic syndromes (n=24), acute myeloid leukemia (n=23) or chronic myelomonocytic leukemia (n=3) received a median of seven (range, 1-8) cycles including 14 patients with 2.5 mg and 36 with 5 mg Lena daily dosage. Concomitantly, 34 patients (68%) received at least one DLI. Overall response rate was 56% and 25 patients (50%) achieved complete remission being durable in 80%. Median OS was 21 months and 1-year OS rate 65% with no impact of type of or time to relapse and Lena dosages. Treatment was well tolerated indicated by febrile neutropenia being the only grade ≥3 non-hematologic adverse event in >10% of patients and modest acute (grade 2-4 24%) and chronic (moderate/severe 28%) GvHD incidences. In summary, Lena can be safely added to Aza/DLI without excess of GvHD and toxicity. Its significant anti-leukemic activity suggests that this combination is a novel salvage option for post-transplant relapse (clinicaltrials gov. Identifier: NCT02472691).
Collapse
Affiliation(s)
- Thomas Schroeder
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, Essen, Germany; Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf.
| | - Matthias Stelljes
- Department of Medicine A, Hematology and Oncology, University of Muenster, Muenster
| | | | - Eva Esseling
- Department of Medicine A, Hematology and Oncology, University of Muenster, Muenster
| | - Christoph Scheid
- Department I of Internal Medicine, Medical Faculty and University Hospital, University of Cologne, Cologne
| | - Jan-Henrik Mikesch
- Department of Medicine A, Hematology and Oncology, University of Muenster, Muenster
| | - Christina Rautenberg
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, Essen
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf
| | - Ron-Patrick Cadeddu
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf
| | - Nadja Drusenheimer
- Coordination Center for Clinical Trials, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf
| | - Udo Holtick
- Department I of Internal Medicine, Medical Faculty and University Hospital, University of Cologne, Cologne
| | - Stefan Klein
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim
| | - Rudolf Trenschel
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, Essen
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf
| | - Nicolaus Kröger
- University Hospital Hamburg-Eppendorf, Clinic for Stem Cell Transplantation, Hamburg
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf
| |
Collapse
|
41
|
Binder AF, Walker CJ, Mark TM, Baljevic M. Impacting T-cell fitness in multiple myeloma: potential roles for selinexor and XPO1 inhibitors. Front Immunol 2023; 14:1275329. [PMID: 37954586 PMCID: PMC10637355 DOI: 10.3389/fimmu.2023.1275329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Competent T-cells with sufficient levels of fitness combat cancer formation and progression. In multiple myeloma (MM), T-cell exhaustion is caused by several factors including tumor burden, constant immune activation due to chronic disease, age, nutritional status, and certain MM treatments such as alkylating agents and proteasome inhibitors. Many currently used therapies, including bispecific T-cell engagers, anti-CD38 antibodies, proteasome inhibitors, and CART-cells, directly or indirectly depend on the anti-cancer activity of T-cells. Reduced T-cell fitness not only diminishes immune defenses, increasing patient susceptibility to opportunistic infections, but can impact effectiveness MM therapy effectiveness, bringing into focus sequencing strategies that could modulate T-cell fitness and potentially optimize overall benefit and clinical outcomes. Certain targeted agents used to treat MM, such as selective inhibitors of nuclear export (SINE) compounds, have the potential to mitigate T-cell exhaustion. Herein referred to as XPO1 inhibitors, SINE compounds inhibit the nuclear export protein exportin 1 (XPO1), which leads to nuclear retention and activation of tumor suppressor proteins and downregulation of oncoprotein expression. The XPO1 inhibitors selinexor and eltanexor reduced T-cell exhaustion in cell lines and animal models, suggesting their potential role in revitalizating these key effector cells. Additional clinical studies are needed to understand how T-cell fitness is impacted by diseases and therapeutic factors in MM, to potentially facilitate the optimal use of available treatments that depend on, and impact, T-cell function. This review summarizes the importance of T-cell fitness and the potential to optimize treatment using T-cell engaging therapies with a focus on XPO1 inhibitors.
Collapse
Affiliation(s)
- Adam F. Binder
- Department of Medical Oncology, Division of Hematopoietic Stem Cell Transplant and Hematologic Malignancies, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christopher J. Walker
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Tomer M. Mark
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Muhamed Baljevic
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
42
|
Molica M, Perrone S, Andriola C, Rossi M. Immunotherapy with Monoclonal Antibodies for Acute Myeloid Leukemia: A Work in Progress. Cancers (Basel) 2023; 15:5060. [PMID: 37894427 PMCID: PMC10605302 DOI: 10.3390/cancers15205060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In the last few years, molecularly targeted agents and immune-based treatments (ITs) have significantly changed the landscape of anti-cancer therapy. Indeed, ITs have been proven to be very effective when used against metastatic solid tumors, for which outcomes are extremely poor when using standard approaches. Such a scenario has only been partially reproduced in hematologic malignancies. In the context of acute myeloid leukemia (AML), as innovative drugs are eagerly awaited in the relapsed/refractory setting, different ITs have been explored, but the results are still unsatisfactory. In this work, we will discuss the most important clinical studies to date that adopt ITs in AML, providing the basis to understand how this approach, although still in its infancy, may represent a promising therapeutic tool for the future treatment of AML patients.
Collapse
Affiliation(s)
- Matteo Molica
- Department of Hematology-Oncology, Azienda Universitaria Ospedaliera Renato Dulbecco, 88100 Catanzaro, Italy;
| | - Salvatore Perrone
- Department of Hematology, Polo Universitario Pontino, S.M. Goretti Hospital, 04100 Latina, Italy;
| | - Costanza Andriola
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00100 Rome, Italy;
| | - Marco Rossi
- Department of Hematology-Oncology, Azienda Universitaria Ospedaliera Renato Dulbecco, 88100 Catanzaro, Italy;
| |
Collapse
|
43
|
Tassi E, Bergamini A, Wignall J, Sant’Angelo M, Brunetto E, Balestrieri C, Redegalli M, Potenza A, Abbati D, Manfredi F, Cangi MG, Magliacane G, Scalisi F, Ruggiero E, Maffia MC, Trippitelli F, Rabaiotti E, Cioffi R, Bocciolone L, Candotti G, Candiani M, Taccagni G, Schultes B, Doglioni C, Mangili G, Bonini C. Epithelial ovarian cancer is infiltrated by activated effector T cells co-expressing CD39, PD-1, TIM-3, CD137 and interacting with cancer cells and myeloid cells. Front Immunol 2023; 14:1212444. [PMID: 37868997 PMCID: PMC10585363 DOI: 10.3389/fimmu.2023.1212444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Despite predicted efficacy, immunotherapy in epithelial ovarian cancer (EOC) has limited clinical benefit and the prognosis of patients remains poor. There is thus a strong need for better identifying local immune dynamics and immune-suppressive pathways limiting T-cell mediated anti-tumor immunity. Methods In this observational study we analyzed by immunohistochemistry, gene expression profiling and flow cytometry the antigenic landscape and immune composition of 48 EOC specimens, with a focus on tumor-infiltrating lymphocytes (TILs). Results Activated T cells showing features of partial exhaustion with a CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ surface profile were exclusively present in EOC specimens but not in corresponding peripheral blood or ascitic fluid, indicating that the tumor microenvironment might sustain this peculiar phenotype. Interestingly, while neoplastic cells expressed several tumor-associated antigens possibly able to stimulate tumor-specific TILs, macrophages provided both co-stimulatory and inhibitory signals and were more abundant in TILs-enriched specimens harboring the CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ signature. Conclusion These data demonstrate that EOC is enriched in CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ T lymphocytes, a phenotype possibly modulated by antigen recognition on neoplastic cells and by a combination of inhibitory and co-stimulatory signals largely provided by infiltrating myeloid cells. Furthermore, we have identified immunosuppressive pathways potentially hampering local immunity which might be targeted by immunotherapeutic approaches.
Collapse
Affiliation(s)
- Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Cell Therapy Immunomonitoring Laboratory (MITiCi), Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alice Bergamini
- Università Vita-Salute San Raffaele, Milan, Italy
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Jessica Wignall
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Miriam Sant’Angelo
- Department of Surgical Pathology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emanuela Brunetto
- Department of Surgical Pathology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Balestrieri
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Miriam Redegalli
- Department of Surgical Pathology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Maria Giulia Cangi
- Department of Surgical Pathology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gilda Magliacane
- Department of Surgical Pathology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Fabiola Scalisi
- Department of Surgical Pathology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Maria Chiara Maffia
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Federica Trippitelli
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Emanuela Rabaiotti
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffaella Cioffi
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Bocciolone
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giorgio Candotti
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Candiani
- Università Vita-Salute San Raffaele, Milan, Italy
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianluca Taccagni
- Department of Surgical Pathology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Claudio Doglioni
- Università Vita-Salute San Raffaele, Milan, Italy
- Department of Surgical Pathology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giorgia Mangili
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Cell Therapy Immunomonitoring Laboratory (MITiCi), Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
44
|
Duan Y, Ma L, Song F, Tian L, Cai W, Li H. Autorecoding A-to-I RNA editing sites in the Adar gene underwent compensatory gains and losses in major insect clades. RNA (NEW YORK, N.Y.) 2023; 29:1509-1519. [PMID: 37451866 PMCID: PMC10578469 DOI: 10.1261/rna.079682.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
As one of the most prevalent RNA modifications in animals, adenosine-to-inosine (A-to-I) RNA editing facilitates the environmental adaptation of organisms by diversifying the proteome in a temporal-spatial manner. In flies and bees, the editing enzyme Adar has independently gained two different autorecoding sites that form an autofeedback loop, stabilizing the overall editing efficiency. This ensures cellular homeostasis by keeping the normal function of target genes. However, in a broader range of insects, the evolutionary dynamics and significance of this Adar autoregulatory mechanism are unclear. We retrieved the genomes of 377 arthropod species covering the five major insect orders (Hemiptera, Hymenoptera, Coleoptera, Diptera, and Lepidoptera) and aligned the Adar autorecoding sites across all genomes. We found that the two autorecoding sites underwent compensatory gains and losses during the evolution of two orders with the most sequenced species (Diptera and Hymenoptera), and that the two editing sites were mutually exclusive among them: One editable site is significantly linked to another uneditable site. This autorecoding mechanism of Adar could flexibly diversify the proteome and stabilize global editing activity. Many insects independently selected different autorecoding sites to achieve a feedback loop and regulate the global RNA editome, revealing an interesting phenomenon during evolution. Our study reveals the evolutionary force acting on accurate regulation of RNA editing activity in insects and thus deepens our understanding of the functional importance of RNA editing in environmental adaptation and evolution.
Collapse
Affiliation(s)
- Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
45
|
Apostolova P, Kreutmair S, Toffalori C, Punta M, Unger S, Burk AC, Wehr C, Maas-Bauer K, Melchinger W, Haring E, Hoefflin R, Shoumariyeh K, Hupfer V, Lauer EM, Duquesne S, Lowinus T, Gonzalo Núñez N, Alberti C, da Costa Pereira S, Merten CH, Power L, Weiss M, Böke C, Pfeifer D, Marks R, Bertz H, Wäsch R, Ihorst G, Gentner B, Duyster J, Boerries M, Andrieux G, Finke J, Becher B, Vago L, Zeiser R. Phase II trial of hypomethylating agent combined with nivolumab for acute myeloid leukaemia relapse after allogeneic haematopoietic cell transplantation-Immune signature correlates with response. Br J Haematol 2023; 203:264-281. [PMID: 37539479 DOI: 10.1111/bjh.19007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Acute myeloid leukaemia (AML) relapse after allogeneic haematopoietic cell transplantation (allo-HCT) is often driven by immune-related mechanisms and associated with poor prognosis. Immune checkpoint inhibitors combined with hypomethylating agents (HMA) may restore or enhance the graft-versus-leukaemia effect. Still, data about using this combination regimen after allo-HCT are limited. We conducted a prospective, phase II, open-label, single-arm study in which we treated patients with haematological AML relapse after allo-HCT with HMA plus the anti-PD-1 antibody nivolumab. The response was correlated with DNA-, RNA- and protein-based single-cell technology assessments to identify biomarkers associated with therapeutic efficacy. Sixteen patients received a median number of 2 (range 1-7) nivolumab applications. The overall response rate (CR/PR) at day 42 was 25%, and another 25% of the patients achieved stable disease. The median overall survival was 15.6 months. High-parametric cytometry documented a higher frequency of activated (ICOS+ , HLA-DR+ ), low senescence (KLRG1- , CD57- ) CD8+ effector T cells in responders. We confirmed these findings in a preclinical model. Single-cell transcriptomics revealed a pro-inflammatory rewiring of the expression profile of T and myeloid cells in responders. In summary, the study indicates that the post-allo-HCT HMA/nivolumab combination induces anti-AML immune responses in selected patients and could be considered as a bridging approach to a second allo-HCT. Trial-registration: EudraCT-No. 2017-002194-18.
Collapse
Affiliation(s)
- Petya Apostolova
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Kreutmair
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Cristina Toffalori
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Punta
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for OMICS Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ann-Cathrin Burk
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Wehr
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kristina Maas-Bauer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Melchinger
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eileen Haring
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rouven Hoefflin
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valerie Hupfer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eliza Maria Lauer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Duquesne
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theresa Lowinus
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Chiara Alberti
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Carla Helena Merten
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Laura Power
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Matthias Weiss
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Caroline Böke
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard Marks
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Bertz
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Gentner
- Translational Stem Cell and Leukemia Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Justus Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juergen Finke
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Signalling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Gurska L, Gritsman K. Unveiling T cell evasion mechanisms to immune checkpoint inhibitors in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:674-687. [PMID: 37842238 PMCID: PMC10571054 DOI: 10.20517/cdr.2023.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/01/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and aggressive hematologic malignancy that is associated with a high relapse rate and poor prognosis. Despite advances in immunotherapies in solid tumors and other hematologic malignancies, AML has been particularly difficult to treat with immunotherapies, as their efficacy is limited by the ability of leukemic cells to evade T cell recognition. In this review, we discuss the common mechanisms of T cell evasion in AML: (1) increased expression of immune checkpoint molecules; (2) downregulation of antigen presentation molecules; (3) induction of T cell exhaustion; and (4) creation of an immunosuppressive environment through the increased frequency of regulatory T cells. We also review the clinical investigation of immune checkpoint inhibitors (ICIs) in AML. We discuss the limitations of ICIs, particularly in the context of T cell evasion mechanisms in AML, and we describe emerging strategies to overcome T cell evasion, including combination therapies. Finally, we provide an outlook on the future directions of immunotherapy research in AML, highlighting the need for a more comprehensive understanding of the complex interplay between AML cells and the immune system.
Collapse
Affiliation(s)
- Lindsay Gurska
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
47
|
Sayitoglu EC, Luca BA, Boss AP, Thomas BC, Freeborn RA, Uyeda MJ, Chen PP, Nakauchi Y, Waichler C, Lacayo N, Bacchetta R, Majeti R, Gentles AJ, Cepika AM, Roncarolo MG. AML/T cell interactomics uncover correlates of patient outcomes and the key role of ICAM1 in T cell killing of AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558911. [PMID: 37790561 PMCID: PMC10542521 DOI: 10.1101/2023.09.21.558911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
T cells are important for the control of acute myeloid leukemia (AML), a common and often deadly malignancy. We observed that some AML patient samples are resistant to killing by human engineered cytotoxic CD4 + T cells. Single-cell RNA-seq of primary AML samples and CD4 + T cells before and after their interaction uncovered transcriptional programs that correlate with AML sensitivity or resistance to CD4 + T cell killing. Resistance-associated AML programs were enriched in AML patients with poor survival, and killing-resistant AML cells did not engage T cells in vitro . Killing-sensitive AML potently activated T cells before being killed, and upregulated ICAM1 , a key component of the immune synapse with T cells. Without ICAM1, killing-sensitive AML became resistant to killing to primary ex vivo -isolated CD8 + T cells in vitro , and engineered CD4 + T cells in vitro and in vivo . Thus, ICAM1 on AML acts as an immune trigger, allowing T cell killing, and could affect AML patient survival in vivo . SIGNIFICANCE AML is a common leukemia with sub-optimal outcomes. We show that AML transcriptional programs correlate with susceptibility to T cell killing. Killing resistance-associated AML programs are enriched in patients with poor survival. Killing-sensitive, but not resistant AML activate T cells and upregulate ICAM1 that binds to LFA-1 on T cells, allowing immune synapse formation which is critical for AML elimination. GRAPHICAL ABSTRACT
Collapse
|
48
|
Bolkun L, Tynecka M, Walewska A, Bernatowicz M, Piszcz J, Cichocka E, Wandtke T, Czemerska M, Wierzbowska A, Moniuszko M, Grubczak K, Eljaszewicz A. The Association between Immune Checkpoint Proteins and Therapy Outcomes in Acute Myeloid Leukaemia Patients. Cancers (Basel) 2023; 15:4487. [PMID: 37760457 PMCID: PMC10526931 DOI: 10.3390/cancers15184487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The development of novel drugs with different mechanisms of action has dramatically changed the treatment landscape of AML patients in recent years. Considering a significant dysregulation of the immune system, inhibitors of immune checkpoint (ICI) proteins provide a substantial therapeutic option for those subjects. However, use of ICI in haematological malignancies remains very limited, in contrast to their wide use in solid tumours. Here, we analysed expression patterns of the most promising selected checkpoint-based therapeutic targets in AML patients. Peripheral blood of 72 untreated AML patients was used for flow cytometric analysis. Expression of PD-1, PD-L1, CTLA-4, and B7-H3 was assessed within CD4+ (Th) lymphocytes and CD33+ blast cells. Patients were stratified based on therapy outcome and cytogenetic molecular risk. AML non-responders (NR) showed a higher frequency of PD-1 in Th cells compared to those with complete remission (CR). Reduced blast cell level of CTLA-4 was another factor differentiating CR from NR subjects. Elevated levels of PD-1 were associated with a trend for poorer patients' survival. Additionally, prognosis for AML patients was worse in case of a higher frequency of B7-H3 in Th lymphocytes. In summary, we showed the significance of selected ICI as outcome predictors in AML management. Further, multicentre studies are required for validation of those data.
Collapse
Affiliation(s)
- Lukasz Bolkun
- Department of Haematology, Medical University of Bialystok, 15-276 Bialystok, Poland (J.P.)
| | - Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland (A.W.); (M.M.)
| | - Alicja Walewska
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland (A.W.); (M.M.)
| | - Malgorzata Bernatowicz
- Department of Haematology, Medical University of Bialystok, 15-276 Bialystok, Poland (J.P.)
| | - Jaroslaw Piszcz
- Department of Haematology, Medical University of Bialystok, 15-276 Bialystok, Poland (J.P.)
| | - Edyta Cichocka
- Department of Haematology, Rydygiera Hospital in Torun, 87-100 Torun, Poland;
| | - Tomasz Wandtke
- Department of Lung Diseases, Neoplasms and Tuberculosis, Nicolaus Copernicus University in Torun, 85-326 Bydgoszcz, Poland;
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland (A.W.)
| | | | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland (A.W.); (M.M.)
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland (A.W.); (M.M.)
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland (A.W.); (M.M.)
- Tissue and Cell Bank, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
49
|
Shah NA. Donor lymphocyte infusion in Acute Myeloid Leukemia. Best Pract Res Clin Haematol 2023; 36:101484. [PMID: 37612002 DOI: 10.1016/j.beha.2023.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 08/25/2023]
Abstract
Donor lymphocyte infusion (DLI) is an important treatment modality in the management of relapsed hematological malignancies after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T lymphocytes can be used in a therapeutic, pre-emptive or prophylactic manner in an attempt to stimulate a graft versus leukemia (GVL) effect and eradicate residual disease or even prevent relapse in a high-risk setting. DLIs are not without complications, however, graft versus host disease (GVHD) in particular. Data to date is limited to retrospective and small prospective studies. This review summarizes the available literature on approaches to managing relapse, dosing and timing of DLI, complications and potential future therapies.
Collapse
|
50
|
Vallet N, Salmona M, Malet-Villemagne J, Bredel M, Bondeelle L, Tournier S, Mercier-Delarue S, Cassonnet S, Ingram B, Peffault de Latour R, Bergeron A, Socié G, Le Goff J, Lepage P, Michonneau D. Circulating T cell profiles associate with enterotype signatures underlying hematological malignancy relapses. Cell Host Microbe 2023; 31:1386-1403.e6. [PMID: 37463582 DOI: 10.1016/j.chom.2023.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
Early administration of azithromycin after allogeneic hematopoietic stem cell transplantation was shown to increase the relapse of hematological malignancies. To determine the impact of azithromycin on the post-transplant gut ecosystem and its influence on relapse, we characterized overtime gut bacteriome, virome, and metabolome of 55 patients treated with azithromycin or a placebo. We describe four enterotypes and the network of associated bacteriophage species and metabolic pathways. One enterotype associates with sustained remission. One taxon from Bacteroides specifically associates with relapse, while two from Bacteroides and Prevotella correlate with complete remission. These taxa are associated with lipid, pentose, and branched-chain amino acid metabolic pathways and several bacteriophage species. Enterotypes and taxa associate with exhausted T cells and the functional status of circulating immune cells. These results illustrate how an antibiotic influences a complex network of gut bacteria, viruses, and metabolites and may promote cancer relapse through modifications of immune cells.
Collapse
Affiliation(s)
- Nicolas Vallet
- Université de Paris Cité, INSERM U976, 75010 Paris, France
| | - Maud Salmona
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Virology Department, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Jeanne Malet-Villemagne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Maxime Bredel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Louise Bondeelle
- Pneumology Unit, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Simon Tournier
- Core Facilities, Saint-Louis Research Institute, Université de Paris Cité, UAR 2030/US 53, 75010 Paris, France
| | | | - Stéphane Cassonnet
- Service de Biostatistique et Information Médicale, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | | | - Régis Peffault de Latour
- Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France; Cryostem Consortium, 13382 Marseille, France
| | - Anne Bergeron
- Pneumology Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Gérard Socié
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Jérome Le Goff
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Virology Department, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - David Michonneau
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France.
| |
Collapse
|