1
|
Cheng Y, Luo Q, Hong J, Feng S, Yuan Z, Wang C. Size-controlled fabrication of silicon nanopore arrays by silver-assisted chemical etching. J Chem Phys 2025; 162:174702. [PMID: 40309944 DOI: 10.1063/5.0264413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
Silicon nanopore arrays are widely used in applications such as solution exchange, biomolecule detection, chemical analysis, and plant pathogen detection due to their high stability, long service life, and excellent compatibility with semiconductor and microfluidic technologies. However, existing fabrication methods such as wet etching, ion track etching, and electron beam lithography-assisted reactive ion etching face limitations, including poor size uniformity, uneven pore distribution, and high production costs. To address these challenges, this study proposes an improved metal-assisted chemical etching method for fabricating silicon nanopore arrays. This method combines silver nanoparticle-assisted etching with an anodic aluminum oxide template, promoting the orderly arrangement of silver nanoparticles on the silicon surface. By altering key factors such as nanoparticle size, etching time, temperature, and etchant oxidant concentration, the etching process was significantly optimized, with higher temperatures and oxidant concentrations accelerating nanopore formation. In addition, it is proposed that the anodic reaction likely involves the direct dissolution of silicon in its divalent state, with the gas generated during the etching process being a product of this reaction. Xenon lamp irradiation was used to fine-tune the etching kinetics, further optimizing the morphology of the silicon nanopores. The proposed technique is low-cost, highly adaptable, and reproducible, and has been successfully applied to design and optimize silicon nanopore arrays for various advanced applications. Compared to traditional industrial methods, this fabrication approach is more suitable for large-scale production, offering higher efficiency and better geometric control, making it ideal for applications in catalysis, sensing, and nanoelectronics.
Collapse
Affiliation(s)
- Yuxin Cheng
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
- Guangdong Institute of Modern Agricultural Equipment, Guangzhou, China
| | - Qinglong Luo
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
| | - Junjie Hong
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
| | - Silu Feng
- School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
| | - Zhishan Yuan
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
| | - Chengyong Wang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Meng F, Li X, Zou N, Wang X. Protein Profiling by Nanopore-Based Technology. Anal Chem 2025. [PMID: 40326163 DOI: 10.1021/acs.analchem.5c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Proteins are the molecular foundations of life and disease responsible for understanding most biological processes. Nanopore technology devoted to revealing single-molecule behavior has made great breakthroughs for protein identification, detection and analysis, including protein sequencing. Here, we present an overview of the latest advances in protein profiling by nanopores from the identification and quantification of protein biomarkers and protein enzymes to the delineation of protein conformations and interactions at the single-molecule level, focused on the diverse and exciting approaches to protein sequencing. Furthermore, we discuss the primary challenges associated with nanopore-based protein sensing and recommend potential strategies respond to these challenges from the perspective of nanopore engineering and data processing.
Collapse
Affiliation(s)
- Funa Meng
- School of Chemistry and Chemical Engineering, Heze University, Shandong 274015, P. R. China
| | - Xin Li
- School of Chemistry and Chemical Engineering, Heze University, Shandong 274015, P. R. China
| | - Na Zou
- School of Chemistry and Chemical Engineering, Heze University, Shandong 274015, P. R. China
| | - Xueliang Wang
- School of Chemistry and Chemical Engineering, Heze University, Shandong 274015, P. R. China
| |
Collapse
|
3
|
Liu X, Zhang Q, Zong C, Gai H. Digital Immunoassay for Proteins: Theory, Methodology, and Clinical Applications. Anal Chem 2025; 97:9077-9110. [PMID: 40257815 DOI: 10.1021/acs.analchem.4c05421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Chenghua Zong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| |
Collapse
|
4
|
Fang H, Gong T, Su Y, Xiong S, Yao M, Guo Q, Tong W, Gan T, Zhang P, Liu Q, Tan Y, Zhang C, Huang X, Xiong Y. PBS-DLS: A Novel Ultrasensitive Dynamic Light Scattering Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40327829 DOI: 10.1021/acsami.5c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Despite significant advances in ultrasensitive detection, current methodologies are often hindered by the need for sophisticated equipment, complex signal amplification processes, and specialized operation. Here, we have developed a novel strategy by universal polyvalent biotin-streptavidin cross-linking aggregation coupled with dynamic light scattering (PBS-DLS) that effectively transduces and amplifies undetected molecular recognition events at low target concentrations, demonstrating its potential application as an ultrasensitive immunoassay. The controllability in the size and quantity of the DLS nanoprobe enables this advanced design to achieve tunable sensitivity down to attomolar levels and a broad detection range spanning six orders of magnitude. By reducing the detection time to approximately 15 min, our PBS-DLS emerges as a promising tool for point-of-care (POC) testing. Moreover, this PBS-DLS immunosensor has been validated through its rapid and ultrasensitive detection of the SARS-CoV-2 nucleocapsid (N) protein (a macromolecular model target) and malachite green (MG, a small molecule model target) in complex sample matrices, outperforming conventional immunoassays and other testing methods. The exceptional sensitivity, simplicity, and speed of this novel approach position it as a highly promising platform for the development of various bioanalytical methods and POC assays.
Collapse
Affiliation(s)
- Hao Fang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Tian Gong
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330209, P.R. China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yu Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Mingjian Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Qian Guo
- Jiangxi Province Centre for Disease Control and Prevention, Youth Science and Technology Innovation Research Team, Nanchang 330029, P.R. China
| | - Weipeng Tong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Tingting Gan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Peng Zhang
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330209, P.R. China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Qiong Liu
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330209, P.R. China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Youwen Tan
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
| | - Chengsheng Zhang
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330209, P.R. China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| |
Collapse
|
5
|
Iesu L, Sai M, Torbeev V, Kieffer B, Pelta J, Cressiot B. Single-molecule nanopore sensing of proline cis/ trans amide isomers. Chem Sci 2025:d5sc01156f. [PMID: 40321189 PMCID: PMC12045290 DOI: 10.1039/d5sc01156f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Molecules known as stereoisomers possess identical numbers and types of atoms, which are oriented differently in space. Cis-trans isomerization of proline, a distinctive case of stereoisomerism in peptides and proteins, includes the rearrangement of chemical groups around an acyl-proline amide bond that bears the partial double bond character. Many cellular processes are affected by cis-trans proline isomerization and associated conformational protein interconversions. This work explored the conformer ratio of natural and chemically modified prolines using the aerolysin pore as a nanosensor. Despite the well-known involvement of proline in protein folding, stability, and aggregation, the highly demanding discrimination of cis and trans isomers of the Xaa-Pro peptide bond has not so far been reported at a single-molecule level using an electrical detection with a nanopore. For a proline-rich 19 amino acid residue fragment of the Dynamin 2 protein, one of the subfamilies of GTP-binding proteins, the third proline in the sequence was substituted by two stereoisomeric 4-fluoroprolines. The nanopore experiments were able to sense the influence of fluorination in shifting the cis/trans conformers' equilibrium compared to the natural proline: for 4-(R)-fluoroproline, the trans amide isomer is more favored, while the opposite shift was observed for 4-(S)-fluoroproline. NMR spectroscopy was used to validate the nanopore results. Overall, our findings demonstrate the high sensitivity of single-molecule nanopore sensing as an analytical tool for stereoisomer identification within peptides.
Collapse
Affiliation(s)
- Luca Iesu
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE 95000 Cergy France
| | - Mariam Sai
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 1258, University of Strasbourg 67400 Illkirch France
| | - Vladimir Torbeev
- École Supérieure de Biotechnologie de Strasbourg (ESBS), CNRS UMR 7242 Biotechnology and Cellular Signalling, University of Strasbourg 67400 Illkirch France
| | - Bruno Kieffer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 1258, University of Strasbourg 67400 Illkirch France
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE 91025 Evry-Courcouronnes France
| | - Benjamin Cressiot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE 95000 Cergy France
| |
Collapse
|
6
|
Stanley CV, Xiao Y, Ling T, Li DS, Chen P. Opto-digital molecular analytics. Chem Soc Rev 2025; 54:3557-3577. [PMID: 40035639 DOI: 10.1039/d5cs00023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In contrast to conventional ensemble-average-based methods, opto-digital molecular analytic approaches digitize detection by physically partitioning individual detection events into discrete compartments or directly locating and analyzing the signals from single molecules. The sensitivity can be enhanced by signal amplification reactions, signal enhancement interactions, labelling by strong signal emitters, advanced optics, image processing, and machine learning, while specificity can be improved by designing target-selective probes and profiling molecular dynamics. With the capabilities to attain a limit of detection several orders lower than the conventional methods, reveal intrinsic molecular information, and achieve multiplexed analysis using a small-volume sample, the emerging opto-digital molecular analytics may be revolutionarily instrumental to clinical diagnosis, molecular chemistry and science, drug discovery, and environment monitoring. In this article, we provide a comprehensive review of the recent advances, offer insights into the underlying mechanisms, give comparative discussions on different strategies, and discuss the current challenges and future possibilities.
Collapse
Affiliation(s)
- Chelsea Violita Stanley
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| | - Yi Xiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| | - Tong Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
- Skin Research Institute of Singapore, 308232, Singapore
| |
Collapse
|
7
|
Jin J, Wu L, Gao Y, Ma G. Quantification and Mitigation of Site-Preferred Nonspecific Interactions in Single-Nanoparticle Biosensors. ACS Sens 2025; 10:2258-2265. [PMID: 40096541 DOI: 10.1021/acssensors.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Understanding the origin and behavior of nonspecific interactions is essential for advancing biosensing technologies. In this study, we investigate nonspecific interactions between a functionalized single nanoparticle (NP) and a sensor surface. The NP, tethered by a single DNA molecule, exhibits flexible motion that allows it to interact with the surface. Using surface plasmon resonance microscopy (SPRM) with nanometer precision, we tracked the motion dynamics of the NP and revealed that nonspecific binding leads to repeated transient trapping at the surface. The NP shows a preference for interacting with a particular site, indicating site-preferred nonspecific interactions. This behavior mimics specific binding events, emphasizing the need to mitigate such effects in biosensors. By systematically varying NP size, ionic strength, solution viscosity, blocking agents, and applying external forces, we identified external force as the most effective factor in reducing such nonspecific interactions. We hope these insights can provide strategies for designing next-generation single-NP and single-molecule biosensors with minimal nonspecific signals, thereby enhancing detection reliability.
Collapse
Affiliation(s)
- Jiayi Jin
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Liwei Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yushi Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Guangzhong Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Chu W, Yang M, Shang Z, Zhao J, Xiao Y, Pan J, Yi X, Lin M, Xia F. Machine Learning Assisted Nanofluidic Array for Multiprotein Detection. ACS NANO 2025; 19:8539-8551. [PMID: 40009788 DOI: 10.1021/acsnano.4c13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Solid-state nanopore and nanochannel biosensors have revolutionized protein detection by offering label-free, highly sensitive analyses. Traditional sensing systems (1st and 2nd stages) primarily focus on inner wall (IW) interactions, facing challenges such as complex preparation processes, variable protein entry angles, and conformational changes, leading to irregular detection events. To address these limitations, recent advancements (3rd stage) have shifted toward outer surface (OS) functionalization but are constrained by single-protein recognition models. Herein, we show a machine learning assisted nanofluidic array (MANY) sensing system (4th stage) that integrates a supervised dimensionality reduction strategy with photoresponsive MoS2 nanofluidic array functionalized with nonspecific functional elements (FEarray) at the OS. This approach serves as a proof-of-concept for label-free, probe-free detection of multiple proteins with 100% accuracy, highlighting its significant potential for rapid diagnostics in future disease detection applications.
Collapse
Affiliation(s)
- Wenjing Chu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Mengyu Yang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhiwei Shang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing Zhao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yuling Xiao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing Pan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
9
|
Cai X, Huang Y, Zhu C. Immobilized Multi-Enzyme/Nanozyme Biomimetic Cascade Catalysis for Biosensing Applications. Adv Healthc Mater 2025; 14:e2401834. [PMID: 38889805 DOI: 10.1002/adhm.202401834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Multiple enzyme-induced cascade catalysis has an indispensable role in the process of complex life activities, and is widely used to construct robust biosensors for analyzing various targets. The immobilized multi-enzyme cascade catalysis system is a novel biomimetic catalysis strategy that immobilizes various enzymes with different functions in stable carriers to simulate the synergistic catalysis of multiple enzymes in biological systems, which enables high stability of enzymes and efficiency enzymatic cascade catalysis. Nanozymes, a type of nanomaterial with intrinsic enzyme-like characteristics and excellent stabilities, are also widely applied instead of enzymes to construct immobilized cascade systems, achieving better catalytic performance and reaction stability. Due to good stability, reusability, and remarkably high efficiency, the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems show distinct advantages in promoting signal transduction and amplification, thereby attracting vast research interest in biosensing applications. This review focuses on the research progress of the immobilized multi-enzyme/nanozyme biomimetic cascade catalysis systems in recent years. The construction approaches, factors affecting the efficiency, and applications for sensitive biosensing are discussed in detail. Further, their challenges and outlooks for future study are also provided.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
10
|
Moni HEJ, Rezaei B, Karampelas IH, Saeidi-Javash M, Gómez-Pastora J, Wu K, Zeng M. Printing rare-earth-free (REF) magnetic inks: synthesis, formulation, and device applications. NANOSCALE 2025; 17:4830-4853. [PMID: 39744875 DOI: 10.1039/d4nr04035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Additive manufacturing (AM) of magnetic materials has recently attracted increasing interest for various applications but is often limited by the high cost and supply chain risks of rare-earth-element (REE) magnetic precursors. Recent advances in nanomanufacturing have enabled the development of rare-earth-free (REF) magnetic materials, such as spinel ferrites, hexaferrites, MnAl, MnBi, Alnico, FePt, and iron oxides/nitrides, which offer promising alternatives for printing high-performance magnetic devices. This review provides a detailed overview of the latest developments in REF magnetic materials, covering both synthesis strategies of REF magnetic materials/nanomaterials and their integration into AM processes. We summarize the design and formulation of magnetic inks, emphasizing the unique properties of REF ferromagnetic and ferrimagnetic systems and their adaptability to AM techniques like direct ink writing, inkjet printing, aerosol jet printing, and screen printing. Key advancements in materials chemistry, ink rheology, and device performance are discussed, highlighting how the structure of REF magnetic materials impacts device functionalities. This review concludes with a perspective on the pressing challenges and emerging opportunities in AM of REF magnetic inks. Through this review, we aim to offer insights into the structure-processing-property relationship of REF magnetic inks and guide the design of next-generation printable magnetic systems in a scalable, cost-effective, and sustainable manner.
Collapse
Affiliation(s)
- Hur-E-Jannat Moni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | | | - Mortaza Saeidi-Javash
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, California, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Minxiang Zeng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
11
|
Doan THP, Fried JP, Tang W, Hagness DE, Wu Y, Tilley RD, Gooding JJ. Optical Nanopore Blockade Sensors for Multiplexed Detection of Proteins. NANO LETTERS 2025; 25:3233-3239. [PMID: 39949081 DOI: 10.1021/acs.nanolett.4c05934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Enduring challenges for quantitative analysis in nanopore sensing are the detection of low biomarker concentrations in reasonable time frames and the detection of multiple biomarkers in the same sample. Herein we report an optical blockade nanopore sensor strategy that can detect more than a protein at femtomolar concentrations in rapid time (approximately 12 min). This is done using a nanopore array functionalized with an aptamer that can bind to two different but related target proteins. The assay then monitors two different colors of fluorescent particles modified with antibodies specific to the protein of interest, as they block the nanopores using a wide-field microscope. By distinguishing specific and nonspecific blockade events for each nanoparticle based on whether they can be easily pulled out of the nanopores using an electric field, we can simultaneously quantify the concentrations of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) down to femtomolar concentrations.
Collapse
Affiliation(s)
- Thanh Hoang Phuong Doan
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jasper P Fried
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Wenxian Tang
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Daniel Everett Hagness
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yanfang Wu
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
12
|
Sun Q, Dai M, Hong J, Feng S, Wang C, Yuan Z. Graphene Nanopore Fabrication and Applications. Int J Mol Sci 2025; 26:1709. [PMID: 40004171 PMCID: PMC11855882 DOI: 10.3390/ijms26041709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Graphene is a revolutionary material with excellent optical, electrical and mechanical properties and has garnered significant attention in the realm of nanopore technology. Devices incorporating graphene nanopores leverage the material's atomic thickness to enhance detection precision in solid-state nanopores. These nanopores exhibit high spatial resolution and ion selectivity, making them promising sensors for biomolecular detection. Additionally, their unique characteristics suggest their considerable potential for applications in material separation and osmotic power generation. In recent years, several literature reviews on graphene nanopores have been published; however, some have not fully addressed certain important aspects, such as the depth of theoretical analysis, the extent of coverage on technological advancements, and the exploration of potential applications. This paper reviews current fabrication methods, including "top-down" etching and "bottom-up" synthesis, highlighting their advantages and limitations. We also summarize diverse applications of graphene nanopores, such as in biomolecule detection and water desalination. Our findings emphasize the need for a deeper exploration of these aspects, advancing the field by showcasing the broader potential of graphene nanopores in addressing various technological challenges.
Collapse
Affiliation(s)
- Qijiao Sun
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Q.S.); (M.D.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Dai
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Q.S.); (M.D.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Junjie Hong
- School of Integrated Circuit, Guangdong University of Technology, Guangzhou 510006, China;
| | - Silu Feng
- School of Integrated Circuit, Guangdong University of Technology, Guangzhou 510006, China;
| | - Chengyong Wang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Q.S.); (M.D.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishan Yuan
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Q.S.); (M.D.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Salehirozveh M, Dehghani P, Mijakovic I. Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs). J Funct Biomater 2024; 15:340. [PMID: 39590545 PMCID: PMC11595413 DOI: 10.3390/jfb15110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Iron oxide nanoparticles (IONPs) have garnered significant attention in biomedical applications due to their unique magnetic properties, biocompatibility, and versatility. This review comprehensively examines the synthesis methods, surface functionalization techniques, and diverse biomedical applications of IONPs. Various chemical and physical synthesis techniques, including coprecipitation, sol-gel processes, thermal decomposition, hydrothermal synthesis, and sonochemical routes, are discussed in detail, highlighting their advantages and limitations. Surface functionalization strategies, such as ligand exchange, encapsulation, and silanization, are explored to enhance the biocompatibility and functionality of IONPs. Special emphasis is placed on the role of IONPs in biosensing technologies, where their magnetic and optical properties enable significant advancements, including in surface-enhanced Raman scattering (SERS)-based biosensors, fluorescence biosensors, and field-effect transistor (FET) biosensors. The review explores how IONPs enhance sensitivity and selectivity in detecting biomolecules, demonstrating their potential for point-of-care diagnostics. Additionally, biomedical applications such as magnetic resonance imaging (MRI), targeted drug delivery, tissue engineering, and stem cell tracking are discussed. The challenges and future perspectives in the clinical translation of IONPs are also addressed, emphasizing the need for further research to optimize their properties and ensure safety and efficacy in medical applications. This review aims to provide a comprehensive understanding of the current state and future potential of IONPs in both biosensing and broader biomedical fields.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Parisa Dehghani
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Su Y, Zhou L. Review of single-molecule immunoassays: Non-chip and on-chip Assays. Anal Chim Acta 2024; 1322:342885. [PMID: 39182983 DOI: 10.1016/j.aca.2024.342885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 08/27/2024]
Abstract
Enhancing the sensitivity of immunoassays is an important requirement in the field of immunology, especially in light of rapid developments in genetic testing, making the detection of low-abundance protein biomarkers crucial. Therefore, innovations in highly sensitive immunoassays are imperative. This demand has led to the emergence of single-molecule immunoassays (SMIs), driving advancements in early diagnostic techniques, and ushering in a new era of immunoassays. This review begins by tracing the development of immunoassays and offers a detailed discussion of SMI technology across two distinct pathways: non-chip (SMI without microfluidic chips) and on-chip (SMI with microfluidic chips). Furthermore, we evaluated and compared these methods using two pathways. In addition, this review discusses the significance of SMI techniques in the diagnosis of various diseases and their current applications in laboratory and clinical settings. The progress of SMI in commercial applications and suggestions for innovative directions are also summarized. Despite the considerable potential of SMI, these technologies face challenges in practical application, particularly in developing countries and economically disadvantaged regions. The final section of this review addresses the challenges and prospects of these technologies.
Collapse
Affiliation(s)
- Yan Su
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Zhou
- State Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China; Biosafety Research Center Yangtze River Delta in Zhangjiagang, Suzhou, 215611, China.
| |
Collapse
|
15
|
Takei H, Nakada T, Leong LW, Ito A, Hanada K, Maeda H, Sohail MS, Tomiyasu K, Sakamoto O, Naono N, Taniguchi M. Immunological assay using a solid-state pore with a low limit of detection. Sci Rep 2024; 14:16686. [PMID: 39030274 PMCID: PMC11271571 DOI: 10.1038/s41598-024-67112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Emerging infectious diseases, cancer, and other diseases are quickly tested mainly via immune reactions based on specific molecular recognition between antigens and antibodies. By changing the diameter of solid-state pores, biomolecules of various sizes can be rapidly detected at the single-molecule level. The combination of immunoreactions and solid-state pores paves the way for an efficient testing method with high specificity and sensitivity. The challenge in developing this method is achieving quantitative analysis using solid-state pores. Here, we demonstrate a method with a low limit of detection for testing tumor markers using a combination of immunoreactions and solid-state pore technology. Quantitative analysis of the mixing ratio of two and three beads with different diameters was achieved with an error rate of up to 4.7%. The hybrid solid-state pore and immunoreaction methods with prostate-specific antigen (PSA) and anti-PSA antibody-modified beads achieved a detection limit of 24.9 fM PSA in 30 min. The hybrid solid-state pore and immunoreaction enabled the rapid development of easy-to-use tests with lower limit of detection and greater throughput than commercially available immunoassay for point-of-care testing.
Collapse
Affiliation(s)
- Hiroyasu Takei
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | - Tomoko Nakada
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Lat Wai Leong
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Atsuki Ito
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | - Kakeru Hanada
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | - Hinako Maeda
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | | | | | - Osamu Sakamoto
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | - Norihiko Naono
- Aipore Inc., 26-1 Sakuragaokacho, Shibuya, Tokyo, 150-8512, Japan
| | - Masateru Taniguchi
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
16
|
Jiang Y, Wang R, Ye C, Wang X, Wang D, Du Q, Liang H, Zhang S, Gao P. Stimuli-Responsive Ion Transport Regulation in Nanochannels by Adhesion-Induced Functionalization of Macroscopic Outer Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35666-35674. [PMID: 38924711 DOI: 10.1021/acsami.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Responsive regulation of ion transport through nanochannels is crucial in the design of smart nanofluidic devices for sequencing, sensing, and water-energy nexus. Functionalization of the inner wall of the nanochannel enhances interaction with ions and fluid but restricts versatile chemical approaches and accurate characterizations of fluidic interfaces. Herein, we reveal a responsive regulating mechanism of ion transport through nanochannels by polydopamine (PDA)-induced functionalization on the macroscopic outer surface of nanochannels. Responsive molecules were codeposited with PDA on the outer surface of nanochannels and formed a valve of nanometer thickness to manually manipulate ion transport by changing its gap spacing, surface charge, and wettability under external stimulus. The response ratio can be up to 100-fold by maximizing the proportion of responsive molecules on the outer surface. Laminating the codepositions of different responsive molecules with PDA on the channel's outer surface produces multiple responses. A nearly universal adhesion of PDA with responsive molecules on the open outer surface induces nanochannels responsive to different external stimuli with variable response ratios and arbitrary combinations. The results challenge the primary role of functionalization on the nanoconfined interface of nanofluidics and open opportunities for developing new-style nanofluidic devices through the functionalization of macroscopic interface.
Collapse
Affiliation(s)
- You Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Rongsheng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Chunxi Ye
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xinmeng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
17
|
Ratinho L, Bacri L, Thiebot B, Cressiot B, Pelta J. Identification and Detection of a Peptide Biomarker and Its Enantiomer by Nanopore. ACS CENTRAL SCIENCE 2024; 10:1167-1178. [PMID: 38947203 PMCID: PMC11212137 DOI: 10.1021/acscentsci.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Until now, no fast, low-cost, and direct technique exists to identify and detect protein/peptide enantiomers, because their mass and charge are identical. They are essential since l- and d-protein enantiomers have different biological activities due to their unique conformations. Enantiomers have potential for diagnostic purposes for several diseases or normal bodily functions but have yet to be utilized. This work uses an aerolysin nanopore and electrical detection to identify vasopressin enantiomers, l-AVP and d-AVP, associated with different biological processes and pathologies. We show their identification according to their conformations, in either native or reducing conditions, using their specific electrical signature. To improve their identification, we used a principal component analysis approach to define the most relevant electrical parameters for their identification. Finally, we used the Monte Carlo prediction to assign each event type to a specific l- or d-AVP enantiomer.
Collapse
Affiliation(s)
- Laura Ratinho
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 95000, Cergy, France
| | - Laurent Bacri
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Bénédicte Thiebot
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 95000, Cergy, France
| | - Benjamin Cressiot
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 95000, Cergy, France
| | - Juan Pelta
- Université
Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| |
Collapse
|
18
|
Yang J, Pan T, Xie Z, Yuan W, Ho HP. In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules. Nat Commun 2024; 15:5132. [PMID: 38879544 PMCID: PMC11180207 DOI: 10.1038/s41467-024-48630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/06/2024] [Indexed: 06/19/2024] Open
Abstract
Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device.
Collapse
Affiliation(s)
- Jianxin Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tianle Pan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhenming Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
19
|
Zhang LL, Zhong CB, Huang TJ, Zhang LM, Yan F, Ying YL. High-throughput single biomarker identification using droplet nanopore. Chem Sci 2024; 15:8355-8362. [PMID: 38846401 PMCID: PMC11151865 DOI: 10.1039/d3sc06795e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 06/09/2024] Open
Abstract
Biomarkers are present in various metabolism processes, demanding precise and meticulous analysis at the single-molecule level for accurate clinical diagnosis. Given the need for high sensitivity, biological nanopore have been applied for single biomarker sensing. However, the detection of low-volume biomarkers poses challenges due to their low concentrations in dilute buffer solutions, as well as difficulty in parallel detection. Here, a droplet nanopore technique is developed for low-volume and high-throughput single biomarker detection at the sub-microliter scale, which shows a 2000-fold volume reduction compared to conventional setups. To prove the concept, this nanopore sensing platform not only enables multichannel recording but also significantly lowers the detection limit for various types of biomarkers such as angiotensin II, to 42 pg. This advancement enables direct biomarker detection at the picogram level. Such a leap forward in detection capability positions this nanopore sensing platform as a promising candidate for point-of-care testing of biomarker at single-molecule level, while substantially minimizing the need for sample dilution.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Cheng-Bing Zhong
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Ting-Jing Huang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Li-Min Zhang
- School of Electronic Science and Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Feng Yan
- School of Electronic Science and Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
20
|
Doan THP, Fried JP, Tang W, Hagness DE, Yang Y, Wu Y, Tilley RD, Gooding JJ. Nanopore Blockade Sensors for Quantitative Analysis Using an Optical Nanopore Assay. NANO LETTERS 2024; 24:6218-6224. [PMID: 38757765 DOI: 10.1021/acs.nanolett.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Nanopore sensing is a popular biosensing strategy that is being explored for the quantitative analysis of biomarkers. With low concentrations of analytes, nanopore sensors face challenges related to slow response times and selectivity. Here, we demonstrate an approach to rapidly detect species at ultralow concentrations using an optical nanopore blockade sensor for quantitative detection of the protein vascular endothelial growth factor (VEGF). This sensor relies on monitoring fluorescent polystyrene nanoparticles blocking nanopores in a nanopore array of 676 nanopores. The fluorescent signal is read out using a wide-field fluorescence microscope. Nonspecific blockade events are then distinguished from specific blockade events based on the ability to pull the particles out of the pore using an applied electric field. This allows the detection of VEGF at sub-picomolar concentration in less than 15 min.
Collapse
Affiliation(s)
- Thanh Hoang Phuong Doan
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jasper P Fried
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Wenxian Tang
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Daniel Everett Hagness
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ying Yang
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yanfang Wu
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
21
|
Ai J, Huang Y, Yin Z, Deng Y, Yan L, Liao J, Liang G, Chen C, Chang Y, Xiao C, Zhou J, Zhu Z, Liu C, Jiang Z, Ning C, Wang Z. Sea Anemone-Inspired Conducting Polymer Sensing Platform for Integrated Detection of Tumor Protein Marker and Circulating Tumor Cell. Adv Healthc Mater 2024:e2401305. [PMID: 38767216 DOI: 10.1002/adhm.202401305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Combining the detection of tumor protein markers with the capture of circulating tumor cells (CTCs) represents an ultra-promising approach for early tumor detection. However, current methodologies have not yet achieved the necessary low detection limits and efficient capture. Here, a novel polypyrrole nanotentacles sensing platform featuring anemone-like structures capable of simultaneously detecting protein biomarkers and capturing CTCs is introduced. The incorporation of nanotentacles significantly enhances the electrode surface area, providing abundant active sites for antibody binding. This enhancement allows detecting nucleus matrix protein22 and bladder tumor antigen with 2.39 and 3.12 pg mL-1 detection limit, respectively. Furthermore, the developed sensing platform effectively captures MCF-7 cells in blood samples with a detection limit of fewer than 10 cells mL-1, attributed to the synergistic multivalent binding facilitated by the specific recognition antibodies and the positive charge on the nanotentacles surface. This sensing platform demonstrates excellent detection capabilities and outstanding capture efficiency, offering a simple, accurate, and efficient strategy for early tumor detection.
Collapse
Affiliation(s)
- Jialuo Ai
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yixuan Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhaoyi Yin
- School of Materials Science and Technology, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yingshan Deng
- School of Life Sciences, South China Normal University, Guangzhou, 510631, P. R. China
| | - Ling Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jingwen Liao
- Interdisciplinary Plasma Engineering Centre, Guangzhou Institute of Advanced Technology, Guangzhou, 511458, P. R. China
| | - Guoyan Liang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangzhou, 510080, P. R. China
| | - Chong Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangzhou, 510080, P. R. China
| | - Yunbing Chang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangzhou, 510080, P. R. China
| | - Cairong Xiao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jiale Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zurong Zhu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Chengli Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhuo Jiang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
22
|
Cheng HP, Yang TH, Wang JC, Chuang HS. Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2904. [PMID: 38733011 PMCID: PMC11086254 DOI: 10.3390/s24092904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends and innovations in the development of bead-based biosensors for cancer-biomarker detection. We introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic biosensors, along with their respective advantages and limitations. Moreover, the review summarizes the latest advancements, including fabrication techniques, signal-amplification strategies, and integration with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics, thereby facilitating early detection and personalized treatments.
Collapse
Affiliation(s)
- Hui-Pin Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
| | - Tai-Hua Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, Tainan 704, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhih-Cheng Wang
- Department of Urology, Chimei Medical Center, Tainan 710, Taiwan
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
23
|
Sampad MJN, Saiduzzaman SM, Walker ZJ, Wells TN, Wayment JX, Ong EM, Mdaki SD, Tamhankar MA, Yuzvinsky TD, Patterson JL, Hawkins AR, Schmidt H. Label-free and amplification-free viral RNA quantification from primate biofluids using a trapping-assisted optofluidic nanopore platform. Proc Natl Acad Sci U S A 2024; 121:e2400203121. [PMID: 38598338 PMCID: PMC11032468 DOI: 10.1073/pnas.2400203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.
Collapse
Affiliation(s)
| | - S. M. Saiduzzaman
- School of Engineering, University of California, Santa Cruz, CA95064
| | - Zach J. Walker
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Tanner N. Wells
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Jesse X. Wayment
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Ephraim M. Ong
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | | | | | | | | | - Aaron R. Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT84602
| | - Holger Schmidt
- School of Engineering, University of California, Santa Cruz, CA95064
| |
Collapse
|
24
|
Yuan Z, Lin Y, Hu J, Wang C. Controllable Fabrication of Sub-10 nm Graphene Nanopores via Helium Ion Microscopy and DNA Detection. BIOSENSORS 2024; 14:158. [PMID: 38667151 PMCID: PMC11048673 DOI: 10.3390/bios14040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Solid-state nanopores have become a prominent tool in the field of single-molecule detection. Conventional solid-state nanopores are thick, which affects the spatial resolution of the detection results. Graphene is the thinnest 2D material and has the highest spatial detection resolution. In this study, a graphene membrane chip was fabricated by combining a MEMS process with a 2D material wet transfer process. Raman spectroscopy was used to assess the quality of graphene after the transfer. The mechanism behind the influence of the processing dose and residence time of the helium ion beam on the processed pore size was investigated. Subsequently, graphene nanopores with diameters less than 10 nm were fabricated via helium ion microscopy. DNA was detected using a 5.8 nm graphene nanopore chip, and the appearance of double-peak signals on the surface of 20 mer DNA was successfully detected. These results serve as a valuable reference for nanopore fabrication using 2D material for DNA analysis.
Collapse
Affiliation(s)
- Zhishan Yuan
- School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Y.L.); (J.H.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbang Lin
- School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Y.L.); (J.H.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Jieming Hu
- School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Y.L.); (J.H.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Chengyong Wang
- School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Y.L.); (J.H.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
25
|
Zhang X, Dai Y, Sun J, Shen J, Lin M, Xia F. Solid-State Nanopore/Nanochannel Sensors with Enhanced Selectivity through Pore-in Modification. Anal Chem 2024; 96:2277-2285. [PMID: 38285919 DOI: 10.1021/acs.analchem.3c05228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Nanopore sensing technology, as an emerging analytical method, has the advantages of simple operation, fast output, and label-free and has been widely used in fields such as protein analysis, gene sequencing, and biomarker detection. Inspired by biological ion channels, scientists have prepared various artificial solid-state nanopores/nanochannels. Biological ion channels have extremely high ion transport selectivity, while solid-state nanopores/nanochannels have poor selectivity. The selectivity of solid-state nanopores and nanochannels can be enhanced by modifying channel charge, varying pore size, incorporating specific chemical functionality, and adjusting operating (or solution) conditions. This Perspective highlights pore-in modification strategies for enhancing the selectivity of solid-state nanopore/nanochannel sensors by summarizing the articles published in the last 10 years. The future development prospects and challenges of pore-in modification in solid-state nanopore and nanochannel sensors are discussed. This Perspective helps readers better understand nanopore sensing technology, especially the importance of detection selectivity. We believe that solid-state nanopore/nanochannel sensors will soon enter our homes after various challenges.
Collapse
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
26
|
Zhang W, Chen M, Ma Q, Si Z, Jin S, Du Q, Zhang L, Huang Y, Xia F. Role of Outer Surface Probes on Bullet-Shaped Asymmetric Solid-State Nanochannels for Lysozyme Protein Sensing. Anal Chem 2024; 96:2445-2454. [PMID: 38293730 DOI: 10.1021/acs.analchem.3c04413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Artificial solid-state nanochannels featuring precise partitions present a highly promising platform for biomarker detection. While the significance of probes on the outer surface (POS) has been relatively overlooked in the past, our research highlights their crucial role in biosensing. Furthermore, the contribution of POS on the bullet-shaped asymmetric nanochannels has not been extensively explored until now. Here, we fabricated a series of bullet-shaped nanochannels, each featuring a distinct asymmetric structure characterized by different tip- and base-pore diameters. These nanochannels were further modified with explicit distributions at the inner wall (PIW), the outer surface (POS), and their combination (POS + PIW) for lysozyme sensing. The impact of diameters, structural asymmetry, and surface charge density on the sensing efficacy of POS and PIW was thoroughly examined through experimental investigations and numerical simulations. POS demonstrates great individual sensing performance for lysozyme within a broad concentration range, spanning from 10 nM to 1 mM. Furthermore, it improves the sensitivity when combined with PIW, particularly within the nanochannels featuring the smaller base-pore diameter, resulting in a 2-fold increase in sensing performance for POS + PIW compared to PIW at a concentration of 10 nM. These findings are substantiated by numerical simulations that closely align with the experimental parameters. The contributions of POS are notably amplified in the presence of smaller base pores and a higher degree of asymmetry within the bullet-shaped nanochannels. These findings elucidate the mechanism underlying the role of POS within bullet-shaped asymmetric nanochannels and open up new avenues for manipulating and enhancing the sensing efficiency.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Miaoyu Chen
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zhixiao Si
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Sanmei Jin
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Limin Zhang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
27
|
Bandara YMNDY, Freedman KJ. Lithium Chloride Effects Field-Induced Protein Unfolding and the Transport Energetics Inside a Nanopipette. J Am Chem Soc 2024; 146:3171-3185. [PMID: 38253325 DOI: 10.1021/jacs.3c11044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The tapered geometry of nanopipettes offers a unique perspective on protein transport through nanopores since both a gradual and fast confinement are possible depending on the translocation direction. The protein capture rate, unfolding, speed of translocation, and clogging probability are studied by toggling the LiCl concentration between 2 and 4 M. Interestingly, the proteins in this study could be transported with or against electrophoresis and offer vastly different attributes of sensing. Herein, a ruleset for studying proteins is developed that prevents irreversible pore clogging and yields upward of >100,000 events/nanopore. The extended duration of experiments further revealed that the capture rate takes ∼2 h to reach a steady state, emphasizing the importance of reaching equilibrated transport for studying the energetics and kinetics of protein transport (i.e., diffusion vs barrier-limited). Even in the equilibrated transport state, improper lowpass filtering was shown to distort the classification of diffusion-limited vs barrier-limited transport. Finally, electric-field-induced protein unfolding was found to be most prominent in electroosmotic-dominant transport, whereas electrophoretic-dominant events show no evidence of unfolding. Thus, our findings showcase the optimal conditions for protein translocations and the impact on studying protein unfolding, transporting energetics, and acquiring high bandwidth data.
Collapse
Affiliation(s)
- Y M Nuwan D Y Bandara
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Kevin J Freedman
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
28
|
Cao C, Magalhães P, Krapp LF, Bada Juarez JF, Mayer SF, Rukes V, Chiki A, Lashuel HA, Dal Peraro M. Deep Learning-Assisted Single-Molecule Detection of Protein Post-translational Modifications with a Biological Nanopore. ACS NANO 2024; 18:1504-1515. [PMID: 38112538 PMCID: PMC10795472 DOI: 10.1021/acsnano.3c08623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Protein post-translational modifications (PTMs) play a crucial role in countless biological processes, profoundly modulating protein properties on both spatial and temporal scales. Protein PTMs have also emerged as reliable biomarkers for several diseases. However, only a handful of techniques are available to accurately measure their levels, capture their complexity at a single molecule level, and characterize their multifaceted roles in health and disease. Nanopore sensing provides high sensitivity for the detection of low-abundance proteins, holding the potential to impact single-molecule proteomics and PTM detection, in particular. Here, we demonstrate the ability of a biological nanopore, the pore-forming toxin aerolysin, to detect and distinguish α-synuclein-derived peptides bearing single or multiple PTMs, namely, phosphorylation, nitration, and oxidation occurring at different positions and in various combinations. The characteristic current signatures of the α-synuclein peptide and its PTM variants could be confidently identified by using a deep learning model for signal processing. We further demonstrate that this framework can quantify α-synuclein peptides at picomolar concentrations and detect the C-terminal peptides generated by digestion of full-length α-synuclein. Collectively, our work highlights the advantage of using nanopores as a tool for simultaneous detection of multiple PTMs and facilitates their use in biomarker discovery and diagnostics.
Collapse
Affiliation(s)
- Chan Cao
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
- Department
of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Pedro Magalhães
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Lucien F. Krapp
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Juan F. Bada Juarez
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Simon Finn Mayer
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Verena Rukes
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Anass Chiki
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Hilal A. Lashuel
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Brain Mind
Institute, School of Life Sciences, Ecole
Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
29
|
Greive SJ, Bacri L, Cressiot B, Pelta J. Identification of Conformational Variants for Bradykinin Biomarker Peptides from a Biofluid Using a Nanopore and Machine Learning. ACS NANO 2024; 18:539-550. [PMID: 38134312 DOI: 10.1021/acsnano.3c08433] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
There is a current need to develop methods for the sensitive detection of peptide biomarkers in complex mixtures of molecules, such as biofluids, to enable early disease detection. Moreover, to our knowledge, there is currently no detection method capable of identifying the different conformations of a peptide biomarker differing by a single amino acid. Single-molecule nanopore sensing promises to provide this level of resolution. In order to be able to identify these differences in a biofluid such as serum, it is necessary to carefully characterize electrical parameters to obtain specific signatures of each biomarker population observed. We are interested here in a family of peptide biomarkers, kinins such as bradykinin and des-Arg9 bradykinin, that are involved in many disabling pathologies (allergy, asthma, angioedema, sepsis, or cancer). We show the proof of concept for direct identification of these biomarkers in serum at the single-molecule level using a protein nanopore. Each peptide exhibits two unique electrical signatures attributed to specific conformations in bulk. The same signatures are found in serum, allowing their discrimination and identification in a complex mixture such as biofluid. To extend the utility of our experimental results, we developed a principal component analysis approach to define the most relevant electrical parameters for their identification. Finally, we used semisupervised classification to assign each event type to a specific biomarker at physiological serum concentration. In the future, single-molecule scale analysis of peptide biomarkers using a powerful nanopore coupled with machine learning will facilitate the identification and quantification of other clinically relevant biomarkers from biofluids.
Collapse
Affiliation(s)
| | - Laurent Bacri
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Benjamin Cressiot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, F-95000 Cergy, France
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, F-95000 Cergy, France
| |
Collapse
|
30
|
Zhang H, Jiang H, Liu X, Wang X. A review of innovative electrochemical strategies for bioactive molecule detection and cell imaging: Current advances and challenges. Anal Chim Acta 2024; 1285:341920. [PMID: 38057043 DOI: 10.1016/j.aca.2023.341920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023]
Abstract
Cellular heterogeneity poses a major challenge for tumor theranostics, requiring high-resolution intercellular bioanalysis strategies. Over the past decades, the advantages of electrochemical analysis, such as high sensitivity, good spatio-temporal resolution, and ease of use, have made it the preferred method to uncover cellular differences. To inspire more creative research, herein, we highlight seminal works in electrochemical techniques for biomolecule analysis and bioimaging. Specifically, micro/nano-electrode-based electrochemical techniques enable real-time quantitative analysis of electroactive substances relevant to life processes in the micro-nanostructure of cells and tissues. Nanopore-based technique plays a vital role in biosensing by utilizing nanoscale pores to achieve high-precision detection and analysis of biomolecules with exceptional sensitivity and single-molecule resolution. Electrochemiluminescence (ECL) technology is utilized for real-time monitoring of the behavior and features of individual cancer cells, enabling observation of their dynamic processes due to its capability of providing high-resolution and highly sensitive bioimaging of cells. Particularly, scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) which are widely used in real-time observation of cell surface biological processes and three-dimensional imaging of micro-nano structures, such as metabolic activity, ion channel activity, and cell morphology are introduced in this review. Furthermore, the expansion of the scope of cellular electrochemistry research by innovative functionalized electrodes and electrochemical imaging models and strategies to address future challenges and potential applications is also discussed in this review.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
31
|
Cai S, Ren R, He J, Wang X, Zhang Z, Luo Z, Tan W, Korchev Y, Edel JB, Ivanov AP. Selective Single-Molecule Nanopore Detection of mpox A29 Protein Directly in Biofluids. NANO LETTERS 2023; 23:11438-11446. [PMID: 38051760 PMCID: PMC10755749 DOI: 10.1021/acs.nanolett.3c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Single-molecule antigen detection using nanopores offers a promising alternative for accurate virus testing to contain their transmission. However, the selective and efficient identification of small viral proteins directly in human biofluids remains a challenge. Here, we report a nanopore sensing strategy based on a customized DNA molecular probe that combines an aptamer and an antibody to enhance the single-molecule detection of mpox virus (MPXV) A29 protein, a small protein with an M.W. of ca. 14 kDa. The formation of the aptamer-target-antibody sandwich structures enables efficient identification of targets when translocating through the nanopore. This technique can accurately detect A29 protein with a limit of detection of ∼11 fM and can distinguish the MPXV A29 from vaccinia virus A27 protein (a difference of only four amino acids) and Varicella Zoster Virus (VZV) protein directly in biofluids. The simplicity, high selectivity, and sensitivity of this approach have the potential to contribute to the diagnosis of viruses in point-of-care settings.
Collapse
Affiliation(s)
- Shenglin Cai
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, White City Campus, 82 Wood Lane, London W12
0BZ, U.K.
| | - Ren Ren
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, White City Campus, 82 Wood Lane, London W12
0BZ, U.K.
- Department
of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith
Campus, Du Cane Road, London W12 0NN, U.K.
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Jiaxuan He
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People’s
Republic of China
| | - Xiaoyi Wang
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, White City Campus, 82 Wood Lane, London W12
0BZ, U.K.
| | - Zheng Zhang
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People’s
Republic of China
| | - Zhaofeng Luo
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People’s
Republic of China
| | - Weihong Tan
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People’s
Republic of China
| | - Yuri Korchev
- Department
of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith
Campus, Du Cane Road, London W12 0NN, U.K.
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Joshua B. Edel
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, White City Campus, 82 Wood Lane, London W12
0BZ, U.K.
| | - Aleksandar P. Ivanov
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, White City Campus, 82 Wood Lane, London W12
0BZ, U.K.
| |
Collapse
|
32
|
Burden DL, Meyer JJ, Michael RD, Anderson SC, Burden HM, Peña SM, Leong-Fern KJ, Van Ye LA, Meyer EC, Keranen-Burden LM. Confirming Silent Translocation through Nanopores with Simultaneous Single-Molecule Fluorescence and Single-Channel Electrical Recordings. Anal Chem 2023; 95:18020-18028. [PMID: 37991877 PMCID: PMC10719886 DOI: 10.1021/acs.analchem.3c02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Most of what is known concerning the luminal passage of materials through nanopores arises from electrical measurements. Whether nanopores are biological, solid-state, synthetic, hybrid, glass-capillary-based, or protein ion channels in cells and tissues, characteristic signatures embedded in the flow of ionic current are foundational to understanding functional behavior. In contrast, this work describes passage through a nanopore that occurs without producing an electrical signature. We refer to the phenomenon as "silent translocation." By definition, silent translocations are invisible to the standard tools of electrophysiology and fundamentally require a simultaneous ancillary measurement technique for positive identification. As a result, this phenomenon has been largely unexplored in the literature. Here, we report on a derivative of Cyanine 5 (sCy5a) that passes through the α-hemolysin (αHL) nanopore silently. Simultaneously acquired single-molecule fluorescence and single-channel electrical recordings from bilayers formed over a closed microcavity demonstrate that translocation does indeed take place, albeit infrequently. We report observations of silent translocation as a function of time, dye concentration, and nanopore population in the bilayer. Lastly, measurement of the translocation rate as a function of applied potential permits estimation of an effective energy barrier for transport through the pore as well as the effective charge on the dye, all in the absence of an information-containing electrical signature.
Collapse
Affiliation(s)
- Daniel L. Burden
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Joshua J. Meyer
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Richard D. Michael
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Sophie C. Anderson
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Hannah M. Burden
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Sophia M. Peña
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | | | - Lily Anne Van Ye
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | - Elizabeth C. Meyer
- Chemistry Department, Wheaton College, Wheaton, Illinois 60187, United States
| | | |
Collapse
|
33
|
Wang X, Wei X, van der Zalm MM, Zhang Z, Subramanian N, Demers AM, Walters EG, Hesseling A, Liu C. Quantitation of Circulating Mycobacterium tuberculosis Antigens by Nanopore Biosensing in Children Evaluated for Pulmonary Tuberculosis in South Africa. ACS NANO 2023; 17:21093-21104. [PMID: 37643288 PMCID: PMC10668583 DOI: 10.1021/acsnano.3c04420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nanopore sensing of proteomic biomarkers lacks accuracy due to the ultralow abundance of targets, a wide variety of interferents in clinical samples, and the mismatch between pore and analyte sizes. By converting antigens to DNA probes via click chemistry and quantifying their characteristic signals, we show a nanopore assay with several amplification mechanisms to achieve an attomolar level limit of detection that enables quantitation of the circulating Mycobacterium tuberculosis (Mtb) antigen ESAT-6/CFP-10 complex in human serum. The assay's nonsputum-based feature and low-volume sample requirements make it particularly well-suited for detecting pediatric tuberculosis (TB) disease, where establishing an accurate diagnosis is greatly complicated by the paucibacillary nature of respiratory secretions, nonspecific symptoms, and challenges with sample collection. In the clinical assessment, the assay was applied to analyze ESAT-6/CFP-10 levels in serum samples collected during baseline investigation for TB in 75 children, aged 0-12 years, enrolled in a diagnostic study conducted in Cape Town, South Africa. This nanopore assay showed superior sensitivity in children with confirmed TB (94.4%) compared to clinical "gold standard" diagnostic technologies (Xpert MTB/RIF 44.4% and Mtb culture 72.2%) and filled the diagnostic gap for children with unconfirmed TB, where these traditional technologies fell short. We envision that, in combination with automated sample processing and portable nanopore devices, this methodology will offer a powerful tool to support the diagnosis of pulmonary TB in children.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Xiaojun Wei
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Marieke M. van der Zalm
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Nandhini Subramanian
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Anne-Marie Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
- Division of Microbiology, Department of Laboratory Medicine, CHU Sainte-Justine, and Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Montreal, Montreal, Quebec, H3T 1C5, Canada
| | - Elisabetta Ghimenton Walters
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
- Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, NE1 4LP, United Kingdom
| | - Anneke Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
| | - Chang Liu
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| |
Collapse
|
34
|
Kong N, He J, Yang W. Formation of Molecular Junctions by Single-Entity Collision Electrochemistry. J Phys Chem Lett 2023; 14:8513-8524. [PMID: 37722010 DOI: 10.1021/acs.jpclett.3c01955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Controlling and understanding the chemistry of molecular junctions is one of the major themes in various fields ranging from chemistry and nanotechnology to biotechnology and biology. Stochastic single-entity collision electrochemistry (SECE) provides powerful tools to study a single entity, such as single cells, single particles, and even single molecules, in a nanoconfined space. Molecular junctions formed by SECE collision show various potential applications in monitoring molecular dynamics with high spatial resolution and high temporal resolution and in feasible combination with hybrid techniques. This Perspective highlights the new breakthroughs, seminal studies, and trends in the area that have been most recently reported. In addition, future challenges for the study of molecular junction dynamics with SECE are discussed.
Collapse
Affiliation(s)
- Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| | - Jin He
- Physics Department, Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
35
|
Huang Y, Liu L, Luo C, Liu W, Lou X, Jiang L, Xia F. Solid-state nanochannels for bio-marker analysis. Chem Soc Rev 2023; 52:6270-6293. [PMID: 37581902 DOI: 10.1039/d2cs00865c] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Bio-markers, such as ions, small molecules, nucleic acids, peptides, proteins and cells, participate in the construction of living organisms and play important roles in biological processes. It is of great significance to accurately detect these bio-markers for studying their basic functions, the development of molecular diagnosis and to better understand life processes. Solid-state nanochannel-based sensing systems have been demonstrated for the detection of bio-markers, due to their rapid, label-free and high-throughput screening, with high sensitivity and specificity. Generally, studies on solid-state nanochannels have focused on probes on the inner-wall (PIW), ignoring probes on the outer-surface (POS). As a result, the direct detection of cells is difficult to realize by these inner-wall focused nanochannels. Moreover, the sensitivity for detecting ions, small molecules, nucleic acids, peptides and proteins requires further improvement. Recent research has focused on artificial solid-state nanochannels with POS, which have demonstrated the ability to independently regulate ion transport. This design not only contributes to the in situ detection of large analytes, such as cells, but also provides promising opportunities for ultra-high sensitivity detection with a clear mechanism. In this tutorial review, we present an overview of the detection principle used for solid-state nanochannels, inner-wall focused nanochannels and outer-surface focused nanochannels. Furthermore, we discuss the remaining challenges faced by current nanochannel technologies and provide insights into their prospects.
Collapse
Affiliation(s)
- Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Lingxiao Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Wei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210046, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| |
Collapse
|
36
|
Zhang R, Zeng Q, Liu X, Wang L. Ion transport based structural description for in situ synthesized SBA-15 nanochannels in a sub-micropipette. NANOSCALE 2023; 15:14564-14573. [PMID: 37609921 DOI: 10.1039/d3nr01784b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Construction of nanoporous arrays can greatly facilitate their development in the fields of sensing, energy conversion, and nanofluidic devices. It is important to characterize the structure and understand the ion transport behaviour of a nanoporous array, especially those prepared by in situ synthesis, which are difficult to be characterized by conventional methods. Herein, an inorganic and non-crystalline mesoporous silica SBA-15 is selected as a template, where a combination (GP-SBA-15) of a sub-micropipette and SBA-15 is constructed by in situ synthesis, and the multichannel array structure of GP-SBA-15 is illustrated by its ion transport properties from current-voltage responses. Experiments of linear scan voltammetry and chronoamperometry show a rapid accumulation and slow redistribution of ions in the surface-charged nanochannels, and the high/low currents originate from the accumulation/depletion of ions in the channels. The finite element simulation is introduced to calculate the effects of surface charge and pore size on ion rectification and ion concentration distribution. In addition, the short straight channels and long bending channels present in GP-SBA-15 are demonstrated by the voltage-independent resistance pulse signals in the translocation of BSA. This study shows that electrochemical means effectively provide insight into ion transport, achieve structural description and reveal the sensing potential of GP-SBA-15.
Collapse
Affiliation(s)
- Rui Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xuye Liu
- Shantou Institute for Inspection, Shantou 515000, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
37
|
Salehirozveh M, Kure Larsen AK, Stojmenovic M, Thei F, Dong M. In-situ PLL-g-PEG Functionalized Nanopore for Enhancing Protein Characterization. Chem Asian J 2023; 18:e202300515. [PMID: 37497831 DOI: 10.1002/asia.202300515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Single-molecule nanopore detection technology has revolutionized proteomics research by enabling highly sensitive and label-free detection of individual proteins. Herein, we designed a small, portable, and leak-free flowcell made of PMMA for nanopore experiments. In addition, we developed an in situ functionalizing PLL-g-PEG approach to produce non-sticky nanopores for measuring the volume of diseases-relevant biomarker, such as the Alpha-1 antitrypsin (AAT) protein. The in situ functionalization method allows continuous monitoring, ensuring adequate functionalization, which can be directly used for translocation experiments. The functionalized nanopores exhibit improved characteristics, including an increased nanopore lifetime and enhanced translocation events of the AAT proteins. Furthermore, we demonstrated the reduction in the translocation event's dwell time, along with an increase in current blockade amplitudes and translocation numbers under different voltage stimuli. The study also successfully measures the single AAT protein volume (253 nm3 ), which closely aligns with the previously reported hydrodynamic volume. The real-time in situ PLL-g-PEG functionalizing method and the developed nanopore flowcell hold great promise for various nanopores applications involving non-sticky single-molecule characterization.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Department Of Physics And Astronomy, University of Bologna, Bologna, Italy
- Elements srl, Cesena, Italy
| | - Anne-Kathrine Kure Larsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, Aarhus, Denmark
- University of the Chinese Academy of Sciences, Beijing, China
| | | | | | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Biology - Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
38
|
Xing Y, Rottensteiner A, Ciccone J, Howorka S. Functional Nanopores Enabled with DNA. Angew Chem Int Ed Engl 2023; 62:e202303103. [PMID: 37186432 DOI: 10.1002/anie.202303103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Membrane-spanning nanopores are used in label-free single-molecule sensing and next-generation portable nucleic acid sequencing, and as powerful research tools in biology, biophysics, and synthetic biology. Naturally occurring protein and peptide pores, as well as synthetic inorganic nanopores, are used in these applications, with their limitations. The structural and functional repertoire of nanopores can be considerably expanded by functionalising existing pores with DNA strands and by creating an entirely new class of nanopores with DNA nanotechnology. This review outlines progress in this area of functional DNA nanopores and outlines developments to open up new applications.
Collapse
Affiliation(s)
- Yongzheng Xing
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Alexia Rottensteiner
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Jonah Ciccone
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
39
|
Chen X, Zhou S, Wang Y, Zheng L, Guan S, Wang D, Wang L, Guan X. Nanopore Single-molecule Analysis of Biomarkers: Providing Possible Clues to Disease Diagnosis. Trends Analyt Chem 2023; 162:117060. [PMID: 38106545 PMCID: PMC10722900 DOI: 10.1016/j.trac.2023.117060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic Covid-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.
Collapse
Affiliation(s)
- Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Ling Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sarah Guan
- Hinsdale Central High School, Hinsdale, IL 60521, USA
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
40
|
Natalia A, Zhang L, Sundah NR, Zhang Y, Shao H. Analytical device miniaturization for the detection of circulating biomarkers. NATURE REVIEWS BIOENGINEERING 2023; 1:1-18. [PMID: 37359772 PMCID: PMC10064972 DOI: 10.1038/s44222-023-00050-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
Diverse (sub)cellular materials are secreted by cells into the systemic circulation at different stages of disease progression. These circulating biomarkers include whole cells, such as circulating tumour cells, subcellular extracellular vesicles and cell-free factors such as DNA, RNA and proteins. The biophysical and biomolecular state of circulating biomarkers carry a rich repertoire of molecular information that can be captured in the form of liquid biopsies for disease detection and monitoring. In this Review, we discuss miniaturized platforms that allow the minimally invasive and rapid detection and analysis of circulating biomarkers, accounting for their differences in size, concentration and molecular composition. We examine differently scaled materials and devices that can enrich, measure and analyse specific circulating biomarkers, outlining their distinct detection challenges. Finally, we highlight emerging opportunities in biomarker and device integration and provide key future milestones for their clinical translation.
Collapse
Affiliation(s)
- Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Noah R. Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
41
|
Kang X, Wu C, Alibakhshi MA, Liu X, Yu L, Walt DR, Wanunu M. Nanopore-Based Fingerprint Immunoassay Based on Rolling Circle Amplification and DNA Fragmentation. ACS NANO 2023; 17:5412-5420. [PMID: 36877993 PMCID: PMC10629239 DOI: 10.1021/acsnano.2c09889] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
In recent years, nanopore-based sequencers have become robust tools with unique advantages for genomics applications. However, progress toward applying nanopores as highly sensitive, quantitative diagnostic tools has been impeded by several challenges. One major limitation is the insufficient sensitivity of nanopores in detecting disease biomarkers, which are typically present at pM or lower concentrations in biological fluids, while a second limitation is the general absence of unique nanopore signals for different analytes. To bridge this gap, we have developed a strategy for nanopore-based biomarker detection that utilizes immunocapture, isothermal rolling circle amplification, and sequence-specific fragmentation of the product to release multiple DNA reporter molecules for nanopore detection. These DNA fragment reporters produce sets of nanopore signals that form distinctive fingerprints, or clusters. This fingerprint signature therefore allows the identification and quantification of biomarker analytes. As a proof of concept, we quantify human epididymis protein 4 (HE4) at low pM levels in a few hours. Future improvement of this method by integration with a nanopore array and microfluidics-based chemistry can further reduce the limit of detection, allow multiplexed biomarker detection, and further reduce the footprint and cost of existing laboratory and point-of-care devices.
Collapse
Affiliation(s)
- Xinqi Kang
- Departments
of Bioengineering, Physics, and Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Connie Wu
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School and Wyss Institute for Biologically Inspired
Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Mohammad Amin Alibakhshi
- Departments
of Bioengineering, Physics, and Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Xingyan Liu
- Departments
of Bioengineering, Physics, and Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Luning Yu
- Departments
of Bioengineering, Physics, and Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - David R. Walt
- Department
of Pathology, Brigham and Women’s Hospital, Harvard Medical School and Wyss Institute for Biologically Inspired
Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Meni Wanunu
- Departments
of Bioengineering, Physics, and Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|
42
|
Dutt S, Karawdeniya BI, Bandara YMNDY, Afrin N, Kluth P. Ultrathin, High-Lifetime Silicon Nitride Membranes for Nanopore Sensing. Anal Chem 2023; 95:5754-5763. [PMID: 36930050 DOI: 10.1021/acs.analchem.3c00023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Thin membranes are highly sought-after for nanopore-based single-molecule sensing, and fabrication of such membranes becomes challenging in the ≲10 nm thickness regime where a plethora of useful molecule information can be acquired by nanopore sensing. In this work, we present a scalable and controllable method to fabricate silicon nitride (SixNy) membranes with effective thickness down to ∼1.5 nm using standard silicon processing and chemical etching using hydrofluoric acid (HF). Nanopores were fabricated using the controlled breakdown method with estimated pore diameters down to ∼1.8 nm yielding events >500,000 and >1,800,000 from dsDNA and bovine serum albumin (BSA) protein, respectively, demonstrating the high-performance and extended lifetime of the pores fabricated through our membranes. We used two different compositions of SixNy for membrane fabrication (near-stoichiometric and silicon-rich SixNy) and compared them against commercial membranes. The final thicknesses of the membranes were measured using ellipsometry and were in good agreement with the values calculated from the bulk etch rates and DNA translocation characteristics. The stoichiometry and the density of the membrane layers were characterized with Rutherford backscattering spectrometry while the nanopores were characterized using pH-conductance, conductivity-conductance, and power spectral density (PSD) graphs.
Collapse
Affiliation(s)
- Shankar Dutt
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Buddini I Karawdeniya
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Y M Nuwan D Y Bandara
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia.,Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Nahid Afrin
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Patrick Kluth
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
43
|
Abstract
This paper reviews methods for detecting proteins based on molecular digitization, i.e., the isolation and detection of single protein molecules or singulated ensembles of protein molecules. The single molecule resolution of these methods has resulted in significant improvements in the sensitivity of immunoassays beyond what was possible using traditional "analog" methods: the sensitivity of some digital immunoassays approach those of methods for measuring nucleic acids, such as the polymerase chain reaction (PCR). The greater sensitivity of digital protein detection has resulted in immuno-diagnostics with high potential societal impact, e.g., the early diagnosis and therapeutic intervention of Alzheimer's Disease. In this review, we will first provide the motivation for developing digital protein detection methods given the limitations in the sensitivity of analog methods. We will describe the paradigm shift catalyzed by single molecule detection, and will describe in detail one digital approach - which we call digital bead assays (DBA) - based on the capture and labeling of proteins on beads, identifying "on" and "off" beads, and quantification using Poisson statistics. DBA based on the single molecule array (Simoa) technology have sensitivities down to attomolar concentrations, equating to ∼10 proteins in a 200 μL sample. We will describe the concept behind DBA, the different single molecule labels used, the ways of analyzing beads (imaging of arrays and flow), the binding reagents and substrates used, and integration of these technologies into fully automated and miniaturized systems. We provide an overview of emerging approaches to digital protein detection, including those based on digital detection of nucleic acids labels, single nanoparticle detection, measurements using nanopores, and methods that exploit the kinetics of single molecule binding. We outline the initial impact of digital protein detection on clinical measurements, highlighting the importance of customized assay development and translational clinical research. We highlight the use of DBA in the measurement of neurological protein biomarkers in blood, and how these higher sensitivity methods are changing the diagnosis and treatment of neurological diseases. We conclude by summarizing the status of digital protein detection and suggest how the lab-on-a-chip community might drive future innovations in this field.
Collapse
Affiliation(s)
- David C Duffy
- Quanterix Corporation, 900 Middlesex Turnpike, Billerica, MA 01821, USA.
| |
Collapse
|
44
|
Stierlen A, Greive SJ, Bacri L, Manivet P, Cressiot B, Pelta J. Nanopore Discrimination of Coagulation Biomarker Derivatives and Characterization of a Post-Translational Modification. ACS CENTRAL SCIENCE 2023; 9:228-238. [PMID: 36844502 PMCID: PMC9951287 DOI: 10.1021/acscentsci.2c01256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Indexed: 06/18/2023]
Abstract
One of the most important health challenges is the early and ongoing detection of disease for prevention, as well as personalized treatment management. Development of new sensitive analytical point-of-care tests are, therefore, necessary for direct biomarker detection from biofluids as critical tools to address the healthcare needs of an aging global population. Coagulation disorders associated with stroke, heart attack, or cancer are defined by an increased level of the fibrinopeptide A (FPA) biomarker, among others. This biomarker exists in more than one form: it can be post-translationally modified with a phosphate and also cleaved to form shorter peptides. Current assays are long and have difficulties in discriminating between these derivatives; hence, this is an underutilized biomarker for routine clinical practice. We use nanopore sensing to identify FPA, the phosphorylated FPA, and two derivatives. Each of these peptides is characterized by unique electrical signals for both dwell time and blockade level. We also show that the phosphorylated form of FPA can adopt two different conformations, each of which have different values for each electrical parameter. We were able to use these parameters to discriminate these peptides from a mix, thereby opening the way for the potential development of new point-of-care tests.
Collapse
Affiliation(s)
- Aïcha Stierlen
- LAMBE,
CNRS, CY Cergy Paris Université, 95033 Cergy, France
| | | | - Laurent Bacri
- LAMBE,
CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| | - Philippe Manivet
- Centre
de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75475 Paris, France
- Université
Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | | | - Juan Pelta
- LAMBE,
CNRS, CY Cergy Paris Université, 95033 Cergy, France
- LAMBE,
CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| |
Collapse
|
45
|
Foster JC, Pham B, Pham R, Kim M, Moore MD, Chen M. An Engineered OmpG Nanopore with Displayed Peptide Motifs for Single-Molecule Multiplex Protein Detection. Angew Chem Int Ed Engl 2023; 62:e202214566. [PMID: 36457283 PMCID: PMC9898208 DOI: 10.1002/anie.202214566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Molecular detection via nanopore, achieved by monitoring changes in ionic current arising from analyte interaction with the sensor pore, is a promising technology for multiplex sensing development. Outer Membrane Protein G (OmpG), a monomeric porin possessing seven functionalizable loops, has been reported as an effective sensing platform for selective protein detection. Using flow cytometry to screen unfavorable constructs, we identified two OmpG nanopores with unique peptide motifs displayed in either loop 3 or 6, which also exhibited distinct analyte signals in single-channel current recordings. We exploited these motif-displaying loops concurrently to facilitate single-molecule multiplex protein detection in a mixture. We additionally report a strategy to increase sensor sensitivity via avidity motif display. These sensing schemes may be expanded to more sophisticated designs utilizing additional loops to increase multiplicity and sensitivity.
Collapse
Affiliation(s)
- Joshua C Foster
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Bach Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Current address: Department of Chemistry, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Ryan Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Minji Kim
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Matthew D Moore
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Min Chen
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
46
|
Salehirozveh M, Porro A, Thei F. Large-scale production of polyimide micropore-based flow cells for detecting nano-sized particles in fluids. RSC Adv 2023; 13:873-880. [PMID: 36686911 PMCID: PMC9811244 DOI: 10.1039/d2ra07423k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
In diagnostic and sequencing applications, solid-state nanopores hold significant promise as a single-molecule sensing platform. The fabrication of precisely sized pores has traditionally been challenging, laborious, expensive, and inefficient, which has limited its applications until recently. To overcome this problem, this paper proposes a novel, reliable, cost-effective, portable, mass-productive, robust, and ease-of-use micropore flow cell that works based on the resistive pulse sensor (RPS) technique in order to distinguish the different sizes of c nanoparticles. RPS is a robust and informative technique that can provide valuable details of the size, shape, charge, and individual particle concentrations in the media. By femtosecond laser drilling of a polyimide substrate as an alternate material, translocation of 100, 300, and 350 nm polystyrene nanoparticles in PBS buffer was distinguished by 0.1, 1, and 2 nA current blockade levels, respectively. This is the first time a micropore has been opened in a polyimide membrane using a femtosecond laser in a single step. The experimental and theoretical investigation, scanning electron microscopy and focused ion beam spectroscopy were performed to comprehensively explain the micropore's performance. We showed that our innovative micropore-based flow cell could distinguish nano-sized particles in fluids, and it can be used in large-scale production because of its simplicity and cost-effectiveness.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Department Of Physics And Astronomy, University of BolognaBolognaItaly,Elements SRLCesenaItaly
| | - Alessandro Porro
- Department of Biosciences, University of MilanMilanItaly,Elements SRLCesenaItaly
| | | |
Collapse
|
47
|
Wang Z, Hu R, Zhu R, Lu W, Wei G, Zhao J, Gu ZY, Zhao Q. Metal-Organic Cage as Single-Molecule Carrier for Solid-State Nanopore Analysis. SMALL METHODS 2022; 6:e2200743. [PMID: 36216776 DOI: 10.1002/smtd.202200743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ability to detect biomolecules at the single-molecule level is at the forefront of biological research, precision medicine, and early diagnosis. Recently, solid-state nanopore sensors have emerged as a promising technique for label-free and precise diagnosis assay. However, insufficient sensitivity and selectivity for small analytes are a great challenge for clinical diagnosis applications via solid-state nanopores. Here, for the first time, a metal-organic cage, PCC-57, is employed as a carrier to increase the sensitivity and selectivity of solid-state nanopores based on the intrinsic interaction of the nanocage with biomolecules. Firstly, it is found that the carrier itself is undetectable unless bound with the target analytes and used oligonucleotides as linkers to attach PCC-57 and target analytes. Secondly, two small analytes, oligonucleotide conjugated angiopep-2 and polyphosphoric acid, are successfully distinguished using the molecular carrier. Finally, selectivity of nanopore detection is achieved by attaching PCC-57 to oligonucleotide-tailed aptamers, and the human alpha-thrombin sample is successfully detected. It is believed that the highly designable metal-organic cage could serve as a rich carrier repository for a variety of biomolecules, facilitating single-molecule screening of clinically relevant biomolecules based on solid-state nanopores in the future.
Collapse
Affiliation(s)
- Zhan Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Rui Zhu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhi-Yuan Gu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
| |
Collapse
|
48
|
Guo Z, Wu Y, Xie Z, Shao J, Liu. J, Yao Y, Wang J, Shen Y, Gooding JJ, Liang K. Self-Propelled Initiative Collision at Microelectrodes with Vertically Mobile Micromotors. Angew Chem Int Ed Engl 2022; 61:e202209747. [PMID: 35946544 PMCID: PMC9805068 DOI: 10.1002/anie.202209747] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/09/2023]
Abstract
Impact experiments enable single particle analysis for many applications. However, the effect of the trajectory of a particle to an electrode on impact signals still requires further exploration. Here, we investigate the particle impact measurements versus motion using micromotors with controllable vertical motion. With biocatalytic cascade reactions, the micromotor system utilizes buoyancy as the driving force, thus enabling more regulated interactions with the electrode. With the aid of numerical simulations, the dynamic interactions between the electrode and micromotors are categorized into four representative patterns: approaching, departing, approaching-and-departing, and departing-and-reapproaching, which correspond well with the experimentally observed impact signals. This study offers a possibility of exploring the dynamic interactions between the electrode and particles, shedding light on the design of new electrochemical sensors.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
- Australian Centre for NanoMedicineThe University of New South WalesSydneyNSW 2052Australia
| | - Yanfang Wu
- Australian Centre for NanoMedicineThe University of New South WalesSydneyNSW 2052Australia
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Zhouzun Xie
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
| | - Junming Shao
- School of Materials Science and EngineeringCentral South UniversityChangsha410083China
| | - Jian Liu.
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
- Australian Centre for NanoMedicineThe University of New South WalesSydneyNSW 2052Australia
| | - Yin Yao
- Electron Microscope UnitThe University of New South WalesSydneyNSW 2052Australia
| | - Joseph Wang
- Department of NanoengineeringUniversity of California San DiegoLa JollaCA 92093USA
| | - Yansong Shen
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
| | - J. Justin Gooding
- Australian Centre for NanoMedicineThe University of New South WalesSydneyNSW 2052Australia
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Kang Liang
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
- Australian Centre for NanoMedicineThe University of New South WalesSydneyNSW 2052Australia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
49
|
Bandara YMNDY, Freedman KJ. Enhanced Signal to Noise Ratio Enables High Bandwidth Nanopore Recordings and Molecular Weight Profiling of Proteins. ACS NANO 2022; 16:14111-14120. [PMID: 36107037 DOI: 10.1021/acsnano.2c04046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fast protein translocations often lead to bandwidth-limited amplitude-attenuated event signatures. In this study, we developed a protein- and electrolyte chemistry-centric pathway to construct a readily executable decision tree for the detection of non-attenuated protein translocations using conventional electronics. Each optimization encompasses increasing capture rate (CR), signal-to-noise ratio (SNR), and minimizing irreversible analyte clogging to collect >104 events/pipette spanning a host of electric fields. This was demonstrated using 11 proteins ranging from ∼12 kDa to ∼720 kDa. Moreover, both symmetric and asymmetric electrolyte conditions (cis and trans chamber electrolyte concentration ratios <> 1) were explored. As a result, asymmetric electrolyte conditions were favorable on the extreme ends of the size spectrum (i.e., larger, and smaller proteins) and while the remainder of proteins were best sensed under symmetric electrolyte conditions. Under these optimal conditions, only ≲10% of events were attenuated at 500 mV (≲ 5% for most proteins at 500 mV with only ≲1-5% of the population faster than ∼7 μs, which is the theoretical attenuation threshold for 100 kHz bandwidth). Finally, applied voltage (Vapp), peak current drop (ΔIp), electrolyte conductivity (K), and open-pore conductance (G0) were used to generate a linear relationship to evaluate the molecular weight of the protein (Mw) using plots of (dΔIp)/(dVapp) vs Mw/(G0/K).
Collapse
Affiliation(s)
- Y M Nuwan D Y Bandara
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Kevin J Freedman
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, California 92521, United States
| |
Collapse
|
50
|
Xiao Y, Ren J, Wang Y, Chen X, Zhou S, Li M, Gao F, Liang L, Wang D, Ren G, Wang L. De novo profiling of insect-resistant proteins of rice via nanopore peptide differentiation. Biosens Bioelectron 2022; 212:114415. [DOI: 10.1016/j.bios.2022.114415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
|