1
|
Liu M, Wu W, Chen Z, Zhang Y, Yu X, Yang S, Wang H, Xu F, Chen L, Li X, Wu Y, Wu Z, Kang J. Polarization-Field-Induced Inequivalent Exciton Dynamics in Janus MoSeS/MoSe 2 Heterostructures. NANO LETTERS 2025; 25:5723-5730. [PMID: 40151957 DOI: 10.1021/acs.nanolett.5c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The interplay between excitons and physical fields emerges as a forefront research topic within the domain of condensed matter physics, harboring significant impact for unraveling material properties. Herein, we investigate the valley exciton behaviors in Janus MoSeS/MoSe2 heterostructures with 2H- or 3R-stacking configurations. We ascertain that the intrinsic polarized electric field in Janus materials can markedly enhance the valley polarization. Furthermore, experimental results reveal that different excitons exhibit inequivalent spin-valley dynamic processes under intrinsic electric fields. Among them, intervalley trions exhibit a superior capability to preserve their spin states under a strong intrinsic electric field due to the quantum-confined Stark effect, thereby achieving the highest degree of valley polarization. This work provides fundamental insights into the strong correlation effect between excitons and polarized electric fields, signifying an advancement in control over the valley degree of freedom.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Wei Wu
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zilong Chen
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuxiang Zhang
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xingcheng Yu
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shunhang Yang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hao Wang
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Feiya Xu
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Li Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315211, People's Republic of China
| | - Xu Li
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yaping Wu
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhiming Wu
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Junyong Kang
- Department of Physics, Engineering Research Center for Micro-Nano Optoelectronic Materials and Devices of Ministry of Education, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
2
|
Wu H, He H, Ye L, Lu J, Ke M, Deng W, Liu Z. Acoustic Valley Filter, Valve, and Diverter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500757. [PMID: 39972669 DOI: 10.1002/adma.202500757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/06/2025] [Indexed: 02/21/2025]
Abstract
The discovery of valley degrees of freedom in electronic and classical waves opened the field of valleytronics and offered the prospect for new devices based on valleys. However, the implementation of valley-based devices remains challenging in practice. Here, by taking advantage of the flexibility of phononic crystals in design and fabrication, the realizations of valley devices, or filters, valves, and diverters for acoustic waves are reported. All the devices are configured as the structures of input and output ports bridged by channels. The phononic crystals serving as ports allow the propagation of both valley polarizations, whereas the phononic crystals serving as channels, as they are narrow, only allow the propagation of single polarizations. For valley filters that achieve valley-polarized currents, the bridge channel is simply a straight single phononic crystal, but for valley valves that can turn off the valley-polarized currents, the channel consists of two parts, allowing the propagation of opposite valley polarizations. The valley diverters have one input port, and two output ports, and thus a branched channel, and the three parts in the channel allow the propagation of the same valley polarizations, so that the energy flow can be partitioned. The results may serve as a basis for developing advanced acoustic valley devices.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hailong He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Liping Ye
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jiuyang Lu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Manzhu Ke
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Weiyin Deng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Zhengyou Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Ni Y, Huang D, Liang D, Liu A, Liu X, Sampson K, Liu Z, Quan J, Watanabe K, Taniguchi T, Efimkin DK, Levinsen J, Parish MM, Li X. Valley-Mediated Singlet- and Triplet-Polaron Interactions and Quantum Dynamics in a Doped WSe_{2} Monolayer. PHYSICAL REVIEW LETTERS 2025; 134:036901. [PMID: 39927954 DOI: 10.1103/physrevlett.134.036901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 02/11/2025]
Abstract
In doped transition metal dichalcogenides, optically created excitons (bound electron-hole pairs) can strongly interact with a Fermi sea of electrons to form Fermi polaron quasiparticles. When there are two distinct Fermi seas, as is the case in WSe_{2}, there are two flavors of lowest-energy (attractive) polarons-singlet and triplet-where the exciton is coupled to the Fermi sea in the same or opposite valley, respectively. Using two-dimensional coherent electronic spectroscopy, we analyze how their quantum decoherence evolves with doping density and determine the condition under which stable Fermi polarons form. Because of the large oscillator strength associated with these resonances, intrinsic quantum dynamics of polarons as well as valley coherence between coupled singlet- and triplet polarons occur on subpicosecond timescales. Surprisingly, we find that a dark-to-bright state conversion process leads to a particularly long-lived singlet polaron valley polarization, persisting up to 200-800 ps. Valley coherence between the singlet- and triplet polaron is correlated with their energy fluctuations. Our finding provides valuable guidance for the electrical and optical control of spin and valley indexes in atomically thin semiconductors.
Collapse
Affiliation(s)
- Yue Ni
- The University of Texas at Austin, Department of Physics and Center for Complex Quantum Systems, Austin, Texas 78712, USA
| | - Di Huang
- The University of Texas at Austin, Department of Physics and Center for Complex Quantum Systems, Austin, Texas 78712, USA
| | - Danfu Liang
- The University of Texas at Austin, Department of Physics and Center for Complex Quantum Systems, Austin, Texas 78712, USA
| | - Albert Liu
- Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA
| | - Xiaohui Liu
- The University of Texas at Austin, Department of Physics and Center for Complex Quantum Systems, Austin, Texas 78712, USA
| | - Kevin Sampson
- The University of Texas at Austin, Department of Physics and Center for Complex Quantum Systems, Austin, Texas 78712, USA
| | - Zhida Liu
- The University of Texas at Austin, Department of Physics and Center for Complex Quantum Systems, Austin, Texas 78712, USA
| | - Jianmin Quan
- The University of Texas at Austin, Department of Physics and Center for Complex Quantum Systems, Austin, Texas 78712, USA
| | - Kenji Watanabe
- National Institute for Materials Science, Research Center for Electronic and Optical Materials, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Research Center for Materials Nanoarchitectonics, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dmitry K Efimkin
- Monash University, School of Physics and Astronomy and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Victoria 3800, Australia
| | - Jesper Levinsen
- Monash University, School of Physics and Astronomy and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Victoria 3800, Australia
| | - Meera M Parish
- Monash University, School of Physics and Astronomy and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Victoria 3800, Australia
| | - Xiaoqin Li
- The University of Texas at Austin, Department of Physics and Center for Complex Quantum Systems, Austin, Texas 78712, USA
| |
Collapse
|
4
|
Kim J, Suh J, Lee SH, Watanabe K, Taniguchi T, Ahmed F, Sun Z, Jo MH, Min H, Choi H. Ultrafast Control over Stiffening and Softening of Coherent Interlayer Coupling in WSe 2/WS 2 Heterobilayers. NANO LETTERS 2024; 24:16391-16399. [PMID: 39663813 DOI: 10.1021/acs.nanolett.4c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Twisted van der Waals heterostructures have led to emerging layer-dependent correlated physics in moiré potentials. While optoelectronic controls over interlayer electronic coupling have been reported, the concomitant interlayer vibration has not yet been controlled. Here, we report experimental evidence of ultrafast optical control over the amplitude and oscillation period of interlayer breathing phonons in WSe2/WS2 heterobilayers. Femtosecond optical excitation above the Mott density in gate-tuned devices shows as large as 10% changes of stiffening and softening amplitude of coherent phonons. A theoretical model, incorporating both Buckingham and Hartree energies, is presented to elucidate the impact of charge-separated carriers generated by photoexcitation on phonon dynamics. This work, therefore, provides insights for extending optoelectronic engineering into the coherent phonons in moiré systems.
Collapse
Affiliation(s)
- Jinjae Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Jeonghyeon Suh
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Suk-Ho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Korea
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Faisal Ahmed
- Department of Electronics and Nanoengineering, Quantum Technology Finland Centre of Excellence, Aalto University, Tietotie 3, FI-02150, Espoo, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Quantum Technology Finland Centre of Excellence, Aalto University, Tietotie 3, FI-02150, Espoo, Finland
| | - Moon-Ho Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Korea
| | - Hongki Min
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea
| | - Hyunyong Choi
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Sousa FB, Matos MJS, Carvalho BR, Liu M, Ames A, Zhou D, Resende GC, Yu Z, Lafeta L, Pimenta MA, Terrones M, Teodoro MD, Chacham H, Malard LM. Giant Valley Zeeman Splitting in Vanadium-Doped WSe 2 Monolayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405434. [PMID: 39377370 DOI: 10.1002/smll.202405434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Indexed: 10/09/2024]
Abstract
2D dilute magnetic semiconductors (DMS) based on transition metal dichalcogenides (TMD) offer an innovative pathway for advancing spintronic technologies, including the potential to exploit phenomena such as the valley Zeeman effect. However, the impact of magnetic ordering on the valley degeneracy breaking and on the enhancement of the optical transitions g-factors of these materials remains an open question. Here, a giant effective g-factors ranging between ≈-27 and -69 for the bound exciton at 4 K in vanadium-doped WSe2 monolayers, obtained through magneto-photoluminescence (PL) experiments is reported. This giant g-factor disappears at room temperature, suggesting that this response is associated with a magnetic ordering of the vanadium impurity states at low temperatures. Ab initio calculations for the vanadium-doped WSe2 monolayer confirm the existence of magnetic ordering of the vanadium states, which leads to degeneracy breaking of the valence bands at K and K'. A phenomenological analysis is employed to correlate this splitting with the measured enhanced effective g-factor. The findings shed light on the potential of defect engineering of 2D materials for spintronic applications.
Collapse
Affiliation(s)
- Frederico B Sousa
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Matheus J S Matos
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Bruno R Carvalho
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-970, Brazil
| | - Mingzu Liu
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alessandra Ames
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Geovani C Resende
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
| | - Zhuohang Yu
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lucas Lafeta
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Marcos A Pimenta
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Marcio D Teodoro
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Helio Chacham
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
| | - Leandro M Malard
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
| |
Collapse
|
6
|
Sayyad M, Kopaczek J, Gilardoni CM, Chen W, Xiong Y, Yang S, Watanabe K, Taniguchi T, Kudrawiec R, Hautier G, Atatüre M, Tongay SA. The Defects Genome of Janus Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403583. [PMID: 38743929 DOI: 10.1002/adma.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/02/2024] [Indexed: 05/16/2024]
Abstract
2D Janus Transition Metal Dichalcogenides (TMDs) have attracted much interest due to their exciting quantum properties arising from their unique two-faced structure, broken-mirror symmetry, and consequent colossal polarization field within the monolayer. While efforts are made to achieve high-quality Janus monolayers, the existing methods rely on highly energetic processes that introduce unwanted grain-boundary and point defects with still unexplored effects on the material's structural and excitonic properties Through high-resolution scanning transmission electron microscopy (HRSTEM), density functional theory (DFT), and optical spectroscopy measurements; this work introduces the most encountered and energetically stable point defects. It establishes their impact on the material's optical properties. HRSTEM studies show that the most energetically stable point defects are single (VS and VSe) and double chalcogen vacancy (VS -VSe), interstitial defects (Mi), and metal impurities (MW) and establish their structural characteristics. DFT further establishes their formation energies and related localized bands within the forbidden band. Cryogenic excitonic studies on h-BN-encapsulated Janus monolayers offer a clear correlation between these structural defects and observed emission features, which closely align with the results of the theory. The overall results introduce the defect genome of Janus TMDs as an essential guideline for assessing their structural quality and device properties.
Collapse
Affiliation(s)
- Mohammed Sayyad
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, AZ 85287, USA
| | - Jan Kopaczek
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Carmem M Gilardoni
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Weiru Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Yihuang Xiong
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Shize Yang
- Aberration Corrected Electron Microscopy Core, Yale University, New Haven, CT 06516, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Robert Kudrawiec
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Geoffroy Hautier
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Mete Atatüre
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Seth Ariel Tongay
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, AZ 85287, USA
| |
Collapse
|
7
|
Chen P, Peng B, Liu Z, Liu J, Li D, Li Z, Xu X, Wang H, Zhou X, Zhai T. Room-Temperature Magnetic-Induced Circularly Polarized Photoluminescence in Two-Dimensional Er 2O 2S. J Am Chem Soc 2024; 146:6053-6060. [PMID: 38404063 DOI: 10.1021/jacs.3c13267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Two-dimensional (2D) materials with spin polarization have great potential for achieving next-generation spintronic applications. However, spin polarization of 2D materials is usually produced at a cryogenic temperature because of thermal fluctuations, which severely hinder their further applications. Here, we report room-temperature intrinsic magnetic-induced circularly polarized photoluminescence (PL) in 2D Er2O2S flakes. The geff factor of 2D Er2O2S stays at around -6.3 from the liquid He temperature limit to room temperature, which is independent of temperature. This anomalous phenomenon in Er2O2S is totally different from previous materials, which all have a decreasing Zeeman splitting with increasing temperature resulting from thermal fluctuations. The anomalous temperature-dependent magnetic-induced circularly polarized PL originates from the weak electron-phonon coupling in 2D Er2O2S, which has been proven by both the temperature-dependent Raman and theoretical calculations. This work sheds light on the understanding and manipulation of 2D materials for practical spintronic applications.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Bo Peng
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Zhen Liu
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Jie Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiang Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
8
|
Ryu H, Hong SC, Kim K, Jung Y, Lee Y, Lee K, Kim Y, Kim H, Watanabe K, Taniguchi T, Kim J, Kim K, Cheong H, Lee GH. Optical grade transformation of monolayer transition metal dichalcogenides via encapsulation annealing. NANOSCALE 2024. [PMID: 38439548 DOI: 10.1039/d3nr06641j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Monolayer transition metal dichalcogenides (TMDs) have emerged as highly promising candidates for optoelectronic applications due to their direct band gap and strong light-matter interactions. However, exfoliated TMDs have demonstrated optical characteristics that fall short of expectations, primarily because of significant defects and associated doping in the synthesized TMD crystals. Here, we report the improvement of optical properties in monolayer TMDs of MoS2, MoSe2, WS2, and WSe2, by hBN-encapsulation annealing. Monolayer WSe2 showed 2000% enhanced photoluminescence quantum yield (PLQY) and 1000% increased lifetime after encapsulation annealing at 1000 °C, which are attributed to dominant radiative recombination of excitons through dedoping of monolayer TMDs. Furthermore, after encapsulation annealing, the transport characteristics of monolayer WS2 changed from n-type to ambipolar, along with an enhanced hole transport, which also support dedoping of annealed TMDs. This work provides an innovative approach to elevate the optical grade of monolayer TMDs, enabling the fabrication of high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Huije Ryu
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seong Chul Hong
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Kangwon Kim
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Yeonjoon Jung
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yangjin Lee
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
| | - Kihyun Lee
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
| | - Youngbum Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunjun Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jeongyong Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea
| | - Hyeonsik Cheong
- Department of Physics, Sogang University, Seoul 04107, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Jeong H, Nomenyo K, Oh HM, Gwiazda A, Yun SJ, Chevalier César C, Salas-Montiel R, Wourè-Nadiri Bayor S, Jeong MS, Lee YH, Lérondel G. Ultrahigh Photosensitivity Based on Single-Step Lay-on Integration of Freestanding Two-Dimensional Transition-Metal Dichalcogenide. ACS NANO 2024; 18:4432-4442. [PMID: 38284564 DOI: 10.1021/acsnano.3c10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Two-dimensional transition-metal dichalcogenides have attracted significant attention because of their unique intrinsic properties, such as high transparency, good flexibility, atomically thin structure, and predictable electron transport. However, the current state of device performance in monolayer transition-metal dichalcogenide-based optoelectronics is far from commercialization, because of its substantial strain on the heterogeneous planar substrate and its robust metal deposition, which causes crystalline damage. In this study, we show that strain-relaxed and undamaged monolayer WSe2 can improve a device performance significantly. We propose here an original point-cell-type photodetector. The device consists in a monolayer of an absorbing TMD (i.e., WSe2) simply deposited on a structured electrode, i.e., core-shell silicon-gold nanopillars. The maximum photoresponsivity of the device is found to be 23.16 A/W, which is a significantly high value for monolayer WSe2-based photodetectors. Such point-cell photodetectors can resolve the critical issues of 2D materials, leading to tremendous improvements in device performance.
Collapse
Affiliation(s)
- Hyun Jeong
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Komla Nomenyo
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Département de Génie Electrique, Ecole Nationale Supérieure d'Ingénieurs (ENSI), Université de Lomé, BP 1515 Lomé, Togo
| | - Hye Min Oh
- Department of Physics, Kunsan National University, Kunsan, 54150, Republic of Korea
| | - Agnieszka Gwiazda
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
| | - Seok Joon Yun
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Clotaire Chevalier César
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
| | - Rafael Salas-Montiel
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
| | - Sibiri Wourè-Nadiri Bayor
- Département de Génie Electrique, Ecole Nationale Supérieure d'Ingénieurs (ENSI), Université de Lomé, BP 1515 Lomé, Togo
| | - Mun Seok Jeong
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Young Hee Lee
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gilles Lérondel
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
10
|
Li Z, Zhang XY, Ma R, Fu T, Zeng Y, Hu C, Cheng Y, Wang C, Wang Y, Feng Y, Taniguchi T, Watanabe K, Wang T, Liu X, Xu H. Versatile optical manipulation of trions, dark excitons and biexcitons through contrasting exciton-photon coupling. LIGHT, SCIENCE & APPLICATIONS 2023; 12:295. [PMID: 38057305 DOI: 10.1038/s41377-023-01338-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
Various exciton species in transition metal dichalcogenides (TMDs), such as neutral excitons, trions (charged excitons), dark excitons, and biexcitons, have been individually discovered with distinct light-matter interactions. In terms of valley-spin locked band structures and electron-hole configurations, these exciton species demonstrate flexible control of emission light with degrees of freedom (DOFs) such as intensity, polarization, frequency, and dynamics. However, it remains elusive to fully manipulate different exciton species on demand for practical photonic applications. Here, we investigate the contrasting light-matter interactions to control multiple DOFs of emission light in a hybrid monolayer WSe2-Ag nanowire (NW) structure by taking advantage of various exciton species. These excitons, including trions, dark excitons, and biexcitons, are found to couple independently with propagating surface plasmon polaritons (SPPs) of Ag NW in quite different ways, thanks to the orientations of transition dipoles. Consistent with the simulations, the dark excitons and dark trions show extremely high coupling efficiency with SPPs, while the trions demonstrate directional chiral-coupling features. This study presents a crucial step towards the ultimate goal of exploiting the comprehensive spectrum of TMD excitons for optical information processing and quantum optics.
Collapse
Affiliation(s)
- Zhe Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, 430072, Wuhan, China
| | - Xin-Yuan Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, 430072, Wuhan, China
- Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Rundong Ma
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, 430072, Wuhan, China
| | - Tong Fu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, 430072, Wuhan, China
| | - Yan Zeng
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, 430072, Wuhan, China
| | - Chong Hu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, 430072, Wuhan, China
- Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Yufeng Cheng
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, 430072, Wuhan, China
| | - Cheng Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, 430072, Wuhan, China
| | - Yun Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Yuhua Feng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, 305-0044, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, 305-0044, Tsukuba, Japan
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, 430072, Wuhan, China.
| | - Xiaoze Liu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, 430072, Wuhan, China.
- Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China.
- Wuhan Institute of Quantum Technology, 430206, Wuhan, China.
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, 430072, Wuhan, China.
- Wuhan Institute of Quantum Technology, 430206, Wuhan, China.
- School of Microelectronics, Wuhan University, 430072, Wuhan, China.
- Henan Academy of Sciences, 450046, Zhengzhou, China.
| |
Collapse
|
11
|
Man P, Huang L, Zhao J, Ly TH. Ferroic Phases in Two-Dimensional Materials. Chem Rev 2023; 123:10990-11046. [PMID: 37672768 DOI: 10.1021/acs.chemrev.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Two-dimensional (2D) ferroics, namely ferroelectric, ferromagnetic, and ferroelastic materials, are attracting rising interest due to their fascinating physical properties and promising functional applications. A variety of 2D ferroic phases, as well as 2D multiferroics and the novel 2D ferrovalleytronics/ferrotoroidics, have been recently predicted by theory, even down to the single atomic layers. Meanwhile, some of them have already been experimentally verified. In addition to the intrinsic 2D ferroics, appropriate stacking, doping, and defects can also artificially regulate the ferroic phases of 2D materials. Correspondingly, ferroic ordering in 2D materials exhibits enormous potential for future high density memory devices, energy conversion devices, and sensing devices, among other applications. In this paper, the recent research progresses on 2D ferroic phases are comprehensively reviewed, with emphasis on chemistry and structural origin of the ferroic properties. In addition, the promising applications of the 2D ferroics for information storage, optoelectronics, and sensing are also briefly discussed. Finally, we envisioned a few possible pathways for the future 2D ferroics research and development. This comprehensive overview on the 2D ferroic phases can provide an atlas for this field and facilitate further exploration of the intriguing new materials and physical phenomena, which will generate tremendous impact on future functional materials and devices.
Collapse
Affiliation(s)
- Ping Man
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Lingli Huang
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
12
|
Feuer MG, Montblanch ARP, Sayyad MY, Purser CM, Qin Y, Alexeev EM, Cadore AR, Rosa BLT, Kerfoot J, Mostaani E, Kalȩba R, Kolari P, Kopaczek J, Watanabe K, Taniguchi T, Ferrari AC, Kara DM, Tongay S, Atatüre M. Identification of Exciton Complexes in Charge-Tunable Janus W SeS Monolayers. ACS NANO 2023; 17:7326-7334. [PMID: 37058341 PMCID: PMC10134503 DOI: 10.1021/acsnano.2c10697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/29/2023] [Indexed: 06/17/2023]
Abstract
Janus transition-metal dichalcogenide monolayers are artificial materials, where one plane of chalcogen atoms is replaced by chalcogen atoms of a different type. Theory predicts an in-built out-of-plane electric field, giving rise to long-lived, dipolar excitons, while preserving direct-bandgap optical transitions in a uniform potential landscape. Previous Janus studies had broad photoluminescence (>18 meV) spectra obfuscating their specific excitonic origin. Here, we identify the neutral and the negatively charged inter- and intravalley exciton transitions in Janus WSeS monolayers with ∼6 meV optical line widths. We integrate Janus monolayers into vertical heterostructures, allowing doping control. Magneto-optic measurements indicate that monolayer WSeS has a direct bandgap at the K points. Our results pave the way for applications such as nanoscale sensing, which relies on resolving excitonic energy shifts, and the development of Janus-based optoelectronic devices, which requires charge-state control and integration into vertical heterostructures.
Collapse
Affiliation(s)
- Matthew
S. G. Feuer
- Cavendish
Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE, U.K.
| | | | - Mohammed Y. Sayyad
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Carola M. Purser
- Cavendish
Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE, U.K.
- Cambridge
Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, U.K.
| | - Ying Qin
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Evgeny M. Alexeev
- Cavendish
Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE, U.K.
- Cambridge
Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, U.K.
| | - Alisson R. Cadore
- Cambridge
Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, U.K.
| | - Barbara L. T. Rosa
- Cambridge
Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, U.K.
| | - James Kerfoot
- Cambridge
Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, U.K.
| | - Elaheh Mostaani
- Cambridge
Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, U.K.
| | - Radosław Kalȩba
- Cavendish
Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE, U.K.
| | - Pranvera Kolari
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Jan Kopaczek
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Andrea C. Ferrari
- Cambridge
Graphene Centre, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge, CB3 0FA, U.K.
| | - Dhiren M. Kara
- Cavendish
Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE, U.K.
| | - Sefaattin Tongay
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Mete Atatüre
- Cavendish
Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE, U.K.
| |
Collapse
|
13
|
Nanocavity-induced trion emission from atomically thin WSe 2. Sci Rep 2022; 12:15861. [PMID: 36151265 PMCID: PMC9508186 DOI: 10.1038/s41598-022-20226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Exciton is a bosonic quasiparticle consisting of a pair of electron and hole, with promising potentials for optoelectronic device applications, such as exciton transistors, photodetectors and light emitting devices. However, the charge-neutral nature of excitons renders them challenging to manipulate using electronics. Here we present the generation of trions, a form of charged excitons, together with enhanced exciton resonance in monolayer WSe2. The excitation of the trion quasiparticles is achieved by the hot carrier transport from the integrated gold plasmonic nanocavity, formed by embedding monolayer WSe2 between gold nanoparticles and a gold film. The nanocavity-induced negatively charged trions provide a promising route for the manipulation of excitons, essential for the construction of all-exciton information processing circuits.
Collapse
|
14
|
Qian C, Villafañe V, Soubelet P, Hötger A, Taniguchi T, Watanabe K, Wilson NP, Stier AV, Holleitner AW, Finley JJ. Nonlocal Exciton-Photon Interactions in Hybrid High-Q Beam Nanocavities with Encapsulated MoS_{2} Monolayers. PHYSICAL REVIEW LETTERS 2022; 128:237403. [PMID: 35749182 DOI: 10.1103/physrevlett.128.237403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/11/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Atomically thin semiconductors can be readily integrated into a wide range of nanophotonic architectures for applications in quantum photonics and novel optoelectronic devices. We report the observation of nonlocal interactions of "free" trions in pristine hBN/MoS_{2}/hBN heterostructures coupled to single mode (Q>10^{4}) quasi 0D nanocavities. The high excitonic and photonic quality of the interaction system stems from our integrated nanofabrication approach simultaneously with the hBN encapsulation and the maximized local cavity field amplitude within the MoS_{2} monolayer. We observe a nonmonotonic temperature dependence of the cavity-trion interaction strength, consistent with the nonlocal light-matter interactions in which the extent of the center-of-mass (c.m.) wave function is comparable to the cavity mode volume in space. Our approach can be generalized to other optically active 2D materials, opening the way toward harnessing novel light-matter interaction regimes for applications in quantum photonics.
Collapse
Affiliation(s)
- Chenjiang Qian
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Viviana Villafañe
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Pedro Soubelet
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Alexander Hötger
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Nathan P Wilson
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Andreas V Stier
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Alexander W Holleitner
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Jonathan J Finley
- Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| |
Collapse
|
15
|
Kesarwani R, Simbulan KB, Huang TD, Chiang YF, Yeh NC, Lan YW, Lu TH. Control of trion-to-exciton conversion in monolayer WS 2 by orbital angular momentum of light. SCIENCE ADVANCES 2022; 8:eabm0100. [PMID: 35363526 PMCID: PMC10938575 DOI: 10.1126/sciadv.abm0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Controlling the density of exciton and trion quasiparticles in monolayer two-dimensional (2D) materials at room temperature by nondestructive techniques is highly desired for the development of future optoelectronic devices. Here, the effects of different orbital angular momentum (OAM) lights on monolayer tungsten disulfide at both room temperature and low temperatures are investigated, which reveal simultaneously enhanced exciton intensity and suppressed trion intensity in the photoluminescence spectra with increasing topological charge of the OAM light. In addition, the trion-to-exciton conversion efficiency is found to increase rapidly with the OAM light at low laser power and decrease with increasing power. Moreover, the trion binding energy and the concentration of unbound electrons are estimated, which shed light on how these quantities depend on OAM. A phenomenological model is proposed to account for the experimental data. These findings pave a way toward manipulating the exciton emission in 2D materials with OAM light for optoelectronic applications.
Collapse
Affiliation(s)
- Rahul Kesarwani
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | | | - Teng-De Huang
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Fan Chiang
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | - Nai-Chang Yeh
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yann-Wen Lan
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | - Ting-Hua Lu
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
16
|
Grzeszczyk M, Olkowska-Pucko K, Nogajewski K, Watanabe K, Taniguchi T, Kossacki P, Babiński A, Molas MR. Exposing the trion's fine structure by controlling the carrier concentration in hBN-encapsulated MoS 2. NANOSCALE 2021; 13:18726-18733. [PMID: 34739017 DOI: 10.1039/d1nr03855a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atomically thin materials, like semiconducting transition metal dichalcogenides, are highly sensitive to the environment. This opens up an opportunity to externally control their properties by changing their surroundings. In this work, high-quality van der Waals heterostructures assembled from hBN-encapsulated monolayer MoS2 are studied with the aid of photoluminescence, photoluminescence excitation, and reflectance contrast experiments. We demonstrate that carrier concentration in MoS2 monolayers, arising from charge transfer from impurities in the substrate, can be significantly tuned within one order of magnitude by the modification of the bottom hBN flake thickness. The studied structures, characterized by spectral lines with linewidths approaching the narrow homogeneously broadened limit enabled observations of subtle optical and spin-valley properties of excitonic complexes. Our results allowed us to resolve three optically-active negatively charged excitons in MoS2 monolayers, which are assigned to the intravalley singlet, intervalley singlet, and intervalley triplet states.
Collapse
Affiliation(s)
- Magdalena Grzeszczyk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| | - Katarzyna Olkowska-Pucko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| | - Karol Nogajewski
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 305-0044, Japan
| | - Piotr Kossacki
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| | - Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland.
| |
Collapse
|
17
|
Marcellina E, Liu X, Hu Z, Fieramosca A, Huang Y, Du W, Liu S, Zhao J, Watanabe K, Taniguchi T, Xiong Q. Evidence for Moiré Trions in Twisted MoSe 2 Homobilayers. NANO LETTERS 2021; 21:4461-4468. [PMID: 33970625 DOI: 10.1021/acs.nanolett.1c01207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Moiré superlattices of van der Waals structures offer a powerful platform for engineering band structure and quantum states. For instance, Moiré superlattices in magic-angle twisted bilayer graphene, ABC trilayer graphene have been shown to harbor correlated insulating and superconducting states, while in transition metal dichalcogenide (TMD) twisted bilayers, Moiré excitons have been identified. Here we show that the effects of a Moiré superlattice on the band structure are general: In TMD twisted bilayers, excitons and exciton complexes can be trapped in the superlattice in a manner analogous to ultracold bosonic or Fermionic atoms in optical lattices. Using twisted MoSe2 homobilayers as a model system, we present evidence for Moiré trions. Our results thus open possibilities for designer van der Waals structures hosting arrays of Fermionic or bosonic quasiparticles, which can be used to realize tunable many-body states crucial for quantum simulation and quantum information processing.
Collapse
Affiliation(s)
- Elizabeth Marcellina
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xue Liu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zehua Hu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Antonio Fieramosca
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yuqing Huang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Wei Du
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Sheng Liu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Jiaxin Zhao
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China
| |
Collapse
|
18
|
Liu H, Fu D, Li X, Han J, Chen X, Wu X, Sun B, Tang W, Ke C, Wu Y, Wu Z, Kang J. Enhanced Valley Splitting in Monolayer WSe 2 by Phase Engineering. ACS NANO 2021; 15:8244-8251. [PMID: 33982558 DOI: 10.1021/acsnano.0c08305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lifting the valley degeneracy in two-dimensional transition metal dichalcogenides could promote their applications in information processing. Various external regulations, including magnetic substrate, magnetic doping, electric field, and carrier doping, have been implemented to enhance the valley splitting under the magnetic field. Here, a phase engineering strategy, through modifying the intrinsic lattice structure, is proposed to enhance the valley splitting in monolayer WSe2. The valley splitting in hybrid H and T phase WSe2 is tunable by the concentration of the T phase. An obvious valley splitting of ∼4.1 meV is obtained with the T phase concentration of 31% under ±5 T magnetic fields, which corresponds to an effective Landé geff factor of -14, about 3.5-fold of that in pure H-WSe2. Comparing the temperature and magnetic field dependent polarized photoluminescence and also combining the theoretical simulations reveal the enhanced valley splitting is dominantly attributed to exchange interaction of H phase WSe2 with the local magnetic moments induced by the T phase. This finding provides a convenient solution for lifting the valley degeneracy of two-dimensional materials.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Deyi Fu
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xu Li
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Junbo Han
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiaodie Chen
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xuefeng Wu
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Baofan Sun
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Weiqing Tang
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Congming Ke
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yaping Wu
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhiming Wu
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| | - Junyong Kang
- Department of Physics, OSED, Fujian Provincial Key Laboratory of Semiconductor Materials and Applications, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
19
|
Xu S, Si C, Li Y, Gu BL, Duan W. Valley Depolarization Dynamics in Monolayer Transition-Metal Dichalcogenides: Role of the Satellite Valley. NANO LETTERS 2021; 21:1785-1791. [PMID: 33586443 DOI: 10.1021/acs.nanolett.0c04670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The valley depolarization dynamics of free holes in monolayer transition-metal dichalcogenides are studied by solving the Boltzmann transport equation in real time fully ab inito. While monolayer MoSe2, WS2, WSe2, and MoTe2 possess long hole valley lifetimes due to the spin-valley locking effect, monolayer MoS2 unexpectedly shows ultrafast valley dynamics, with a hole valley lifetime two orders of magnitude shorter than those of the above four materials at room temperature. It is further revealed that the existence of the satellite Γ valley in MoS2 provides an additional hole relaxation path where the Γ valley acts as an intermediate in the hole relaxation between primary K' and K valleys, and moreover, the strong scattering between primary and satellite valleys ensures the ultrafast valley depolarization. By uncovering the pivotal role of the satellite valley, our results may have significant implications for finely controlling valley depolarization in the multivalley materials.
Collapse
Affiliation(s)
- Shengnan Xu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, People's Republic of China
| | - Chen Si
- School of Materials Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Yang Li
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - Bing-Lin Gu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, People's Republic of China
- Institute for Advanced Study, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenhui Duan
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, People's Republic of China
- Institute for Advanced Study, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
20
|
Gong L, Zhang C, Nie A, Lin C, Zhang H, Gao C, Wang M, Zhang X, Han N, Su H, Lin C, Jin Y, Zhang C, Zhang X, Dai JF, Cheng Y, Huang W. Epitaxial growth of large-grain-size ferromagnetic monolayer CrI 3 for valley Zeeman splitting enhancement. NANOSCALE 2021; 13:2955-2962. [PMID: 33506851 DOI: 10.1039/d0nr08248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) magnetic CrI3 has received considerable research attention because of its intrinsic features, including insulation, Ising ferromagnetism, and stacking-order-dependent magnetism, as well as potential in spintronic applications. However, the current strategy for the production of ambient-unstable CrI3 thin layer is limited to mechanical exfoliation, which normally suffers from uncontrollable layer thickness, small size, and low yet unpredictable yield. Here, via a confined vapor epitaxy (CVE) method, we demonstrate the mass production of flower-like CrI3 monolayers on mica. Interestingly, we discovered the crucial role of K ions on the mica surface in determining the morphology of monolayer CrI3, reacting with precursors to form a KIx buffer layer. Meanwhile, the transport agent affects the thickness and size of the as-grown CrI3. Moreover, the Curie temperature of CrI3 is greatly affected by the interaction between CrI3 and the substrate. The monolayer CrI3 on mica could act as a magnetic substrate for valley Zeeman splitting enhancement of WSe2. We reckon our work represents a major advancement in the mass production of monolayer 2D CrI3 and anticipate that our growth strategy may be extended to other transition metal halides.
Collapse
Affiliation(s)
- Lipeng Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li W, Lu X, Wu J, Srivastava A. Optical control of the valley Zeeman effect through many-exciton interactions. NATURE NANOTECHNOLOGY 2021; 16:148-152. [PMID: 33257895 DOI: 10.1038/s41565-020-00804-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Charge carriers in two-dimensional transition metal dichalcogenides (TMDs), such as WSe2, have their spin and valley-pseudospin locked into an optically addressable index that is proposed as a basis for future information processing1,2. The manipulation of this spin-valley index, which carries a magnetic moment3, requires tuning its energy. This is typically achieved through an external magnetic field (B), which is practically cumbersome. However, the valley-contrasting optical Stark effect achieves valley control without B, but requires large incident powers4,5. Thus, other efficient routes to control the spin-valley index are desirable. Here we show that many-body interactions among interlayer excitons (IXs) in a WSe2/MoSe2 heterobilayer (HBL) induce a steady-state valley Zeeman splitting that corresponds to B ≈ 6 T. This anomalous splitting, present at incident powers as low as microwatts, increases with power and is able to enhance, suppress or even flip the sign of a B-induced splitting. Moreover, the g-factor of valley Zeeman splitting can be tuned by ~30% with incident power. In addition to valleytronics, our results could prove helpful to achieve optical non-reciprocity using two-dimensional materials.
Collapse
Affiliation(s)
- Weijie Li
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Xin Lu
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Jiatian Wu
- Department of Physics, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
22
|
Chu J, Wang Y, Wang X, Hu K, Rao G, Gong C, Wu C, Hong H, Wang X, Liu K, Gao C, Xiong J. 2D Polarized Materials: Ferromagnetic, Ferrovalley, Ferroelectric Materials, and Related Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004469. [PMID: 33325574 DOI: 10.1002/adma.202004469] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Indexed: 06/12/2023]
Abstract
The emergence of 2D polarized materials, including ferromagnetic, ferrovalley, and ferroelectric materials, has demonstrated unique quantum behaviors at atomic scales. These polarization behaviors are tightly bonded to the new degrees of freedom (DOFs) for next generation information storage and processing, which have been dramatically developed in the past few years. Here, the basic 2D polarized materials system and related devices' application in spintronics, valleytronics, and electronics are reviewed. Specifically, the underlying physical mechanism accompanied with symmetry broken theory and the modulation process through heterostructure engineering are highlighted. These summarized works focusing on the 2D polarization would continue to enrich the cognition of 2D quantum system and promising practical applications.
Collapse
Affiliation(s)
- Junwei Chu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xuepeng Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kai Hu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Gaofeng Rao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chuanhui Gong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chunchun Wu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hao Hong
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, 100871, China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, 100871, China
| | - Chunlei Gao
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), Department of Physics, and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, 200433, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
23
|
Jadczak J, Kutrowska-Girzycka J, Bieniek M, Kazimierczuk T, Kossacki P, Schindler JJ, Debus J, Watanabe K, Taniguchi T, Ho CH, Wójs A, Hawrylak P, Bryja L. Probing negatively charged and neutral excitons in MoS 2/hBN and hBN/MoS 2/hBN van der Waals heterostructures. NANOTECHNOLOGY 2021; 32:145717. [PMID: 33463532 DOI: 10.1088/1361-6528/abd507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-quality van der Waals heterostructures assembled from hBN-encapsulated monolayer transition metal dichalcogenides enable observations of subtle optical and spin-valley properties whose identification was beyond the reach of structures exfoliated directly on standard SiO2/Si substrates. Here, we describe different van der Waals heterostructures based on uncapped single-layer MoS2 stacked onto hBN layers of different thicknesses and hBN-encapsulated monolayers. Depending on the doping level, they reveal the fine structure of excitonic complexes, i.e. neutral and charged excitons. In the emission spectra of a particular MoS2/hBN heterostructure without an hBN cap we resolve two trion peaks, T1 and T2, energetically split by about 10 meV, resembling the pair of singlet and triplet trion peaks (T S and T T ) in tungsten-based materials. The existence of these trion features suggests that monolayer MoS2 has a dark excitonic ground state, despite having a 'bright' single-particle arrangement of spin-polarized conduction bands. In addition, we show that the effective excitonic g-factor significantly depends on the electron concentration and reaches the lowest value of -2.47 for hBN-encapsulated structures, which reveals a nearly neutral doping regime. In the uncapped MoS2 structures, the excitonic g-factor varies from -1.15 to -1.39 depending on the thickness of the bottom hBN layer and decreases as a function of rising temperature.
Collapse
Affiliation(s)
- J Jadczak
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hu W, Sheng Z, Hou X, Chen H, Zhang Z, Zhang DW, Zhou P. Ambipolar 2D Semiconductors and Emerging Device Applications. SMALL METHODS 2021; 5:e2000837. [PMID: 34927812 DOI: 10.1002/smtd.202000837] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Indexed: 06/14/2023]
Abstract
With the rise of 2D materials, new physics and new processing techniques have emerged, triggering possibilities for the innovation of electronic and optoelectronic devices. Among them, ambipolar 2D semiconductors are of excellent gate-controlled capability and distinctive physical characteristic that the major charge carriers can be dynamically, reversibly and rapidly tuned between holes and electrons by electrostatic field. Based on such properties, novel devices, like ambipolar field-effect transistors, light-emitting transistors, electrostatic-field-charging PN diodes, are developed and show great advantages in logic and reconfigurable circuits, integrated optoelectronic circuits, and artificial neural network image sensors, enriching the functions of conventional devices and bringing breakthroughs to build new architectures. This review first focuses on the basic knowledge including fundamental principle of ambipolar semiconductors, basic material preparation techniques, and how to obtain the ambipolar behavior through electrical contact engineering. Then, the current ambipolar 2D semiconductors and their preparation approaches and main properties are summarized. Finally, the emerging new device structures are overviewed in detail, along with their novel electronic and optoelectronic applications. It is expected to shed light on the future development of ambipolar 2D semiconductors, exploring more new devices with novel functions and promoting the applications of 2D materials.
Collapse
Affiliation(s)
- Wennan Hu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Zhe Sheng
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xiang Hou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Huawei Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Zengxing Zhang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - David Wei Zhang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| |
Collapse
|
25
|
Lyons TP, Gillard D, Molina-Sánchez A, Misra A, Withers F, Keatley PS, Kozikov A, Taniguchi T, Watanabe K, Novoselov KS, Fernández-Rossier J, Tartakovskii AI. Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe 2/CrBr 3 van der Waals heterostructures. Nat Commun 2020; 11:6021. [PMID: 33244001 PMCID: PMC7691354 DOI: 10.1038/s41467-020-19816-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022] Open
Abstract
Semiconducting ferromagnet-nonmagnet interfaces in van der Waals heterostructures present a unique opportunity to investigate magnetic proximity interactions dependent upon a multitude of phenomena including valley and layer pseudospins, moiré periodicity, or exceptionally strong Coulomb binding. Here, we report a charge-state dependency of the magnetic proximity effects between MoSe2 and CrBr3 in photoluminescence, whereby the valley polarization of the MoSe2 trion state conforms closely to the local CrBr3 magnetization, while the neutral exciton state remains insensitive to the ferromagnet. We attribute this to spin-dependent interlayer charge transfer occurring on timescales between the exciton and trion radiative lifetimes. Going further, we uncover by both the magneto-optical Kerr effect and photoluminescence a domain-like spatial topography of contrasting valley polarization, which we infer to be labyrinthine or otherwise highly intricate, with features smaller than 400 nm corresponding to our optical resolution. Our findings offer a unique insight into the interplay between short-lived valley excitons and spin-dependent interlayer tunneling, while also highlighting MoSe2 as a promising candidate to optically interface with exotic spin textures in van der Waals structures.
Collapse
Affiliation(s)
- T P Lyons
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK.
| | - D Gillard
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK
| | - A Molina-Sánchez
- QuantaLab, International Iberian Nanotechnology Laboratory, Braga, 4715-330, Portugal
| | - A Misra
- School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- Department of Physics, Indian Institute of Technology Madras (IIT Madras), Chennai, India
| | - F Withers
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - P S Keatley
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - A Kozikov
- School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - T Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - K Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - K S Novoselov
- School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
- Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing, 400714, China
| | - J Fernández-Rossier
- QuantaLab, International Iberian Nanotechnology Laboratory, Braga, 4715-330, Portugal
| | - A I Tartakovskii
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK.
| |
Collapse
|
26
|
Lan T, Ding B, Liu B. Magneto‐optic effect of two‐dimensional materials and related applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Tianshu Lan
- Tsinghua‐Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Baofu Ding
- Tsinghua‐Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| | - Bilu Liu
- Tsinghua‐Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
| |
Collapse
|
27
|
Jellett C, Plutnar J, Pumera M. Prospects for Functionalizing Elemental 2D Pnictogens: A Study of Molecular Models. ACS NANO 2020; 14:7722-7733. [PMID: 32578421 DOI: 10.1021/acsnano.0c01005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the intense amount of attention and huge potential of 2D-layered pnictogens for applications in chemistry, physics, and materials science, there has yet to be a robust strategy developed to systematically functionalize them to tailor their properties. This is due to a number of factors, including practical instability toward ambient conditions, difficulty in characterizing modified materials, and also more inherent reactivity issues. Here, avenues for functionalization are discussed using examples of molecular models from the wider literature, along with their possible advantages and likely pitfalls. Finally, a critical appraisal of the current field and its future is offered.
Collapse
Affiliation(s)
- Cameron Jellett
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 166 28, Czech Republic
| | - Jan Plutnar
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 166 28, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 166 28, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 404, Taiwan
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 616 00, Czech Republic
| |
Collapse
|
28
|
Deilmann T, Krüger P, Rohlfing M. Ab Initio Studies of Exciton g Factors: Monolayer Transition Metal Dichalcogenides in Magnetic Fields. PHYSICAL REVIEW LETTERS 2020; 124:226402. [PMID: 32567922 DOI: 10.1103/physrevlett.124.226402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The effect of a magnetic field on the optical absorption in semiconductors has been measured experimentally and modeled theoretically for various systems in previous decades. We present a new first-principles approach to systematically determine the response of excitons to magnetic fields, i.e., exciton g factors. By utilizing the GW-Bethe-Salpeter equation methodology we show that g factors extracted from the Zeeman shift of electronic bands are strongly renormalized by many-body effects which we trace back to the extent of the excitons in reciprocal space. We apply our approach to monolayers of transition metal dichalcogenides (MoS_{2}, MoSe_{2}, MoTe_{2}, WS_{2}, and WSe_{2}) with strongly bound excitons for which g factors are weakened by about 30%.
Collapse
Affiliation(s)
- Thorsten Deilmann
- Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Peter Krüger
- Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michael Rohlfing
- Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
29
|
Polatkan S, Goerbig MO, Wyzula J, Kemmler R, Maulana LZ, Piot BA, Crassee I, Akrap A, Shekhar C, Felser C, Dressel M, Pronin AV, Orlita M. Magneto-Optics of a Weyl Semimetal beyond the Conical Band Approximation: Case Study of TaP. PHYSICAL REVIEW LETTERS 2020; 124:176402. [PMID: 32412257 DOI: 10.1103/physrevlett.124.176402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Landau-level spectroscopy, the optical analysis of electrons in materials subject to a strong magnetic field, is a versatile probe of the electronic band structure and has been successfully used in the identification of novel states of matter such as Dirac electrons, topological materials or Weyl semimetals. The latter arise from a complex interplay between crystal symmetry, spin-orbit interaction, and inverse ordering of electronic bands. Here, we report on unusual Landau-level transitions in the monopnictide TaP that decrease in energy with increasing magnetic field. We show that these transitions arise naturally at intermediate energies in time-reversal-invariant Weyl semimetals where the Weyl nodes are formed by a partially gapped nodal-loop in the band structure. We propose a simple theoretical model for electronic bands in these Weyl materials that captures the collected magneto-optical data to great extent.
Collapse
Affiliation(s)
- S Polatkan
- 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - M O Goerbig
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS UMR 8502, 91405 Orsay Cedex, France
| | - J Wyzula
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 rue des Martyrs, 38042 Grenoble, France
| | - R Kemmler
- 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - L Z Maulana
- 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - B A Piot
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 rue des Martyrs, 38042 Grenoble, France
| | - I Crassee
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 rue des Martyrs, 38042 Grenoble, France
| | - A Akrap
- Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland
| | - C Shekhar
- Max Planck Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
| | - C Felser
- Max Planck Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
| | - M Dressel
- 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - A V Pronin
- 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - M Orlita
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 rue des Martyrs, 38042 Grenoble, France
- Charles University, Faculty of Mathematics and Physics, Institute of Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| |
Collapse
|
30
|
Bogucki A, Zinkiewicz Ł, Grzeszczyk M, Pacuski W, Nogajewski K, Kazimierczuk T, Rodek A, Suffczyński J, Watanabe K, Taniguchi T, Wasylczyk P, Potemski M, Kossacki P. Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses. LIGHT, SCIENCE & APPLICATIONS 2020; 9:48. [PMID: 32257179 PMCID: PMC7101340 DOI: 10.1038/s41377-020-0284-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 06/08/2023]
Abstract
In light science and applications, equally important roles are played by efficient light emitters/detectors and by the optical elements responsible for light extraction and delivery. The latter should be simple, cost effective, broadband, versatile and compatible with other components of widely desired micro-optical systems. Ideally, they should also operate without high-numerical-aperture optics. Here, we demonstrate that all these requirements can be met with elliptical microlenses 3D printed on top of light emitters. Importantly, the microlenses we propose readily form the collected light into an ultra-low divergence beam (half-angle divergence below 1°) perfectly suited for ultra-long-working-distance optical measurements (600 mm with a 1-inch collection lens), which are not accessible to date with other spectroscopic techniques. Our microlenses can be fabricated on a wide variety of samples, including semiconductor quantum dots and fragile van der Waals heterostructures made of novel two-dimensional materials, such as monolayer and few-layer transition metal dichalcogenides.
Collapse
Affiliation(s)
- Aleksander Bogucki
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Łukasz Zinkiewicz
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | | | - Wojciech Pacuski
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Karol Nogajewski
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Tomasz Kazimierczuk
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Aleksander Rodek
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Jan Suffczyński
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan
| | - Piotr Wasylczyk
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Marek Potemski
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, avenue des Martyrs 25, 38042 Grenoble, France
| | - Piotr Kossacki
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
31
|
Valley phonons and exciton complexes in a monolayer semiconductor. Nat Commun 2020; 11:618. [PMID: 32001715 PMCID: PMC6992782 DOI: 10.1038/s41467-020-14472-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 11/08/2022] Open
Abstract
The coupling between spin, charge, and lattice degrees of freedom plays an important role in a wide range of fundamental phenomena. Monolayer semiconducting transitional metal dichalcogenides have emerged as an outstanding platform for studying these coupling effects. Here, we report the observation of multiple valley phonons - phonons with momentum vectors pointing to the corners of the hexagonal Brillouin zone - and the resulting exciton complexes in the monolayer semiconductor WSe2. We find that these valley phonons lead to efficient intervalley scattering of quasi particles in both exciton formation and relaxation. This leads to a series of photoluminescence peaks as valley phonon replicas of dark trions. Using identified valley phonons, we also uncover an intervalley exciton near charge neutrality. Our work not only identifies a number of previously unknown 2D excitonic species, but also shows that monolayer WSe2 is a prime candidate for studying interactions between spin, pseudospin, and zone-edge phonons.
Collapse
|