1
|
Voolstra CR, Schlotheuber M, Camp EF, Nitschke MR, Szereday S, Bejarano S. Spatially restricted coral bleaching as an ecological manifestation of within-colony heterogeneity. Commun Biol 2025; 8:740. [PMID: 40360784 PMCID: PMC12075583 DOI: 10.1038/s42003-025-08150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Coral bleaching is a widespread stress response of reef-building corals to elevated sea temperatures, resulting in the loss of symbiotic algae and often leading to coral death and reef degradation. Although coral bleaching occurs globally, not all reefs, species, colonies, or polyps bleach equally. Understanding intra-colony bleaching heterogeneity is crucial to anticipate the extent of coral loss at 2°C warming and harness variability to inform restorative interventions. Partially bleached coral colonies are commonly documented yet rarely tracked to determine whether they reflect ecologically distinct heterogeneity (e.g., in thermal tolerance) or eventually bleach completely. Focusing on bleaching that appears restricted to certain areas within a coral colony, we examine its putative basis in the spatial variability of the holobiont. A coral's three-dimensional structure creates mosaics of microenvironments. Adaptations to these microenvironments are underpinned by intra-colony differences in Symbiodiniaceae association, microbiome assemblage, and nutritional status, giving rise to microhabitats. Genetic mosaicism and epigenetic changes further contribue to intra-colony phenotypic heterogeneity. We pinpoint methodologies to align spatially restricted bleaching to different forms of coral surface heterogeneity, examine the common assumption that coral fragments represent entire colonies, and illuminate implications for coral biology and restoration.
Collapse
Affiliation(s)
| | | | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sebastian Szereday
- Coralku Solutions, Non-Profit Organization for Coral Reef Research and Restoration, Kuala Lumpur, Malaysia
| | - Sonia Bejarano
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany.
| |
Collapse
|
2
|
Sim ZY, Goh KC, Sukarji NHB, Mao F, He Y, Gin KYH. Influence of phytoplankton, bacteria and viruses on nutrient supply in tropical waters. J Environ Sci (China) 2025; 151:174-186. [PMID: 39481931 DOI: 10.1016/j.jes.2024.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 11/03/2024]
Abstract
Diel investigations of water environments are one means to holistically understand the dynamics and functional roles of phytoplankton, bacteria and viruses in these ecosystems. They have the potential to substantially impact carbon (C), nitrogen (N) and phosphorus (P) biogeochemistry through their respective roles. This study characterizes the phytoplankton, bacteria and virus communities and the elemental composition of various C, N and P nutrients flow over three diel cycles in tropical urban lake. Our results show that ratios of C:N:P fluctuated strongly from the lack of dissolved organic phosphorus (DOP) and PO4. Specifically, green algae peaked during day time and exudate dissolved organic matter (DOM) that strongly modulate dissolved organic carbon (DOC):DOP ratio to diel DOP limitation. Multiple linear regression and Stella modelling emphasize the roles of viruses together with Synechococcus as important nutrient recyclers of NH4 and PO4 in nutrients-limited waters. Respective normalised surface PO4 and combined surface and bottom NH4 concentration selected both viruses and Synechococcus as important drivers. Process model of N and P biogeochemical cycles can achieve 69% and 57% similar to observed concentration of NH4 and PO4, respectively. A short latent period of 9 hr was calculated, in addition to the calibrated high infectivity of viruses to Synechococcus. Taken together, the rapid turn-over between Synechococcus and viruses has biogeochemical significance, where the rapid recycling of essential nutrients allows for shortcuts in the N and P cycle, supporting a wide range of microbes.
Collapse
Affiliation(s)
- Zhi Yang Sim
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Kwan Chien Goh
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Nur Hanisah Binte Sukarji
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Feijian Mao
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore; Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
3
|
Yu Y, Shangguan M, Sun P, Lin X, Li J. Light-Mediated Population Dynamics of Picocyanobacteria Shaping the Diurnal Patterns of Microbial Communities in an Atoll Lagoon. Microorganisms 2025; 13:727. [PMID: 40284564 PMCID: PMC12029148 DOI: 10.3390/microorganisms13040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
The diurnal cycle of light significantly impacts microbes, making diurnal investigations crucial for understanding microbial communities. Zhubi Reef is known to harbor exceptionally rich biodiversity, with both zooplankton and seawater properties demonstrating diurnal patterns. However, microbial community structures and their potential diurnal dynamics remain largely unexplored. This study is the first to utilize flow cytometry and high-throughput sequencing to investigate prokaryotic and microeukaryotic communities in the Zhubi lagoon, focusing on diurnal variations under different light intensities. The picophytoplankton cell abundance and the microbial community structures both exhibit clear diurnal variations. Light is identified as the primary driver of diurnal variations in the picophytoplankton cell abundance. The diurnal variation in microbial community diversity is driven by changes in the cell abundance of two dominant picocyanobacterial groups. Our findings reveal the diurnal variation in microbial community structures is mediated by the light-driven fluctuation of dominant cyanobacterial populations, and the diurnal variation patterns of specific populations may vary with habitats and sampling timepoints. This research provides valuable insights into the microbial community structure within the Zhubi lagoon.
Collapse
Affiliation(s)
- Ying Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Y.); (P.S.); (X.L.)
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China;
| | - Maosen Shangguan
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China;
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
| | - Ping Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Y.); (P.S.); (X.L.)
| | - Xiaofeng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Y.); (P.S.); (X.L.)
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Jiqiu Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Y.); (P.S.); (X.L.)
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Quinlan ZA, Nelson CE, Koester I, Petras D, Nothias L, Comstock J, White BM, Aluwihare LI, Bailey BA, Carlson CA, Dorrestein PC, Haas AF, Wegley Kelly L. Microbial Community Metabolism of Coral Reef Exometabolomes Broadens the Chemodiversity of Labile Dissolved Organic Matter. Environ Microbiol 2025; 27:e70064. [PMID: 40108841 PMCID: PMC11923415 DOI: 10.1111/1462-2920.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 03/22/2025]
Abstract
Dissolved organic matter (DOM) comprises diverse compounds with variable bioavailability across aquatic ecosystems. The sources and quantities of DOM can influence microbial growth and community structure with effects on biogeochemical processes. To investigate the chemodiversity of labile DOM in tropical reef waters, we tracked microbial utilisation of over 3000 untargeted mass spectrometry ion features exuded from two coral and three algal species. Roughly half of these features clustered into over 500 biologically labile spectral subnetworks annotated to diverse structural superclasses, including benzenoids, lipids, organic acids, heterocyclics and phenylpropanoids, comprising on average one-third of the ion richness and abundance within each chemical class. Distinct subsets of these labile compounds were exuded by algae and corals during the day and night, driving differential microbial growth and substrate utilisation. This study expands the chemical diversity of labile marine DOM with implications for carbon cycling in coastal environments.
Collapse
Affiliation(s)
| | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and TechnologyUniversity of Hawaiʻi at MānoaHonoluluHawaiʻiUSA
| | - Irina Koester
- Scripps Institution of Oceanography, UC San DiegoLa JollaCaliforniaUSA
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation CenterSkaggs School of Pharmacy and Pharmaceutical Sciences, UC San DiegoLa JollaCaliforniaUSA
- Controlling Microbes to Fight Infections Cluster of ExcellenceUniversity of TuebingenTuebingenGermany
| | - Louis‐Felix Nothias
- Collaborative Mass Spectrometry Innovation CenterSkaggs School of Pharmacy and Pharmaceutical Sciences, UC San DiegoLa JollaCaliforniaUSA
- Université Côte d'Azur, CNRS, ICNNiceFrance
| | - Jacqueline Comstock
- Department of EcologyEvolution and Marine Biology and Marine Science Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | - Brandie M. White
- Department of Mathematics and StatisticsSan Diego State UniversitySan DiegoCaliforniaUSA
| | | | - Barbara A. Bailey
- Department of Mathematics and StatisticsSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Craig A. Carlson
- Department of EcologyEvolution and Marine Biology and Marine Science Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation CenterSkaggs School of Pharmacy and Pharmaceutical Sciences, UC San DiegoLa JollaCaliforniaUSA
| | - Andreas F. Haas
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityTexelthe Netherlands
| | | |
Collapse
|
5
|
Crocker K, Skwara A, Kannan R, Murugan A, Kuehn S. Microbial functional guilds respond cohesively to rapidly fluctuating environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635766. [PMID: 39974892 PMCID: PMC11838272 DOI: 10.1101/2025.01.30.635766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microbial communities experience environmental fluctuations across timescales from rapid changes in moisture, temperature, or light levels to long-term seasonal or climactic variations. Understanding how microbial populations respond to these changes is critical for predicting the impact of perturbations, interventions, and climate change on communities. Since communities typically harbor tens to hundreds of distinct taxa, the response of microbial abundances to perturbations is potentially complex. However, while taxonomic diversity is high, in many communities taxa can be grouped into functional guilds of strains with similar metabolic traits. These guilds effectively reduce the complexity of the system by providing a physiologically motivated coarse-graining. Here, using a combination of simulations, theory, and experiments, we show that the response of guilds to nutrient fluctuations depends on the timescale of those fluctuations. Rapid changes in nutrient levels drive cohesive, positively correlated abundance dynamics within guilds. For slower timescales of environmental variation, members within a guild begin to compete due to similar resource preferences, driving negative correlations in abundances between members of the same guild. Our results provide a route to understanding the relationship between functional guilds and community response to changing environments, as well as an experimental approach to discovering functional guilds via designed nutrient perturbations to communities.
Collapse
Affiliation(s)
- Kyle Crocker
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
- Center for Living Systems, The University of Chicago Chicago, IL 60637, USA
| | - Abigail Skwara
- Department of Ecology and Evolution. Yale University, New Haven, CT 06520, USA
| | - Rathi Kannan
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago Chicago, IL 60637, USA
- Center for Living Systems, The University of Chicago Chicago, IL 60637, USA
| | - Arvind Murugan
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
- Department of Physics, The University of Chicago. Chicago, IL 60637, USA
- Center for Living Systems, The University of Chicago Chicago, IL 60637, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago. Chicago, IL, USA
| | - Seppe Kuehn
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
- Center for Living Systems, The University of Chicago Chicago, IL 60637, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago. Chicago, IL, USA
| |
Collapse
|
6
|
Fu K, Zhou Q, Wang H. Variability in Microbial Communities Driven by Particulate Matter on Human Facial Skin. TOXICS 2024; 12:497. [PMID: 39058149 PMCID: PMC11280976 DOI: 10.3390/toxics12070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Microbial communities are known to play an important role in maintaining ecological balance and can be used as an indicator for assessing environmental pollution. Numerous studies have revealed that air pollution can alter the structure of microbial communities, which may increase health risks. Nevertheless, the relationships between microbial communities and particulate matter (PM) caused by air pollution in terms of health risk assessment are not well understood. This study aimed to validate the influences of PM chemical compositions on microbial communities and assess the associated health risks. Our results, based on similarity analysis, revealed that the stability structure of the microbial communities had a similarity greater than 73%. In addition, the altered richness and diversity of microbial communities were significantly associated with PM chemical compositions. Volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) exerted a positive influence on microbial communities in different environmental variables. Additionally, a stronger linear correlation was observed between hydroxyl radicals (·OH) and the richness of microbial communities. All estimated health risks from PM chemical compositions, calculated under different environmental variables, significantly exceeded the acceptable level by a factor of more than 49. Cr and 1,2-Dibromoethane displayed dual adverse effects of non-carcinogenic and carcinogenic risks. Overall, the study provides insights into the fundamental mechanisms of the variability in microbial communities driven by PM, which may support the crucial role of PM chemical compositions in the risk of microorganisms in the atmospheric environment.
Collapse
Affiliation(s)
- Kai Fu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; (K.F.)
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Heli Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; (K.F.)
| |
Collapse
|
7
|
Zhu W, Zhao H, Ke J, Zhang J, Liu X, Zhou Y, Chen R, Wang A, Li X. Deciphering the environmental adaptation and functional trait of core and noncore bacterial communities in impacted coral reef seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172897. [PMID: 38697527 DOI: 10.1016/j.scitotenv.2024.172897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/01/2023] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Microorganisms play pivotal roles in different biogeochemical cycles within coral reef waters. Nevertheless, our comprehension of the microbially mediated processes following environmental perturbation is still limited. To gain a deeper insight into the environmental adaptation and nutrient cycling, particularly within core and noncore bacterial communities, it is crucial to understand reef ecosystem functioning. In this study, we delved into the microbial community structure and function of seawater in a coral reef under different degrees of anthropogenic disturbance. To achieve this, we harnessed the power of 16S rRNA gene high-throughput sequencing and metagenomics techniques. The results showed that a continuous temporal succession but little spatial heterogeneity in the bacterial communities of core and noncore taxa and functional profiles involved in nitrogen (N) and phosphorus (P) cycling. Eutrophication state (i.e., nutrient concentration and turbidity) and temperature played pivotal roles in shaping both the microbial community composition and functional traits of coral reef seawater. Within this context, the core subcommunity exhibited a remarkably broader habitat niche breadth, stronger phylogenetic signal and lower environmental sensitivity when compared to the noncore taxa. Null model analysis further revealed that the core subcommunity was governed primarily by stochastic processes, while deterministic processes played a more significant role in shaping the noncore subcommunity. Furthermore, our observations indicated that changes in function related to N cycling were correlated to the variations in noncore taxa, while core taxa played a more substantial role in critical processes such as P cycling. Collectively, these findings facilitated our knowledge about environmental adaptability of core and noncore bacterial taxa and shed light on their respective roles in maintaining diverse nutrient cycling within coral reef ecosystems.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - He Zhao
- College of Ecology and Environment, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Jingzhao Ke
- College of Marine Biology and Fisheries, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Junling Zhang
- College of Marine Biology and Fisheries, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiangbo Liu
- College of Marine Biology and Fisheries, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Yinyin Zhou
- College of Marine Biology and Fisheries, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Rouwen Chen
- College of Marine Biology and Fisheries, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Aimin Wang
- College of Marine Biology and Fisheries, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiubao Li
- College of Marine Biology and Fisheries, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
| |
Collapse
|
8
|
Häfker NS, Holcik L, Mat AM, Ćorić A, Vadiwala K, Beets I, Stockinger AW, Atria CE, Hammer S, Revilla-i-Domingo R, Schoofs L, Raible F, Tessmar-Raible K. Molecular circadian rhythms are robust in marine annelids lacking rhythmic behavior. PLoS Biol 2024; 22:e3002572. [PMID: 38603542 PMCID: PMC11008795 DOI: 10.1371/journal.pbio.3002572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.
Collapse
Affiliation(s)
- N. Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Laurenz Holcik
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Audrey M. Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Aida Ćorić
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karim Vadiwala
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Isabel Beets
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Alexander W. Stockinger
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Carolina E. Atria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Stefan Hammer
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Roger Revilla-i-Domingo
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Liliane Schoofs
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Linsmayer LB, Noel SK, Leray M, Wangpraseurt D, Hassibi C, Kline DI, Tresguerres M. Effects of bleaching on oxygen dynamics and energy metabolism of two Caribbean coral species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170753. [PMID: 38360316 DOI: 10.1016/j.scitotenv.2024.170753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
As mass coral bleaching events become more frequent, it is increasingly important to elucidate the factors underlying coral susceptibility and survival. We measured photosynthesis, respiration, and O2 concentration at the coral tissue surface, Symbiodiniaceae genotypes, and energy metabolic enzyme activities in Agaricia agaricites and Orbicella franksi throughout experimentally-induced thermal bleaching (+3 °C). A. agaricites colonies started to bleach two days into the thermal treatment and were fully bleached between Days 19-31. In contrast, O. franksi colonies only started to bleach on Day 12 and five colonies fully bleached between Days 24-38 while the remining three colonies took up 55 days. Both species experienced decreased photosynthesis and respiration rates as bleaching progressed. As a result, daytime O2 concentration at the coral surface shifted from hyperoxia in unbleached corals to normoxia in partially bleached corals, and to near hypoxia in fully bleached corals. Additionally, nighttime tissue surface O2 concentration shifted from hypoxia to normoxia, likely resulting from decreased symbiotic algae density, respiration, and photosynthates that fuel coral aerobic respiration. Genetic profiling of internal transcribed spacer 2 (ITS2) revealed differences in Symbiodiniaceae clade proportions between control and bleached colonies. Activity levels of energy metabolic enzymes did not significantly vary between control and bleached A. agaricites, but malate dehydrogenase and strombine dehydrogenase activities were significantly higher in bleached O. franksi colonies compared to controls. These differences were driven by the three O. franksi colonies that took the longest to bleach and contained >98 % Durusdinium sp. D1. The shifts in O2 dynamics within the microhabitat of bleached corals may have important implications for the metabolism of the coral holobiont while the changes in Symbiodiniaceae ITS2 profile and the upregulation of energy metabolic enzymes identify a potential factor contributing to bleaching dynamics.
Collapse
Affiliation(s)
- L B Linsmayer
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - S K Noel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - M Leray
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, Panama
| | - D Wangpraseurt
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA; Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - C Hassibi
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - D I Kline
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA; Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, Panama
| | - M Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Sparagon WJ, Arts MGI, Quinlan ZA, Wegley Kelly L, Koester I, Comstock J, Bullington JA, Carlson CA, Dorrestein PC, Aluwihare LI, Haas AF, Nelson CE. Coral thermal stress and bleaching enrich and restructure reef microbial communities via altered organic matter exudation. Commun Biol 2024; 7:160. [PMID: 38351328 PMCID: PMC10864316 DOI: 10.1038/s42003-023-05730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/16/2023] [Indexed: 02/16/2024] Open
Abstract
Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.
Collapse
Affiliation(s)
- Wesley J Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| | - Milou G I Arts
- Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
| | - Zachary A Quinlan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- San Diego State University, San Diego, USA
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- San Diego State University, San Diego, USA
| | - Irina Koester
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Jacqueline Comstock
- Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA
| | - Jessica A Bullington
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Craig A Carlson
- Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA
| | | | - Lihini I Aluwihare
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Andreas F Haas
- Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
- San Diego State University, San Diego, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
11
|
Chen X, Hu C, Wei W, Yang Y, Weinbauer MG, Li H, Ren S, Ma R, Huang Y, Luo T, Jiao N, Zhang R. Virus-Host Interactions Drive Contrasting Bacterial Diel Dynamics in the Ocean. RESEARCH (WASHINGTON, D.C.) 2023; 6:0213. [PMID: 37614364 PMCID: PMC10443526 DOI: 10.34133/research.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/05/2023] [Indexed: 08/25/2023]
Abstract
Marine organisms perform a sea of diel rhythmicity. Planktonic diel dynamics have been shown to be driven by light, energy resources, circadian rhythms, and the coordinated coupling of photoautotrophs and heterotrophic bacterioplankton. Here, we explore the diel fluctuation of viral production and decay and their impact on the total and active bacterial community in the coastal and open seawaters of the South China Sea. The results showed that the night-production diel pattern of lytic viral production was concurrent with the lower viral decay at night, contributing to the accumulation of the viral population size during the night for surface waters. The diel variations in bacterial activity, community composition, and diversity were found highly affected by viral dynamics. This was revealed by the finding that bacterial community diversity was positively correlated to lytic viral production in the euphotic zone of the open ocean but was negatively related to lysogenic viral production in the coastal ocean. Such distinct but contrasting correlations suggest that viral life strategies can not only contribute to diversifying bacterial community but also potentially piggyback their host to dominate bacterial community, suggesting the tightly synchronized depth-dependent and habitat-specific diel patterns of virus-host interactions. It further implies that viruses serve as an ecologically important driver of bacterial diel dynamics across the ocean, highlighting the viral roles in bacterial ecological and biogeochemical processes in the ocean.
Collapse
Affiliation(s)
- Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Chen Hu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Wei Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yunlan Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Markus G Weinbauer
- Sorbonne Universités, UPMC, Université Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer 06230, France
| | - Hongbo Li
- National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, PR China
| | - Shiying Ren
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Yibin Huang
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
- NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, USA
| | - Tingwei Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518055, PR China
| |
Collapse
|
12
|
Lima LFO, Alker AT, Papudeshi B, Morris MM, Edwards RA, de Putron SJ, Dinsdale EA. Coral and Seawater Metagenomes Reveal Key Microbial Functions to Coral Health and Ecosystem Functioning Shaped at Reef Scale. MICROBIAL ECOLOGY 2023; 86:392-407. [PMID: 35965269 PMCID: PMC10293411 DOI: 10.1007/s00248-022-02094-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The coral holobiont is comprised of a highly diverse microbial community that provides key services to corals such as protection against pathogens and nutrient cycling. The coral surface mucus layer (SML) microbiome is very sensitive to external changes, as it constitutes the direct interface between the coral host and the environment. Here, we investigate whether the bacterial taxonomic and functional profiles in the coral SML are shaped by the local reef zone and explore their role in coral health and ecosystem functioning. The analysis was conducted using metagenomes and metagenome-assembled genomes (MAGs) associated with the coral Pseudodiploria strigosa and the water column from two naturally distinct reef environments in Bermuda: inner patch reefs exposed to a fluctuating thermal regime and the more stable outer reefs. The microbial community structure in the coral SML varied according to the local environment, both at taxonomic and functional levels. The coral SML microbiome from inner reefs provides more gene functions that are involved in nutrient cycling (e.g., photosynthesis, phosphorus metabolism, sulfur assimilation) and those that are related to higher levels of microbial activity, competition, and stress response. In contrast, the coral SML microbiome from outer reefs contained genes indicative of a carbohydrate-rich mucus composition found in corals exposed to less stressful temperatures and showed high proportions of microbial gene functions that play a potential role in coral disease, such as degradation of lignin-derived compounds and sulfur oxidation. The fluctuating environment in the inner patch reefs of Bermuda could be driving a more beneficial coral SML microbiome, potentially increasing holobiont resilience to environmental changes and disease.
Collapse
Affiliation(s)
- Laís F. O. Lima
- Department of Biology, San Diego State University, San Diego, CA USA
- College of Biological Sciences, University of California Davis, Davis, CA USA
| | - Amanda T. Alker
- Department of Biology, San Diego State University, San Diego, CA USA
| | - Bhavya Papudeshi
- College of Science and Engineering, Flinders University, Adelaide, South Australia Australia
| | | | - Robert A. Edwards
- Department of Biology, San Diego State University, San Diego, CA USA
- College of Science and Engineering, Flinders University, Adelaide, South Australia Australia
| | | | - Elizabeth A. Dinsdale
- Department of Biology, San Diego State University, San Diego, CA USA
- College of Science and Engineering, Flinders University, Adelaide, South Australia Australia
| |
Collapse
|
13
|
Nelson CE, Wegley Kelly L, Haas AF. Microbial Interactions with Dissolved Organic Matter Are Central to Coral Reef Ecosystem Function and Resilience. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:431-460. [PMID: 36100218 DOI: 10.1146/annurev-marine-042121-080917] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To thrive in nutrient-poor waters, coral reefs must retain and recycle materials efficiently. This review centers microbial processes in facilitating the persistence and stability of coral reefs, specifically the role of these processes in transforming and recycling the dissolved organic matter (DOM) that acts as an invisible currency in reef production, nutrient exchange, and organismal interactions. The defining characteristics of coral reefs, including high productivity, balanced metabolism, high biodiversity, nutrient retention, and structural complexity, are inextricably linked to microbial processing of DOM. The composition of microbes and DOM in reefs is summarized, and the spatial and temporal dynamics of biogeochemical processes carried out by microorganisms in diverse reef habitats are explored in a variety of key reef processes, including decomposition, accretion, trophictransfer, and macronutrient recycling. Finally, we examine how widespread habitat degradation of reefs is altering these important microbe-DOM interactions, creating feedbacks that reduce reef resilience to global change.
Collapse
Affiliation(s)
- Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, and Sea Grant College Program, School of Ocean and Earth Sciences and Technology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA;
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA;
| | - Andreas F Haas
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands;
| |
Collapse
|
14
|
Gattoni G, de la Haba RR, Martín J, Reyes F, Sánchez-Porro C, Feola A, Zuchegna C, Guerrero-Flores S, Varcamonti M, Ricca E, Selem-Mojica N, Ventosa A, Corral P. Genomic study and lipidomic bioassay of Leeuwenhoekiella parthenopeia: A novel rare biosphere marine bacterium that inhibits tumor cell viability. Front Microbiol 2023; 13:1090197. [PMID: 36687661 PMCID: PMC9859067 DOI: 10.3389/fmicb.2022.1090197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
The fraction of low-abundance microbiota in the marine environment is a promising target for discovering new bioactive molecules with pharmaceutical applications. Phenomena in the ocean such as diel vertical migration (DVM) and seasonal dynamic events influence the pattern of diversity of marine bacteria, conditioning the probability of isolation of uncultured bacteria. In this study, we report a new marine bacterium belonging to the rare biosphere, Leeuwenhoekiella parthenopeia sp. nov. Mr9T, which was isolated employing seasonal and diel sampling approaches. Its complete characterization, ecology, biosynthetic gene profiling of the whole genus Leeuwenhoekiella, and bioactivity of its extract on human cells are reported. The phylogenomic and microbial diversity studies demonstrated that this bacterium is a new and rare species, barely representing 0.0029% of the bacterial community in Mediterranean Sea metagenomes. The biosynthetic profiling of species of the genus Leeuwenhoekiella showed nine functionally related gene cluster families (GCF), none were associated with pathways responsible to produce known compounds or registered patents, therefore revealing its potential to synthesize novel bioactive compounds. In vitro screenings of L. parthenopeia Mr9T showed that the total lipid content (lipidome) of the cell membrane reduces the prostatic and brain tumor cell viability with a lower effect on normal cells. The lipidome consisted of sulfobacin A, WB 3559A, WB 3559B, docosenamide, topostin B-567, and unknown compounds. Therefore, the bioactivity could be attributed to any of these individual compounds or due to their synergistic effect. Beyond the rarity and biosynthetic potential of this bacterium, the importance and novelty of this study is the employment of sampling strategies based on ecological factors to reach the hidden microbiota, as well as the use of bacterial membrane constituents as potential novel therapeutics. Our findings open new perspectives on cultivation and the relationship between bacterial biological membrane components and their bioactivity in eukaryotic cells, encouraging similar studies in other members of the rare biosphere.
Collapse
Affiliation(s)
- Giuliano Gattoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | | | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Candida Zuchegna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Shaday Guerrero-Flores
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy,Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain,*Correspondence: Paulina Corral,
| |
Collapse
|
15
|
Zhang W, Zhou P, Pan S, Li Y, Lin L, Niu L, Wang L, Zhang H. The role of microbial communities on primary producers in aquatic ecosystems: Implications in turbidity stress resistance. ENVIRONMENTAL RESEARCH 2022; 215:114353. [PMID: 36116492 DOI: 10.1016/j.envres.2022.114353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Expanding the stress tolerance and adaptation potential of primary producers is of importance for the restoration and management of aquatic ecosystems. Microorganisms have been reported to mediate improved resistance toward different abiotic stresses of primary producers in terrestrial and marine ecosystems. However, it is not clear about the role of microbial communities in the turbidity resistance of primary producers, when aquatic ecosystems are under turbidity pressure. In this study, key microbes and the action path which enhance turbidity tolerance of primary producers were recognized by mesocosm and various multivariate statistical methods. Remarkable decrease of the biomass of primary producers was found with the increase of turbidity. Significant differences in microbial community under different turbidity pressure were recognized and key microbes which may expand the turbidity tolerance of primary producers were further identified. Rhodobacter and Rhodoferax were selected as key microbes by the investigation of keystone species in the microbial ecological network and significant discriminant taxa under different turbidity stress. The action path for microbial communities to help primary producers cope with turbidity pressure was found through structural equation model, and in which the increase of key microbes may expand the turbidity tolerance of primary producers through enhancing the microbial loop. The results may provide a new insight for aquatic ecosystems to resist turbidity stress, and provide a theoretical basis for the management and restoration of aquatic ecosystems.
Collapse
Affiliation(s)
- Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Pengcheng Zhou
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shenyang Pan
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Li Lin
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Huangpu Road #23, Wuhan, 430010, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
16
|
Sugumaran R, Padam BS, Yong WTL, Saallah S, Ahmed K, Yusof NA. A Retrospective Review of Global Commercial Seaweed Production-Current Challenges, Biosecurity and Mitigation Measures and Prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7087. [PMID: 35742332 PMCID: PMC9222978 DOI: 10.3390/ijerph19127087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
Commercial seaweed cultivation has undergone drastic changes to keep up with the increasing demand in terms of the quantity and quality of the algal biomass needed to meet the requirements of constant innovation in industrial applications. Diseases caused by both biotic and abiotic factors have been identified as contributing to the economic loss of precious biomass. Biosecurity risk will eventually affect seaweed production as a whole and could cripple the seaweed industry. The current review sheds light on the biosecurity measures that address issues in the seaweed industry pushing towards increasing the quantity and quality of algal biomass, research on algal diseases, and tackling existing challenges as well as discussions on future directions of seaweed research. The review is presented to provide a clear understanding of the latest biosecurity developments from several segments in the seaweed research, especially from upstream cultivation encompassing the farming stages from seeding, harvesting, drying, and packing, which may lead to better management of this precious natural resource, conserving ecological balance while thriving on the economic momentum that seaweed can potentially provide in the future. Recommended breeding strategies and seedling stock selection are discussed that aim to address the importance of sustainable seaweed farming and facilitate informed decision-making. Sustainable seaweed cultivation also holds the key to reducing our carbon footprint, thereby fighting the existential crisis of climate change plaguing our generation.
Collapse
Affiliation(s)
- Rajeena Sugumaran
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (R.S.); (W.T.L.Y.); (S.S.)
| | - Birdie Scott Padam
- Seadling Sdn. Bhd., Kota Kinabalu Industrial Park, Kota Kinabalu 88460, Sabah, Malaysia;
| | - Wilson Thau Lym Yong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (R.S.); (W.T.L.Y.); (S.S.)
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (R.S.); (W.T.L.Y.); (S.S.)
| | - Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (R.S.); (W.T.L.Y.); (S.S.)
| |
Collapse
|
17
|
Rosenberg Y, Simon‐Blecher N, Lalzar M, Yam R, Shemesh A, Alon S, Perna G, Cárdenas A, Voolstra CR, Miller DJ, Levy O. Urbanization comprehensively impairs biological rhythms in coral holobionts. GLOBAL CHANGE BIOLOGY 2022; 28:3349-3364. [PMID: 35218086 PMCID: PMC9311646 DOI: 10.1111/gcb.16144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/28/2023]
Abstract
Coral reefs are in global decline due to climate change and anthropogenic influences (Hughes et al., Conservation Biology, 27: 261-269, 2013). Near coastal cities or other densely populated areas, coral reefs face a range of additional challenges. While considerable progress has been made in understanding coral responses to acute individual stressors (Dominoni et al., Nature Ecology & Evolution, 4: 502-511, 2020), the impacts of chronic exposure to varying combinations of sensory pollutants are largely unknown. To investigate the impacts of urban proximity on corals, we conducted a year-long in-natura study-incorporating sampling at diel, monthly, and seasonal time points-in which we compared corals from an urban area to corals from a proximal non-urban area. Here we reveal that despite appearing relatively healthy, natural biorhythms and environmental sensory systems were extensively disturbed in corals from the urban environment. Transcriptomic data indicated poor symbiont performance, disturbance to gametogenic cycles, and loss or shifted seasonality of vital biological processes. Altered seasonality patterns were also observed in the microbiomes of the urban coral population, signifying the impact of urbanization on the holobiont, rather than the coral host alone. These results should raise alarm regarding the largely unknown long-term impacts of sensory pollution on the resilience and survival of coral reefs close to coastal communities.
Collapse
Affiliation(s)
- Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Noa Simon‐Blecher
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Maya Lalzar
- Bioinformatics Service UnitUniversity of HaifaHaifaIsrael
| | - Ruth Yam
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Aldo Shemesh
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Shahar Alon
- Faculty of EngineeringBar‐Ilan UniversityRamat GanIsrael
| | - Gabriela Perna
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Anny Cárdenas
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | | | - David J. Miller
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
- The H. Steinitz Marine Biology LaboratoryThe Interuniversity Institute for Marine Sciences of EilatEilatIsrael
| |
Collapse
|
18
|
Remple KL, Silbiger NJ, Quinlan ZA, Fox MD, Kelly LW, Donahue MJ, Nelson CE. Coral reef biofilm bacterial diversity and successional trajectories are structured by reef benthic organisms and shift under chronic nutrient enrichment. NPJ Biofilms Microbiomes 2021; 7:84. [PMID: 34853316 PMCID: PMC8636626 DOI: 10.1038/s41522-021-00252-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Work on marine biofilms has primarily focused on host-associated habitats for their roles in larval recruitment and disease dynamics; little is known about the factors regulating the composition of reef environmental biofilms. To contrast the roles of succession, benthic communities and nutrients in structuring marine biofilms, we surveyed bacteria communities in biofilms through a six-week succession in aquaria containing macroalgae, coral, or reef sand factorially crossed with three levels of continuous nutrient enrichment. Our findings demonstrate how biofilm successional trajectories diverge from temporal dynamics of the bacterioplankton and how biofilms are structured by the surrounding benthic organisms and nutrient enrichment. We identify a suite of biofilm-associated bacteria linked with the orthogonal influences of corals, algae and nutrients and distinct from the overlying water. Our results provide a comprehensive characterization of marine biofilm successional dynamics and contextualize the impact of widespread changes in reef community composition and nutrient pollution on biofilm community structure.
Collapse
Affiliation(s)
- Kristina L. Remple
- grid.410445.00000 0001 2188 0957Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Nyssa J. Silbiger
- grid.253563.40000 0001 0657 9381Department of Biology, California State University, Northridge, CA USA
| | - Zachary A. Quinlan
- grid.263081.e0000 0001 0790 1491Department of Biology, San Diego State University, San Diego, CA USA ,grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - Michael D. Fox
- grid.56466.370000 0004 0504 7510Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Linda Wegley Kelly
- grid.263081.e0000 0001 0790 1491Department of Biology, San Diego State University, San Diego, CA USA ,grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - Megan J. Donahue
- grid.410445.00000 0001 2188 0957Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Craig E. Nelson
- grid.410445.00000 0001 2188 0957Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| |
Collapse
|
19
|
Johnson MD, Scott JJ, Leray M, Lucey N, Bravo LMR, Wied WL, Altieri AH. Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. Nat Commun 2021; 12:4522. [PMID: 34312399 PMCID: PMC8313580 DOI: 10.1038/s41467-021-24777-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Loss of oxygen in the global ocean is accelerating due to climate change and eutrophication, but how acute deoxygenation events affect tropical marine ecosystems remains poorly understood. Here we integrate analyses of coral reef benthic communities with microbial community sequencing to show how a deoxygenation event rapidly altered benthic community composition and microbial assemblages in a shallow tropical reef ecosystem. Conditions associated with the event precipitated coral bleaching and mass mortality, causing a 50% loss of live coral and a shift in the benthic community that persisted a year later. Conversely, the unique taxonomic and functional profile of hypoxia-associated microbes rapidly reverted to a normoxic assemblage one month after the event. The decoupling of ecological trajectories among these major functional groups following an acute event emphasizes the need to incorporate deoxygenation as an emerging stressor into coral reef research and management plans to combat escalating threats to reef persistence.
Collapse
Affiliation(s)
- Maggie D Johnson
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama.
- Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Institution, Edgewater, MD, USA.
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jarrod J Scott
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Noelle Lucey
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Lucia M Rodriguez Bravo
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - William L Wied
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
- Department of Biological Sciences, Center for Coastal Oceans Research, Florida International University, Miami, FL, USA
| | - Andrew H Altieri
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
David GM, López-García P, Moreira D, Alric B, Deschamps P, Bertolino P, Restoux G, Rochelle-Newall E, Thébault E, Simon M, Jardillier L. Small freshwater ecosystems with dissimilar microbial communities exhibit similar temporal patterns. Mol Ecol 2021; 30:2162-2177. [PMID: 33639035 DOI: 10.1111/mec.15864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/27/2022]
Abstract
Despite small freshwater ecosystems being biodiversity reservoirs and contributing significantly to greenhouse fluxes, their microbial communities remain largely understudied. Yet, microorganisms intervene in biogeochemical cycling and impact water quality. Because of their small size, these ecosystems are in principle more sensitive to disturbances, seasonal variation and pluri-annual climate change. However, how microbial community composition varies over space and time, and whether archaeal, bacterial and microbial eukaryote communities behave similarly remain unanswered. Here, we aim to unravel the composition and intra/interannual temporal dynamic patterns for archaea, bacteria and microbial eukaryotes in a set of small freshwater ecosystems. We monitored archaeal and bacterial community composition during 24 consecutive months in four ponds and one brook from northwestern France by 16S rRNA gene amplicon sequencing (microbial eukaryotes were previously investigated for the same systems). Unexpectedly for oxic environments, bacterial Candidate Phyla Radiation (CPR) were highly diverse and locally abundant. Our results suggest that microbial community structure is mainly driven by environmental conditions acting over space (ecosystems) and time (seasons). A low proportion of operational taxonomic units (OTUs) (<1%) was shared by the five ecosystems despite their geographical proximity (2-9 km away), making microbial communities almost unique in each ecosystem and highlighting the strong selective influence of local environmental conditions. Marked and similar seasonality patterns were observed for archaea, bacteria and microbial eukaryotes in all ecosystems despite strong turnovers of rare OTUs. Over the 2-year survey, microbial community composition varied despite relatively stable environmental parameters. This suggests that biotic associations play an important role in interannual community assembly.
Collapse
Affiliation(s)
- Gwendoline M David
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | | | - David Moreira
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Benjamin Alric
- Irstea, UR RiverLy, Laboratoire d'écotoxicologie, centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Philippe Deschamps
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Paola Bertolino
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Gwendal Restoux
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Emma Rochelle-Newall
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute d'Ecologie de des Sciences de l'Environnement de Paris, iEES-Paris, Paris, France
| | - Elisa Thébault
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute d'Ecologie de des Sciences de l'Environnement de Paris, iEES-Paris, Paris, France
| | - Marianne Simon
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Ludwig Jardillier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
21
|
Predetermined clockwork microbial worlds: Current understanding of aquatic microbial diel response from model systems to complex environments. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:163-191. [PMID: 32948266 DOI: 10.1016/bs.aambs.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the photic zone of aquatic ecosystems, microorganisms with different metabolisms and their viruses form complex interactions and food webs. Within these interactions, phototrophic microorganisms such as eukaryotic microalgae and cyanobacteria interact directly with sunlight, and thereby generate circadian rhythms. Diel cycling originally generated in microbial phototrophs is directly transmitted toward heterotrophic microorganisms utilizing the photosynthetic products as they are excreted or exuded. Such diel cycling seems to be indirectly propagated toward heterotrophs as a result of complex biotic interactions. For example, cell death of phototrophic microorganisms induced by viral lysis and protistan grazing provides additional resources of dissolved organic matter to the microbial community, and so generates diel cycling in other heterotrophs with different nutrient dependencies. Likewise, differences in the diel transmitting pathway via complex interactions among heterotrophs, and between heterotrophs and their viruses, may also generate higher variation and time lag diel rhythms in different heterotrophic taxa. Thus, sunlight and photosynthesis not only contribute energy and carbon supply, but also directly or indirectly control diel cycling of the microbial community through complex interactions in the photic zone of aquatic ecosystems.
Collapse
|
22
|
Laurens LML, Lane M, Nelson RS. Sustainable Seaweed Biotechnology Solutions for Carbon Capture, Composition, and Deconstruction. Trends Biotechnol 2020; 38:1232-1244. [PMID: 32386971 DOI: 10.1016/j.tibtech.2020.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
Seaweeds or macroalgae are attractive candidates for carbon capture, while also supplying a sustainable photosynthetic bioenergy feedstock, thanks to their cultivation potential in offshore marine farms. Seaweed cultivation requires minimal external nutrient requirements and allows for year-round production of biomass. Despite this potential, there remain significant challenges associated with realizing large-scale, sustainable agronomics, as well as in the development of an efficient biomass deconstruction and conversion platform to fuels and products. Recent biotechnology progress in the identification of enzymatic deconstruction pathways, tailored to complex polymers in seaweeds, opens up opportunities for more complete utilization of seaweed biomass components. Effective, scalable, and economically viable conversion processes tailored to seaweed are discussed and gaps are identified for yield and efficiency improvements.
Collapse
Affiliation(s)
- Lieve M L Laurens
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
| | - Madeline Lane
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Robert S Nelson
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| |
Collapse
|
23
|
Weber L, Apprill A. Diel, daily, and spatial variation of coral reef seawater microbial communities. PLoS One 2020; 15:e0229442. [PMID: 32160233 PMCID: PMC7065756 DOI: 10.1371/journal.pone.0229442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
Reef organisms influence microorganisms within the surrounding seawater, yet the spatial and temporal dynamics of seawater microbial communities located in proximity to corals are rarely investigated. To better understand reef seawater microbial community dynamics over time and space, we collected small-volume seawater samples during the day and night over a 72 hour period from three locations that differed in spatial distance from 5 Porites astreoides coral colonies on a shallow reef in St. John, U.S. Virgin Islands: near-coral (sampled 5 cm horizontally from each colony), reef-depth (sampled 2 m above each colony) and surface seawater (sampled 1 m from the seawater surface). At all time points and locations, we quantified abundances of microbial cells, sequenced small subunit rRNA genes of bacterial and archaeal communities, and measured inorganic nutrient concentrations. Prochlorococcus and Synechococcus cells were consistently elevated at night compared to day and these abundances changed over time, corresponding with temperature, nitrite, and silicate concentrations. During the day, bacterial and archaeal alpha diversity was significantly higher in reef-depth and near-coral seawater compared to the surface seawater, signifying that the reef influences the diversity of the seawater microorganisms. At night, alpha diversity decreased across all samples, suggesting that photosynthesis may favor a more taxonomically diverse community. While Prochlorococcus exhibited consistent temporal rhythmicity, additional taxa were enriched in reef seawater at night compared to day or in reef-depth compared to surface seawater based on their normalized sequence counts. There were some significant differences in nutrient concentrations and cell abundances between reef-depth and near-coral seawater but no clear trends. This study demonstrates that temporal variation supersedes small-scale spatial variation in proximity to corals in reef seawater microbial communities. As coral reefs continue to change in benthic composition worldwide, monitoring microbial composition in response to temporal changes and environmental fluctuations will help discern normal variability from longer lasting changes attributed to anthropogenic stressors and global climate change.
Collapse
Affiliation(s)
- Laura Weber
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- MIT-WHOI Joint PhD Program in Biological Oceanography, Woods Hole, MA, United States of America
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- * E-mail:
| |
Collapse
|