1
|
Li Y, Sun Y, Yu K, Li Z, Miao H, Xiao W. Keratin: A potential driver of tumor metastasis. Int J Biol Macromol 2025; 307:141752. [PMID: 40049479 DOI: 10.1016/j.ijbiomac.2025.141752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Keratins, as essential components of intermediate filaments in epithelial cells, play a crucial role in maintaining cell structure and function. In various malignant epithelial tumors, abnormal keratin expression is frequently observed and serves not only as a diagnostic marker but also closely correlates with tumor progression. Extensive research has demonstrated that keratins are pivotal in multiple stages of tumor metastasis, including responding to mechanical forces, evading the immune system, reprogramming metabolism, promoting angiogenesis, and resisting apoptosis. Here we emphasize that keratins significantly enhance the migratory and invasive capabilities of tumor cells, making them critical drivers of tumor metastasis. These findings highlight the importance of targeting keratins as a strategic approach to combat tumor metastasis, thereby advancing our understanding of their role in cancer progression and offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuening Li
- Army Medical University, Chongqing, China
| | - Yiming Sun
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kun Yu
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhixi Li
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Jinfeng Laboratory, Chongqing, China.
| | - Weidong Xiao
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Hsieh HC, Han Q, Brenes D, Bishop KW, Wang R, Wang Y, Poudel C, Glaser AK, Freedman BS, Vaughan JC, Allbritton NL, Liu JTC. Imaging 3D cell cultures with optical microscopy. Nat Methods 2025:10.1038/s41592-025-02647-w. [PMID: 40247123 DOI: 10.1038/s41592-025-02647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/16/2025] [Indexed: 04/19/2025]
Abstract
Three-dimensional (3D) cell cultures have gained popularity in recent years due to their ability to represent complex tissues or organs more faithfully than conventional two-dimensional (2D) cell culture. This article reviews the application of both 2D and 3D microscopy approaches for monitoring and studying 3D cell cultures. We first summarize the most popular optical microscopy methods that have been used with 3D cell cultures. We then discuss the general advantages and disadvantages of various microscopy techniques for several broad categories of investigation involving 3D cell cultures. Finally, we provide perspectives on key areas of technical need in which there are clear opportunities for innovation. Our goal is to guide microscope engineers and biomedical end users toward optimal imaging methods for specific investigational scenarios and to identify use cases in which additional innovations in high-resolution imaging could be helpful.
Collapse
Affiliation(s)
- Huai-Ching Hsieh
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Qinghua Han
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - David Brenes
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Kevin W Bishop
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Rui Wang
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Adam K Glaser
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Benjamin S Freedman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Medicine, Division of Nephrology, Kidney Research Institute and Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
- Plurexa LLC, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jonathan T C Liu
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Liu C, He W, Zhao H, Wang S, Qian Z. KRT80, Regulated by RNF8-Mediated Ubiquitination, Contributes to Glucose Metabolic Reprogramming and Progression of Glioblastoma. Neurochem Res 2025; 50:128. [PMID: 40146410 DOI: 10.1007/s11064-025-04380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
Glioblastoma (GBM) is a highly malignant and aggressive brain tumor with a remarkably poor prognosis and is one of the greatest challenges in the field of neurosurgery. Keratin 80 (KRT80) is primarily expressed in epithelial cells and is involved in the stability and integrity of cellular structures. Although it plays a role in skin and hair follicle development, its function in bridging cancer cells with metabolic pathways is gradually being revealed, such as its activation of glycolysis pathways to promote tumor proliferation. Ring finger protein 8 (RNF8) is an E3 ubiquitin ligase, whose expression has been documented to be significantly reduced in gliomas. Predictions from multiple databases suggest that KRT80 may bind specifically with RNF8. This study aimed to explore the function of KRT80 in GBM procession and the regulatory mechanism between RNF8 and KRT80. We confirmed that KRT80 promoted cell proliferation by constructing overexpression and knockout cell lines. This was also demonstrated by in vivo tumor formation experiments. Besides, higher caspase3/9 activity induced by KRT80 knockout prompted active apoptosis, which was confirmed by flow cytometry showing increased rate of apoptosis. Results also found KRT80 overexpression caused the activation of glycolytic pathways (glucose transporter 1, hexokinase2, and lactate dehydrogenase A) by real-time PCR and the increase of metabolites levels by non-targeted metabolomics. Immunofluorescence co-localization and co-immunoprecipitation assays showed RNF8 attenuated KRT80-induced adverse effects via influencing its ubiquitination degradation. In conclusion, KRT80 is regulated by RNF8-mediated ubiquitination, promoting glycolysis and the progression of GBM.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Weiming He
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Hantong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
| | - Shuguang Wang
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China.
| |
Collapse
|
4
|
Sah B, Singh J, Shen Y, Goldfarb N, Samie FH, Geskin LJ, Liu L. Loss of CELF2 promotes skin tumorigenesis and increases drug resistance. Int J Dermatol 2025; 64:101-110. [PMID: 38887832 PMCID: PMC11649858 DOI: 10.1111/ijd.17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND CELF2 belongs to the CELF RNA-binding protein family and exhibits antitumor activity in various tumor models. Analysis of the pan-cancer TCGA database reveals that CELF2 expression strongly correlates with favorable prognosis among cancer patients. The function of CELF2 in nonmelanoma skin cancer has not been studied. METHODS We used shRNA-mediated knockdown (KD) of CELF2 expression in human squamous cell carcinoma (SCC) cells to investigate how CELF2 impacted SCC cell proliferation, survival, and xenograft tumor growth. We determined CELF2 expression in human SCC tissues and adjacent normal skin using immunofluorescence staining. Additionally, we investigated the changes in CELF2 and its target gene expression during UV-induced and chemical-induced skin tumorigenesis by western blotting. RESULTS CELF2 KD significantly increased SCC cell proliferation, colony growth, and SCC xenograft tumor growth in immunodeficient mice. CELF2 KD in SCC cells led to activation of KRT80 and GDF15, which can potentially promote cell proliferation and tumor growth. While control SCC cells were sensitive to anticancer drugs such as doxorubicin, SCC cells with CELF2 KD became resistant to drug-induced tumor growth retardation. Finally, we found CELF2 expression diminished during both UV- and chemical-induced skin tumorigenesis in mice, consistent with reduced CELF2 expression in human SCC tumors compared to adjacent normal skin. CONCLUSION This study shows for the first time that CELF2 loss occurs during skin tumorigenesis and increases drug resistance in SCC cells, highlighting the possibility of targeting CELF2-regulated pathways in skin cancer prevention and therapies.
Collapse
MESH Headings
- Humans
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Skin Neoplasms/metabolism
- Animals
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/pathology
- Mice
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation/drug effects
- CELF Proteins/metabolism
- Cell Line, Tumor
- Carcinogenesis/genetics
- Gene Knockdown Techniques
- Doxorubicin/pharmacology
- Ultraviolet Rays/adverse effects
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- RNA, Small Interfering
- Skin/pathology
- Skin/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/adverse effects
- Xenograft Model Antitumor Assays
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Bindeshwar Sah
- The Hormel Institute, University of MinnesotaAustinMNUSA
| | | | - Yao Shen
- Department of Systems BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Noah Goldfarb
- Department of Internal Medicine and DermatologyUniversity of MinnesotaMinneapolisMNUSA
- Minneapolis VA Medical Center Health Care SystemMinneapolisMinnesotaUSA
| | - Faramarz H. Samie
- Department of DermatologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Larisa J. Geskin
- Department of DermatologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Liang Liu
- The Hormel Institute, University of MinnesotaAustinMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
5
|
Yun WJ, Li J, Yin NC, Zhang CY, Cui ZG, Zhang L, Zheng HC. The facilitating effects of KRT80 on chemoresistance, lipogenesis, and invasion of esophageal cancer. Cancer Biol Ther 2024; 25:2302162. [PMID: 38241178 PMCID: PMC10802210 DOI: 10.1080/15384047.2024.2302162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
Keratin 80 (KRT80) is a filament protein that makes up one of the major structural fibers of epithelial cells, and involved in cell differentiation and epithelial barrier integrity. Here, KRT80 mRNA expression was found to be higher in esophageal cancer than normal epithelium by RT-PCR and bioinformatics analysis (p < .05), opposite to KRT80 methylation (p < .05). There was a negative relationship between promoter methylation and expression level of KRT80 gene in esophageal cancer (p < .05). KRT80 mRNA expression was positively correlated with the differentiation, infiltration of immune cells, and poor prognosis of esophageal cancer (p < .05). KRT80 mRNA expression was positively linked to no infiltration of immune cells, the short survival time of esophageal cancers (p < .05). The differential genes of KRT80 mRNA were involved in fat digestion and metabolism, peptidase inhibitor, and intermediate filament, desosome, keratinocyte differentiation, epidermis development, keratinization, ECM regulator, complement cascade, metabolism of vitamins and co-factor (p < .05). KRT-80-related genes were classified into endocytosis, cell adhesion molecule binding, cadherin binding, cell-cell junction, cell leading edge, epidermal cell differentiation and development, T cell differentiation and receptor complex, plasma membrane receptor complex, external side of plasma membrane, metabolism of amino acids and catabolism of small molecules, and so forth (p < .05). KRT80 knockdown suppressed anti-apoptosis, anti-pyroptosis, migration, invasion, chemoresistance, and lipogenesis in esophageal cancer cells (p < .05), while ACC1 and ACLY overexpression reversed the inhibitory effects of KRT80 on lipogenesis and chemoresistance. These findings indicated that up-regulated expression of KRT80 might be involved in esophageal carcinogenesis and subsequent progression, aggravate aggressive phenotypes, and induced chemoresistance by lipid droplet assembly and ACC1- and ACLY-mediated lipogenesis.
Collapse
Affiliation(s)
- Wen-Jing Yun
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Jun Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Jinan, China
| | - Nan-Chang Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui, Japan
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hua-Chuan Zheng
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
6
|
Hajirahimkhan A, Bartom ET, Chung CH, Guo X, Berkley K, Lee O, Chen R, Cho W, Chandrasekaran S, Clare SE, Khan SA. Reprogramming SREBP1-dependent lipogenesis and inflammation in high-risk breast with licochalcone A: a novel path to cancer prevention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595011. [PMID: 39651211 PMCID: PMC11623508 DOI: 10.1101/2024.05.20.595011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Anti-estrogens have had limited impact on breast cancer (BC) prevention. Novel agents with better tolerability, and efficacy beyond estrogen receptor (ER) positive BC are needed. We studied licochalcone A (LicA) for ER-agnostic BC prevention. Methods We evaluated antiproliferative effects of LicA in seven breast cell lines and its suppression of ER+ and ER- xenograft tumors in mice. High-risk human breast tissue was treated with LicA ex vivo , followed by RNA sequencing and metabolism flux modeling. Confirmatory testing was performed in an independent specimen set and ER+/- BC cell lines using NanoString metabolic panel, proteomics, western blots, and spatiotemporally resolved cholesterol quantification in single cells. Results LicA suppressed proliferation in vitro and xenograft tumor growth in vivo . It downregulated pivotal steps in PI3K-AKT-SREBP1-dependent lipogenesis, suppressed PI3K and AKT phosphorylation, SREBP1 protein expression, and cholesterol levels in the plasma membrane inner leaflet, to the levels in normal breast cells. LicA also suppressed prostaglandin E2 synthesis and PRPS1-catalyzed de novo nucleotide biosynthesis, stalling proliferation; further evident by reduced MKI67 and BCL2 proteins. Conclusions LicA targets SREBP1, a central regulator of lipogenesis and immune response, reducing pro-tumorigenic aberrations in lipid homeostasis and inflammation. It is a promising non-endocrine candidate for BC prevention.
Collapse
|
7
|
Hua R, Yan X, He J, Wu N, Yu W, Yu P, Qin L. KRT80 in hepatocellular carcinoma plays oncogenic role via epithelial-mesenchymal transition and PI3K/AKT pathway. IUBMB Life 2024. [PMID: 39569942 DOI: 10.1002/iub.2925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024]
Abstract
Hepatocellular carcinoma (HCC), a globally prevalent form of cancer, is featured by aggressive growth and early metastasis. Elucidating the underlying mechanism and identifying the effective therapy are critical for advanced HCC patients. In the study, we detect that KRT80 was upregulated in HCC samples. HCC patients with higher KRT80 are associated with worse overall survival after surgery. Gain-of and loss-of function studies show that KRT80 enhanced HCC cells proliferation, migration, invasion, and angiogenesis, whereas its silencing abolishes the effects in vivo and in vitro. Mechanistic investigation shows that KRT80 may function as an independent prognostic risk factor and act as an oncogene by influencing EMT and modulating the PI3K/AKT signaling pathway. Together, these findings suggest that KRT80 may be a potential oncogene and a good indicator in predicting prognosis. Targeting KRT80 can offer new insights into the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Ruheng Hua
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiyue Yan
- Department of Nursing, Nantong Health College of Jiangsu Province, Nantong, China
| | - Jun He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nuwa Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wangjianfei Yu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Yu
- Department of General Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Liu G, Yang X, Li N. Towards key genes identification for breast cancer survival risk with neural network models. Comput Biol Chem 2024; 112:108143. [PMID: 39142146 DOI: 10.1016/j.compbiolchem.2024.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024]
Abstract
Breast cancer, one common malignant tumor all over the world, has a considerably high rate of recurrence, which endangers the health and life of patients. While more and more data have been available, how to leverage the gene expression data to predict the survival risk of cancer patients and identify key genes has become a hot topic for cancer research. Therefore, in this work, we investigate the gene expression and clinical data of breast cancer patients, specifically a novel framework is proposed focusing on the survival risk classification and key gene identification task. We firstly combine the differential expression and univariate Cox regression analysis to achieve dimensional reduction of gene expression data. The median survival time is subsequently proposed as the risk classification threshold and a learning model based on neural network is trained to classify the survival risk of patients. Innovatively, in this work, the activation region visualization technology is selected as the identification tool, which identify 20 key genes related to the survival risk of breast cancer patients. We further analyze the gene function of these 20 key genes based on STRING database. It is critical to learn that, the genetic biomarkers identified in this paper may possess value for the following clinical treatment of breast cancer according to the literature findings. Importantly, the genetic biomarkers identified in this paper may possess value for the following clinical treatment of breast cancer according to the literature findings. Our work accomplishes the objective of proposing a targeted approach to enhancing the survival analysis and therapeutic strategies in breast cancer through advanced computational techniques and gene analysis.
Collapse
Affiliation(s)
- Gang Liu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Xiao Yang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Nan Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
9
|
Barozzi I, Slaven N, Canale E, Lopes R, Amorim Monteiro Barbosa I, Bleu M, Ivanoiu D, Pacini C, Mensa’ E, Chambers A, Bravaccini S, Ravaioli S, Győrffy B, Dieci MV, Pruneri G, Galli GG, Magnani L. A Functional Survey of the Regulatory Landscape of Estrogen Receptor-Positive Breast Cancer Evolution. Cancer Discov 2024; 14:1612-1630. [PMID: 38753319 PMCID: PMC11372371 DOI: 10.1158/2159-8290.cd-23-1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 09/05/2024]
Abstract
Only a handful of somatic alterations have been linked to endocrine therapy resistance in hormone-dependent breast cancer, potentially explaining ∼40% of relapses. If other mechanisms underlie the evolution of hormone-dependent breast cancer under adjuvant therapy is currently unknown. In this work, we employ functional genomics to dissect the contribution of cis-regulatory elements (CRE) to cancer evolution by focusing on 12 megabases of noncoding DNA, including clonal enhancers, gene promoters, and boundaries of topologically associating domains. Parallel epigenetic perturbation (CRISPRi) in vitro reveals context-dependent roles for many of these CREs, with a specific impact on dormancy entrance and endocrine therapy resistance. Profiling of CRE somatic alterations in a unique, longitudinal cohort of patients treated with endocrine therapies identifies a limited set of noncoding changes potentially involved in therapy resistance. Overall, our data uncover how endocrine therapies trigger the emergence of transient features which could ultimately be exploited to hinder the adaptive process. Significance: This study shows that cells adapting to endocrine therapies undergo changes in the usage or regulatory regions. Dormant cells are less vulnerable to regulatory perturbation but gain transient dependencies which can be exploited to decrease the formation of dormant persisters.
Collapse
Affiliation(s)
- Iros Barozzi
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria.
| | - Neil Slaven
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Eleonora Canale
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| | - Rui Lopes
- Disease area Oncology, Novartis Biomedical Research, Basel, Switzerland.
| | | | - Melusine Bleu
- Disease area Oncology, Novartis Biomedical Research, Basel, Switzerland.
| | - Diana Ivanoiu
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| | - Claudia Pacini
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| | - Emanuela Mensa’
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| | - Alfie Chambers
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy.
- Faculty of Medicine and Surgery, “Kore” University of Enna, Enna, Italy.
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy.
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary.
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Budapest, Hungary.
| | - Maria Vittoria Dieci
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| | - Giancarlo Pruneri
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | | | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer, Research, London, United Kingdom.
| |
Collapse
|
10
|
Feng F, Xu W, Lian C, Wang L, Wang Z, Chen H, Wang X, Wang H, Zhang J. Tuberculosis to lung cancer: application of tuberculosis signatures in identification of lung adenocarcinoma subtypes and marker screening. J Cancer 2024; 15:5329-5350. [PMID: 39247607 PMCID: PMC11375533 DOI: 10.7150/jca.97898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/21/2024] [Indexed: 09/10/2024] Open
Abstract
Background: There is an association between LUAD and TB, and TB increases the risk of lung adenocarcinogenesis. However, the role of TB in the development of lung adenocarcinoma has not been clarified. Methods: DEGs from TB and LUAD lung samples were obtained to identify TB-LUAD-shared DEGs. Consensus Clustering was performed on the TCGA cohort to characterize unique changes in TB transcriptome-derived lung adenocarcinoma subtypes. Prognostic models were constructed based on TB signatures to explore the characterization of subgroups. Finally, experimental validation and single-cell analysis of potential markers were performed. Results: We characterized three molecular subtypes with unique clinical features, cellular infiltration, and pathway change manifestations. We constructed and validated TB-related Signature in six cohorts. TB-related Signature has characteristic alterations, and can be used as an effective predictor of immunotherapy response. Prognostically relevant novel markers KRT80, C1QTNF6, and TRPA1 were validated by RT-qPCR. The association between KRT80 and lung adenocarcinoma disease progression was verified in Bulk transcriptome and single-cell transcriptome. Conclusion: For the first time, a comprehensive bioinformatics analysis of tuberculosis signatures was used to identify subtypes of lung adenocarcinoma. The TB-related Signature predicted prognosis and identified potential markers. This result reveals a potential pathogenic association of tuberculosis in the progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Fan Feng
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, China
- School of Biological and Food Engineering, Suzhou University, Anhui 234000, China
| | - Wanjie Xu
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, 233030, China
| | - Luyao Wang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, 233030, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, 233030, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Joint Research Center for Regional Diseases of IHM, First Affiliated Hospital, Bengbu Medical University, Bengbu, 233030, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| |
Collapse
|
11
|
Wu D, Yin H, Yang C, Zhang Z, Fang F, Wang J, Li X, Xie Y, Hu X, Zhuo R, Chen Y, Yu J, Li T, Li G, Pan J. The BET PROTAC inhibitor GNE-987 displays anti-tumor effects by targeting super-enhancers regulated gene in osteosarcoma. BMC Cancer 2024; 24:928. [PMID: 39090568 PMCID: PMC11292958 DOI: 10.1186/s12885-024-12691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is one of the most common primary malignant tumors of bone in children, which develops from osteoblasts and typically occurs during the rapid growth phase of the bone. Recently, Super-Enhancers(SEs)have been reported to play a crucial role in osteosarcoma growth and metastasis. Therefore, there is an urgent need to identify specific targeted inhibitors of SEs to assist clinical therapy. This study aimed to elucidate the role of BRD4 inhibitor GNE-987 targeting SEs in OS and preliminarily explore its mechanism. METHODS We evaluated changes in osteosarcoma cells following treatment with a BRD4 inhibitor GNE-987. We assessed the anti-tumor effect of GNE-987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, xenograft tumor size measurements, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS In this study, we found that extremely low concentrations of GNE-987(2-10 nM) significantly reduced the proliferation and survival of OS cells by degrading BRD4. In addition, we found that GNE-987 markedly induced cell cycle arrest and apoptosis in OS cells. Further study indicated that VHL was critical for GNE-987 to exert its antitumor effect in OS cells. Consistent with in vitro results, GNE-987 administration significantly reduced tumor size in xenograft models with minimal toxicity, and partially degraded the BRD4 protein. KRT80 was identified through analysis of the RNA-seq and ChIP-seq data. U2OS HiC analysis suggested a higher frequency of chromatin interactions near the KRT80 binding site. The enrichment of H3K27ac modification at KRT80 was significantly reduced after GNE-987 treatment. KRT80 was identified as playing an important role in OS occurrence and development. CONCLUSIONS This research revealed that GNE-987 selectively degraded BRD4 and disrupted the transcriptional regulation of oncogenes in OS. GNE-987 has the potential to affect KRT80 against OS.
Collapse
Affiliation(s)
- Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiaohan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yanling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Juanjuan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Tiandan Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| |
Collapse
|
12
|
Ogasawara N, Kano Y, Yoneyama Y, Kobayashi S, Watanabe S, Kirino S, Velez-Bravo FD, Hong Y, Ostapiuk A, Lutsik P, Onishi I, Yamauchi S, Hiraguri Y, Ito G, Kinugasa Y, Ohashi K, Watanabe M, Okamoto R, Tejpar S, Yui S. Discovery of non-genomic drivers of YAP signaling modulating the cell plasticity in CRC tumor lines. iScience 2024; 27:109247. [PMID: 38439969 PMCID: PMC10910304 DOI: 10.1016/j.isci.2024.109247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
In normal intestines, a fetal/regenerative/revival cell state can be induced upon inflammation. This plasticity in cell fate is also one of the current topics in human colorectal cancer (CRC). To dissect the underlying mechanisms, we generated human CRC organoids with naturally selected genetic mutation profiles and exposed them to two different conditions by modulating the extracellular matrix (ECM). Among tested mutation profiles, a fetal/regenerative/revival state was induced following YAP activation via a collagen type I-enriched microenvironment. Mechanistically, YAP transcription was promoted by activating AP-1 and TEAD-dependent transcription and suppressing intestinal lineage-determining transcription via mechanotransduction. The phenotypic conversion was also involved in chemoresistance, which could be potentially resolved by targeting the underlying YAP regulatory elements, a potential target of CRC treatment.
Collapse
Affiliation(s)
- Nobuhiko Ogasawara
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshihito Kano
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sakurako Kobayashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoshi Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sakura Kirino
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | - Yourae Hong
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Pavlo Lutsik
- Computational Cancer Biology and Epigenomics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Iichiroh Onishi
- Department of Diagnostic Pathology, Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shinichi Yamauchi
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Go Ito
- Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mamoru Watanabe
- Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
13
|
Zhang M, Zhang X, Huang S, Cao Y, Guo Y, Xu L. Programmed nanocarrier loaded with paclitaxel and dual-siRNA to reverse chemoresistance by synergistic therapy. Int J Biol Macromol 2024; 261:129726. [PMID: 38290632 DOI: 10.1016/j.ijbiomac.2024.129726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Paclitaxel (PTX) is commonly used in clinical tumor therapy. However, chemoresistance and the inducement of tumor metastasis severely affect the efficacy of PTX. To develop a treatment strategy to reverse chemoresistance, the co-delivery of PTX and small interfering RNA with nanocarriers were programmed in this study. The carrier we have programmed exhibits excellent safety, stability, and delivery efficiency for co-delivery of siRNA and PTX. After rapid release of siRNA, PTX could be released within 72 h. The siBcl-xL and siMcl-1 inhibited cell migration decreased the mitochondrial membrane potential, and induced the release of reactive oxygen species while synergistically functioning with the antineoplastic effects of PTX. Our strategy reduced IC50 values by 2-5-fold in different cell lines, and the results of flow cytometry confirmed increased apoptosis rates and effectively inhibited cell migration. Synergistic therapy effectively reversed chemoresistance in PTX-resistant breast cancer cells. Similarly, the synergistic administration strategy showed significant sensitizing effects in vivo. Our study demonstrates the combined application of multiple synergistic antitumor administration strategies.
Collapse
Affiliation(s)
- Mingming Zhang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Xi Zhang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Sijun Huang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Yueming Cao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China.
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
14
|
Bacci M, Lorito N, Smiriglia A, Subbiani A, Bonechi F, Comito G, Morriset L, El Botty R, Benelli M, López-Velazco JI, Caffarel MM, Urruticoechea A, Sflomos G, Malorni L, Corsini M, Ippolito L, Giannoni E, Meattini I, Matafora V, Havas K, Bachi A, Chiarugi P, Marangoni E, Morandi A. Acetyl-CoA carboxylase 1 controls a lipid droplet-peroxisome axis and is a vulnerability of endocrine-resistant ER + breast cancer. Sci Transl Med 2024; 16:eadf9874. [PMID: 38416843 DOI: 10.1126/scitranslmed.adf9874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2024] [Indexed: 03/01/2024]
Abstract
Targeting aromatase deprives ER+ breast cancers of estrogens and is an effective therapeutic approach for these tumors. However, drug resistance is an unmet clinical need. Lipidomic analysis of long-term estrogen-deprived (LTED) ER+ breast cancer cells, a model of aromatase inhibitor resistance, revealed enhanced intracellular lipid storage. Functional metabolic analysis showed that lipid droplets together with peroxisomes, which we showed to be enriched and active in the LTED cells, controlled redox homeostasis and conferred metabolic adaptability to the resistant tumors. This reprogramming was controlled by acetyl-CoA-carboxylase-1 (ACC1), whose targeting selectively impaired LTED survival. However, the addition of branched- and very long-chain fatty acids reverted ACC1 inhibition, a process that was mediated by peroxisome function and redox homeostasis. The therapeutic relevance of these findings was validated in aromatase inhibitor-treated patient-derived samples. Last, targeting ACC1 reduced tumor growth of resistant patient-derived xenografts, thus identifying a targetable hub to combat the acquisition of estrogen independence in ER+ breast cancers.
Collapse
Affiliation(s)
- Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Angela Subbiani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Francesca Bonechi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Ludivine Morriset
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Matteo Benelli
- Department of Medical Oncology, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, 59100 Prato, Italy
| | - Joanna I López-Velazco
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
| | - Maria M Caffarel
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ander Urruticoechea
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
- Gipuzkoa Cancer Unit, OSI Donostialdea-Onkologikoa Foundation, Paseo Dr Begiristain 121, 20014 San Sebastian, Spain
| | - George Sflomos
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Luca Malorni
- Department of Medical Oncology, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, 59100 Prato, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, 25123 Brescia, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Vittoria Matafora
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Kristina Havas
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Bachi
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
15
|
Huang S, Tong W, Yang B, Ma L, Zhang J, Wang C, Xu L, Mei J. KRT80 Promotes Lung Adenocarcinoma Progression and Serves as a Substrate for VCP. J Cancer 2024; 15:2229-2244. [PMID: 38495507 PMCID: PMC10937267 DOI: 10.7150/jca.91753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/05/2024] [Indexed: 03/19/2024] Open
Abstract
Background: Keratin 80(KRT80) encodes a type II intermediate filament protein, known for maintaining cell integrity of cells and its involvement in the tumorigenesis and progression of various cancers. However, comprehensive research on its relevance to lung adenocarcinoma remains limited. Methods: In this study, we utilized multiple databases to investigate the transcriptional expression of KRT80 and its correlation with clinicopathological features. A range of assays, including the Cell Counting Kit 8 assay, colony formation assay, cell migration assay, and flow cytometry, were employed to elucidate the impact of KRT80 on the malignant behavior of lung adenocarcinoma. Immunoprecipitation and mass spectrometry were also used to identify putative genes interacting with KRT80. Results: The expression of KRT80 was elevated in lung adenocarcinoma and patients with high levels of KRT80 expression had poor clinical outcomes. Silencing KRT80 suppressed cell viability, and migration, while overexpression had the opposite effect. In addition, Immunoprecipitation and mass spectrometry revealed an interaction between KRT80 and valosin-containing protein (VCP), with VCP knockdown reducing the stability of KRT80 protein. Overexpression of KRT80 mitigated the inhibitory effect of VCP knockdown to some extent. Conclusion: Our findings collectively suggest that KRT80 is a promising diagnostic and prognostic indicator for lung adenocarcinoma. Additionally, the interaction between KRT80 and VCP plays a crucial role in the progression of lung adenocarcinoma, which implies that KRT80 is a promising therapeutic target.
Collapse
Affiliation(s)
- Shanhua Huang
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weilai Tong
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bowen Yang
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Ma
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiaming Zhang
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chunliang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Linlin Xu
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jinhong Mei
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Li L, Lin M, Luo J, Sun H, Zhang Z, Lin D, Chen L, Feng S, Lin X, Zhou R, Song J. Loss of keratin 23 enhances growth inhibitory effect of melatonin in gastric cancer. Mol Med Rep 2024; 29:22. [PMID: 38099343 PMCID: PMC10784722 DOI: 10.3892/mmr.2023.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
To investigate the effect of keratin 23 (KRT23) on the anticancer activity of melatonin (MLT) against gastric cancer (GC) cells, microarray analysis was applied to screen differentially expressed genes in AGS GC cells following MLT treatment. Western blotting was used to detect the expression of KRT23 in GC cells and normal gastric epithelial cell line GES‑1. KRT23 knockout was achieved by CRISPR/Cas9. Assays of cell viability, colony formation, cell cycle, electric cell‑substrate impedance sensing and western blotting were conducted to reveal the biological functions of KRT23‑knockout cells without or with MLT treatment. Genes downregulated by MLT were enriched in purine metabolism, pyrimidine metabolism, genetic information processing and cell cycle pathway. Expression levels of KRT23 were downregulated by MLT treatment. Expression levels of KRT23 in AGS and SNU‑216 GC cell lines were significantly higher compared with normal gastric epithelial cell line GES‑1. KRT23 knockout led to reduced phosphorylation of ERK1/2 and p38, arrest of the cell cycle and inhibition of GC cell proliferation. Moreover, KRT23 knockout further enhanced the inhibitory activity of MLT on the tumor cell proliferation by inhibiting the phosphorylation of p38/ERK. KRT23 knockout contributes to the antitumor effects of MLT in GC via suppressing p38/ERK phosphorylation. In the future, KRT23 might be a potential prognostic biomarker and a novel molecular target for GC.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Meifang Lin
- Department of Pathology, Affiliated Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jianhua Luo
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Huaqin Sun
- Center of Translational Hematology, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhiguang Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Dacen Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Lushan Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Sisi Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Xiuping Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
| | - Ruixiang Zhou
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Histology and Embryology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jun Song
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian 350108, P.R. China
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
17
|
Xiao Q, Xia M, Tang W, Zhao H, Chen Y, Zhong J. The lipid metabolism remodeling: A hurdle in breast cancer therapy. Cancer Lett 2024; 582:216512. [PMID: 38036043 DOI: 10.1016/j.canlet.2023.216512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Lipids, as one of the three primary energy sources, provide energy for all cellular life activities. Lipids are also known to be involved in the formation of cell membranes and play an important role as signaling molecules in the intracellular and microenvironment. Tumor cells actively or passively remodel lipid metabolism, using the function of lipids in various important cellular life activities to evade therapeutic attack. Breast cancer has become the leading cause of cancer-related deaths in women, which is partly due to therapeutic resistance. It is necessary to fully elucidate the formation and mechanisms of chemoresistance to improve breast cancer patient survival rates. Altered lipid metabolism has been observed in breast cancer with therapeutic resistance, indicating that targeting lipid reprogramming is a promising anticancer strategy.
Collapse
Affiliation(s)
- Qian Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Min Xia
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, 330031, PR China
| | - Hu Zhao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yajun Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Jing Zhong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
18
|
Shi KH, Xue H, Zhao EH, Xiao LJ, Sun HZ, Zheng HC. KRT80 expression works as a biomarker and a target for differentiation in gastric cancer. Histol Histopathol 2024; 39:117-130. [PMID: 37129345 DOI: 10.14670/hh-18-618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Keratin 80 (KRT80) is a filament protein that participates in cell differentiation and the integrity of the epithelial barrier. Here, KRT80 expression was higher in gastric cancer compared with normal mucosa at both mRNA and protein levels by bioinformatic analysis, qRT-PCR and Western blot (p<0.05), however, the methylation of KRT80 was lower than in normal mucosa (p<0.05). There was a negative relationship between promoter methylation and expression level of KRT80 gene in gastric cancer (p<0.05). KRT80 mRNA and protein expression was positively correlated with the differentiation of gastric cancer (p<0.05), while KRT80 methylation was negatively associated with gastric cancer differentiation and p53 mutation (p<0.05). The expression of KRT80 mRNA was positively linked to the short survival time of gastric cancers (p<0.05). The differential genes of KRT80 mRNA were involved in ligand-receptor interaction, estrogen signal pathway, peptidase, filament and cytoskeleton, keratinocyte differentiation, vitamin D receptor, muscle contraction, and B cell-mediated immunity (p<0.05). KRT80-related genes were classified into cell adhesion and junction, cadherin binding, skin and epidermis development, and so forth (p<0.05). KRT80 knockdown suppressed proliferation, anti-apoptosis, anti-pyroptosis, migration, invasion and epithelial-mesenchymal transition in gastric cancer cells (p<0.05). These findings indicated that up-regulated expression of KRT80 played a crucial part in gastric carcinogenesis, and might be considered as a biological marker for aggressive behaviors and poor prognosis. Its silencing might be used as an approach of target therapy for gastric cancer patients.
Collapse
Affiliation(s)
- Kai-Hang Shi
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - En-Hong Zhao
- Department of Surgery (3), The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Li-Jun Xiao
- Department of Immunology, Basic Medicine College of Chengde Medical University, Chengde, China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China.
| |
Collapse
|
19
|
Liu M, Li C, Qu J, Sun S, Zhao Z, Wang W, Lv W, Zhang Y, Cai Y, Zhao F, Wu F, Zhang S, Zhao X. Baicalein enhances immune response in TNBC by inhibiting leptin expression of adipocytes. Cancer Sci 2023; 114:3834-3847. [PMID: 37489486 PMCID: PMC10551602 DOI: 10.1111/cas.15916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a special pathological type of breast cancer (BC) with poor prognosis. Obesity is shown to be involved in TNBC tumor progression. The interaction between obesity and BC has generated great attention in recent years, however, the mechanism is still unclear. Here, we showed that leptin secreted by adipocytes upregulated PD-L1 expression in TNBC through the p-STAT3 signaling pathway and that baicalein inhibited PD-L1 expression in tumor microenvironment by suppressing leptin transcription of adipocytes. Collectively, our findings suggest that leptin may be the key factor participating in obesity-related tumor progression and that baicalein can break through the dilemma to boost the anti-tumor immune response.
Collapse
Affiliation(s)
- Mengjie Liu
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Chaofan Li
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jingkun Qu
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Shiyu Sun
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zitong Zhao
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Weiwei Wang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wei Lv
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yu Zhang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yifan Cai
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Fang Zhao
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Fei Wu
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Shuqun Zhang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xixi Zhao
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of Radiation OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
20
|
Yang Y, Ma B, Djamshidi M, Zhang Q, Sarkar A, Chanda A, Tran U, Soh J, Sandall C, Chen HM, MacDonald JA, Bonni S, Sensen CW, Zheng J, Riabowol K. ING1 inhibits Twist1 expression to block EMT and is antagonized by the HDAC inhibitor vorinostat. Eur J Cell Biol 2023; 102:151341. [PMID: 37459799 DOI: 10.1016/j.ejcb.2023.151341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 09/22/2023] Open
Abstract
ING1 is a chromatin targeting subunit of the Sin3a histone deacetylase (HDAC) complex that alters chromatin structure to subsequently regulate gene expression. We find that ING1 knockdown increases expression of Twist1, Zeb 1&2, Snai1, Bmi1 and TSHZ1 drivers of EMT, promoting EMT and cell motility. ING1 expression had the opposite effect, promoting epithelial cell morphology and inhibiting basal and TGF-β-induced motility in 3D organoid cultures. ING1 binds the Twist1 promoter and Twist1 was largely responsible for the ability of ING1 to reduce cell migration. Consistent with ING1 inhibiting Twist1 expression in vivo, an inverse relationship between ING1 and Twist1 levels was seen in breast cancer samples from The Cancer Genome Atlas (TCGA). The HDAC inhibitor vorinostat is approved for treatment of multiple myeloma and cutaneous T cell lymphoma and is in clinical trials for solid tumours as adjuvant therapy. One molecular target of vorinostat is INhibitor of Growth 2 (ING2), that together with ING1 serve as targeting subunits of the Sin3a HDAC complex. Treatment with sublethal (LD25-LD50) levels of vorinostat promoted breast cancer cell migration several-fold, which increased further upon ING1 knockout. These observations indicate that correct targeting of the Sin3a HDAC complex, and HDAC activity in general decreases luminal and basal breast cancer cell motility, suggesting that use of HDAC inhibitors as adjuvant therapies in breast cancers that are prone to metastasize may not be optimal and requires further investigation.
Collapse
Affiliation(s)
- Yang Yang
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Mahbod Djamshidi
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Qingrun Zhang
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Anusi Sarkar
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Ayan Chanda
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Uyen Tran
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Jung Soh
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Christina Sandall
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Huey-Miin Chen
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Shirin Bonni
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | | | - Jianhua Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Karl Riabowol
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
21
|
Cui S, Feng J, Tang X, Lou S, Guo W, Xiao X, Li S, Chen X, Huan Y, Zhou Y, Xiao L. The prognostic value of tumor mutation burden (TMB) and its relationship with immune infiltration in breast cancer patients. Eur J Med Res 2023; 28:90. [PMID: 36805828 PMCID: PMC9940352 DOI: 10.1186/s40001-023-01058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVE Although the tumor mutation burden (TMB) was reported as a biomarker for immunotherapy of various cancers, whether it can effectively predict the survival prognosis in breast cancer patients remains unclear. In this study, the prognostic value of TMB and its correlation with immune infiltration were explored by using multigroup studies. METHODS The somatic mutation data of 986 breast cancer patients were obtained from TCGA database. Breast cancer patients were divided into a low-TMB group and a high-TMB group according to the quartile of TMB scores. The differentially expressed genes (DEGs) were identified by the "limma" R program. The CIBERSORT algorithm was utilized to estimate the immune cell fraction of each sample. The TIMER database was utilized to evaluate the association between CNVs of immune genes and tumor immune cell infiltration and the prognostic value of the immune cells in breast cancer. RESULTS In breast cancer, TP53, PIK3CA, TTN, CDH1 and other genes were the most important mutated genes. Higher survival rate of patients was found in the low-TMB group. Among the top 10 DEGs, three of them belong to the KRT gene family. GSEA enrichment analysis showed that MAPK, Hedgehog, mTOR, TGF-bate and GnRH signaling pathways were enriched in the low-TMB group. The infiltration levels of the most of immune cells were higher in the low-TMB group (P < 0.01). Higher expression of CCL18 and TRGC1 was correlated with poor prognosis. Breast cancer patients with CCL18 copy number variations, especially arm-level gains, showed significantly decreased immune cell infiltration. In the low B cell infiltration group, the survival prognosis of breast cancer patients was poor. CONCLUSIONS TMB is a potential prognosis marker in breast cancer. Immune-related gene CCL18 and TRGC1 are biomarkers of poor prognosis while immune (B cell) infiltration is a biomarker of good prognosis.
Collapse
Affiliation(s)
- Shengjin Cui
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Jingying Feng
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Xi Tang
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Shuang Lou
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Weiquan Guo
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Xiaowei Xiao
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Shuping Li
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Xue Chen
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Yu Huan
- grid.284723.80000 0000 8877 7471Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101 Guangdong China
| | - Yiwen Zhou
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101, Guangdong, China.
| | - Lijia Xiao
- Department of Clinical Laboratory, Shenzhen Hospital, Southern Medical University, No. 1333 of Xinhu Road, Shenzhen, 518101, Guangdong, China.
| |
Collapse
|
22
|
Meligova AK, Siakouli D, Stasinopoulou S, Xenopoulou DS, Zoumpouli M, Ganou V, Gkotsi EF, Chatziioannou A, Papadodima O, Pilalis E, Alexis MN, Mitsiou DJ. ERβ1 Sensitizes and ERβ2 Desensitizes ERα-Positive Breast Cancer Cells to the Inhibitory Effects of Tamoxifen, Fulvestrant and Their Combination with All-Trans Retinoic Acid. Int J Mol Sci 2023; 24:ijms24043747. [PMID: 36835157 PMCID: PMC9959521 DOI: 10.3390/ijms24043747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Adjuvant endocrine therapy (AET) is the treatment of choice for early-stage estrogen receptor alpha (ERα)-positive breast cancer (BC). However, almost 40% of tamoxifen-treated cases display no response or a partial response to AET, thus increasing the need for new treatment options and strong predictors of the therapeutic response of patients at high risk of relapse. In addition to ERα, BC research has focused on ERβ1 and ERβ2 (isoforms of ERβ), the second ER isotype. At present, the impact of ERβ isoforms on ERα-positive BC prognosis and treatment remains elusive. In the present study, we established clones of MCF7 cells constitutively expressing human ERβ1 or ERβ2 and investigated their role in the response of MCF7 cells to antiestrogens [4-hydroxytamoxifen (OHΤ) and fulvestrant (ICI182,780)] and retinoids [all-trans retinoic acid (ATRA)]. We show that, compared to MCF7 cells, MCF7-ERβ1 and MCF7-ERβ2 cells were sensitized and desensitized, respectively, to the antiproliferative effect of the antiestrogens, ATRA and their combination and to the cytocidal effect of the combination of OHT and ATRA. Analysis of the global transcriptional changes upon OHT-ATRA combinatorial treatment revealed uniquely regulated genes associated with anticancer effects in MCF7-ERβ1 cells and cancer-promoting effects in MCF7-ERβ2 cells. Our data are favorable to ERβ1 being a marker of responsiveness and ERβ2 being a marker of resistance of MCF7 cells to antiestrogens alone and in combination with ATRA.
Collapse
Affiliation(s)
- Aggeliki K. Meligova
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Dimitra Siakouli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Sotiria Stasinopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Despoina S. Xenopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Zoumpouli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vassiliki Ganou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Eleni-Fani Gkotsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Michael N. Alexis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (M.N.A.); (D.J.M.)
| | - Dimitra J. Mitsiou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (M.N.A.); (D.J.M.)
| |
Collapse
|
23
|
Zhu JG, Xie P, Zheng MD, Meng Y, Wei ML, Liu Y, Liu TW, Gong DQ. Dynamic changes in protein concentrations of keratins in crop milk and related gene expression in pigeon crops during different incubation and chick rearing stages. Br Poult Sci 2023; 64:100-109. [PMID: 36069156 DOI: 10.1080/00071668.2022.2119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The objective of this study was to examine the keratin composition of crop milk, the variation of epithelial thickness and keratin (K) gene expression in samples from young pigeon during incubation and chick rearing.2. Crop milk was collected from 1-, 3- and 5-day-old squab crops for keratin content analysis. Results showed that K4 accounted for the highest proportion of all detected keratins.3. In total, 42 pairs of adult pigeons were allocated to seven groups according to different stages to collect crop samples. Gene expression studies showed that the K3 gene expression was maximised at rearing Day 15 (15) and R1 in males and females, respectively. K6a gene level was the greatest at R15 in females, whereas it peaked at incubation Day 4 (I4) in males. The K12, K13, K23 and K80 gene levels were inhibited at the peak period of crop milk formation in comparison with I4. In females, K cochleal expression peaked at I10, whereas it was the greatest at R25 in males. K4 and K14 gene expression was the highest at I10 in females, while K4 and K14 were minimised at I17 and R7 in males, respectively. Gene expressions of K5, K8, K19 and K20 in males and K19 in females were maximised at R1. The K5, K20 and K75 gene levels in females peaked at R7. K75 and K8 expressions in males and females reached a maximum value at R25 and I17, respectively.4. The epithelial thickness of male and female crops reached their greatest levels at R1 and had the highest correlation with K19.5. These results emphasised the importance of keratinisation in crop milk formation, and different keratins probably play various roles during this period. The K19 was probably a marker for pigeon crop epithelium development. The sex of the parent pigeon affected keratin gene expression profiles.
Collapse
Affiliation(s)
- J G Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
| | - P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - M D Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Meng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - M L Wei
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
| | - Y Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - T W Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
24
|
Chen P, Quan Z, Song X, Gao Z, Yuan K. MDFI is a novel biomarker for poor prognosis in LUAD. Front Oncol 2022; 12:1005962. [PMID: 36300089 PMCID: PMC9589366 DOI: 10.3389/fonc.2022.1005962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Approximately 80% of lung cancers are non-small cell lung cancers (NSCLC). Lung adenocarcinoma (LUAD) is the main subtype of NSCLC. The incidence and mortality of lung cancer are also increasing yearly. Myogenic differentiation family inhibitor (MDFI) as a transcription factor, its role in lung cancer has not yet been clarified. Methods LUAD data were downloaded from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO), analyzed and plotted using the R language. Associations between Clinical information and MDFI expression were assessed using logistic regression analyses to explore the effects of MDFI on LUAD. Two sets of tissue microarrays (TMAs) further confirmed the overexpression of MDFI in LUAD and its impact on prognosis. In addition, we examined the correlation between MDFI and immune infiltration. To investigate the effect of MDFI on the biological behavior of LUAD tumor cells by GSEA and GO/KEGG analysis. The survival status and somatic mutational characteristics of patients according to MDFI levels were depicted and analyzed. Results Expression of high MDFI in LUAD tissues via analyzing TCGA dataset (P <0.001). Kaplan-Meier survival analysis indicated a poor prognosis for those patients with LUAD who had upregulated MDFI expression levels (P <0.001). This was also verified by two groups of TMAs (P=0.024). Using logistic statistics analysis, MDFI was identified as an independent predictive factor and was associated with poor prognosis in LUAD (P <0.001, P =0.021). Assessment of clinical characteristics, tumor mutation burden (TMB), and tumor microenvironment (TME) between high- and low-expression score groups showed lower TMB, richer immune cell infiltration, and better prognosis in the low-risk group. Conclusion This study showed that MDFI was overexpressed in LUAD and was significantly associated with poor prognosis, indicating that MDFI may be used as a potential novel biomarker for the diagnosis and prognosis of LUAD. MDFI is associated with immune infiltration of LUAD and it is reasonable to speculate that it plays an important role in tumor proliferation and spread. In view of the significant differences in MDFI expression between different biological activities, LUAD patients with MDFI overexpression may obtain more precise treatment strategies in the clinic.
Collapse
Affiliation(s)
- Pengyu Chen
- Division of Thoracic Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- School of Medicine, Dalian Medical University, Dalian, China
| | - Zhen Quan
- Division of Thoracic Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- School of Medicine, Dalian Medical University, Dalian, China
| | - Xueyu Song
- Division of Thoracic Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- School of Medicine, Dalian Medical University, Dalian, China
| | - Zhaojia Gao
- Division of Thoracic Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Kai Yuan
- Division of Thoracic Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
25
|
Keratin 80 Promotes Migration and Invasion of Non-Small Cell Lung Cancer Cells by Regulating the TGF-β/SMAD Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2630351. [PMID: 36248424 PMCID: PMC9553464 DOI: 10.1155/2022/2630351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 12/04/2022]
Abstract
Upregulation of keratin 80 (KRT80) expression levels and carcinogenic function has been found in several types of tumors. However, its contribution and mechanism in NSCLC remain to be outlined. In this study, bioinformatic investigation from the TCGA dataset revealed that KRT80 was confirmed to be elevated in human NSCLC tissues. The results of qRT-PCR and Western blot assays disclosed that KRT80 was uplifted in NSCLC cells. Data from CCK-8 and colony formation assays exhibited that depletion of KRT80 restrained NSCLC cell proliferation. Findings from Transwell and Western blot assays illustrated that downregulation of KRT80 inhibited NSCLC cell migration, invasion, and EMT. Further mechanism exploration implied that KRT80 may be included within the regulation of EMT of NSCLC cells by affecting the TGF-β/SMAD pathway. Moreover, depletion of KRT80 attenuated xenograft tumor growth and the expressions of KRT80, Ki-67, and TGFBR1. In conclusion, depletion of KRT80 repressed NSCLC cell proliferation, invasion, and EMT, possibly mediated by the TGF-β/SMAD signaling pathway, indicating that KRT80 may be a potentially useful target for NSCLC.
Collapse
|
26
|
The Long Noncoding Transcript HNSCAT1 Activates KRT80 and Triggers Therapeutic Efficacy in Head and Neck Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4156966. [PMID: 35965679 PMCID: PMC9371835 DOI: 10.1155/2022/4156966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 12/23/2022]
Abstract
Head and neck squamous carcinoma (HNSC) is the most prevalent malignancy of the head and neck regions. Long noncoding RNAs (lncRNAs) are vital in tumorigenesis regulation. However, the role of lncRNAs in HNSC requires further exploration. Herein, through bioinformatic assays using The Cancer Genome Atlas (TCGA) datasets, rapid amplification of cDNA ends (RACE) assays, and RNA-FISH, we revealed that a novel cytoplasmic transcript, HNSC-associated transcript 1 (HNSCAT1, previously recognized as linc01269), was downregulated in tumor samples and advanced tumor stages and was also associated with favorable outcomes in HNSC. Overexpression of HNSCAT1 triggered treatment efficacy in HNSCs both in vivo and in vitro. More importantly, through high-throughput transcriptome analysis (RNA-seq, in NODE database, OEZ007550), we identified KRT80, a tumor suppressor in HNSC, as the target of HNSCAT1. KRT80 expression was modulated by lncRNA HNSCAT1 and presented a positive correlation in tumor samples (R = 0.52, p < 0.001). Intriguingly, we identified that miR-1245 simultaneously interacts with KRT80 and HNSCAT1, which bridges the regulatory function between KRT80 and HNSCAT1. Conclusively, our study demonstrated that lncRNA HNSCAT1 functions as a necessary tumor inhibitor in HNSC, which provides a novel mechanism of lncRNA function and provides alternative targets for the diagnosis and treatment of HNSC.
Collapse
|
27
|
Zhao Q, Lin X, Wang G. Targeting SREBP-1-Mediated Lipogenesis as Potential Strategies for Cancer. Front Oncol 2022; 12:952371. [PMID: 35912181 PMCID: PMC9330218 DOI: 10.3389/fonc.2022.952371] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Sterol regulatory element binding protein-1 (SREBP-1), a transcription factor with a basic helix–loop–helix leucine zipper, has two isoforms, SREBP-1a and SREBP-1c, derived from the same gene for regulating the genes of lipogenesis, including acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase. Importantly, SREBP-1 participates in metabolic reprogramming of various cancers and has been a biomarker for the prognosis or drug efficacy for the patients with cancer. In this review, we first introduced the structure, activation, and key upstream signaling pathway of SREBP-1. Then, the potential targets and molecular mechanisms of SREBP-1-regulated lipogenesis in various types of cancer, such as colorectal, prostate, breast, and hepatocellular cancer, were summarized. We also discussed potential therapies targeting the SREBP-1-regulated pathway by small molecules, natural products, or the extracts of herbs against tumor progression. This review could provide new insights in understanding advanced findings about SREBP-1-mediated lipogenesis in cancer and its potential as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Qiushi Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xingyu Lin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xingyu Lin, ; Guan Wang,
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Xingyu Lin, ; Guan Wang,
| |
Collapse
|
28
|
Zhang F, Wang G, Yan W, Jiang H. MiR-4268 suppresses gastric cancer genesis through inhibiting keratin 80. Cell Cycle 2022; 21:2051-2064. [PMID: 35748914 DOI: 10.1080/15384101.2022.2085351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gastric cancer (GC) affects a large proportion of cancer patients worldwide, and the prediction of potential biomarkers can greatly improve its diagnosis and treatment. Here, miR-4268 and keratin 80 (KRT80) expression in GC tissues and cell lines was determined. The effect of downregulating miR-4268 and interfering with KRT80 expression on the viability, proliferation, apoptosis, and migration of GC cells were evaluated. The interaction between miR-4268 and KRT80 was studied using luciferase reporter and RNA pull-down assays. The western blot, CCK-8, BrdU, caspase-3 activity, Transwell assays were performed for the functional characterization. In GC tissues and cells, KRT80 expression was found to be significantly higher, while that of miR-4268 was significantly lower than the respective expressions in normal tissues and cells. Interference with KRT80 expression inhibited the viability, proliferation, and migration of GC cells and facilitated cell apoptosis in vitro. We further demonstrated that miR-4268 targeted KRT80 and negatively regulated its expression, and miR-4268 inhibitor alleviated the inhibitory effects of KRT80 downregulation on GC cell growth. Finally, miR-4268 may function as tumor suppressor through inhibiting PI3K/AKT/JNK pathways by targeting KRT80 in GC. Collectively, our present results indicate that the miR-4268/KRT80 axis acts as a potential therapeutic target for patients with GC.AbbreviationsGastric cancer (GC); MicroRNAs (miRNAs); Keratin 80 (KRT80); differentially expressed genes (DEGs); chemoradiotherapy (CRT); negative nonsense sequence (NC); radioimmunoprecipitation assay (RIPA); polyvinylidene fluoride (PVDF).
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gastroenterology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Guoxian Wang
- Department of Radiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenjuan Yan
- Department of Gastroenterology, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Hongmei Jiang
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University (Optics Valley Area), Wuhan, Hubei, China
| |
Collapse
|
29
|
Zhang Q, Wang Z, Zhang Z, Zhu L, Yang X. Analysis of microarray-identified genes and MicroRNAs associated with Trifluridine resistance in colorectal cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2080280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Qiqi Zhang
- Department of Integrated Chinese and Western Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Zhenghua Zhang
- Department of Clinical Oncology, Jing’An District Centre Hospital of Shanghai, Huashan Hospital Fudan University Jing’An Branch, Shanghai, People’s Republic of China
| | - Lifei Zhu
- Cancer Center, Shanghai Jiaotong University Affiliated First People’s Hospital, Shanghai, People’s Republic of China
| | - Xijing Yang
- Department of Biotherapy, The Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
30
|
Zhu S, Yang N, Niu C, Wang W, Wang X, Bai J, Qiao Y, Deng S, Guan Y, Chen J. The miR-145–MMP1 axis is a critical regulator for imiquimod-induced cancer stemness and chemoresistance. Pharmacol Res 2022; 179:106196. [DOI: 10.1016/j.phrs.2022.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
|
31
|
Ouyang S, Zeng Z, Liu Z, Zhang Z, Sun J, Wang X, Ma M, Ye X, Yu J, Kang W. OTUB2 regulates KRT80 stability via deubiquitination and promotes tumour proliferation in gastric cancer. Cell Death Discov 2022; 8:45. [PMID: 35110531 PMCID: PMC8810928 DOI: 10.1038/s41420-022-00839-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 12/09/2022] Open
Abstract
OTUB2 is a deubiquitinating enzyme that contributes to tumor progression. However, the expression of OTUB2 and its prognostic importance in gastric cancer remain unclear. The expression of OTUB2 and KRT80 in GC tissues was investigated using western blotting, qRT-PCR, multiple immunofluorescence staining, and immunohistochemistry. For survival studies, Kaplan-Meier analysis with the log-rank test was used. The role of OTUB2 during GC proliferation was investigated using in vivo and in vitro assays. OTUB2 was found to be overexpressed in GC tissues and to act as an oncogene, which was linked to patients' poor prognosis. Knockdown of OTUB2 inhibited the proliferative capacity of GC cells in vitro and in vivo, although the proliferative capacity was restored upon re-supplementation with KRT80. OTUB2 mechanically stabilized KRT80 by deubiquitinating and shielding it from proteasome-mediated degradation through Lys-48 and Lys-63. Furthermore, by activating the Akt signaling pathway, OTUB2 and KRT80 facilitated GC proliferation. In summary, OTUB2 regulates KRT80 stability via deubiquitination promoting proliferation in GC via activation of the Akt signaling pathway, implying that OTUB2 could be a novel prognostic marker.
Collapse
Affiliation(s)
- Siwen Ouyang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Ziyang Zeng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhen Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zimu Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Juan Sun
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xianze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mingwei Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Jianchun Yu
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
32
|
Li X, Liu Z, Xia C, Yan K, Fang Z, Fan Y. SETD8 stabilized by USP17 epigenetically activates SREBP1 pathway to drive lipogenesis and oncogenesis of ccRCC. Cancer Lett 2021; 527:150-163. [PMID: 34942305 DOI: 10.1016/j.canlet.2021.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Recently, epigenetic modifications, including DNA methylation, histone modification and noncoding RNA (ncRNA)-associated gene silencing, have received increasing attention from the scientific community. Many studies have demonstrated that epigenetic regulation can render dynamic alterations in the transcriptional potential of a cell, which then affects the cell's biological function. The initiation and development of clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell cancer (RCC), is also closely related to genomic alterations by epigenetic modification. For ccRCC, lipid accumulation is one of the most typical characteristics. In other words, dysregulation of lipid uptake and synthesis occurs in ccRCC, which inversely promotes cancer proliferation and progression. However, the link among epigenetic alterations, lipid biosynthesis and renal cancer progression remains unclear. SETD8 is a histone methyltransferase and plays pivotal roles in cell cycle regulation and oncogenesis of various cancers, but its role in RCC is not well understood. In this study, we discovered that SETD8 was significantly overexpressed in RCC tumors, which was positively related to lipid storage and correlated with advanced tumor grade and stage and poor patient prognosis. Depletion of SETD8 by siRNAs or inhibitor UNC0379 diminished fatty acid (FA) de novo synthesis, cell proliferation and metastasis in ccRCC cells. Mechanistically, SETD8, which was posttranslationally stabilized by USP17, could transcriptionally modulate sterol regulatory element-binding protein 1 (SREBP1), a key transcription factor in fatty acid biosynthesis and lipogenesis, by monomethylating the 20th lysine of the H4 histone, elevating lipid biosynthesis and accumulation in RCC and further promoting cancer progression and metastasis. Taken together, the USP17/SETD8/SREBP1 signaling pathway plays a pivotal role in promoting RCC progression. SETD8 might be a novel biomarker and potential therapeutic target for treating RCC.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China; Key Laboratory of Cardio-vascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, China.
| | - Zhengfang Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Chuanyou Xia
- The First Affiliated Hospital of Shandong First Medical University/Shandong Provincial Qian-Fo-Shan Hospital, China.
| | - Keqiang Yan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Yidong Fan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| |
Collapse
|
33
|
Zou DD, Xu D, Deng YY, Wu WJ, Zhang J, Huang L, He L. Identification of key genes in cutaneous squamous cell carcinoma: a transcriptome sequencing and bioinformatics profiling study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1497. [PMID: 34805359 PMCID: PMC8573448 DOI: 10.21037/atm-21-3915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Background Long-term exposure to ultraviolet (UV) radiation can cause cutaneous squamous cell carcinoma (cSCC), which is one of the most common malignant cancers worldwide. Actinic keratosis (AK) is generally considered a precancerous lesion of cSCC. However, the pathogenesis and oncogenic processes of AK and cSCC remain elusive, especially in the context of photodamage. Methods In this study, transcriptome sequencing was performed on AK, cSCC, normal sun-exposed skin (NES) tissues, and normal non-sun-exposed skin (NNS) from 24 individuals. Bioinformatics analysis to identify the differentially expressed genes (DEGs) of 4 groups, and potential key genes of cSCC were validated by real-time quantitative reverse transcription PCR (qRT-PCR). Results A total of 46,930 genes were differentially expressed in the 4 groups, including 127 genes that were differentially expressed between NES and NNS, 420 DEGs in AK compared to NES, 1,658 DEGs in cSCC compared to NES, and 1,389 DEGs in cSCC compared to AK. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the DEGs are involved in multiple pathways, including extracellular matrix (ECM)-receptor interaction, immune, inflammatory, microbial infection, and other related pathways. Finally, 5 new genes (HEPHL1, FBN2, SULF1, SULF2, and TCN1) were confirmed significantly upregulated in cSCC. Conclusions Using transcriptome sequencing and integrated bioinformatical analysis, we have identified key DEGs and pathways in cSCC, which could improve our understanding of the cause and underlying molecular events of AK and cSCC. HEPHL1, FBN2, SULF1, SULF2, and TCN1 may be novel potential biomarkers and therapeutic targets of cSCC.
Collapse
Affiliation(s)
- Dan-Dan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan-Yuan Deng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Juan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ling Huang
- Department of Dermatology, First Affiliated Hospital of Dali University, Dali, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
34
|
Xu C, Zhang L, Wang D, Jiang S, Cao D, Zhao Z, Huang M, Jin J. Lipidomics reveals that sustained SREBP-1-dependent lipogenesis is a key mediator of gefitinib-acquired resistance in EGFR-mutant lung cancer. Cell Death Discov 2021; 7:353. [PMID: 34775471 PMCID: PMC8590692 DOI: 10.1038/s41420-021-00744-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Patients with EGFR mutations in non-small cell lung cancer (NSCLC) have been greatly benefited from gefitinib, however, the therapeutic has failed due to the presence of acquired resistance. In this study, we show that gefitinib significantly induces downregulation of Sterol Regulator Element Binding (SREBP1) in therapy-sensitive cells. However, this was not observed in EGFR mutant NSCLC cells with acquired resistance. Lipidomics analysis showed that gefitinib could differently change the proportion of saturated phospholipids and unsaturated phospholipids in gefitinib-sensitive and acquired-resistant cells. Besides, levels of ROS and MDA were increased upon SREBP1 inhibition and even more upon gefitinib treatment. Importantly, inhibition of SREBP1 sensitizes EGFR-mutant therapy-resistant NSCLC to gefitinib both in vitro and in vivo models. These data suggest that sustained de novo lipogenesis through the maintenance of active SRBEP-1 is a key feature of acquired resistance to gefitinib in EGFR mutant lung cancer. Taken together, targeting SREBP1-induced lipogenesis is a promising approach to overcome acquired resistance to gefitinib in EGFR-mutant lung cancer.
Collapse
Affiliation(s)
- Chuncao Xu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Daifei Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shiqin Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Di Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Jin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
35
|
Liu O, Wang C, Wang S, Hu Y, Gou R, Dong H, Li S, Li X, Lin B. Keratin 80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer. J Cancer 2021; 12:6835-6850. [PMID: 34659572 PMCID: PMC8517993 DOI: 10.7150/jca.64031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/18/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction: Keratin 80 (KRT80) is a type II epithelial keratin protein that plays an important role in cell differentiation and tumor progression. However, its role and mechanisms in ovarian cancer remain unclear. Methods: The effect of KRT80 on the survival and prognosis of patients with ovarian cancer was determined using immunohistochemistry. Cell lines overexpressing KRT80 and with KRT80 knockdown were established to study its effect on the malignant behavior of ovarian cancer cells. Western blotting was used to detect changes in related molecules, and in the MEK/ERK signal transduction pathway. ChIP assay was used to confirm that ETS1 regulates KRT80 at the transcriptional level. A double luciferase assay was used to confirm the target of miR-206. Results: The expression levels of KRT80 were high in ovarian cancer tissue, and were related to survival and prognosis. KRT80 expression is an independent prognostic factor in patients with ovarian cancer. KRT80 overexpression promotes the proliferation of ovarian cancer cells, the transition from G1 phase to S phase, invasion, and migration. KRT80 overexpression increased the expression of BCL2/BAX, CyclinD1, MMP2, MMP9, and N-cadherin, decreased the expression of E-cadherin, and increased the phosphorylation of MEK and ERK. ETS1 binds to the upstream promoter sequence of KRT80 and regulates KRT80 expression at the transcriptional level. ETS1 is a direct target of miR-206 in ovarian cancer cells. Conclusion: KRT80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer, and KRT80 may have applications as a screening biomarker and potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Siting Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| |
Collapse
|
36
|
Bolf EL, Gillis NE, Davidson CD, Cozzens LM, Kogut S, Tomczak JA, Frietze S, Carr FE. Common tumor-suppressive signaling of thyroid hormone receptor beta in breast and thyroid cancer cells. Mol Carcinog 2021; 60:874-885. [PMID: 34534367 DOI: 10.1002/mc.23352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/16/2023]
Abstract
The thyroid hormone receptor beta (TRβ) is a tumor suppressor in multiple types of solid tumors, most prominently in breast and thyroid cancer. An increased understanding of the molecular mechanisms by which TRβ abrogates tumorigenesis will aid in understanding the core tumor-suppressive functions of TRβ. Here, we restored TRβ expression in the MDA-MB-468 basal-like breast cancer cell line and perform RNA-sequencing to determine the TRβ-mediated changes in gene expression and associated signaling pathways. The TRβ expressing MDA-MB-468 cells exhibit a more epithelial character as determined by principle component analysis-based iterative PAM50 subtyping score and through reduced expression of mesenchymal cytokeratins. The epithelial to mesenchymal transition pathway is also significantly reduced. The MDA-MB-468 data set was further compared with RNA sequencing results from TRβ expressing thyroid cancer cell line SW1736 to determine which genes are TRβ correspondingly regulated across both cell types. Several pathways including lipid metabolism and chromatin remodeling processes were observed to be altered in the shared gene set. These data provide novel insights into the molecular mechanisms by which TRβ suppresses breast tumorigenesis.
Collapse
Affiliation(s)
- Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.,University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, USA
| | - Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.,University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, USA
| | - Cole D Davidson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.,University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, USA
| | - Lauren M Cozzens
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sophie Kogut
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Seth Frietze
- University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, USA.,Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.,University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
37
|
Liu L, Yan H, Ruan M, Yang H, Wang L, Lei B, Sun X, Chang C, Huang G, Xie W. An AKT/PRMT5/SREBP1 axis in lung adenocarcinoma regulates de novo lipogenesis and tumor growth. Cancer Sci 2021; 112:3083-3098. [PMID: 34033176 PMCID: PMC8353903 DOI: 10.1111/cas.14988] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Protein kinase B (AKT) hyperactivation and de novo lipogenesis are both common in tumor progression. Sterol regulatory element‐binding protein 1 (SREBP1) is the master regulator for tumor lipid metabolism, and protein arginine methyltransferase 5 (PRMT5) is an enzyme that can catalyze symmetric dimethyl arginine (SDMA) modification of the mature form of SREBP1 (mSREBP1) to induce its hyperactivation. Here, we report that SDMA‐modified mSREBP1 (mSREBP1‐SDMA) was overexpressed and correlated with Ser473‐phosphorylated AKT (AKT‐473P) expression and poor patient outcomes in human lung adenocarcinomas. Furthermore, patients with AKT‐473P and mSREBP1‐SDMA coexpression showed the worst prognosis. Mechanistic investigation revealed that AKT activation upregulated SREBP1 at both the transcriptional and post‐translational levels, whereas PRMT5 knockdown reversed AKT signaling‐mediated mSREBP1 ubiquitin‐proteasome pathway stabilization at the post‐translational level. Meanwhile, AKT activation promoted nuclear PRMT5 to the cytoplasm without changing total PRMT5 expression, and the transported cytoplasmic PRMT5 (cPRMT5) induced by AKT activation showed a strong mSREBP1‐binding ability. Immunohistochemical assay indicated that AKT‐473P and mSREBP1‐SDMA were positively correlated with cPRMT5 in lung adenocarcinomas, and high cPRMT5 levels in tumors were associated with poor patient outcomes. Additionally, PRMT5 knockdown reversed AKT activation‐induced lipid synthesis and growth advantage of lung adenocarcinoma cells both in vitro and in vivo. Finally, we defined an AKT/PRMT5/SREBP1 axis involved in de novo lipogenesis and the growth of lung cancer. Our data also support that cPRMT5 is a potential therapeutic target for hyperactive AKT‐driven lung adenocarcinoma.
Collapse
Affiliation(s)
- Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoyan Sun
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
38
|
Ma X, Zhao T, Yan H, Guo K, Liu Z, Wei L, Lu W, Qiu C, Jiang J. Fatostatin reverses progesterone resistance by inhibiting the SREBP1-NF-κB pathway in endometrial carcinoma. Cell Death Dis 2021; 12:544. [PMID: 34039951 PMCID: PMC8155186 DOI: 10.1038/s41419-021-03762-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Progesterone resistance can significantly restrict the efficacy of conservative treatment for patients with endometrial cancer who wish to preserve their fertility or those who suffer from advanced and recurrent cancer. SREBP1 is known to be involved in the occurrence and progression of endometrial cancer, although the precise mechanism involved remains unclear. In the present study, we carried out microarray analysis in progesterone-sensitive and progesterone-resistant cell lines and demonstrated that SREBP1 is related to progesterone resistance. Furthermore, we verified that SREBP1 is over-expressed in both drug-resistant tissues and cells. Functional studies further demonstrated that the inhibition of SREBP1 restored the sensitivity of endometrial cancer to progesterone both in vitro and in vivo, and that the over-expression of SREBP1 promoted resistance to progesterone. With regards to the mechanism involved, we found that SREBP1 promoted the proliferation of endometrial cancer cells and inhibited their apoptosis by activating the NF-κB pathway. To solve the problem of clinical application, we found that Fatostatin, an inhibitor of SREBP1, could increase the sensitivity of endometrial cancer to progesterone and reverse progesterone resistance by inhibiting SREBP1 both in vitro and in vivo. Our results highlight the important role of SREBP1 in progesterone resistance and suggest that the use of Fatostatin to target SREBP1 may represent a new method to solve progesterone resistance in patients with endometrial cancer.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Tianyi Zhao
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Hong Yan
- Department of Obstetrics and Gynecology, Women and Children's Hospital, Decheng district Dezhou, Shandong, 253017, P.R. China
| | - Kui Guo
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Zhiming Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Lina Wei
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Wei Lu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Chunping Qiu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.
| | - Jie Jiang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.
| |
Collapse
|
39
|
Abstract
Cancer cells acquire genotypic and phenotypic changes over the course of the disease. A minority of these changes enhance cell fitness, allowing a tumor to evolve and overcome environmental constraints and treatment. Cancer evolution is driven by diverse processes governed by different rules, such as discrete and irreversible genetic variants and continuous and reversible plastic reprogramming. In this perspective, we explore the role of cell plasticity in tumor evolution through specific examples. We discuss epigenetic and transcriptional reprogramming in "disease progression" of solid tumors, through the lens of the epithelial-to-mesenchymal transition, and "treatment resistance", in the context endocrine therapy in hormone-driven cancers. These examples offer a paradigm of the features and challenges of cell plastic evolution, and we investigate how recent technological advances can address these challenges. Cancer evolution is a multi-faceted process, whose understanding and harnessing will require an equally diverse prism of perspectives and approaches.
Collapse
Affiliation(s)
- Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
40
|
Chen J, Ding C, Chen Y, Hu W, Yu C, Peng C, Feng X, Cheng Q, Wu W, Lu Y, Xie H, Zhou L, Wu J, Zheng S. ACSL4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway. Cancer Lett 2021; 502:154-165. [PMID: 33340617 DOI: 10.1016/j.canlet.2020.12.019] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/25/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
Lipid metabolic reprogramming plays a pivotal role in hepatocellular carcinoma (HCC) development, but the underlying mechanisms are incompletely characterized. Long chain acyl CoA synthetase 4 (ACSL4), a member of acyl-CoA synthetases (ACS) family, has been identified as a novel marker of alpha-fetoprotein-high subtype HCC and as an oncogene. Here, we identified a new function of ACSL4 in HCC lipid metabolism. ACSL4 can modulate de novo lipogenesis by accumulating intracellular triglycerides, cholesterols, and lipid droplets in HCC. Mechanistically, ACSL4 upregulates the master lipogenesis regulator sterol regulatory element binding protein 1 (SREBP1) and its downstream lipogenic enzymes in HCC cells via c-Myc. Moreover, SREBP1 is crucial for ACSL4-mediated regulation of lipogenesis as well as HCC cell proliferation and metastasis, as SREBP1 overexpression rescues lipogenic deficiency and decreased oncogenic capabilities associated with ACSL4 suppression in vitro and in vivo. Clinically, our data showed that the expression of ACSL4 was positively correlated with that of SREBP1 in HCC patients, and the combinational biomarkers showed strong predictive value for HCC. Together, our findings uncover a new mechanism by which ACSL4 modulates aberrant lipid metabolism and promotes the progression of HCC.
Collapse
Affiliation(s)
- Junru Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Chaofeng Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China
| | - Yunhao Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Wendi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Chengkuan Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xiaode Feng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Qiyang Cheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Wenxuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Yuejie Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Lin Zhou
- NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
41
|
Zhou J, Zhao J, Su C. Role of Aberrant Lipid Metabolism of Cancer Stem Cells in Cancer Progression. Curr Cancer Drug Targets 2021; 21:631-639. [PMID: 33726650 DOI: 10.2174/1568009619666210316112333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/28/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Cancer stem cells (CSCs) represent a small population of cancer cells that are able to self-renew and initiate tumors, which undergo epigenetic, epithelial-mesenchymal, immunological, and metabolic reprogramming to adapt to the tumor microenvironment as well as survive host defense or therapeutic insults. The metabolic reprogramming that accompanies cancer onset is known to be critical for the disease pathogenesis. A coordinated dysregulation of lipid metabolism is observed in nearly all cancer types. In addition to fulfilling basic requirements of structural lipids for membrane synthesis, lipids function importantly as signaling molecules and contribute to energy homeostasis. In this review, we summarize the current progress in the attractive research field of aberrant lipid metabolism regarding CSCs in cancer progression, which provides insights into therapeutic agents targeting CSCs based upon their modulation of lipid metabolism.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai. China
| | - Jing Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai. China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai. China
| |
Collapse
|
42
|
Gel-Free 3D Tumoroids with Stem Cell Properties Modeling Drug Resistance to Cisplatin and Imatinib in Metastatic Colorectal Cancer. Cells 2021; 10:cells10020344. [PMID: 33562088 PMCID: PMC7914642 DOI: 10.3390/cells10020344] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Researchers have developed several three-dimensional (3D) culture systems, including spheroids, organoids, and tumoroids with increased properties of cancer stem cells (CSCs), also called cancer-initiating cells (CICs). Drug resistance is a crucial issue involving recurrence in cancer patients. Many studies on anti-cancer drugs have been reported using 2D culture systems, whereas 3D cultured tumoroids have many advantages for assessing drug sensitivity and resistance. Here, we aimed to investigate whether Cisplatin (a DNA crosslinker), Imatinib (a multiple tyrosine kinase inhibitor), and 5-Fluorouracil (5-FU: an antimetabolite) alter the tumoroid growth of metastatic colorectal cancer (mCRC). Gene expression signatures of highly metastatic aggregative CRC (LuM1 cells) vs. low-metastatic, non-aggregative CRC (Colon26 and NM11 cells) were analyzed using microarray. To establish a 3D culture-based multiplexing reporter assay system, LuM1 was stably transfected with the Mmp9 promoter-driven ZsGreen fluorescence reporter gene, which was designated as LuM1/m9 cells and cultured in NanoCulture Plate®, a gel-free 3D culture device. LuM1 cells highly expressed mRNA encoding ABCG2 (a drug resistance pump, i.e., CSC/CIC marker), other CSC/CIC markers (DLL1, EpCAM, podoplanin, STAT3/5), pluripotent stem cell markers (Sox4/7, N-myc, GATA3, Nanog), and metastatic markers (MMPs, Integrins, EGFR), compared to the other two cell types. Hoechst efflux stem cell-like side population was increased in LuM1 (7.8%) compared with Colon26 (2.9%), both of which were markedly reduced by verapamil treatment, an ABCG2 inhibitor. Smaller cell aggregates of LuM1 were more sensitive to Cisplatin (at 10 μM), whereas larger tumoroids with increased ABCG2 expression were insensitive. Notably, Cisplatin (2 μM) and Imatinib (10 μM) at low concentrations significantly promoted tumoroid formation (cell aggregation) and increased Mmp9 promoter activity in mCRC LuM1/m9, while not cytotoxic to them. On the other hand, 5-FU significantly inhibited tumoroid growth, although not completely. Thus, drug resistance in cancer with increased stem cell properties was modeled using the gel-free 3D cultured tumoroid system. The tumoroid culture is useful and easily accessible for the assessment of drug sensitivity and resistance.
Collapse
|
43
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
44
|
Bacci M, Lorito N, Smiriglia A, Morandi A. Fat and Furious: Lipid Metabolism in Antitumoral Therapy Response and Resistance. Trends Cancer 2020; 7:198-213. [PMID: 33281098 DOI: 10.1016/j.trecan.2020.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Lipid metabolic reprogramming is an established trait of cancer metabolism that guides response and resistance to antitumoral therapies. Enhanced lipogenesis, increased lipid content (either free or stored into lipid droplets), and lipid-dependent catabolism sustain therapy desensitization and the emergence of a resistant phenotype of tumor cells exposed to chemotherapy or targeted therapies. Aberrant lipid metabolism, therefore, has emerged as a potential metabolic vulnerability of therapy-resistant cancers that could be exploited for therapeutic interventions or for identifying tumors more likely to respond to further lines of therapies. This review gathers recent findings on the role of aberrant lipid metabolism in influencing antitumoral therapy response and in sustaining the emergence of resistance.
Collapse
Affiliation(s)
- Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
45
|
The Overexpression of Keratin 23 Promotes Migration of Ovarian Cancer via Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8218735. [PMID: 33204716 PMCID: PMC7652601 DOI: 10.1155/2020/8218735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023]
Abstract
Background Keratin 23 (KRT23) is a new member of the KRT gene family and known to be involved in the development and migration of various types of tumors. However, the role of KRT23 in ovarian cancer (OC) remains unclear. This study is aimed at investigating the function of KRT23 in OC. Methods The expression of KRT23 in normal ovarian and OC tissues was determined using the Oncomine database and immunohistochemical staining. Reverse transcription quantitative polymerase chain reaction assay was used to analyze the expression of KRT23 in normal ovarian epithelial cell lines and OC cell lines. Small interfering RNA (siRNA), wound healing assay, and transwell assay were conducted to detect the effects of KRT23 on OC cell migration and invasion. Further mechanistic studies were verified by the Gene Expression Profiling Interactive Analysis platform, Western blotting, and immunofluorescence staining. Results KRT23 was highly expressed in OC tissues and cell lines. High KRT23 expression could regulate OC cell migration and invasion, and the reduction of KRT23 by siRNA inhibited the migration and invasion of OC cells in vitro. Furthermore, KRT23 mediated epithelial-mesenchymal transition (EMT) by regulating p-Smad2/3 levels in the TGF-β/Smad signaling pathway. Conclusions These results demonstrate that KRT23 plays an important role in OC migration via EMT by regulating the TGF-β/Smad signaling pathway.
Collapse
|
46
|
Gilazieva Z, Ponomarev A, Rutland C, Rizvanov A, Solovyeva V. Promising Applications of Tumor Spheroids and Organoids for Personalized Medicine. Cancers (Basel) 2020; 12:E2727. [PMID: 32977530 PMCID: PMC7598156 DOI: 10.3390/cancers12102727] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
One of the promising directions in personalized medicine is the use of three-dimensional (3D) tumor models such as spheroids and organoids. Spheroids and organoids are three-dimensional cultures of tumor cells that can be obtained from patient tissue and, using high-throughput personalized medicine methods, provide a suitable therapy for that patient. These 3D models can be obtained from most types of tumors, which provides opportunities for the creation of biobanks with appropriate patient materials that can be used to screen drugs and facilitate the development of therapeutic agents. It should be noted that the use of spheroids and organoids would expand the understanding of tumor biology and its microenvironment, help develop new in vitro platforms for drug testing and create new therapeutic strategies. In this review, we discuss 3D tumor spheroid and organoid models, their advantages and disadvantages, and evaluate their promising use in personalized medicine.
Collapse
Affiliation(s)
- Zarema Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| | - Aleksei Ponomarev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| | - Catrin Rutland
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Z.G.); (A.P.); (A.R.)
| |
Collapse
|
47
|
Wang J, Ling R, Zhou Y, Gao X, Yang Y, Mao C, Chen D. SREBP1 silencing inhibits the proliferation and motility of human esophageal squamous carcinoma cells via the Wnt/β-catenin signaling pathway. Oncol Lett 2020; 20:2855-2869. [PMID: 32765792 PMCID: PMC7403634 DOI: 10.3892/ol.2020.11853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
Sterol regulatory element-binding protein 1 (SREBP1) is dysregulated in a variety of types of human cancer. However, the functional roles of SREBP1 in esophageal squamous cell carcinoma (ESCC) remain poorly understood. The present study investigated the function of SREBP1 in cell proliferation and motility. Microarray datasets in Oncomine, reverse transcription-quantitative PCR and western blot analysis revealed that SREBP1 was overexpressed in ESCC tumors when compared with normal tissues. In addition, SREBP1 overexpression was significantly associated with tumor differentiation, lymphatic metastasis and Ki67 expression. Results suggested that silencing SREBP1 inhibited the proliferation, migration and invasion of ESCC cells, whereas overexpression of SREBP1 had opposite effects on proliferation and metastasis. In addition, loss of SREBP1 significantly increased E-cadherin and decreased N-cadherin, Vimentin, Snail, matrix metalloproteinase 9 and vascular endothelial growth factor C expression levels, which were restored via SREBP1-overexpression. Mechanistically, loss of SREBP1 suppressed T-cell factor 1/lymphoid enhancer factor 1 (TCF1/LEF1) activity and downregulated TCF1/LEF1 target proteins, including CD44 and cyclin D1. Moreover, knockdown of SREBP1 downregulated the expression levels of stearoyl-CoA desaturase 1 (SCD1), phosphorylated glycogen synthase kinase-3β and nuclear β-catenin. Furthermore, the inhibitors of SREBP1 and/or SCD1 and small interfering RNA-SCD1 efficiently inhibited the activation of the Wnt/β-catenin pathway driven by constitutively active SREBP1. Finally, in vivo results indicated that SREBP1-knockdown suppressed the proliferation and metastasis of ESCC. Taken together, these findings demonstrated that SREBP1 exerts oncogenic effects in ESCC by promoting proliferation and inducing epithelial-mesenchymal transition via the SCD1-induced activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jingzhi Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Rui Ling
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xingyu Gao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yun Yang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chaoming Mao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China.,Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
48
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
49
|
Song H, Xu Y, Xu T, Fan R, Jiang T, Cao M, Shi L, Song J. CircPIP5K1A activates KRT80 and PI3K/AKT pathway to promote gastric cancer development through sponging miR-671-5p. Biomed Pharmacother 2020; 126:109941. [PMID: 32169757 DOI: 10.1016/j.biopha.2020.109941] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) has been regarded as a kind of the most common cancers in gastrointestinal malignant tumors. Circular RNA (circRNA) is a newly discovered category of non-coding RNAs and plays a significant role in the initiation or development of human cancers. Nevertheless, the role of circPIP5K1A in GC remains unclear. METHODS The relative expression level and the circular structure of circPIP5K1A were confirmedby RT-qPCR. The biological function of circPIP5K1A in GC was evaluated by colony formation, transwell and western blot assays. The binding capacity between miR-671-5p and circPIP5K1A (or KRT80) was assessed by luciferase reporter and Ago2-RIP assays. Protein levels of PI3K/AKT pathway were measured by western blot assay. RESULTS CircPIP5K1A was up-regulated in GC tissues and cells with a circular structure. Functionally, circPIP5K1A silence limited cell proliferation, invasion, migration and EMT process. Mechanistically, circPIP5K1A directly interacted with miR-671-5p to modulate KRT80 expression. Either miR-671-5p inhibitor or KRT80 overexpression could offset the inhibitory effect of circPIP5K1A depletion on GC development. Besides, circPIP5K1A played its oncogenic role in GC through regulating PI3K/AKT pathway. At last, circPIP5K1A promoted GC tumor growth in vivo. CONCLUSIONS CircPIP5K1A/miR-671-5p/KRT80 axis contributes to GC progression through PI3K/AKT pathway, implying this axis may be a potential therapeutic target for the treatment of GC patients.
Collapse
Affiliation(s)
- Hu Song
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Yixin Xu
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Teng Xu
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Ruizhi Fan
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Tao Jiang
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Meng Cao
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Linseng Shi
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Jun Song
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China.
| |
Collapse
|
50
|
Chen Z, Pan T, Jiang D, Jin L, Geng Y, Feng X, Shen A, Zhang L. The lncRNA-GAS5/miR-221-3p/DKK2 Axis Modulates ABCB1-Mediated Adriamycin Resistance of Breast Cancer via the Wnt/β-Catenin Signaling Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1434-1448. [PMID: 32160712 PMCID: PMC7056627 DOI: 10.1016/j.omtn.2020.01.030] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023]
Abstract
Drug resistance, including adriamycin (ADR)-based therapeutic resistance, is a crucial cause of chemotherapy failure in breast cancer treatment. Acquired chemoresistance has been identified to be closely associated with the overexpression of P-glycoprotein (P-gp/ABCB1). Long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) can be involved in carcinogenesis; however, its roles in ABCB1-mediated ADR resistance are poorly understood. In this study, we identified a panel of differentially expressed lncRNAs, mRNAs, and microRNAs (miRNAs) in MCF-7 and MCF-7/ADR cell lines through RNA sequencing (RNA-seq) technologies. GAS5 level was downregulated whereas ABCB1 level was upregulated in the resistant breast cancer tissues and cells. Overexpression of GAS5 significantly enhanced the ADR sensitivity and apoptosis, and it inhibited the efflux function and expression of ABCB1 in vitro, while knockdown of GAS5 had the opposite effects. Further mechanism-related investigations indicated that GAS5 acted as an endogenous “sponge” by competing for miR-221-3p binding to regulate its target dickkopf 2 (DKK2), and then it inhibited the activation of the Wnt/β-catenin pathway. Functionally, GAS5 enhanced the anti-tumor effect of ADR in vivo. Collectively, our findings reveal that GAS5 exerted regulatory function in ADR resistance possibly through the miR-221-3p/DKK2 axis, providing a novel approach to develop promising therapeutic strategy for overcoming chemoresistance in breast cancer patients.
Collapse
Affiliation(s)
- Zhaolin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Tingting Pan
- Department of General Surgery, Diagnosis and Therapy Center of Thyroid and Breast, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Duochen Jiang
- Department of Pharmacy, The Anqing Hospital Affiliated, Anhui Medical University, Anqing, Anhui 246003, P.R. China
| | - Le Jin
- Department of Pharmacy, The Anqing Hospital Affiliated, Anhui Medical University, Anqing, Anhui 246003, P.R. China
| | - Yadi Geng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Xiaojun Feng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China.
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China.
| |
Collapse
|