1
|
Nguyen AL, Smith EM, Cheeseman IM. Co-essentiality analysis identifies PRR12 as a cohesin interacting protein and contributor to genomic integrity. Dev Cell 2025; 60:1217-1233.e7. [PMID: 39742660 PMCID: PMC12014375 DOI: 10.1016/j.devcel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
The cohesin complex is critical for genome organization and regulation, relying on specialized co-factors to mediate its diverse functional activities. Here, by analyzing patterns of similar gene requirements across cell lines, we identify PRR12 as a mediator of cohesin and genome integrity. We show that PRR12 interacts with NIPBL/MAU2 and the cohesin complex, and that the loss of PRR12 results in reduced cohesin localization and a substantial increase in DNA double-strand breaks in mouse NIH-3T3 cells. Additionally, PRR12 co-localizes with NIPBL to sites of DNA damage in a NIPBL and cohesin-dependent manner. We find that the requirement for PRR12 differs across cell lines, with human HeLa cells exhibiting reduced sensitivity to PRR12 loss compared with mouse NIH-3T3 cells, indicating context-specific roles. Together, our work identifies PRR12 as a regulator of cohesin and provides insight into how genome integrity is maintained across diverse cellular contexts.
Collapse
Affiliation(s)
| | - Eric M Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
He X, Li Y, Li J, Li Y, Chen S, Yan X, Xie Z, Du J, Chen G, Song J, Mei Q. HDAC2-Mediated METTL3 Delactylation Promotes DNA Damage Repair and Chemotherapy Resistance in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413121. [PMID: 39950833 PMCID: PMC11984901 DOI: 10.1002/advs.202413121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Indexed: 04/12/2025]
Abstract
The current treatment of triple-negative breast cancer (TNBC) is still primarily based on platinum-based chemotherapy. However, TNBC cells frequently develop resistance to platinum and experience relapse after drug withdrawal. It is crucial to specifically target and eliminate cisplatin-tolerant cells after platinum administration. Here, it is reported that upregulated N 6-methyladenosine (m6A) modification drives the development of resistance in TNBC cells during cisplatin treatment. Mechanistically, histone deacetylase 2 (HDAC2) mediates delactylation of methyltransferase-like 3 (METTL3), facilitating METTL3 interaction with Wilms'-tumor-1-associated protein and subsequently increasing m6A of transcript-associated DNA damage repair. This ultimately promotes cell survival under cisplatin. Furthermore, pharmacological inhibition of HDAC2 using Tucidinostat can enhance the sensitivity of TNBC cells to cisplatin therapy. This study not only elucidates the biological function of lactylated METTL3 in tumor cells but also highlights its negative regulatory effect on cisplatin resistance. Additionally, it underscores the nonclassical functional mechanism of Tucidinostat as a HDAC inhibitor for improving the efficacy of cisplatin against TNBC.
Collapse
Affiliation(s)
- Xiaoniu He
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
| | - Yuanpei Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jian Li
- Institute of Molecular Medicine and Experimental ImmunologyUniversity Clinic of Rheinische Friedrich‐Wilhelms‐University53127BonnGermany
| | - Yu Li
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Sijie Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Xia Yan
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
| | - Zhangrong Xie
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Jiangfeng Du
- Department of Medical ImagingShanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Guoan Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Jianbo Song
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
| | - Qi Mei
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
3
|
Athans SR, Withers H, Stablewski A, Gurova K, Ohm J, Woloszynska A. STAG2 expression imparts distinct therapeutic vulnerabilities in muscle-invasive bladder cancer cells. Oncogenesis 2025; 14:4. [PMID: 40025053 PMCID: PMC11873148 DOI: 10.1038/s41389-025-00548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
Expression of stromal antigen 2 (STAG2), a member of the cohesin complex, is associated with aggressive tumor characteristics and worse clinical outcomes in muscle invasive bladder cancer (MIBC) patients. The mechanism by which STAG2 acts in a pro-oncogenic manner in bladder cancer remains unknown. Due to this elusive role of STAG2, targetable vulnerabilities based on STAG2 expression have not yet been identified. In the current study, we sought to uncover therapeutic vulnerabilities of muscle invasive bladder cancer cells based on the expression of STAG2. Using CRISPR-Cas9, we generated isogenic STAG2 wild-type (WT) and knock out (KO) cell lines and treated each cell line with a panel of 312 anti-cancer compounds. We identified 100 total drug hits and found that STAG2 KO sensitized cells to treatment with PLK1 inhibitor rigosertib, whereas STAG2 KO protected cells from treatment with MEK inhibitor TAK-733 and PI3K inhibitor PI-103. After querying drug sensitivity data of over 4500 drugs in 24 bladder cancer cell lines from the DepMap database, we found that cells with less STAG2 mRNA expression are more sensitive to ATR and CHK inhibition. In dose-response studies, STAG2 KO cells are more sensitive to the ATR inhibitor berzosertib, whereas STAG2 WT cells are more sensitive to PI3K inhibitor PI-103. These results, in combination with RNA-seq analysis of STAG2-regulated genes, suggest a novel role of STAG2 in regulating PI3K signaling in bladder cancer cells. Finally, synergy experiments revealed that berzosertib exhibits significant synergistic cytotoxicity in combination with cisplatin against MIBC cells. Altogether, our study presents evidence that berzosertib, PI-103, and the combination of berzosertib with cisplatin may be novel opportunities to investigate as precision medicine approaches for MIBC patients based on STAG2 tumor expression.
Collapse
Affiliation(s)
- Sarah R Athans
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Henry Withers
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Aimee Stablewski
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Joyce Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
4
|
Scott JS, Al Ayadi L, Epeslidou E, van Scheppingen RH, Mukha A, Kaaij LJT, Lutz C, Prekovic S. Emerging roles of cohesin-STAG2 in cancer. Oncogene 2025; 44:277-287. [PMID: 39613934 DOI: 10.1038/s41388-024-03221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Cohesin, a crucial regulator of genome organisation, plays a fundamental role in maintaining chromatin architecture as well as gene expression. Among its subunits, STAG2 stands out because of its frequent deleterious mutations in various cancer types, such as bladder cancer and melanoma. Loss of STAG2 function leads to significant alterations in chromatin structure, disrupts transcriptional regulation, and impairs DNA repair pathways. In this review, we explore the molecular mechanisms underlying cohesin-STAG2 function, highlighting its roles in healthy cells and its contributions to cancer biology, showing how STAG2 dysfunction promotes tumourigenesis and presents opportunities for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Julia S Scott
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Loubna Al Ayadi
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Anna Mukha
- Department of Medical BioSciences, RadboudUMC, Nijmegen, The Netherlands
| | - Lucas J T Kaaij
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Ashkin EL, Tang YJ, Xu H, Hung KL, Belk JA, Cai H, Lopez SS, Dolcen DN, Hebert JD, Li R, Ruiz PA, Keal T, Andrejka L, Chang HY, Petrov DA, Dixon JR, Xu Z, Winslow MM. A STAG2-PAXIP1/PAGR1 axis suppresses lung tumorigenesis. J Exp Med 2025; 222:e20240765. [PMID: 39652422 PMCID: PMC11627241 DOI: 10.1084/jem.20240765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
The cohesin complex is a critical regulator of gene expression. STAG2 is the most frequently mutated cohesin subunit across several cancer types and is a key tumor suppressor in lung cancer. Here, we coupled somatic CRISPR-Cas9 genome editing and tumor barcoding with an autochthonous oncogenic KRAS-driven lung cancer model and showed that STAG2 is uniquely tumor-suppressive among all core and auxiliary cohesin components. The heterodimeric complex components PAXIP1 and PAGR1 have highly correlated effects with STAG2 in human lung cancer cell lines, are tumor suppressors in vivo, and are epistatic to STAG2 in oncogenic KRAS-driven lung tumorigenesis in vivo. STAG2 inactivation elicits changes in gene expression, chromatin accessibility, and 3D genome conformation that impact the cancer cell state. Gene expression and chromatin accessibility similarities between STAG2- and PAXIP1-deficient neoplastic cells further relate STAG2-cohesin to PAXIP1/PAGR1. These findings reveal a STAG2-PAXIP1/PAGR1 tumor-suppressive axis and uncover novel PAXIP1-dependent and PAXIP1-independent STAG2-cohesin-mediated mechanisms of lung tumor suppression.
Collapse
Affiliation(s)
- Emily L. Ashkin
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuning J. Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Haiqing Xu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - King L. Hung
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A. Belk
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven S. Lopez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Deniz Nesli Dolcen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jess D. Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Paloma A. Ruiz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tula Keal
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A. Petrov
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jesse R. Dixon
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zhichao Xu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Monte M. Winslow
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Sudunagunta VS, Viny AD. Untangling the loops of STAG2 mutations in myelodysplastic syndrome. Leuk Lymphoma 2025; 66:6-15. [PMID: 39264305 DOI: 10.1080/10428194.2024.2400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous myeloid neoplasm that is hallmarked by the acquisition of genetic events that disrupt normal trilineage hematopoiesis and results in bone marrow dysfunction. Somatic genes involving transcriptional regulation, signal transduction, DNA methylation, and chromatin modification are often implicated in disease pathogenesis. The cohesin complex, composed of SMC1, SMC3, RAD21, and either STAG1 or STAG2, has been identified as a recurrent mutational target with STAG2 mutations accounting for more than half of all cohesin mutations in myeloid malignancies. In the last decade, STAG2 cohesin biology has been of great interest given its role in transcriptional activation, association with poorer prognosis, and lack of mutation-specific therapies. This review discusses the clinical landscape of cohesin mutant myeloid malignancies, particularly STAG2 mutant MDS, including molecular features of STAG2 mutations, clinical implications of cohesin mutant neoplasms, and the current understanding of the pathophysiological function of STAG2 mutations in MDS.
Collapse
Affiliation(s)
- Varun S Sudunagunta
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, New York, NY, USA
| | - Aaron D Viny
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, New York, NY, USA
| |
Collapse
|
7
|
Giménez-Llorente D, Cuadrado A, Andreu MJ, Sanclemente-Alamán I, Solé-Ferran M, Rodríguez-Corsino M, Losada A. STAG2 loss in Ewing sarcoma alters enhancer-promoter contacts dependent and independent of EWS::FLI1. EMBO Rep 2024; 25:5537-5560. [PMID: 39487368 PMCID: PMC11624272 DOI: 10.1038/s44319-024-00303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
Cohesin complexes carrying STAG1 or STAG2 organize the genome into chromatin loops. STAG2 loss-of-function mutations promote metastasis in Ewing sarcoma, a pediatric cancer driven by the fusion transcription factor EWS::FLI1. We integrated transcriptomic data from patients and cellular models to identify a STAG2-dependent gene signature associated with worse prognosis. Subsequent genomic profiling and high-resolution chromatin interaction data from Capture Hi-C indicated that cohesin-STAG2 facilitates communication between EWS::FLI1-bound long GGAA repeats, presumably acting as neoenhancers, and their target promoters. Changes in CTCF-dependent chromatin contacts involving signature genes, unrelated to EWS::FLI1 binding, were also identified. STAG1 is unable to compensate for STAG2 loss and chromatin-bound cohesin is severely decreased, while levels of the processivity factor NIPBL remain unchanged, likely affecting DNA looping dynamics. These results illuminate how STAG2 loss modifies the chromatin interactome of Ewing sarcoma cells and provide a list of potential biomarkers and therapeutic targets.
Collapse
MESH Headings
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Humans
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- Proto-Oncogene Protein c-fli-1/genetics
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Promoter Regions, Genetic
- Enhancer Elements, Genetic
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Gene Expression Regulation, Neoplastic
- Chromatin/metabolism
- Chromatin/genetics
- Cell Line, Tumor
- Cohesins
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Antigens, Nuclear/metabolism
- Antigens, Nuclear/genetics
- Protein Binding
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Nuclear Proteins
Collapse
Affiliation(s)
- Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - María José Andreu
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Inmaculada Sanclemente-Alamán
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Maria Solé-Ferran
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Takemon Y, Pleasance ED, Gagliardi A, Hughes CS, Csizmok V, Wee K, Trinh DL, Huff RD, Mungall AJ, Moore RA, Chuah E, Mungall KL, Lewis E, Nelson J, Lim HJ, Renouf DJ, Jones SJ, Laskin J, Marra MA. Mapping in silico genetic networks of the KMT2D tumour suppressor gene to uncover novel functional associations and cancer cell vulnerabilities. Genome Med 2024; 16:136. [PMID: 39578878 PMCID: PMC11583415 DOI: 10.1186/s13073-024-01401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Loss-of-function (LOF) alterations in tumour suppressor genes cannot be directly targeted. Approaches characterising gene function and vulnerabilities conferred by such mutations are required. METHODS Here, we computationally map genetic networks of KMT2D, a tumour suppressor gene frequently mutated in several cancer types. Using KMT2D loss-of-function (KMT2DLOF) mutations as a model, we illustrate the utility of in silico genetic networks in uncovering novel functional associations and vulnerabilities in cancer cells with LOF alterations affecting tumour suppressor genes. RESULTS We revealed genetic interactors with functions in histone modification, metabolism, and immune response and synthetic lethal (SL) candidates, including some encoding existing therapeutic targets. Notably, we predicted WRN as a novel SL interactor and, using recently available WRN inhibitor (HRO761 and VVD-133214) treatment response data, we observed that KMT2D mutational status significantly distinguishes treatment-sensitive MSI cell lines from treatment-insensitive MSI cell lines. CONCLUSIONS Our study thus illustrates how tumour suppressor gene LOF alterations can be exploited to reveal potentially targetable cancer cell vulnerabilities.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Erin D Pleasance
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Alessia Gagliardi
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | | | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Kathleen Wee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Diane L Trinh
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Eleanor Lewis
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Jessica Nelson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Howard J Lim
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
9
|
Voulgarelis D, Forment JV, Herencia Ropero A, Polychronopoulos D, Cohen-Setton J, Bender A, Serra V, O'Connor MJ, Yates JWT, Bulusu KC. Understanding tumour growth variability in breast cancer xenograft models identifies PARP inhibition resistance biomarkers. NPJ Precis Oncol 2024; 8:266. [PMID: 39558144 PMCID: PMC11574300 DOI: 10.1038/s41698-024-00702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 11/20/2024] Open
Abstract
Understanding the mechanisms of resistance to PARP inhibitors (PARPi) is a clinical priority, especially in breast cancer. We developed a novel mathematical framework accounting for intrinsic resistance to olaparib, identified by fitting the model to tumour growth metrics from breast cancer patient-derived xenograft (PDX) data. Pre-treatment transcriptomic profiles were used with the calculated resistance to identify baseline biomarkers of resistance, including potential combination targets. The model provided both a classification of responses, as well as a continuous description of resistance, allowing for more robust biomarker associations and capturing the observed variability. Thirty-six resistance gene markers were identified, including multiple homologous recombination repair (HRR) pathway genes. High WEE1 expression was also linked to resistance, highlighting an opportunity for combining PARP and WEE1 inhibitors. This framework facilitates a fully automated way of capturing intrinsic resistance, and accounts for the pharmacological response variability captured within PDX studies and hence provides a precision medicine approach.
Collapse
Affiliation(s)
- D Voulgarelis
- AstraZeneca Postdoc Programme, Cambridge, UK
- DMPK Oncology R&D, AstraZeneca, Cambridge, UK
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - J V Forment
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - A Herencia Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - J Cohen-Setton
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - A Bender
- Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - V Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - M J O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK.
| | - J W T Yates
- DMPK Modelling, DMPK, Preclinical Sciences, RTech, GSK, Stevenage, UK
| | - K C Bulusu
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
10
|
Ryzhkova A, Maltseva E, Battulin N, Kabirova E. Loop Extrusion Machinery Impairments in Models and Disease. Cells 2024; 13:1896. [PMID: 39594644 PMCID: PMC11592926 DOI: 10.3390/cells13221896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes play a crucial role in organizing the three-dimensional structure of chromatin, facilitating key processes such as gene regulation, DNA repair, and chromosome segregation. This review explores the molecular mechanisms and biological significance of SMC-mediated loop extrusion complexes, including cohesin, condensins, and SMC5/6, focusing on their structure, their dynamic function during the cell cycle, and their impact on chromatin architecture. We discuss the implications of impairments in loop extrusion machinery as observed in experimental models and human diseases. Mutations affecting these complexes are linked to various developmental disorders and cancer, highlighting their importance in genome stability and transcriptional regulation. Advances in model systems and genomic techniques have provided deeper insights into the pathological roles of SMC complex dysfunction, offering potential therapeutic avenues for associated diseases.
Collapse
Affiliation(s)
- Anastasiya Ryzhkova
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
| | - Ekaterina Maltseva
- Department of Genetics and Genetic Technologies, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Nariman Battulin
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evelyn Kabirova
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (A.R.); (N.B.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Boucher A, Murray J, Rao S. Cohesin mutations in acute myeloid leukemia. Leukemia 2024; 38:2318-2328. [PMID: 39251741 DOI: 10.1038/s41375-024-02406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
The cohesin complex, encoded by SMC3, SMC1A, RAD21, and STAG2, is a critical regulator of DNA-looping and gene expression. Over a decade has passed since recurrent mutations affecting cohesin subunits were first identified in myeloid malignancies such as Acute Myeloid Leukemia (AML). Since that time there has been tremendous progress in our understanding of chromatin structure and cohesin biology, but critical questions remain because of the multiple critical functions the cohesin complex is responsible for. Recent findings have been particularly noteworthy with the identification of crosstalk between DNA-looping and chromatin domains, a deeper understanding of how cohesin establishes sister chromatid cohesion, a renewed interest in cohesin's role for DNA damage response, and work demonstrating cohesin's importance for Polycomb repression. Despite these exciting findings, the role of cohesin in normal hematopoiesis, and the precise mechanisms by which cohesin mutations promote cancer, remain poorly understood. This review discusses what is known about the role of cohesin in normal hematopoiesis, and how recent findings could shed light on the mechanisms through which cohesin mutations promote leukemic transformation. Important unanswered questions in the field, such as whether cohesin plays a role in HSC heterogeneity, and the mechanisms by which it regulates gene expression at a molecular level, will also be discussed. Particular attention will be given to the potential therapeutic vulnerabilities of leukemic cells with cohesin subunit mutations.
Collapse
Affiliation(s)
- Austin Boucher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Josiah Murray
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Versiti Blood Research Institute, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology/Oncology/Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
12
|
Kimura S, Park CS, Montefiori LE, Iacobucci I, Polonen P, Gao Q, Arnold ED, Attarbaschi A, Brown A, Buldini B, Caldwell KJ, Chang Y, Chen C, Cheng C, Cheng Z, Choi J, Conter V, Crews KR, de Groot-Kruseman HA, Deguchi T, Eguchi M, Muhle HE, Elitzur S, Escherich G, Freeman BB, Gu Z, Han K, Horibe K, Imamura T, Jeha S, Kato M, Chiew KH, Khan T, Kicinski M, Köhrer S, Kornblau SM, Kotecha RS, Li CK, Liu YC, Locatelli F, Luger SM, Paietta EM, Manabe A, Marquart HV, Masetti R, Maybury M, Mazilier P, Meijerink JP, Mitchell S, Miyamura T, Moore AS, Oshima K, Pawinska-Wasikowska K, Pieters R, Prater MS, Pruett-Miller SM, Pui CH, Qu C, Reiterova M, Reyes N, Roberts KG, Rowe JM, Sato A, Schmiegelow K, Schrappe M, Shen S, Skoczeń S, Spinelli O, Stary J, Svaton M, Takagi M, Takita J, Tang Y, Teachey DT, Thomas PG, Tomizawa D, Trka J, Varotto E, Vincent TL, Yang JJ, Yeoh AEJ, Zhou Y, Zimmermann M, Inaba H, Mullighan CG. Biologic and Clinical Analysis of Childhood Gamma Delta T-ALL Identifies LMO2/STAG2 Rearrangements as Extremely High Risk. Cancer Discov 2024; 14:1838-1859. [PMID: 38916500 PMCID: PMC11452281 DOI: 10.1158/2159-8290.cd-23-1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Acute lymphoblastic leukemia expressing the gamma delta T-cell receptor (γδ T-ALL) is a poorly understood disease. We studied 200 children with γδ T-ALL from 13 clinical study groups to understand the clinical and genetic features of this disease. We found age and genetic drivers were significantly associated with outcome. γδ T-ALL diagnosed in children under 3 years of age was extremely high-risk and enriched for genetic alterations that result in both LMO2 activation and STAG2 inactivation. Mechanistically, using patient samples and isogenic cell lines, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping, resulting in deregulation of gene expression associated with T-cell differentiation. High-throughput drug screening identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which can be targeted by poly(ADP-ribose) polymerase inhibition. These data provide a diagnostic framework for classification and risk stratification of pediatric γδ T-ALL. Significance: Patients with acute lymphoblastic leukemia expressing the gamma delta T-cell receptor under 3 years old or measurable residual disease ≥1% at end of induction showed dismal outcomes and should be classified as having high-risk disease. The STAG2/LMO2 subtype was enriched in this very young age group. STAG2 inactivation may perturb chromatin conformation and cell differentiation and confer vulnerability to poly(ADP-ribose) polymerase inhibition.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chun Shik Park
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Petri Polonen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingsong Gao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elizabeth D. Arnold
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbara Buldini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padova, Padova, Italy
- Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica (IRP)-Città della Speranza, Padova, Italy
| | | | - Yunchao Chang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chelsey Chen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Choi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Valentino Conter
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Kristine R. Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Takao Deguchi
- Children's Cancer Center, National Center for Child Health and Development
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University, Ehime, Japan
| | - Hannah Elisa Muhle
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Burgess B. Freeman
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Departments of Computational and Quantitative Medicine, and Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Katie Han
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center
| | - Toshihiko Imamura
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sima Jeha
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Motohiro Kato
- Department of Pediatrics, Tokyo University, Tokyo, Japan
| | - Kean Hui Chiew
- Department of Paediatrics, National University of Singapore, National University of Singapore, Singapore, Singapore
| | - Tanya Khan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Chi-Kong Li
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Franco Locatelli
- Department of Pediatric Hematology–Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | - Selina M. Luger
- Abramson Cancer Center, Univeristy of Pennsylvania, Philadelphia, PA, USA
| | | | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Mellissa Maybury
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
| | - Pauline Mazilier
- Pediatric hemato-oncology and transplantation, HUB - HUDERF, Brussels, Belgium
| | | | - Sharnise Mitchell
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Andrew S. Moore
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Oncology Service, Children’s Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Koichi Oshima
- Department of Hematology/Oncology, Saitama Children's Medical Center
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mollie S. Prater
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advance Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michaela Reiterova
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Noemi Reyes
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G. Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob M. Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, København, Denmark
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Berlin, Germany
| | - Shuhong Shen
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Jagiellonian University Medical College, Krakow, Poland
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, ASST-Papa Giovanni XXIII Hospital, Piazza OMS, Bergamo, Italy
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michael Svaton
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Yanjing Tang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David T. Teachey
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Jan Trka
- CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Elena Varotto
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, University of Padova, Padova, Italy
| | | | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Allen EJ Yeoh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
13
|
Truesdell P, Chang J, Coto Villa D, Dai M, Zhao Y, McIlwain R, Young S, Hiley S, Craig AW, Babak T. Pharmacogenomic discovery of genetically targeted cancer therapies optimized against clinical outcomes. NPJ Precis Oncol 2024; 8:186. [PMID: 39198692 PMCID: PMC11358483 DOI: 10.1038/s41698-024-00673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Despite the clinical success of dozens of genetically targeted cancer therapies, the vast majority of patients with tumors caused by loss-of-function (LoF) mutations do not have access to these treatments. This is primarily due to the challenge of developing a drug that treats a disease caused by the absence of a protein target. The success of PARP inhibitors has solidified synthetic lethality (SL) as a means to overcome this obstacle. Recent mapping of SL networks using pooled CRISPR-Cas9 screens is a promising approach for expanding this concept to treating cancers driven by additional LoF drivers. In practice, however, translating signals from cell lines, where these screens are typically conducted, to patient outcomes remains a challenge. We developed a pharmacogenomic (PGx) approach called "Clinically Optimized Driver Associated-PGx" (CODA-PGX) that accurately predicts genetically targeted therapies with clinical-stage efficacy in specific LoF driver contexts. Using approved targeted therapies and cancer drugs with available real-world evidence and molecular data from hundreds of patients, we discovered and optimized the key screening principles predictive of efficacy and overall patient survival. In addition to establishing basic technical conventions, such as drug concentration and screening kinetics, we found that replicating the driver perturbation in the right context, as well as selecting patients where those drivers are genuine founder mutations, were key to accurate translation. We used CODA-PGX to screen a diverse collection of clinical stage drugs and report dozens of novel LoF genetically targeted opportunities; many validated in xenografts and by real-world evidence. Notable examples include treating STAG2-mutant tumors with Carboplatin, SMARCB1-mutant tumors with Oxaliplatin, and TP53BP1-mutant tumors with Etoposide or Bleomycin.
Collapse
Affiliation(s)
- Peter Truesdell
- Leapfrog Bio, San Mateo, USA
- Cancer Biology & Genetics, Queen's Cancer Research Institute; Queen's University, Kingston, Canada
| | | | | | - Meiou Dai
- Leapfrog Bio, San Mateo, USA
- Cancer Biology & Genetics, Queen's Cancer Research Institute; Queen's University, Kingston, Canada
| | - Yulei Zhao
- Cancer Biology & Genetics, Queen's Cancer Research Institute; Queen's University, Kingston, Canada
- Department of Cellular and Genetic Medicine, Frontier innovation center, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Robin McIlwain
- Leapfrog Bio, San Mateo, USA
- Cancer Biology & Genetics, Queen's Cancer Research Institute; Queen's University, Kingston, Canada
| | - Stephanie Young
- Cancer Biology & Genetics, Queen's Cancer Research Institute; Queen's University, Kingston, Canada
| | - Shawna Hiley
- Third Degree Science Communication, Edmonton, Canada
| | - Andrew W Craig
- Cancer Biology & Genetics, Queen's Cancer Research Institute; Queen's University, Kingston, Canada
| | - Tomas Babak
- Leapfrog Bio, San Mateo, USA.
- Department of Biology; Queen's University, Kingston, Canada.
| |
Collapse
|
14
|
Xu JJ, Viny AD. Chromatin organization in myelodysplastic syndrome. Exp Hematol 2024; 134:104216. [PMID: 38582293 DOI: 10.1016/j.exphem.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Disordered chromatin organization has emerged as a new aspect of the pathogenesis of myelodysplastic syndrome (MDS). Characterized by lineage dysplasia and a high transformation rate to acute myeloid leukemia (AML), the genetic determinant of MDS is thought to be the main driver of the disease's progression. Among the recurrently mutated pathways, alterations in chromatin organization, such as the cohesin complex, have a profound impact on hematopoietic stem cell (HSC) function and lineage commitment. The cohesin complex is a ring-like structure comprised of structural maintenance of chromosomes (SMC), RAD21, and STAG proteins that involve three-dimensional (3D) genome organization via loop extrusion in mammalian cells. The partial loss of the functional cohesin ring leads to altered chromatin accessibility specific to key hematopoietic transcription factors, which is thought to be the molecular mechanism of cohesin dysfunction. Currently, there are no specific targeting agents for cohesin mutant MDS/AML. Potential therapeutic strategies have been proposed based on the current understanding of cohesin mutant leukemogenesis. Here, we will review the recent advances in investigation and targeting approaches against cohesin mutant MDS/AML.
Collapse
Affiliation(s)
- Jane Jialu Xu
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York.
| |
Collapse
|
15
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Pallotta MM, Di Nardo M, Musio A. Synthetic Lethality between Cohesin and WNT Signaling Pathways in Diverse Cancer Contexts. Cells 2024; 13:608. [PMID: 38607047 PMCID: PMC11011321 DOI: 10.3390/cells13070608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Cohesin is a highly conserved ring-shaped complex involved in topologically embracing chromatids, gene expression regulation, genome compartmentalization, and genome stability maintenance. Genomic analyses have detected mutations in the cohesin complex in a wide array of human tumors. These findings have led to increased interest in cohesin as a potential target in cancer therapy. Synthetic lethality has been suggested as an approach to exploit genetic differences in cancer cells to influence their selective killing. In this study, we show that mutations in ESCO1, NIPBL, PDS5B, RAD21, SMC1A, SMC3, STAG2, and WAPL genes are synthetically lethal with stimulation of WNT signaling obtained following LY2090314 treatment, a GSK3 inhibitor, in several cancer cell lines. Moreover, treatment led to the stabilization of β-catenin and affected the expression of c-MYC, probably due to the occupancy decrease in cohesin at the c-MYC promoter. Finally, LY2090314 caused gene expression dysregulation mainly involving pathways related to transcription regulation, cell proliferation, and chromatin remodeling. For the first time, our work provides the underlying molecular basis for synthetic lethality due to cohesin mutations and suggests that targeting the WNT may be a promising therapeutic approach for tumors carrying mutated cohesin.
Collapse
Affiliation(s)
| | | | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), 56124 Pisa, Italy; (M.M.P.); (M.D.N.)
| |
Collapse
|
17
|
Kurtenbach S, Sanchez MI, Kuznetsoff J, Rodriguez DA, Weich N, Dollar JJ, Cruz A, Kurtenbach S, Field MG, Durante MA, Decatur C, Sorouri M, Lai F, Yenisehirli G, Fang B, Shiekhattar R, Pelaez D, Correa ZM, Verdun RE, Harbour JW. PRAME induces genomic instability in uveal melanoma. Oncogene 2024; 43:555-565. [PMID: 38030788 PMCID: PMC10873199 DOI: 10.1038/s41388-023-02887-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
PRAME is a CUL2 ubiquitin ligase subunit that is normally expressed in the testis but becomes aberrantly overexpressed in many cancer types in association with aneuploidy and metastasis. Here, we show that PRAME is expressed predominantly in spermatogonia around the time of meiotic crossing-over in coordination with genes mediating DNA double strand break repair. Expression of PRAME in somatic cells upregulates pathways involved in meiosis, chromosome segregation and DNA repair, and it leads to increased DNA double strand breaks, telomere dysfunction and aneuploidy in neoplastic and non-neoplastic cells. This effect is mediated at least in part by ubiquitination of SMC1A and altered cohesin function. PRAME expression renders cells susceptible to inhibition of PARP1/2, suggesting increased dependence on alternative base excision repair pathways. These findings reveal a distinct oncogenic function of PRAME that can be targeted therapeutically in cancer.
Collapse
Affiliation(s)
- Stefan Kurtenbach
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret I Sanchez
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffim Kuznetsoff
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel A Rodriguez
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalia Weich
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James J Dollar
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anthony Cruz
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sarah Kurtenbach
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Michael A Durante
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christina Decatur
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mahsa Sorouri
- Department of Ophthalmology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fan Lai
- School of Life Sciences, Yunnan University, Kunming, China
| | - Gulum Yenisehirli
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, The Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zelia M Correa
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ramiro E Verdun
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J William Harbour
- Department of Ophthalmology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Wheeler EC, Martin BJE, Doyle WC, Neaher S, Conway CA, Pitton CN, Gorelov RA, Donahue M, Jann JC, Abdel-Wahab O, Taylor J, Seiler M, Buonamici S, Pikman Y, Garcia JS, Belizaire R, Adelman K, Tothova Z. Splicing modulators impair DNA damage response and induce killing of cohesin-mutant MDS and AML. Sci Transl Med 2024; 16:eade2774. [PMID: 38170787 PMCID: PMC11222919 DOI: 10.1126/scitranslmed.ade2774] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/08/2023] [Indexed: 01/05/2024]
Abstract
Splicing modulation is a promising treatment strategy pursued to date only in splicing factor-mutant cancers; however, its therapeutic potential is poorly understood outside of this context. Like splicing factors, genes encoding components of the cohesin complex are frequently mutated in cancer, including myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (AML), where they are associated with poor outcomes. Here, we showed that cohesin mutations are biomarkers of sensitivity to drugs targeting the splicing factor 3B subunit 1 (SF3B1) H3B-8800 and E-7107. We identified drug-induced alterations in splicing, and corresponding reduced gene expression, of a number of DNA repair genes, including BRCA1 and BRCA2, as the mechanism underlying this sensitivity in cell line models, primary patient samples and patient-derived xenograft (PDX) models of AML. We found that DNA damage repair genes are particularly sensitive to exon skipping induced by SF3B1 modulators due to their long length and large number of exons per transcript. Furthermore, we demonstrated that treatment of cohesin-mutant cells with SF3B1 modulators not only resulted in impaired DNA damage response and accumulation of DNA damage, but it sensitized cells to subsequent killing by poly(ADP-ribose) polymerase (PARP) inhibitors and chemotherapy and led to improved overall survival of PDX models of cohesin-mutant AML in vivo. Our findings expand the potential therapeutic benefits of SF3B1 splicing modulators to include cohesin-mutant MDS and AML.
Collapse
Affiliation(s)
- Emily C. Wheeler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Benjamin J. E. Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William C. Doyle
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Sofia Neaher
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Caroline A. Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Caroline N. Pitton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Rebecca A. Gorelov
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Melanie Donahue
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Johann C. Jann
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael Seiler
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Silvia Buonamici
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02215 USA
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Karen Adelman
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
He H, Jamal M, Zeng X, Lei Y, Xiao D, Wei Z, Zhang C, Zhang X, Pan S, Ding Q, Tan H, Xie S, Zhang Q. Matrin-3 acts as a potential biomarker and promotes hepatocellular carcinoma progression by interacting with cell cycle-regulating genes. Cell Cycle 2024; 23:15-35. [PMID: 38252499 PMCID: PMC11005806 DOI: 10.1080/15384101.2024.2305535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. The oncogenic role of Matrin-3 (MATR3), an a nuclear matrix protein, in HCC remains largely unknown. Here, we document the biological function of MATR3 in HCC based on integrated bioinformatics analysis and functional studies. According to the TCGA database, MATR3 expression was found to be positively correlated with clinicopathological characteristics in HCC. The receiver operating characteristic (ROC) curve and Kaplan-Meier (KM) curve displayed the diagnostic and prognostic potentials of MATR3 in HCC patients, respectively. Pathway enrichment analysis represented the enrichment of MATR3 in various molecular pathways, including the regulation of the cell cycle. Functional assays in HCC cell lines showed reduced proliferation of cells with stable silencing of MATR3. At the same time, the suppressive effects of MATR3 depletion on HCC development were verified by xenograft tumor experiments. Moreover, MATR3 repression also resulted in cell cycle arrest by modulating the expression of cell cycle-associated genes. In addition, the interaction of MATR3 with cell cycle-regulating factors in HCC cells was further corroborated with co-immunoprecipitation and mass spectrometry (Co-IP/MS). Furthermore, CIBERSORT and TIMER analyses showed an association between MATR3 and immune infiltration in HCC. In general, this study highlights the novel oncogenic function of MATR3 in HCC, which could comprehensively address how aberrant changes in the cell cycle promote HCC development. MATR3 might serve as a prognostic predictor and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Di Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zimeng Wei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chengjie Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shan Pan
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qianshan Ding
- School of Medicine, Northwest University, Xian, China
| | - Haiyan Tan
- Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Lorenzo-Guerra SL, Codina-Martínez H, Suárez-Fernández L, Cabal VN, García-Marín R, Riobello C, Vivanco B, Blanco-Lorenzo V, Sánchez-Fernández P, López F, Llorente JL, Hermsen MA. Characterization of a Preclinical In Vitro Model Derived from a SMARCA4-Mutated Sinonasal Teratocarcinosarcoma. Cells 2023; 13:81. [PMID: 38201285 PMCID: PMC10778008 DOI: 10.3390/cells13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Sinonasal teratocarcinosarcoma (TCS) is a rare tumor that displays a variable histology with admixtures of epithelial, mesenchymal, neuroendocrine and germ cell elements. Facing a very poor prognosis, patients with TCS are in need of new options for treatment. Recently identified recurrent mutations in SMARCA4 may serve as target for modern therapies with EZH1/2 and CDK4/6 inhibitors. Here, we present the first in vitro cell line TCS627, established from a previously untreated primary TCS originating in the ethmoid sinus with invasion into the brain. The cultured cells expressed immunohistochemical markers, indicating differentiation of epithelial, neuroepithelial, sarcomatous and teratomatous components. Whole-exome sequencing revealed 99 somatic mutations including SMARCA4, ARID2, TET2, CDKN2A, WNT7A, NOTCH3 and STAG2, all present both in the primary tumor and in the cell line. Focusing on mutated SMARCA4 as the therapeutic target, growth inhibition assays showed a strong response to the CDK4/6 inhibitor palbociclib, but much less to the EZH1/2 inhibitor valemetostat. In conclusion, cell line TCS627 carries both histologic and genetic features characteristic of TCS and is a valuable model for both basic research and preclinical testing of new therapeutic options for treatment of TCS patients.
Collapse
Affiliation(s)
- Sara Lucila Lorenzo-Guerra
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Helena Codina-Martínez
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Laura Suárez-Fernández
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Virginia N. Cabal
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Rocío García-Marín
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Cristina Riobello
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| | - Blanca Vivanco
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.)
| | - Verónica Blanco-Lorenzo
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.)
| | - Paula Sánchez-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (P.S.-F.); (F.L.); (J.L.L.)
| | - Fernando López
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (P.S.-F.); (F.L.); (J.L.L.)
| | - Jóse Luis Llorente
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (P.S.-F.); (F.L.); (J.L.L.)
| | - Mario A. Hermsen
- Department of Head and Neck Cancer, Health Research Institute of the Principality of Asturias, 33011 Oviedo, Spain; (S.L.L.-G.); (H.C.-M.); (L.S.-F.); (V.N.C.); (R.G.-M.); (C.R.)
| |
Collapse
|
21
|
Zhou J, Nie R, He Z, Cai X, Chen J, Lin W, Yin Y, Xiang Z, Zhu T, Xie J, Zhang Y, Wang X, Lin P, Xie D, D'Andrea AD, Cai M. STAG2 Regulates Homologous Recombination Repair and Sensitivity to ATM Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302494. [PMID: 37985839 PMCID: PMC10754142 DOI: 10.1002/advs.202302494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/15/2023] [Indexed: 11/22/2023]
Abstract
Stromal antigen 2 (STAG2), a subunit of the cohesin complex, is recurrently mutated in various tumors. However, the role of STAG2 in DNA repair and its therapeutic implications are largely unknown. Here it is reported that knockout of STAG2 results in increased double-stranded breaks (DSBs) and chromosomal aberrations by reducing homologous recombination (HR) repair, and confers hypersensitivity to inhibitors of ataxia telangiectasia mutated (ATMi), Poly ADP Ribose Polymerase (PARPi), or the combination of both. Of note, the impaired HR by STAG2-deficiency is mainly attributed to the restored expression of KMT5A, which in turn methylates H4K20 (H4K20me0) to H4K20me1 and thereby decreases the recruitment of BRCA1-BARD1 to chromatin. Importantly, STAG2 expression correlates with poor prognosis of cancer patients. STAG2 is identified as an important regulator of HR and a potential therapeutic strategy for STAG2-mutant tumors is elucidated.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
- Guangxi International Travel Healthcare Centre (Port Clinic of Nanning Customs District)NanningGuangxi530021China
| | - Run‐Cong Nie
- Department of Gastric SurgeryState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zhang‐Ping He
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiao‐Xia Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jie‐Wei Chen
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Wen‐ping Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yi‐Xin Yin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zhi‐Cheng Xiang
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Tian‐Chen Zhu
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Juan‐Juan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - You‐Cheng Zhang
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Peng Lin
- Department of Thoracic SurgeryState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Alan D D'Andrea
- Department of Radiation OncologyDana‐Farber Cancer InstituteBostonMA02215USA
- Center for DNA Damage and RepairDana‐Farber Cancer InstituteBostonMA02215USA
| | - Mu‐Yan Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of PathologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
22
|
Kimura S, Polonen P, Montefiori L, Park CS, Iacobucci I, Yeoh AE, Attarbaschi A, Moore AS, Brown A, Manabe A, Buldini B, Freeman BB, Chen C, Cheng C, Kean Hui C, Li CK, Pui CH, Qu C, Tomizawa D, Teachey DT, Varotto E, Paietta EM, Arnold ED, Locatelli F, Escherich G, Elisa Muhle H, Marquart HV, de Groot-Kruseman HA, Rowe JM, Stary J, Trka J, Choi JK, Meijerink JPP, Yang JJ, Takita J, Pawinska-Wasikowska K, Roberts KG, Han K, Caldwell KJ, Schmiegelow K, Crews KR, Eguchi M, Schrappe M, Zimmerman M, Takagi M, Maybury M, Svaton M, Reiterova M, Kicinski M, Prater MS, Kato M, Reyes N, Spinelli O, Thomas P, Mazilier P, Gao Q, Masetti R, Kotecha RS, Pieters R, Elitzur S, Luger SM, Mitchell S, Pruett-Miller SM, Shen S, Jeha S, Köhrer S, Kornblau SM, Skoczeń S, Miyamura T, Vincent TL, Imamura T, Conter V, Tang Y, Liu YC, Chang Y, Gu Z, Cheng Z, Yinmei Z, Inaba H, Mullighan CG. Biologic and clinical features of childhood gamma delta T-ALL: identification of STAG2/LMO2 γδ T-ALL as an extremely high risk leukemia in the very young. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.06.23298028. [PMID: 37986997 PMCID: PMC10659466 DOI: 10.1101/2023.11.06.23298028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
PURPOSE Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a high-risk but poorly characterized disease. METHODS We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by transcriptome and genome sequencing. Experimental modeling was used to examine the mechanistic impacts of genomic alterations. Therapeutic vulnerabilities were identified by high throughput drug screening of cell lines and xenografts. RESULTS γδ T-ALL in children under three was extremely high-risk with 5-year event-free survival (33% v. 70% [age 3-<10] and 73% [age ≥10], P =9.5 x 10 -5 ) and 5-year overall survival (49% v. 78% [age 3-<10] and 81% [age ≥10], P =0.002), differences not observed in non-γδ T-ALL. γδ T-ALL in this age group was enriched for genomic alterations activating LMO2 activation and inactivating STAG2 inactivation ( STAG2/LMO2 ). Mechanistically, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping resulting in deregulation of gene expression associated with T-cell differentiation. Drug screening showed resistance to prednisolone, consistent with clinical slow treatment response, but identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which was efficaciously targeted by Poly(ADP-ribose) polymerase (PARP) inhibition, with synergism with HDAC inhibitors. Ex-vivo drug screening on PDX cells validated the efficacy of PARP inhibitors as well as other potential targets including nelarabine. CONCLUSION γδ T-ALL in children under the age of three is extremely high-risk and enriched for STAG2/LMO2 ALL. STAG2 loss perturbs chromatin conformation and differentiation, and STAG2/LMO2 ALL is sensitive to PARP inhibition. These data provide a diagnostic and therapeutic framework for pediatric γδ T-ALL. SUPPORT The authors are supported by the American and Lebanese Syrian Associated Charities of St Jude Children's Research Hospital, NCI grants R35 CA197695, P50 CA021765 (C.G.M.), the Henry Schueler 41&9 Foundation (C.G.M.), and a St. Baldrick's Foundation Robert J. Arceci Innovation Award (C.G.M.), Gabriella Miller Kids First X01HD100702 (D.T.T and C.G.M.) and R03CA256550 (D.T.T. and C.G.M.), F32 5F32CA254140 (L.M.), and a Garwood Postdoctoral Fellowship of the Hematological Malignancies Program of the St Jude Children's Research Hospital Comprehensive Cancer Center (S.K.). This project was supported by the National Cancer Institute of the National Institutes of Health under the following award numbers: U10CA180820, UG1CA189859, U24CA114766, U10CA180899, U10CA180866 and U24CA196173. DISCLAIMER The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding agencies were not directly involved in the design of the study, gathering, analysis and interpretation of the data, writing of the manuscript, or decision to submit the manuscript for publication.
Collapse
|
23
|
Lu X, Peng L, Ding J, Li Y, Li Q, Rao M, Shu T, He X, Liu C, Ye J, Liu W, You H. A deregulated m 6A writer complex axis driven by BRD4 confers an epitranscriptomic vulnerability in combined DNA repair-targeted therapy. Proc Natl Acad Sci U S A 2023; 120:e2304534120. [PMID: 37782793 PMCID: PMC10576145 DOI: 10.1073/pnas.2304534120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/18/2023] [Indexed: 10/04/2023] Open
Abstract
Aberrant transcripts expression of the m6A methyltransferase complex (MTC) is widely found across human cancers, suggesting a dysregulated signaling cascade which integrates m6A epitranscriptome to drive tumorigenesis. However, the responsible transcriptional machinery directing the expression of distinct MTC subunits remains unclear. Here, we identified an unappreciated interplay between the histone acetyl-lysine reader BRD4 and the m6A writer complex across human cancers. BRD4 directly stimulates transcripts expression of seven MTC subunits, allowing the maintenance of the nuclear writer complex integrity. Upon BET inhibition, this BRD4-MTC signaling cascade accounts for global m6A reduction and the subsequent dynamic alteration of BRD4-dependent transcriptome, resulting in impaired DNA damage response that involves activation of homologous recombination (HR) repair and repression of apoptosis. We further demonstrated that the combined synergy upon BET/PARP inhibition largely relies on disrupted m6A modification of HR and apoptotic genes, counteracting PARP inhibitor (PARPi) resistance in patient-derived xenograft models. Our study revealed a widespread active cross-talk between BRD4-dependent epigenetic and MTC-mediated epitranscriptomic networks, which provides a unique therapeutic vulnerability that can be leveraged in combined DNA repair-targeted therapy.
Collapse
Affiliation(s)
- Xiao Lu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Lichao Peng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Jiancheng Ding
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Yuanpei Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Qing Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Mengchen Rao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Tong Shu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing100142, China
| | - Xiaoniu He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Chen Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Jing Ye
- Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shanxi710032, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Han You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian361102, China
| |
Collapse
|
24
|
Turner NC, Laird AD, Telli ML, Rugo HS, Mailliez A, Ettl J, Grischke EM, Mina LA, Balmaña J, Fasching PA, Hurvitz SA, Hopkins JF, Albacker LA, Chelliserry J, Chen Y, Conte U, Wardley AM, Robson ME. Genomic analysis of advanced breast cancer tumors from talazoparib-treated gBRCA1/2mut carriers in the ABRAZO study. NPJ Breast Cancer 2023; 9:81. [PMID: 37803017 PMCID: PMC10558443 DOI: 10.1038/s41523-023-00561-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/15/2023] [Indexed: 10/08/2023] Open
Abstract
These analyses explore the impact of homologous recombination repair gene mutations, including BRCA1/2 mutations and homologous recombination deficiency (HRD), on the efficacy of the poly(ADP-ribose) polymerase (PARP) inhibitor talazoparib in the open-label, two-cohort, Phase 2 ABRAZO trial in germline BRCA1/2-mutation carriers. In the evaluable intent-to-treat population (N = 60), 58 (97%) patients harbor ≥1 BRCA1/2 mutation(s) in tumor sequencing, with 95% (53/56) concordance between germline and tumor mutations, and 85% (40/47) of evaluable patients have BRCA locus loss of heterozygosity indicating HRD. The most prevalent non-BRCA tumor mutations are TP53 in patients with BRCA1 mutations and PIK3CA in patients with BRCA2 mutations. BRCA1- or BRCA2-mutated tumors show comparable clinical benefit within cohorts. While low patient numbers preclude correlations between HRD and efficacy, germline BRCA1/2 mutation detection from tumor-only sequencing shows high sensitivity and non-BRCA genetic/genomic events do not appear to influence talazoparib sensitivity in the ABRAZO trial.ClinicalTrials.gov identifier: NCT02034916.
Collapse
Affiliation(s)
- Nicholas C Turner
- The Royal Marsden Hospital, The Institute of Cancer Research, London, UK.
| | | | | | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Audrey Mailliez
- Department of Medical Oncology, Breast Cancer Unit, Centre Oscar Lambret, Lille, France
| | - Johannes Ettl
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eva-Maria Grischke
- Universitӓts Frauenklinik Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Lida A Mina
- Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Judith Balmaña
- Hospital Vall d'Hebron, and Vall d'Hebron Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Peter A Fasching
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sara A Hurvitz
- University of California, Los Angeles/Jonsson Comprehensive Cancer Center (UCLA/JCCC), Los Angeles, CA, USA
| | | | | | | | | | | | - Andrew M Wardley
- Manchester Breast Centre, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Mark E Robson
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
25
|
Wu J, Liu Y, Zhangding Z, Liu X, Ai C, Gan T, Liang H, Guo Y, Chen M, Liu Y, Yin J, Zhang W, Hu J. Cohesin maintains replication timing to suppress DNA damage on cancer genes. Nat Genet 2023; 55:1347-1358. [PMID: 37500731 DOI: 10.1038/s41588-023-01458-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Cohesin loss-of-function mutations are frequently observed in tumors, but the mechanism underlying its role in tumorigenesis is unclear. Here, we found that depletion of RAD21, a core subunit of cohesin, leads to massive genome-wide DNA breaks and 147 translocation hotspot genes, co-mutated with cohesin in multiple cancers. Increased DNA damages are independent of RAD21-loss-induced transcription alteration and loop anchor disruption. However, damage-induced chromosomal translocations coincide with the asymmetrically distributed Okazaki fragments of DNA replication, suggesting that RAD21 depletion causes replication stresses evidenced by the slower replication speed and increased stalled forks. Mechanistically, approximately 30% of the human genome exhibits an earlier replication timing after RAD21 depletion, caused by the early initiation of >900 extra dormant origins. Correspondingly, most translocation hotspot genes lie in timing-altered regions. Therefore, we conclude that cohesin dysfunction causes replication stresses induced by excessive DNA replication initiation, resulting in gross DNA damages that may promote tumorigenesis.
Collapse
Affiliation(s)
- Jinchun Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Zhengrong Zhangding
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Chen Ai
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Tingting Gan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Haoxin Liang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Yuefeng Guo
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Mohan Chen
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Yiyang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Jianhang Yin
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Weiwei Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, Beijing, China.
| |
Collapse
|
26
|
Xin Y, Zhang Y. Paralog-based synthetic lethality: rationales and applications. Front Oncol 2023; 13:1168143. [PMID: 37350942 PMCID: PMC10282757 DOI: 10.3389/fonc.2023.1168143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Tumor cells can result from gene mutations and over-expression. Synthetic lethality (SL) offers a desirable setting where cancer cells bearing one mutated gene of an SL gene pair can be specifically targeted by disrupting the function of the other genes, while leaving wide-type normal cells unharmed. Paralogs, a set of homologous genes that have diverged from each other as a consequence of gene duplication, make the concept of SL feasible as the loss of one gene does not affect the cell's survival. Furthermore, homozygous loss of paralogs in tumor cells is more frequent than singletons, making them ideal SL targets. Although high-throughput CRISPR-Cas9 screenings have uncovered numerous paralog-based SL pairs, the unclear mechanisms of targeting these gene pairs and the difficulty in finding specific inhibitors that exclusively target a single but not both paralogs hinder further clinical development. Here, we review the potential mechanisms of paralog-based SL given their function and genetic combination, and discuss the challenge and application prospects of paralog-based SL in cancer therapeutic discovery.
Collapse
|
27
|
ToMExO: A probabilistic tree-structured model for cancer progression. PLoS Comput Biol 2022; 18:e1010732. [DOI: 10.1371/journal.pcbi.1010732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 12/15/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Identifying the interrelations among cancer driver genes and the patterns in which the driver genes get mutated is critical for understanding cancer. In this paper, we study cross-sectional data from cohorts of tumors to identify the cancer-type (or subtype) specific process in which the cancer driver genes accumulate critical mutations. We model this mutation accumulation process using a tree, where each node includes a driver gene or a set of driver genes. A mutation in each node enables its children to have a chance of mutating. This model simultaneously explains the mutual exclusivity patterns observed in mutations in specific cancer genes (by its nodes) and the temporal order of events (by its edges). We introduce a computationally efficient dynamic programming procedure for calculating the likelihood of our noisy datasets and use it to build our Markov Chain Monte Carlo (MCMC) inference algorithm, ToMExO. Together with a set of engineered MCMC moves, our fast likelihood calculations enable us to work with datasets with hundreds of genes and thousands of tumors, which cannot be dealt with using available cancer progression analysis methods. We demonstrate our method’s performance on several synthetic datasets covering various scenarios for cancer progression dynamics. Then, a comparison against two state-of-the-art methods on a moderate-size biological dataset shows the merits of our algorithm in identifying significant and valid patterns. Finally, we present our analyses of several large biological datasets, including colorectal cancer, glioblastoma, and pancreatic cancer. In all the analyses, we validate the results using a set of method-independent metrics testing the causality and significance of the relations identified by ToMExO or competing methods.
Collapse
|
28
|
Zhang H, Gao H, Gu Y, John A, Wei L, Huang M, Yu J, Adeosun AA, Weinshilboum RM, Wang L. 3D CRISPR screen in prostate cancer cells reveals PARP inhibitor sensitization through TBL1XR1-SMC3 interaction. Front Oncol 2022; 12:999302. [PMID: 36523978 PMCID: PMC9746894 DOI: 10.3389/fonc.2022.999302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/14/2022] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribose) (PAR) polymerase inhibitors (PARPi) either have been approved or being tested in the clinic for the treatment of a variety of cancers with homologous recombination deficiency (HRD). However, cancer cells can develop resistance to PARPi drugs through various mechanisms, and new biomarkers and combination therapeutic strategies need to be developed to support personalized treatment. In this study, a genome-wide CRISPR screen was performed in a prostate cancer cell line with 3D culture condition which identified novel signals involved in DNA repair pathways. One of these genes, TBL1XR1, regulates sensitivity to PARPi in prostate cancer cells. Mechanistically, we show that TBL1XR1 interacts with and stabilizes SMC3 on chromatin and promotes γH2AX spreading along the chromatin of the cells under DNA replication stress. TBL1XR1-SMC3 double knockdown (knockout) cells have comparable sensitivity to PARPi compared to SMC3 knockdown or TBL1XR1 knockout cells, and more sensitivity than WT cells. Our findings provide new insights into mechanisms underlying response to PARPi or platin compounds in the treatment of malignancies.
Collapse
Affiliation(s)
- Huan Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Huanyao Gao
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Yayun Gu
- School of Medicine, Nantong University, Nantong, China
| | - August John
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Lixuan Wei
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Minhong Huang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Jia Yu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Adeyemi A. Adeosun
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Richard M. Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
29
|
Athans SR, Krishnan N, Ramakrishnan S, Cortes Gomez E, Lage-Vickers S, Rak M, Kazmierczak ZI, Ohm JE, Attwood K, Wang J, Woloszynska A. STAG2 expression is associated with adverse survival outcomes and regulates cell phenotype in muscle-invasive bladder cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:1129-1143. [PMID: 36275363 PMCID: PMC9583756 DOI: 10.1158/2767-9764.crc-22-0155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
STAG2 (Stromal Antigen 2), in healthy somatic cells, functions in sister chromatid cohesion, DNA damage repair, and genome organization, but its role in muscle invasive bladder cancer (MIBC) remains unknown. Here, using whole-exome and targeted sequencing (n=119 bladder cancer clinical samples), we found several STAG2 mutations in MIBC that correlate with loss of protein expression. The analysis of a bladder cancer tissue microarray (n=346) revealed that decreased STAG2 protein expression is associated with improved overall and progression-free survival for MIBC patients. In mouse xenograft studies, STAG2 knockdown (KD) decelerated MIBC tumor growth, whereas STAG2 overexpression accelerated tumor growth. In cell line studies, STAG2 loss augmented treatment with cisplatin, a first-line therapy for MIBC. STAG2 KD or overexpression did not alter degree of aneuploidy, copy number variations, or cell cycle distribution. However, unbiased RNA sequencing analysis revealed that STAG2 KD altered gene expression. STAG2 KD led to significant downregulation of several gene sets, such as collagen containing extracellular matrix, external encapsulating structure organization, and regulation of chemotaxis. Therefore, we investigated the effect of STAG2 KD on cell migration and invasion in vitro. We found that STAG2 KD minimized cell speed, displacement, and invasion. Altogether, our results present a non-canonical function of STAG2 in promoting cell motility and invasion of MIBC cells. This work forms the basis for additional investigation into the role of STAG2 in transcriptional regulation and how it becomes dysregulated in STAG2-mutant MIBC.
Collapse
Affiliation(s)
- Sarah R. Athans
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Nithya Krishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Swathi Ramakrishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Monika Rak
- Department of Cell Biology, Jagiellonian University, 31-007, Krakow, Poland
| | - Zara I. Kazmierczak
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joyce Ellen Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jianmin Wang
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Corresponding Author: Anna Woloszynska, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203. Phone: 716-845-8495; E-mail:
| |
Collapse
|
30
|
Arruda NL, Bryan AF, Dowen JM. PDS5A and PDS5B differentially affect gene expression without altering cohesin localization across the genome. Epigenetics Chromatin 2022; 15:30. [PMID: 35986423 PMCID: PMC9392266 DOI: 10.1186/s13072-022-00463-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cohesin is an important structural regulator of the genome, regulating both three-dimensional genome organization and gene expression. The core cohesin trimer interacts with various HEAT repeat accessory subunits, yielding cohesin complexes of distinct compositions and potentially distinct functions. The roles of the two mutually exclusive HEAT repeat subunits PDS5A and PDS5B are not well understood. RESULTS Here, we determine that PDS5A and PDS5B have highly similar localization patterns across the mouse embryonic stem cell (mESC) genome and they show a strong overlap with other cohesin HEAT repeat accessory subunits, STAG1 and STAG2. Using CRISPR/Cas9 genome editing to generate individual stable knockout lines for PDS5A and PDS5B, we find that loss of one PDS5 subunit does not alter the distribution of the other PDS5 subunit, nor the core cohesin complex. Both PDS5A and PDS5B are required for proper gene expression, yet they display only partially overlapping effects on gene targets. Remarkably, gene expression following dual depletion of the PDS5 HEAT repeat proteins does not completely overlap the gene expression changes caused by dual depletion of the STAG HEAT repeat proteins, despite the overlapping genomic distribution of all four proteins. Furthermore, dual loss of PDS5A and PDS5B decreases cohesin association with NIPBL and WAPL, reduces SMC3 acetylation, and does not alter overall levels of cohesin on the genome. CONCLUSIONS This work reveals the importance of PDS5A and PDS5B for proper cohesin function. Loss of either subunit has little effect on cohesin localization across the genome yet PDS5A and PDS5B are differentially required for gene expression.
Collapse
Affiliation(s)
- Nicole L Arruda
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Audra F Bryan
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jill M Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
31
|
Hou W, Li Y, Zhang J, Xia Y, Wang X, Chen H, Lou H. Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 2022; 57:333-350. [PMID: 35112600 DOI: 10.1080/10409238.2022.2027336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.
Collapse
Affiliation(s)
- Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yan Li
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jiaxin Zhang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yisui Xia
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xueting Wang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Hongxiang Chen
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
32
|
Blum JL, Laird AD, Litton JK, Rugo HS, Ettl J, Hurvitz SA, Martin M, Roché HH, Lee KH, Goodwin A, Chen Y, Lanzalone S, Chelliserry J, Czibere A, Hopkins JF, Albacker LA, Mina LA. Determinants of Response to Talazoparib in Patients with HER2-Negative, Germline BRCA1/2-Mutated Breast Cancer. Clin Cancer Res 2022; 28:1383-1390. [PMID: 35091441 PMCID: PMC9365365 DOI: 10.1158/1078-0432.ccr-21-2080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/18/2021] [Accepted: 01/25/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE PARP inhibitors (PARPi) have demonstrated efficacy in tumors with germline breast cancer susceptibility genes (gBRCA) 1 and 2 mutations, but further factors influencing response to PARPi are poorly understood. EXPERIMENTAL DESIGN Breast cancer tumor tissue from patients with gBRCA1/2 mutations from the phase III EMBRACA trial of the PARPi talazoparib versus chemotherapy was sequenced using FoundationOne CDx. RESULTS In the evaluable intent-to-treat population, 96.1% (296/308) had ≥1 tumor BRCA (tBRCA) mutation and there was strong concordance (95.3%) between tBRCA and gBRCA mutational status. Genetic/genomic characteristics including BRCA loss of heterozygosity (LOH; identified in 82.6% of evaluable patients), DNA damage response (DDR) gene mutational burden, and tumor homologous recombination deficiency [assessed by genomic LOH (gLOH)] demonstrated no association with talazoparib efficacy. CONCLUSIONS Overall, BRCA LOH status, DDR gene mutational burden, and gLOH were not associated with talazoparib efficacy; however, these conclusions are qualified by population heterogeneity and low patient numbers in some subgroups. Further investigation in larger patient populations is warranted.
Collapse
Affiliation(s)
- Joanne L. Blum
- Baylor Charles A. Sammons Cancer Center, Texas Oncology, US Oncology, Dallas, Texas.,Corresponding Author: Joanne L. Blum, Baylor Charles A. Sammons Cancer Center, Texas Oncology, US Oncology, 3410 Worth Street, Suite 400, Dallas, TX 75246. Phone: 214-370-1050; E-mail:
| | | | | | - Hope S. Rugo
- University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Johannes Ettl
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sara A. Hurvitz
- University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Miguel Martin
- Instituto de Investigación Sanitaria Gregorio Marañón, CIBERONC, GEICAM, Universidad Complutense, Madrid, Spain
| | - Henri H. Roché
- Institut Claudius Regaud, Institut Universitaire du Cancer Toulouse, Toulouse, France
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | - Lida A. Mina
- Banner MD Anderson Cancer Center at Banner Gateway Medical Center, Gilbert, Arizona
| |
Collapse
|
33
|
Mfarej MG, Skibbens RV. Genetically induced redox stress occurs in a yeast model for Roberts syndrome. G3 (BETHESDA, MD.) 2022; 12:jkab426. [PMID: 34897432 PMCID: PMC9210317 DOI: 10.1093/g3journal/jkab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Roberts syndrome (RBS) is a multispectrum developmental disorder characterized by severe limb, craniofacial, and organ abnormalities and often intellectual disabilities. The genetic basis of RBS is rooted in loss-of-function mutations in the essential N-acetyltransferase ESCO2 which is conserved from yeast (Eco1/Ctf7) to humans. ESCO2/Eco1 regulate many cellular processes that impact chromatin structure, chromosome transmission, gene expression, and repair of the genome. The etiology of RBS remains contentious with current models that include transcriptional dysregulation or mitotic failure. Here, we report evidence that supports an emerging model rooted in defective DNA damage responses. First, the results reveal that redox stress is elevated in both eco1 and cohesion factor Saccharomyces cerevisiae mutant cells. Second, we provide evidence that Eco1 and cohesion factors are required for the repair of oxidative DNA damage such that ECO1 and cohesin gene mutations result in reduced cell viability and hyperactivation of DNA damage checkpoints that occur in response to oxidative stress. Moreover, we show that mutation of ECO1 is solely sufficient to induce endogenous redox stress and sensitizes mutant cells to exogenous genotoxic challenges. Remarkably, antioxidant treatment desensitizes eco1 mutant cells to a range of DNA damaging agents, raising the possibility that modulating the cellular redox state may represent an important avenue of treatment for RBS and tumors that bear ESCO2 mutations.
Collapse
Affiliation(s)
- Michael G Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
34
|
Kim S, Park JW, Seo H, Kim M, Park J, Kim G, Lee JO, Shin Y, Bae JM, Koo B, Jeong S, Ku J. Multifocal Organoid Capturing of Colon Cancer Reveals Pervasive Intratumoral Heterogenous Drug Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103360. [PMID: 34918496 PMCID: PMC8844556 DOI: 10.1002/advs.202103360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Intratumor heterogeneity (ITH) stands as one of the main difficulties in the treatment of colorectal cancer (CRC) as it causes the development of resistant clones and leads to heterogeneous drug responses. Here, 12 sets of patient-derived organoids (PDOs) and cell lines (PDCs) isolated from multiple regions of single tumors from 12 patients, capturing ITH by multiregion sampling of individual tumors, are presented. Whole-exome sequencing and RNA sequencing of the 12 sets are performed. The PDOs and PDCs of the 12 sets are also analyzed with a clinically relevant 24-compound library to assess their drug responses. The results reveal unexpectedly widespread subregional heterogeneity among PDOs and PDCs isolated from a single tumor, which is manifested by genetic and transcriptional heterogeneity and strong variance in drug responses, while each PDO still recapitulates the major histologic, genomic, and transcriptomic characteristics of the primary tumor. The data suggest an imminent drawback of single biopsy-originated PDO-based clinical diagnosis in evaluating CRC patient responses. Instead, the results indicate the importance of targeting common somatic driver mutations positioned in the trunk of all tumor subregional clones in parallel with a comprehensive understanding of the molecular ITH of each tumor.
Collapse
Affiliation(s)
- Soon‐Chan Kim
- Korean Cell Line BankLaboratory of Cell BiologyCancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoul03080South Korea
| | - Ji Won Park
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
- Department of SurgerySeoul National University College of MedicineSeoul03080South Korea
- Division of Colorectal SurgeryDepartment of SurgerySeoul National University HospitalSeoul03080South Korea
| | - Ha‐Young Seo
- Korean Cell Line BankLaboratory of Cell BiologyCancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
| | - Minjung Kim
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
- Department of SurgerySeoul National University College of MedicineSeoul03080South Korea
- Division of Colorectal SurgeryDepartment of SurgerySeoul National University HospitalSeoul03080South Korea
| | - Jae‐Hyeon Park
- Korean Cell Line BankLaboratory of Cell BiologyCancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
| | - Ga‐Hye Kim
- Korean Cell Line BankLaboratory of Cell BiologyCancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
| | - Ja Oh Lee
- Korean Cell Line BankLaboratory of Cell BiologyCancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
| | - Young‐Kyoung Shin
- Korean Cell Line BankLaboratory of Cell BiologyCancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoul03080South Korea
| | - Jeong Mo Bae
- Department of PathologySeoul National University College of MedicineSeoul03080South Korea
| | - Bon‐Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)Dr. Bohr‐Gasse 3Vienna1030Austria
| | - Seung‐Yong Jeong
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
- Department of SurgerySeoul National University College of MedicineSeoul03080South Korea
- Division of Colorectal SurgeryDepartment of SurgerySeoul National University HospitalSeoul03080South Korea
| | - Ja‐Lok Ku
- Korean Cell Line BankLaboratory of Cell BiologyCancer Research InstituteSeoul National University College of MedicineSeoul03080South Korea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080South Korea
- Cancer Research InstituteSeoul National UniversitySeoul03080South Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoul03080South Korea
| |
Collapse
|
35
|
Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol 2022; 15:10. [PMID: 35065680 PMCID: PMC8783444 DOI: 10.1186/s13045-022-01228-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Poly(ADP‐ribose) polymerase (PARP) superfamily are involved in several biological processes and, in particular, in the DNA damage response (DDR). The most studied members, PARP1, PARP2 and PARP3, act as sensors of DNA damages, in order to activate different intracellular repair pathways, including single-strand repair, homologous recombination, conventional and alternative non-homologous end joining. This review recapitulates the functional role of PARPs in the DDR pathways, also in relationship with the cell cycle phases, which drives our knowledge of the mechanisms of action of PARP inhibitors (PARPi), encompassing inhibition of single-strand breaks and base excision repair, PARP trapping and sensitization to antileukemia immune responses. Several studies have demonstrated a preclinical activity of the current available PARPi, olaparib, rucaparib, niraparib, veliparib and talazoparib, as single agent and/or in combination with cytotoxic, hypomethylating or targeted drugs in acute leukemia, thus encouraging the development of clinical trials. We here summarize the most recent preclinical and clinical findings and discuss the synthetic lethal interactions of PARPi in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Despite the low frequency of genomic alterations of PARP and other DDR-related genes in acute leukemia, selective vulnerabilities have been reported in several disease subgroups, along with a “BRCAness phenotype.” AML carrying the RUNX1-RUNX1T1 or PML-RARA fusion genes or mutations in signaling genes (FLT3-ITD in combination with TET2 or TET2 and DNMT3A deficiency), cohesin complex members (STAG2), TP53 and BCOR as co-occurring lesions, IDH1/2 and ALL cases expressing the TCF3-HLF chimera or TET1 was highly sensitive to PARPi in preclinical studies. These data, along with the warning coming from the observation of cases of therapy-related myeloid malignancies among patients receiving PARPi for solid tumors treatment, indicate that PARPi represents a promising strategy in a personalized medicine setting. The characterization of the clonal and subclonal genetic background and of the DDR functionality is crucial to select acute leukemia patients that will likely benefit of PARPi-based therapeutic regimens.
Collapse
|
36
|
Genetic alterations of the SUMO isopeptidase SENP6 drive lymphomagenesis and genetic instability in diffuse large B-cell lymphoma. Nat Commun 2022; 13:281. [PMID: 35022408 PMCID: PMC8755833 DOI: 10.1038/s41467-021-27704-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
SUMOylation is a post-translational modification of proteins that regulates these proteins’ localization, turnover or function. Aberrant SUMOylation is frequently found in cancers but its origin remains elusive. Using a genome-wide transposon mutagenesis screen in a MYC-driven B-cell lymphoma model, we here identify the SUMO isopeptidase (or deconjugase) SENP6 as a tumor suppressor that links unrestricted SUMOylation to tumor development and progression. Notably, SENP6 is recurrently deleted in human lymphomas and SENP6 deficiency results in unrestricted SUMOylation. Mechanistically, SENP6 loss triggers release of DNA repair- and genome maintenance-associated protein complexes from chromatin thereby impairing DNA repair in response to DNA damages and ultimately promoting genomic instability. In line with this hypothesis, SENP6 deficiency drives synthetic lethality to Poly-ADP-Ribose-Polymerase (PARP) inhibition. Together, our results link SENP6 loss to defective genome maintenance and reveal the potential therapeutic application of PARP inhibitors in B-cell lymphoma. SUMOylation is a post-translational modification that has been shown to be altered in cancer. Here, the authors show that loss of the SUMO isopeptidase SENP6 leads to unrestricted SUMOylation and genomic instability promoting lymphomagenesis and generating vulnerability to PARP inhibition.
Collapse
|
37
|
Yueh WT, Singh VP, Gerton JL. Maternal Smc3 protects the integrity of the zygotic genome through DNA replication and mitosis. Development 2021; 148:dev199800. [PMID: 34935904 PMCID: PMC8722392 DOI: 10.1242/dev.199800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023]
Abstract
Aneuploidy is frequently observed in oocytes and early embryos, begging the question of how genome integrity is monitored and preserved during this crucial period. SMC3 is a subunit of the cohesin complex that supports genome integrity, but its role in maintaining the genome during this window of mammalian development is unknown. We discovered that, although depletion of Smc3 following meiotic S phase in mouse oocytes allowed accurate meiotic chromosome segregation, adult females were infertile. We provide evidence that DNA lesions accumulated following S phase in SMC3-deficient zygotes, followed by mitosis with lagging chromosomes, elongated spindles, micronuclei, and arrest at the two-cell stage. Remarkably, although centromeric cohesion was defective, the dosage of SMC3 was sufficient to enable embryogenesis in juvenile mutant females. Our findings suggest that, despite previous reports of aneuploidy in early embryos, chromosome missegregation in zygotes halts embryogenesis at the two-cell stage. Smc3 is a maternal gene with essential functions in the repair of spontaneous damage associated with DNA replication and subsequent chromosome segregation in zygotes, making cohesin a key protector of the zygotic genome.
Collapse
Affiliation(s)
- Wei-Ting Yueh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
38
|
Porazzi P, Petruk S, Pagliaroli L, De Dominici M, Deming D, Puccetti MV, Kushinsky S, Kumar G, Minieri V, Barbieri E, Deliard S, Grande A, Trizzino M, Gardini A, Canaani E, Palmisiano N, Porcu P, Ertel A, Fortina PM, Eischen CM, Mazo A, Calabretta B. Targeting chemotherapy to de-condensed H3K27me3-marked chromatin of AML cells enhances leukemia suppression. Cancer Res 2021; 82:458-471. [PMID: 34903608 DOI: 10.1158/0008-5472.can-21-1297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/15/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
Despite treatment with intensive chemotherapy, acute myeloid leukemia (AML) remains an aggressive malignancy with a dismal outcome in most patients. We found that AML cells exhibit an unusually rapid accumulation of the repressive histone mark H3K27me3 on nascent DNA. In cell lines, primary cells and xenograft mouse models, inhibition of the H3K27 histone methyltransferase EZH2 to de-condense the H3K27me3-marked chromatin of AML cells enhanced chromatin accessibility and chemotherapy-induced DNA damage, apoptosis, and leukemia suppression. These effects were further promoted when chromatin de-condensation of AML cells was induced upon S-phase entry after release from a transient G1 arrest mediated by CDK4/6 inhibition. In the p53-null KG-1 and THP-1 AML cell lines, EZH2 inhibitor and doxorubicin co-treatment induced transcriptional reprogramming that was, in part, dependent on de-repression of H3K27me3-marked gene promoters and led to increased expression of cell death-promoting and growth-inhibitory genes. In conclusion, decondensing H3K27me3-marked chromatin by EZH2 inhibition represents a promising approach to improve the efficacy of DNA-damaging cytotoxic agents in AML patients. This strategy might allow for a lowering of chemotherapy doses with a consequent reduction of treatment-related side effects in elderly AML patients or those with significant comorbidities.
Collapse
Affiliation(s)
- Patrizia Porazzi
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center,, Thomas Jefferson University
| | - Luca Pagliaroli
- Department of Biochemistry and Molecular Biology and Sidney Kimmel Cancer Center,, Thomas Jefferson University
| | | | - David Deming
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center,, Thomas Jefferson University
| | - Matthew V Puccetti
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| | - Saul Kushinsky
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University
| | - Valentina Minieri
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| | - Elisa Barbieri
- Gene Expression and Regulation Program, The Wistar Institute
| | - Sandra Deliard
- Gene Expression and Regulation Program, The Wistar Institute
| | - Alexis Grande
- Department of Life Sciences, University of Modena and Reggio Emilia
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center,, Thomas Jefferson University
| | | | - Eli Canaani
- The Department of Molecular Cell Biology, Weizmann Institute of Science
| | | | | | - Adam Ertel
- Department of Cancer Biology, Thomas Jefferson University
| | | | | | - Alexander Mazo
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center,, Thomas Jefferson University
| | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University
| |
Collapse
|
39
|
Bailey ML, Tieu D, Habsid A, Tong AHY, Chan K, Moffat J, Hieter P. Paralogous synthetic lethality underlies genetic dependencies of the cancer-mutated gene STAG2. Life Sci Alliance 2021; 4:e202101083. [PMID: 34462321 PMCID: PMC8408347 DOI: 10.26508/lsa.202101083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
STAG2, a component of the mitotically essential cohesin complex, is highly mutated in several different tumour types, including glioblastoma and bladder cancer. Whereas cohesin has roles in many cancer-related pathways, such as chromosome instability, DNA repair and gene expression, the complex nature of cohesin function has made it difficult to determine how STAG2 loss might either promote tumorigenesis or be leveraged therapeutically across divergent cancer types. Here, we have performed whole-genome CRISPR-Cas9 screens for STAG2-dependent genetic interactions in three distinct cellular backgrounds. Surprisingly, STAG1, the paralog of STAG2, was the only negative genetic interaction that was shared across all three backgrounds. We also uncovered a paralogous synthetic lethal mechanism behind a genetic interaction between STAG2 and the iron regulatory gene IREB2 Finally, investigation of an unusually strong context-dependent genetic interaction in HAP1 cells revealed factors that could be important for alleviating cohesin loading stress. Together, our results reveal new facets of STAG2 and cohesin function across a variety of genetic contexts.
Collapse
Affiliation(s)
- Melanie L Bailey
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - David Tieu
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Andrea Habsid
- Donnelly Centre, University of Toronto, Toronto, Canada
| | | | | | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
40
|
Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021; 138:649-661. [PMID: 34157074 PMCID: PMC8394903 DOI: 10.1182/blood.2019004259] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, University of Heidelberg, Mannheim, Germany; and
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
41
|
Martín-Izquierdo M, Abáigar M, Hernández-Sánchez JM, Tamborero D, López-Cadenas F, Ramos F, Lumbreras E, Madinaveitia-Ochoa A, Megido M, Labrador J, Sánchez-Real J, Olivier C, Dávila J, Aguilar C, Rodríguez JN, Martín-Nuñez G, Santos-Mínguez S, Miguel-García C, Benito R, Díez-Campelo M, Hernández-Rivas JM. Co-occurrence of cohesin complex and Ras signaling mutations during progression from myelodysplastic syndromes to secondary acute myeloid leukemia. Haematologica 2021; 106:2215-2223. [PMID: 32675227 PMCID: PMC8327724 DOI: 10.3324/haematol.2020.248807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are hematological disorders at high risk of progression to secondary acute myeloid leukemia (sAML). However, the mutational dynamics and clonal evolution underlying disease progression are poorly understood at present. To elucidate the mutational dynamics of pathways and genes occurring during the evolution to sAML, next generation sequencing was performed on 84 serially paired samples of MDS patients who developed sAML (discovery cohort) and 14 paired samples from MDS patients who did not progress to sAML during follow-up (control cohort). Results were validated in an independent series of 388 MDS patients (validation cohort). We used an integrative analysis to identify how mutations, alone or in combination, contribute to leukemic transformation. The study showed that MDS progression to sAML is characterized by greater genomic instability and the presence of several types of mutational dynamics, highlighting increasing (STAG2) and newly-acquired (NRAS and FLT3) mutations. Moreover, we observed cooperation between genes involved in the cohesin and Ras pathways in 15-20% of MDS patients who evolved to sAML, as well as a high proportion of newly acquired or increasing mutations in the chromatin-modifier genes in MDS patients receiving a disease-modifying therapy before their progression to sAML.
Collapse
Affiliation(s)
- Marta Martín-Izquierdo
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - María Abáigar
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - Jesús M Hernández-Sánchez
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - David Tamborero
- Hospital del Mar Medical Research Institute (IMIM), Barcelona and Karolinska Institutet, Stockholm
| | - Félix López-Cadenas
- University of Salamanca, IBSAL, Hematology, Hospital Clinico Universitario, Salamanca, Spain
| | - Fernando Ramos
- Hematology, Hospital Universitario de León, Institute of Biomedicine (IBIOMED), Spain
| | - Eva Lumbreras
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | | | - Marta Megido
- Hematology, Hospital del Bierzo, Ponferrada, León, Spain
| | - Jorge Labrador
- Hematology, Hospital Universitario de Burgos, Burgos, Spain
| | - Javier Sánchez-Real
- Hematology, Hospital Universitario de León, Institute of Biomedicine (IBIOMED), Spain
| | | | - Julio Dávila
- Hematology, Hospital Nuestra Señora de Sónsoles, Ávila, Spain
| | | | | | | | - Sandra Santos-Mínguez
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - Cristina Miguel-García
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - Rocío Benito
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| | - María Díez-Campelo
- University of Salamanca, IBSAL, Hematology, Hospital Clínico Universitario, Salamanca, Spain
| | - Jesús M Hernández-Rivas
- Institute of Biomedical Research of Salamanca, Cancer Research Center-University of Salamanca, Spain
| |
Collapse
|
42
|
Ohki K, Kiyokawa N, Watanabe S, Iwafuchi H, Nakazawa A, Ishiwata K, Ogata-Kawata H, Nakabayashi K, Okamura K, Tanaka F, Fukano R, Hata K, Mori T, Moriya Saito A, Hayashi Y, Taga T, Sekimizu M, Kobayashi R. Characteristics of genetic alterations of peripheral T-cell lymphoma in childhood including identification of novel fusion genes: the Japan Children's Cancer Group (JCCG). Br J Haematol 2021; 194:718-729. [PMID: 34258755 DOI: 10.1111/bjh.17639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Peripheral T-cell lymphoma (PTCL) is a group of heterogeneous non-Hodgkin lymphomas showing a mature T-cell or natural killer cell phenotype, but its molecular abnormalities in paediatric patients remain unclear. By employing next-generation sequencing and multiplex ligation-dependent probe amplification of tumour samples from 26 patients, we identified somatic alterations in paediatric PTCL including Epstein-Barr virus (EBV)-negative (EBV- ) and EBV-positive (EBV+ ) patients. As recurrent mutational targets for PTCL, we identified several previously unreported genes, including TNS1, ZFHX3, LRP2, NCOA2 and HOXA1, as well as genes previously reported in adult patients, e.g. TET2, CDKN2A, STAT3 and TP53. However, for other reported mutations, VAV1-related abnormalities were absent and mutations of NRAS, GATA3 and JAK3 showed a low frequency in our cohort. Concerning the association of EBV infection, two novel fusion genes: STAG2-AFF2 and ITPR2-FSTL4, and deletion and alteration of CDKN2A/2B, LMO1 and HOXA1 were identified in EBV- PTCL, but not in EBV+ PTCL. Conversely, alterations of PCDHGA4, ADAR, CUL9 and TP53 were identified only in EBV+ PTCL. Our observations suggest a clear difference in the molecular mechanism of onset between paediatric and adult PTCL and a difference in the characteristics of genetic alterations between EBV- and EBV+ paediatric PTCL.
Collapse
Affiliation(s)
- Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoru Watanabe
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideto Iwafuchi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pathology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Astuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Fumiko Tanaka
- Department of Pediatrics, Saiseikai Yokohamashi Nanbu Hospital, Kanagawa, Japan
| | - Reiji Fukano
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tetsuya Mori
- Department of Pediatrics, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Akiko Moriya Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yasuhide Hayashi
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Masahiro Sekimizu
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Ryoji Kobayashi
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Hokkaido, Japan
| | | |
Collapse
|
43
|
Cai H, Chew SK, Li C, Tsai MK, Andrejka L, Murray CW, Hughes NW, Shuldiner EG, Ashkin EL, Tang R, Hung KL, Chen LC, Lee SYC, Yousefi M, Lin WY, Kunder CA, Cong L, McFarland CD, Petrov DA, Swanton C, Winslow MM. A Functional Taxonomy of Tumor Suppression in Oncogenic KRAS-Driven Lung Cancer. Cancer Discov 2021; 11:1754-1773. [PMID: 33608386 PMCID: PMC8292166 DOI: 10.1158/2159-8290.cd-20-1325] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/25/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Cancer genotyping has identified a large number of putative tumor suppressor genes. Carcinogenesis is a multistep process, but the importance and specific roles of many of these genes during tumor initiation, growth, and progression remain unknown. Here we use a multiplexed mouse model of oncogenic KRAS-driven lung cancer to quantify the impact of 48 known and putative tumor suppressor genes on diverse aspects of carcinogenesis at an unprecedented scale and resolution. We uncover many previously understudied functional tumor suppressors that constrain cancer in vivo. Inactivation of some genes substantially increased growth, whereas the inactivation of others increases tumor initiation and/or the emergence of exceptionally large tumors. These functional in vivo analyses revealed an unexpectedly complex landscape of tumor suppression that has implications for understanding cancer evolution, interpreting clinical cancer genome sequencing data, and directing approaches to limit tumor initiation and progression. SIGNIFICANCE: Our high-throughput and high-resolution analysis of tumor suppression uncovered novel genetic determinants of oncogenic KRAS-driven lung cancer initiation, overall growth, and exceptional growth. This taxonomy is consistent with changing constraints during the life history of cancer and highlights the value of quantitative in vivo genetic analyses in autochthonous cancer models.This article is highlighted in the In This Issue feature, p. 1601.
Collapse
Affiliation(s)
- Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Su Kit Chew
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Chuan Li
- Department of Biology, Stanford University, Stanford, California
| | - Min K Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Christopher W Murray
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Nicholas W Hughes
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | | | - Emily L Ashkin
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Rui Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - King L Hung
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Leo C Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Shi Ya C Lee
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Maryam Yousefi
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Wen-Yang Lin
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Christian A Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Le Cong
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | | | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, California.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, United Kingdom.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
44
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
45
|
Adane B, Alexe G, Seong BKA, Lu D, Hwang EE, Hnisz D, Lareau CA, Ross L, Lin S, Dela Cruz FS, Richardson M, Weintraub AS, Wang S, Iniguez AB, Dharia NV, Conway AS, Robichaud AL, Tanenbaum B, Krill-Burger JM, Vazquez F, Schenone M, Berman JN, Kung AL, Carr SA, Aryee MJ, Young RA, Crompton BD, Stegmaier K. STAG2 loss rewires oncogenic and developmental programs to promote metastasis in Ewing sarcoma. Cancer Cell 2021; 39:827-844.e10. [PMID: 34129824 PMCID: PMC8378827 DOI: 10.1016/j.ccell.2021.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/28/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
The core cohesin subunit STAG2 is recurrently mutated in Ewing sarcoma but its biological role is less clear. Here, we demonstrate that cohesin complexes containing STAG2 occupy enhancer and polycomb repressive complex (PRC2)-marked regulatory regions. Genetic suppression of STAG2 leads to a compensatory increase in cohesin-STAG1 complexes, but not in enhancer-rich regions, and results in reprogramming of cis-chromatin interactions. Strikingly, in STAG2 knockout cells the oncogenic genetic program driven by the fusion transcription factor EWS/FLI1 was highly perturbed, in part due to altered enhancer-promoter contacts. Moreover, loss of STAG2 also disrupted PRC2-mediated regulation of gene expression. Combined, these transcriptional changes converged to modulate EWS/FLI1, migratory, and neurodevelopmental programs. Finally, consistent with clinical observations, functional studies revealed that loss of STAG2 enhances the metastatic potential of Ewing sarcoma xenografts. Our findings demonstrate that STAG2 mutations can alter chromatin architecture and transcriptional programs to promote an aggressive cancer phenotype.
Collapse
Affiliation(s)
- Biniam Adane
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriela Alexe
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Bo Kyung A Seong
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diana Lu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Elizabeth E Hwang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Denes Hnisz
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Linda Ross
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Shan Lin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Abraham S Weintraub
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Wang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Neekesh V Dharia
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Saur Conway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Amanda L Robichaud
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | | | | | | | - Jason N Berman
- Department of Pediatrics and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin J Aryee
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Pathology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Kimberly Stegmaier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
46
|
Iacobucci I, Qu C, Varotto E, Janke LJ, Yang X, Seth A, Shelat A, Friske JD, Fukano R, Yu J, Freeman BB, Kennedy JA, Sperling AS, Zheng R, Wang Y, Jogiraju H, Dickerson KM, Payne-Turner D, Morris SM, Hollis ES, Ghosn N, Haggard GE, Lindsley RC, Ebert BL, Mullighan CG. Modeling and targeting of erythroleukemia by hematopoietic genome editing. Blood 2021; 137:1628-1640. [PMID: 33512458 PMCID: PMC7995291 DOI: 10.1182/blood.2020009103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Acute erythroid leukemia (AEL) is characterized by a distinct morphology, mutational spectrum, lack of preclinical models, and poor prognosis. Here, using multiplexed genome editing of mouse hematopoietic stem and progenitor cells and transplant assays, we developed preclinical models of AEL and non-erythroid acute leukemia and describe the central role of mutational cooperativity in determining leukemia lineage. Different combination of mutations in Trp53, Bcor, Dnmt3a, Rb1, and Nfix resulted in the development of leukemia with an erythroid phenotype, accompanied by the acquisition of alterations in signaling and transcription factor genes that recapitulate human AEL by cross-species genomic analysis. Clonal expansion during tumor evolution was driven by mutational cooccurrence, with clones harboring a higher number of founder and secondary lesions (eg, mutations in signaling genes) showing greater evolutionary fitness. Mouse and human AEL exhibited deregulation of genes regulating erythroid development, notably Gata1, Klf1, and Nfe2, driven by the interaction of mutations of the epigenetic modifiers Dnmt3a and Tet2 that perturbed methylation and thus expression of lineage-specific transcription factors. The established mouse leukemias were used as a platform for drug screening. Drug sensitivity was associated with the leukemia genotype, with the poly (ADP-ribose) polymerase inhibitor talazoparib and the demethylating agent decitabine efficacious in Trp53/Bcor-mutant AEL, CDK7/9 inhibitors in Trp53/Bcor/Dnmt3a-mutant AEL, and gemcitabine and bromodomain inhibitors in NUP98-KDM5A leukemia. In conclusion, combinatorial genome editing has shown the interplay of founding and secondary genetic alterations in phenotype and clonal evolution, epigenetic regulation of lineage-specific transcription factors, and therapeutic tractability in erythroid leukemogenesis.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Chunxu Qu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Elena Varotto
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
- Pediatric Hematology-Oncology, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Laura J Janke
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Xu Yang
- Department of Computational Biology
| | - Aman Seth
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics, and
| | - Jake D Friske
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Reiji Fukano
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | | | - Burgess B Freeman
- Preclinical Pharmacokinetics Shared Resource, St Jude Children's Research Hospital, Memphis, TN
| | - James A Kennedy
- Brigham and Women's Hospital, Boston, MA
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Adam S Sperling
- Brigham and Women's Hospital, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Rena Zheng
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University Medical Center, Boston MA
| | - Yingzhe Wang
- Preclinical Pharmacokinetics Shared Resource, St Jude Children's Research Hospital, Memphis, TN
| | - Harini Jogiraju
- Preclinical Pharmacokinetics Shared Resource, St Jude Children's Research Hospital, Memphis, TN
| | | | | | - Sarah M Morris
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Emily S Hollis
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Nina Ghosn
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Georgia E Haggard
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA; and
| | - Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
- Hematological Malignancies Program, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
47
|
Su XA, Ma D, Parsons JV, Replogle JM, Amatruda JF, Whittaker CA, Stegmaier K, Amon A. RAD21 is a driver of chromosome 8 gain in Ewing sarcoma to mitigate replication stress. Genes Dev 2021; 35:556-572. [PMID: 33766983 PMCID: PMC8015718 DOI: 10.1101/gad.345454.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/25/2021] [Indexed: 01/08/2023]
Abstract
In this study, Su et al. investigate why ∼50% of Ewing sarcomas, driven by the EWS-FLI1 fusion oncogene, harbor chromosome 8 gains. Using an evolution approach, they show that trisomy 8 mitigates EWS-FLI1-induced replication stress through gain of a copy of RAD21, and deleting one copy of RAD21 in trisomy 8 cells largely neutralizes the fitness benefit of chromosome 8 gain and reduces tumorgenicity of a Ewing sarcoma cancer cell line in soft agar assays. Aneuploidy, defined as whole-chromosome gain or loss, causes cellular stress but, paradoxically, is a frequent occurrence in cancers. Here, we investigate why ∼50% of Ewing sarcomas, driven by the EWS-FLI1 fusion oncogene, harbor chromosome 8 gains. Expression of the EWS-FLI1 fusion in primary cells causes replication stress that can result in cellular senescence. Using an evolution approach, we show that trisomy 8 mitigates EWS-FLI1-induced replication stress through gain of a copy of RAD21. Low-level ectopic expression of RAD21 is sufficient to dampen replication stress and improve proliferation in EWS-FLI1-expressing cells. Conversely, deleting one copy in trisomy 8 cells largely neutralizes the fitness benefit of chromosome 8 gain and reduces tumorgenicity of a Ewing sarcoma cancer cell line in soft agar assays. We propose that RAD21 promotes tumorigenesis through single gene copy gain. Such genes may explain some recurrent aneuploidies in cancer.
Collapse
Affiliation(s)
- Xiaofeng A Su
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Duanduan Ma
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility, Swanson Biotechnology Center, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James V Parsons
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - John M Replogle
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James F Amatruda
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Charles A Whittaker
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility, Swanson Biotechnology Center, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
48
|
Tothova Z, Valton AL, Gorelov RA, Vallurupalli M, Krill-Burger JM, Holmes A, Landers CC, Haydu JE, Malolepsza E, Hartigan C, Donahue M, Popova KD, Koochaki S, Venev SV, Rivera J, Chen E, Lage K, Schenone M, D’Andrea AD, Carr SA, Morgan EA, Dekker J, Ebert BL. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight 2021; 6:142149. [PMID: 33351783 PMCID: PMC7934867 DOI: 10.1172/jci.insight.142149] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
The cohesin complex plays an essential role in chromosome maintenance and transcriptional regulation. Recurrent somatic mutations in the cohesin complex are frequent genetic drivers in cancer, including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Here, using genetic dependency screens of stromal antigen 2-mutant (STAG2-mutant) AML, we identified DNA damage repair and replication as genetic dependencies in cohesin-mutant cells. We demonstrated increased levels of DNA damage and sensitivity of cohesin-mutant cells to poly(ADP-ribose) polymerase (PARP) inhibition. We developed a mouse model of MDS in which Stag2 mutations arose as clonal secondary lesions in the background of clonal hematopoiesis driven by tet methylcytosine dioxygenase 2 (Tet2) mutations and demonstrated selective depletion of cohesin-mutant cells with PARP inhibition in vivo. Finally, we demonstrated a shift from STAG2- to STAG1-containing cohesin complexes in cohesin-mutant cells, which was associated with longer DNA loop extrusion, more intermixing of chromatin compartments, and increased interaction with PARP and replication protein A complex. Our findings inform the biology and therapeutic opportunities for cohesin-mutant malignancies.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Damage
- DNA Repair/genetics
- Disease Models, Animal
- Female
- Humans
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Mutant Strains
- Mice, SCID
- Mice, Transgenic
- Mutation
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Nuclear Proteins/genetics
- Phthalazines/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- U937 Cells
- Xenograft Model Antitumor Assays
- Cohesins
Collapse
Affiliation(s)
- Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Anne-Laure Valton
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Mounica Vallurupalli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Amie Holmes
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - J. Erika Haydu
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | | | - Melanie Donahue
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Sebastian Koochaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sergey V. Venev
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeanne Rivera
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Edwin Chen
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Kasper Lage
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Monica Schenone
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Alan D. D’Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Steven A. Carr
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Elizabeth A. Morgan
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
49
|
Chin CV, Antony J, Ketharnathan S, Labudina A, Gimenez G, Parsons KM, He J, George AJ, Pallotta MM, Musio A, Braithwaite A, Guilford P, Hannan RD, Horsfield JA. Cohesin mutations are synthetic lethal with stimulation of WNT signaling. eLife 2020; 9:e61405. [PMID: 33284104 PMCID: PMC7746233 DOI: 10.7554/elife.61405] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
Mutations in genes encoding subunits of the cohesin complex are common in several cancers, but may also expose druggable vulnerabilities. We generated isogenic MCF10A cell lines with deletion mutations of genes encoding cohesin subunits SMC3, RAD21, and STAG2 and screened for synthetic lethality with 3009 FDA-approved compounds. The screen identified several compounds that interfere with transcription, DNA damage repair and the cell cycle. Unexpectedly, one of the top 'hits' was a GSK3 inhibitor, an agonist of Wnt signaling. We show that sensitivity to GSK3 inhibition is likely due to stabilization of β-catenin in cohesin-mutant cells, and that Wnt-responsive gene expression is highly sensitized in STAG2-mutant CMK leukemia cells. Moreover, Wnt activity is enhanced in zebrafish mutant for cohesin subunits stag2b and rad21. Our results suggest that cohesin mutations could progress oncogenesis by enhancing Wnt signaling, and that targeting the Wnt pathway may represent a novel therapeutic strategy for cohesin-mutant cancers.
Collapse
Affiliation(s)
- Chue Vin Chin
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Jisha Antony
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Sarada Ketharnathan
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Anastasia Labudina
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Gregory Gimenez
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Kate M Parsons
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Jinshu He
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Amee J George
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Maria Michela Pallotta
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR)PisaItaly
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR)PisaItaly
| | - Antony Braithwaite
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
| | - Parry Guilford
- Department of Biochemistry, University of OtagoDunedinNew Zealand
| | - Ross D Hannan
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
- Department of Biochemistry and Molecular Biology, University of MelbourneParkvilleAustralia
- Sir Peter MacCallum Department of Oncology, University of MelbourneParkvilleAustralia
- School of Biomedical Sciences, University of QueenslandSt LuciaAustralia
| | - Julia A Horsfield
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| |
Collapse
|
50
|
GWAS of Post-Orthodontic Aggressive External Apical Root Resorption Identified Multiple Putative Loci at X-Y Chromosomes. J Pers Med 2020; 10:jpm10040169. [PMID: 33066413 PMCID: PMC7712155 DOI: 10.3390/jpm10040169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Personalized dental medicine requires from precise and customized genomic diagnostic. To conduct an association analysis over multiple putative loci and genes located at chromosomes 2, 4, 8, 12, 18, X, and Y, potentially implicated in an extreme type of external apical root resorption secondary to orthodontic forces (aEARR). A genome-wide association study of aEARR was conducted with 480 patients [ratio~1:3 case/control]. Genomic DNA was extracted and analyzed using the high-throughput Axiom platform with the GeneTitan® MC Instrument. Up to 14,377 single nucleotide polymorphisms (SNPs) were selected at candidate regions and clinical/diagnostic data were recorded. A descriptive analysis of the data along with a backward conditional binary logistic regression was used to calculate odds ratios, with 95% confidence intervals [p < 0.05]. To select the best SNP candidates, a logistic regression model was fitted assuming a log-additive genetic model using R software [p < 0.0001]. In this sample the top lead genetic variants associated with aEARR were two novel putative genes located in the X chromosome, specifically, STAG 2 gene, rs151184635 and RP1-30E17.2 gene, rs55839915. These variants were found to be associated with an increased risk of aEARR, particularly restricted to men [OR: 6.09; 95%CI: 2.6–14.23 and OR: 6.86; 95%CI: 2.65–17.81, respectively]. Marginal associations were found at previously studied variants such as SSP1: rs11730582 [OR: 0.54; 95%CI: 0.34–0.86; p = 0.008], P2RX7: rs1718119 [OR: 0.6; 95%CI: 0.36–1.01; p = 0.047], and TNFRSF11A: rs8086340 [OR: 0.6; 95%CI: 0.38–0.95; p = 0.024]), found solely in females. Multiple putative genetic variants located at chromosomes X and Y are potentially implicated in an extreme phenotype of aEARR. A gender-linked association was noted.
Collapse
|