1
|
Chang TKT, Cheung BCT, Leong JCH, Ricardo GF, Chan JTC, Fang JKH, Mumby PJ, Chui APY. Suspended sediment and reduced salinity decrease development success of early stages of Acropora tumida and Platygyra carnosa in a turbid coral habitat, Hong Kong. MARINE POLLUTION BULLETIN 2024; 209:117255. [PMID: 39551024 DOI: 10.1016/j.marpolbul.2024.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/19/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024]
Abstract
Suspended sediment and salinity stresses may escalate under climate change in inshore turbid habitats. We test whether fertilization and embryonic development of Acropora tumida and Platygyra carnosa are less prone to both stressors in turbid coral habitats compared to thresholds reported in literature for species found in clear water reefs. Under optimal sperm concentration (106 sperm mL-1), fertilization of A. tumida declined by 50 % when exposed to combined sediment (92 mg L-1) and salinity stresses. However, these stressors had no significant impact on P. carnosa. We found ∼20- and ∼ 7-fold increases in abnormal embryos for A. tumida and P. carnosa, respectively, under combined stressors. Furthermore, silicon-rich terrestrial-originated sediment caused 50 % larval mortality for A. tumida at a lower concentration of 53 mg L-1. We showed that climate change-related salinity and sediment stresses may hinder coral reproduction and challenge coral recovery, questioning the coral survival in nearshore turbid habitats.
Collapse
Affiliation(s)
- Taison Ka Tai Chang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Billy Chun Ting Cheung
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Justin Chi Ho Leong
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Gerard F Ricardo
- Marine Spatial Ecology Lab, School of the Environment, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jenny Tsz Ching Chan
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - James Kar Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of the Environment, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Apple Pui Yi Chui
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
2
|
Bai C, Wang Q, Xu J, Zhang H, Huang Y, Cai L, Zheng X, Yang M. Impact of Nutrient Enrichment on Community Structure and Co-Occurrence Networks of Coral Symbiotic Microbiota in Duncanopsammia peltata: Zooxanthellae, Bacteria, and Archaea. Microorganisms 2024; 12:1540. [PMID: 39203380 PMCID: PMC11356306 DOI: 10.3390/microorganisms12081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Symbiotic microorganisms in reef-building corals, including algae, bacteria, archaea, fungi, and viruses, play critical roles in the adaptation of coral hosts to adverse environmental conditions. However, their adaptation and functional relationships in nutrient-rich environments have yet to be fully explored. This study investigated Duncanopsammia peltata and the surrounding seawater and sediments from protected and non-protected areas in the summer and winter in Dongshan Bay. High-throughput sequencing was used to characterize community changes, co-occurrence patterns, and factors influencing symbiotic coral microorganisms (zooxanthellae, bacteria, and archaea) in different environments. The results showed that nutrient enrichment in the protected and non-protected areas was the greatest in December, followed by the non-protected area in August. In contrast, the August protected area had the lowest nutrient enrichment. Significant differences were found in the composition of the bacterial and archaeal communities in seawater and sediments from different regions. Among the coral symbiotic microorganisms, the main dominant species of zooxanthellae is the C1 subspecies (42.22-56.35%). The dominant phyla of bacteria were Proteobacteria, Cyanobacteria, Firmicutes, and Bacteroidota. Only in the August protected area did a large number (41.98%) of SAR324_cladeMarine_group_B exist. The August protected and non-protected areas and December protected and non-protected areas contained beneficial bacteria as biomarkers. They were Nisaea, Spiroplasma, Endozoicomonas, and Bacillus. No pathogenic bacteria appeared in the protected area in August. The dominant phylum in Archaea was Crenarchaeota. These symbiotic coral microorganisms' relative abundances and compositions vary with environmental changes. The enrichment of dissolved inorganic nitrogen in environmental media is a key factor affecting the composition of coral microbial communities. Co-occurrence analysis showed that nutrient enrichment under anthropogenic disturbances enhanced the interactions between coral symbiotic microorganisms. These findings improve our understanding of the adaptations of coral holobionts to various nutritional environments.
Collapse
Affiliation(s)
- Chuanzhu Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Qifang Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Jinyan Xu
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, MNR), Pingtan 350400, China;
| | - Han Zhang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Yuxin Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Ling Cai
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
- Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
| |
Collapse
|
3
|
Luo D, Guo Y, Liu Z, Guo L, Wang H, Tang X, Xu Z, Wu Y, Sun X. Endocrine-Disrupting Chemical Exposure Induces Adverse Effects on the Population Dynamics of the Indo-Pacific Humpback Dolphin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9102-9112. [PMID: 38752859 DOI: 10.1021/acs.est.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cetaceans play a pivotal role in maintaining the ecological equilibrium of ocean ecosystems. However, their populations are under global threat from environmental contaminants. Various high levels of endocrine-disrupting chemicals (EDCs) have been detected in cetaceans from the South China Sea, such as the Indo-Pacific humpback dolphins in the Pearl River Estuary (PRE), suggesting potential health risks, while the impacts of endocrine disruptors on the dolphin population remain unclear. This study aims to synthesize the population dynamics of the humpback dolphins in the PRE and their profiles of EDC contaminants from 2005 to 2019, investigating the potential role of EDCs in the population dynamics of humpback dolphins. Our comprehensive analysis indicates a sustained decline in the PRE humpback dolphin population, posing a significant risk of extinction. Variations in sex hormones induced by EDC exposure could potentially impact birth rates, further contributing to the population decline. Anthropogenic activities consistently emerge as the most significant stressor, ranking highest in importance. Conventional EDCs demonstrate more pronounced impacts on the population compared to emerging compounds. Among the conventional pollutants, DDTs take precedence, followed by zinc and chromium. The most impactful emerging EDCs are identified as alkylphenols. Notably, as the profile of EDCs changes, the significance of conventional pollutants may give way to emerging EDCs, presenting a continued challenge to the viability of the humpback dolphin population.
Collapse
Affiliation(s)
- Dingyu Luo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yongwei Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Lang Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Hongri Wang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xikai Tang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhuo Xu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
4
|
Qin B, Yu K, Fu Y, Zhou Y, Wu Y, Zhang W, Chen X. Responses in reef-building corals to wildfire emissions: Heterotrophic plasticity and calcification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171271. [PMID: 38428592 DOI: 10.1016/j.scitotenv.2024.171271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Extreme wildfire events are on the rise globally, and although substantial wildfire emissions may find their way into the ocean, their impact on coral reefs remains uncertain. In a five-week laboratory experiment, we observed a significant reduction in photosynthesis in coral symbionts (Porites lutea) when exposed to fine particulate matter (PM2.5) from wildfires. At low PM2.5 level (2 mg L-1), the changes in δ13C and δ15N values in the host and symbiotic algae suggest reduced autotrophy and the utilization of wildfire particulates as a source of heterotrophic nutrients. This adaptive strategy, characterized by an increase in heterotrophy, sustained some aspects of coral growth (total biomass, proteins and lipids) under wildfire stress. Nevertheless, at high PM2.5 level (5 mg L-1), both autotrophy and heterotrophy significantly decreased, resulting in an imbalanced coral-algal nutritional relationship. These changes were related to light attenuation in seawater and particulate accumulation on the coral surface during PM2.5 deposition, ultimately rendering the coral growth unsustainable. Further, the calcification rates decreased by 1.5 to 1.85 times under both low and high levels of PM2.5, primarily affected by photosynthetic autotrophy rather than heterotrophy. Our study highlights a constrained heterotrophic plasticity of corals under wildfire stress. This limitation may restrict wildfire emissions as an alternative nutrient source to support coral growth and calcification, especially when oceanic food availability or autotrophy declines, as seen during bleaching induced by the warming ocean.
Collapse
Affiliation(s)
- Bo Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Yichen Fu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yu Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yanliu Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wenqian Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xiaoyan Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Wang X, Li Y, Lin M, Che Z, Mo W, Chen Y, Mo S, Niu W, Zhou H. Thermal bleaching in the northern South China Sea: impact of abnormal environment and climate on high-latitude coral reefs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1576-1588. [PMID: 38048003 DOI: 10.1007/s11356-023-31173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Extensive coral bleaching events can result in catastrophic degradation of coral reefs and reorganization of coral communities. In the present study, we analyzed the spatial differences in coral bleaching and possible reasons of large-scale coral bleaching, based on the results of a survey carried out in the northern South China Sea in 2020. In addition, we have continuously monitored the sea surface temperature (SST) of the northernmost Weizhou Island for more than six years. The living coral cover at Weizhou Island (W), Xuwen Nature Reserve (X), and Haihua Island (H) was relatively high at 24.6% ± 4.8%, 12.1% ± 3.8%, and 8.1% ± 2.6%, respectively, whereas their bleaching rates were 9.7% ± 2.6%, 9.7% ± 3.3%, and 6.9% ± 2.1%, respectively. Among them, the living coral cover of W was significantly different from those of X and H, whereas the bleaching rate was not significantly different among the three areas. In all three areas, the massive and encrusting corals predominate and exhibit relatively high bleaching rates, with Porites lutea and Bernardpora stutchburyi being the dominant species. In addition, the temperature monitoring results of Weizhou Island for six consecutive years showed that the critical SST of coral bleaching was 31.5 ℃. The monitoring results also showed that the average SST of Weizhou Island was 32.1 ℃, exceeding 32 ℃ in July 2020 for up to 533 h. The longest continuous time when the SST exceeded 32 ℃ was 97 h. These findings indicated that the coral bleaching event that occurred in the Beibu Gulf during 2020 was a large-scale and high-temperature transient event that presented a relatively homogeneous threat to the coral communities. We inferred that this sudden heat stress event was caused by the enclosed tidal current in the Beibu Gulf, which prevented the southern upwelling from reaching the north, as well as by the inability of the SST to decrease without rainfall caused by typhoon cyclones. Our findings suggested that abnormal heat waves can result in coral bleaching at high latitudes and even coral reef degradation. Furthermore, our study provides a new perspective for investigating the self-recovery and reorganization of coral communities following accumulated coral bleaching.
Collapse
Affiliation(s)
- Xin Wang
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center of Guangxi Sciences Academy, Beihai, 536000, China
| | - Yinqiang Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, China, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning, 530001, China.
| | - Mingqing Lin
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center of Guangxi Sciences Academy, Beihai, 536000, China
| | - Zhiwei Che
- Haikou Marine Environmental Monitoring Center Station, State Oceanic Administration, Haikou, 570311, China
| | - Weihua Mo
- Guangxi Institute of Meteorological Sciences, Nanning, 530022, China
| | - Yanli Chen
- Guangxi Institute of Meteorological Sciences, Nanning, 530022, China
| | - Shaohua Mo
- Beihai Marine Environmental Monitoring Center Station, State Oceanic Administration, Beihai, 536000, China
| | - Wentao Niu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Haolang Zhou
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center of Guangxi Sciences Academy, Beihai, 536000, China
| |
Collapse
|
6
|
Fähse M, Orejas C, Titschack J, Försterra G, Richter C, Laudien J. Ecophysiological and behavioural response of juveniles of the Chilean cold-water coral Caryophyllia (Caryophyllia) huinayensis to increasing sediment loads. Sci Rep 2023; 13:21538. [PMID: 38057359 PMCID: PMC10700329 DOI: 10.1038/s41598-023-47116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Chilean Patagonia is a hotspot of biodiversity, harbouring cold-water corals (CWCs) that populate steep walls and overhangs of fjords and channels. Through anthropogenic activities such as deforestation, roadworks, aquafarming and increased landslide frequency, sediment input increases in the fjord region. While the absence of CWCs on moderately steep slopes has been suggested to reflect high vulnerability to sedimentation, experimental evidence has been lacking. Here, we investigated the sensitivity of CWCs to sediment stress, using juvenile Caryophyllia (Caryophyllia) huinayensis as a model. A 12-week aquarium experiment was conducted with three sediment loads: the average natural sediment concentration in Comau Fjord, 100- and 1000-fold higher sediment levels, expected from gravel road use and coastal erosion. Changes in coral mass and calyx dimensions, polyp expansion, tissue retraction and respiration were measured. For CWCs exposed to two and three order of magnitude higher sediment concentrations, 32% and 80% of the animals experienced a decrease in tissue cover, respectively, along with a decrease in respiration rate of 34% and 66%. Under the highest concentration corals showed reduced polyp expansion and a significantly reduced growth of ~ 95% compared to corals at natural concentration. The results show that C. huinayensis is affected by high sediment loads. As human activities that increase sedimentation steadily intensify, coastal planners need to consider detrimental effects on CWCs.
Collapse
Affiliation(s)
- Melanie Fähse
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27515, Bremerhaven, Germany
| | - Covadonga Orejas
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27515, Bremerhaven, Germany
- Instituto Español de Oceanografía, Centro Oceanográfico de Gijón (IEO, CSIC), Avenida Príncipe de Asturias 70 Bis, 33212, Gijón, Spain
- Hanse-Wissenschaftskolleg - Institute for Advanced Study (HWK), Lehmkuhlenbusch 4, 27753, Delmenhorst, Germany
| | - Jürgen Titschack
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359, Bremen, Germany
- Senckenberg Am Meer, Marine Research Department, Südstrand 40, 26382, Wilhelmshaven, Germany
| | - Günter Försterra
- Huinay Scientific Field Station, Casilla 462, Puerto Montt, Chile
- Facultad de Recursos Naturales, Pontificia Universidad Católica de Valparaíso, Escuela de Ciencias del Mar, Valparaíso, Chile
| | - Claudio Richter
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27515, Bremerhaven, Germany
- Universität Bremen, Bibliothekstraße 1, 28359, Bremen, Germany
| | - Jürgen Laudien
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27515, Bremerhaven, Germany.
| |
Collapse
|
7
|
Zhu W, Liu X, Zhang J, Zhao H, Li Z, Wang H, Chen R, Wang A, Li X. Response of coral bacterial composition and function to water quality variations under anthropogenic influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163837. [PMID: 37137368 DOI: 10.1016/j.scitotenv.2023.163837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Microbial communities play key roles in the adaptation of corals living in adverse environments, as the microbiome flexibility can enhance environmental plasticity of coral holobiont. However, the ecological association of coral microbiome and related function to locally deteriorating water quality remains underexplored. In this work, we used 16S rRNA gene sequencing and quantitative microbial element cycling (QMEC) to investigate the seasonal changes of bacterial communities, particularly their functional genes related to carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycle, of the scleractinian coral Galaxea fascicularis from nearshore reefs exposed anthropogenic influence. We used nutrient concentrations as the indicator of anthropogenic activities in coastal reefs, and found a higher nutrient pressure in spring than summer. The bacterial diversity, community structure and dominant bacteria of coral shifted significantly due to seasonal variations dominated by nutrient concentrations. Additionally, the network structure and nutrient cycling gene profiles in summer under low nutrient stress was distinct from that under poor environmental conditions in spring, with lower network complexity and abundance of CNPS cycling genes in summer compared with spring. We further identified significant correlations between microbial community (taxonomic composition and co-occurrence network) and geochemical functions (abundance of multiple functional genes and functional community). Nutrient enrichment was proved to be the most important environmental fluctuation in controlling the diversity, community structure, interactional network and functional genes of the coral microbiome. These results highlight that seasonal shifts in coral-associated bacteria due to anthropogenic activities alter the functional potentials, and provide novel insight about the mechanisms of coral adaptation to locally deteriorating environments.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiangbo Liu
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Junling Zhang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - He Zhao
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhuoran Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Hao Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Rouwen Chen
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Aimin Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiubao Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
| |
Collapse
|
8
|
Kuempel CD. Sedimentation sifted out of pollution priorities. Science 2023; 379:1098-1099. [PMID: 36927022 DOI: 10.1126/science.adh2147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Caitlin D Kuempel
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
9
|
Page CA, Giuliano C, Bay LK, Randall CJ. High survival following bleaching underscores the resilience of a frequently disturbed region of the Great Barrier Reef. Ecosphere 2023. [DOI: 10.1002/ecs2.4280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Affiliation(s)
- Cathie A. Page
- Australian Institute of Marine Science Townsville Queensland Australia
| | | | - Line K. Bay
- Australian Institute of Marine Science Townsville Queensland Australia
| | - Carly J. Randall
- Australian Institute of Marine Science Townsville Queensland Australia
| |
Collapse
|
10
|
Clark V, Mello-Athayde MA, Dove S. Colonies of Acropora formosa with greater survival potential have reduced calcification rates. PLoS One 2022; 17:e0269526. [PMID: 35679252 PMCID: PMC9182694 DOI: 10.1371/journal.pone.0269526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Coral reefs are facing increasingly devasting impacts from ocean warming and acidification due to anthropogenic climate change. In addition to reducing greenhouse gas emissions, potential solutions have focused either on reducing light stress during heating, or on the potential for identifying or engineering “super corals”. A large subset of these studies, however, have tended to focus primarily on the bleaching response of corals, and assume erroneously that corals that bleach earlier in a thermal event die first. Here, we explore how survival, observable bleaching, coral skeletal growth (as branch extension and densification), and coral tissue growth (protein and lipid concentrations) varies for conspecifics collected from distinctive reef zones at Heron Island on the Southern Great Barrier Reef. A reciprocal transplantation experiment was undertaken using the dominant reef building coral (Acropora formosa) between the highly variable reef flat and the less variable reef slope environments. Coral colonies originating from the reef flat had higher rates of survival and amassed greater protein densities but calcified at reduced rates compared to conspecifics originating from the reef slope. The energetics of both populations however potentially benefited from greater light intensity present in the shallows. Reef flat origin corals moved to the lower light intensity of the reef slope reduced protein density and calcification rates. For A. formosa, genetic differences, or long-term entrainment to a highly variable environment, appeared to promote coral survival at the expense of calcification. The response decouples coral survival from carbonate coral reef resilience, a response that was further exacerbated by reductions in irradiance. As we begin to discuss interventions necessitated by the CO2 that has already been released into the atmosphere, we need to prioritise our focus on the properties that maintain valuable carbonate ecosystems. Rapid and dense calcification by corals such as branching Acropora is essential to the ability of carbonate coral reefs to rebound following disturbance events and maintain 3D structure but may be the first property that is sacrificed to enable coral genet survival under stress.
Collapse
Affiliation(s)
- Vanessa Clark
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail:
| | - Matheus A. Mello-Athayde
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sophie Dove
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
11
|
Environmental Status and Geomorphological Characterisation of Seven Black Coral Forests on the Sardinian Continental Shelf (NW Mediterranean Sea). BIOLOGY 2022; 11:biology11050732. [PMID: 35625460 PMCID: PMC9138414 DOI: 10.3390/biology11050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Black coral forests are three-dimensional components of the marine mesophotic benthic community that play a crucial role in the benthic–pelagic processes, enhancing substrate complexity and creating numerous ecological niches and biodiversity hotspots. The increase of natural and human pressures on these forests is decimating their sophisticated architecture, leading to habitat degradation and biodiversity loss. This study assessed the environmental status of seven black coral forests dwelling in the centre of the Mediterranean Sea using the Mesophotic Assemblages Conservation Status Index. Our results showed how site-specific ecological conditions associated with different geomorphological settings can determine the variability of the environmental status among these habitats. Overall, most of the black coral forests investigated showed a “high” and “good” status; however, in two sites, a degraded benthic community and a marked anthropogenic impact determined a “moderate” and “poor” environmental status, highlighting the fragility of these communities to anthropogenic stressors, even in an area of low urbanisation, such as a Sardinian island. The scenario obtained by this study, combined with a more complete understanding of the processes that drive benthic communities’ dynamics, would facilitate the evaluation of potential measures for the appropriate management of human activities and the general conservation of mesophotic coral forests. Abstract Marine animal forests are key mesophotic ecosystems that are under threat from increasing natural and human pressures. Despite the fact that various international agreements strive to preserve these fragile ecosystems, the environmental status of the majority of these animal-structured environments is unknown. Assessing their environmental status is the first step needed to monitor these essential habitats’ health over time and include them within conservation and protection frameworks, such as the Marine Strategy Framework Directive. Based on Multibeam data and ROV footage, we characterized the geomorphological setting and evaluated the environmental status of seven black coral forests in the centre of the Western Mediterranean Sea, using the Mesophotic Assemblages Conservation Status (MACS) Index. The presence of two antipatharians, Antipathella subpinnata and Leiopathes glaberrima, characterized the seven investigated sites, dwelling on rocky substrate characterized by different environmental drivers (i.e., depth, slope of the substrate, terrain ruggedness, topographic positioning index, and aspect). From the combined evaluation of the associated benthic community status and the anthropogenic impacts affecting it, a “high” and “good” environmental status was assessed for five out of the seven studied black forests, with only two forests classified as having a “moderate” and “poor” status, respectively. Overall, our study showed a site-specific variability of mesophotic black coral forest status, explained by different biological community structures and environmental conditions mainly associated with morphological and anthropogenic factors.
Collapse
|
12
|
Bollati E, Rosenberg Y, Simon-Blecher N, Tamir R, Levy O, Huang D. Untangling the molecular basis of coral response to sedimentation. Mol Ecol 2021; 31:884-901. [PMID: 34738686 DOI: 10.1111/mec.16263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022]
Abstract
Urbanized coral reefs are often chronically affected by sedimentation and reduced light levels, yet many species of corals appear to be able to thrive under these highly disturbed conditions. Recently, these marginal ecosystems have gained attention as potential climate change refugia due to the shading effect of suspended sediment, as well as potential reservoirs for stress-tolerant species. However, little research exists on the impact of sedimentation on coral physiology, particularly at the molecular level. Here, we investigated the transcriptomic response to sediment stress in corals of the family Merulinidae from a chronically turbid reef (one genet each of Goniastrea pectinata and Mycedium elephantotus from Singapore) and a clear-water reef (multiple genets of G. pectinata from the Gulf of Aqaba/Eilat). In two ex-situ experiments, we exposed corals to either natural sediment or artificial sediment enriched with organic matter and used whole-transcriptome sequencing (RNA sequencing) to quantify gene expression. Analysis revealed a shared basis for the coral transcriptomic response to sediment stress, which involves the expression of genes broadly related to energy metabolism and immune response. In particular, sediment exposure induced upregulation of anaerobic glycolysis and glyoxylate bypass enzymes, as well as genes involved in hydrogen sulphide metabolism and in pathogen pattern recognition. Our results point towards hypoxia as a probable driver of this transcriptomic response, providing a molecular basis to previous work that identified hypoxia as a primary cause of tissue necrosis in sediment-stressed corals. Potential metabolic and immunity trade-offs of corals living under chronic sedimentation should be considered in future studies on the ecology and conservation of turbid reefs.
Collapse
Affiliation(s)
- Elena Bollati
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Simon-Blecher
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Raz Tamir
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore.,Centre for Nature-based Climate Solutions, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Rodgers KS, Richards Donà A, Stender YO, Tsang AO, Han JHJ, Weible RM, Prouty N, Storlazzi C, Graham AT. Rebounds, regresses, and recovery: A 15-year study of the coral reef community at Pila'a, Kaua'i after decades of natural and anthropogenic stress events. MARINE POLLUTION BULLETIN 2021; 171:112306. [PMID: 34456034 DOI: 10.1016/j.marpolbul.2021.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 06/13/2023]
Abstract
Pila'a reef on the north shore of Kaua'i, Hawai'i was subjected to a major flood event in 2001 that deposited extensive sediment on the reef flat, resulting in high coral mortality. To document potential recovery, this study replicated benthic and sediment surveys conducted immediately following the event and 15 years later. Coral cores were analyzed to determine coral growth rates and density. Our results suggest that significant reduction in terrigenous sediments has led to partial ecosystem recovery based on coral species and colony increases, more balanced size frequency distributions, improved coral condition, and enhanced coral recruitment despite lack of recovery of large dead coral colonies. However, within this 15-year period, episodic storms and a bleaching event impeded the recovery process, preventing full recovery and continuously threatening the coral reef community. As climate change progresses, the intensity and frequency of these disturbances are predicted to increase.
Collapse
Affiliation(s)
- Kuʻulei S Rodgers
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Angela Richards Donà
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Yuko O Stender
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Anita O Tsang
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ji Hoon J Han
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Rebecca M Weible
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Nancy Prouty
- U.S. Geological Survey Pacific Coastal and Marine Science Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Curt Storlazzi
- U.S. Geological Survey Pacific Coastal and Marine Science Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Andrew T Graham
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
14
|
Identifying Metocean Drivers of Turbidity Using 18 Years of MODIS Satellite Data: Implications for Marine Ecosystems under Climate Change. REMOTE SENSING 2021. [DOI: 10.3390/rs13183616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Turbidity impacts the growth and productivity of marine benthic habitats due to light limitation. Daily/monthly synoptic and tidal influences often drive turbidity fluctuations, however, our understanding of what drives turbidity across seasonal/interannual timescales is often limited, thus impeding our ability to forecast climate change impacts to ecologically significant habitats. Here, we analysed long term (18-year) MODIS-aqua data to derive turbidity and the associated meteorological and oceanographic (metocean) processes in an arid tropical embayment (Exmouth Gulf in Western Australia) within the eastern Indian Ocean. We found turbidity was associated with El Niño Southern Oscillation (ENSO) cycles as well as Indian Ocean Dipole (IOD) events. Winds from the adjacent terrestrial region were also associated with turbidity and an upward trend in turbidity was evident in the body of the gulf over the 18 years. Our results identify hydrological processes that could be affected by global climate cycles undergoing change and reveal opportunities for managers to reduce impacts to ecologically important ecosystems.
Collapse
|
15
|
Canto MM, Fabricius KE, Logan M, Lewis S, McKinna LIW, Robson BJ. A benthic light index of water quality in the Great Barrier Reef, Australia. MARINE POLLUTION BULLETIN 2021; 169:112539. [PMID: 34153875 DOI: 10.1016/j.marpolbul.2021.112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/15/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Good water quality is essential to the health of marine ecosystems, yet current metrics used to track water quality in the Great Barrier Reef are not strongly tied to ecological outcomes. There is a need for a better water quality index (WQI). Benthic irradiance, the amount of light reaching the seafloor, is critical for coral and seagrass health and is strongly affected by water quality. It therefore represents a strong candidate for use as a water quality indicator. Here, we introduce a new index based on remote sensing benthic light (bPAR) from ocean color. Resulting bPAR index timeseries, based on the extent to which the observed bPAR fell short of the locally- and seasonally-specific optimum, showed strong spatial and temporal variability, which was consistent with the dynamics that govern changes in water clarity in the Great Barrier Reef. Our new index is ecologically relevant, responsive to changes in light availability and provides a robust metric that may complement current Great Barrier Reef water quality metrics.
Collapse
Affiliation(s)
- Marites M Canto
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, PMB3, Townsville MC, QLD 4810, Australia; AIMS@JCU, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Katharina E Fabricius
- Australian Institute of Marine Science, PMB3, Townsville MC, QLD 4810, Australia; AIMS@JCU, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Murray Logan
- Australian Institute of Marine Science, PMB3, Townsville MC, QLD 4810, Australia
| | - Stephen Lewis
- Centre for Tropical Water and Aquatic Ecosystem Research, Catchment to Reef Research Group, James Cook University, Townsville, QLD 4811, Australia
| | - Lachlan I W McKinna
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Go2Q Pty Ltd, Sunshine Coast, QLD 4556, Australia
| | - Barbara J Robson
- Australian Institute of Marine Science, PMB3, Townsville MC, QLD 4810, Australia; AIMS@JCU, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
16
|
Turak E, DeVantier L, Szava-Kovats R, Brodie J. Impacts of coastal land use change in the wet tropics on nearshore coral reefs: Case studies from Papua New Guinea. MARINE POLLUTION BULLETIN 2021; 168:112445. [PMID: 33991988 DOI: 10.1016/j.marpolbul.2021.112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Logging and plantation agriculture are vital to economies and livelihoods in tropical nations, including Papua New Guinea. To meet global demand, hundreds of thousands of ha of diverse natural habitat have been logged, cleared and replaced with monoculture crops. Resulting hydrological changes have increased sediment, nutrient and pesticide runoff, impacting down-stream habitats. Here, case studies from Kimbe Bay (New Britain) and Mullins Harbour (Milne Bay), examine effects on nearshore coral reefs. In both places, logging and oil palm development had destabilized soils and removed or degraded riparian vegetation. Downstream, nearshore reefs had high silt levels, which, coincident with minor coral bleaching and predation by crown-of-thorns starfish, were correlated with high levels of coral mortality and low coral species richness. Sediment and related impacts can be reduced by effective catchment management, such as avoiding steep slopes, expanding stream and coastal buffer zones, minimizing fertilizer and pesticide use, monitoring and reactive management.
Collapse
Affiliation(s)
- Emre Turak
- Coral Reef Research, PO Box 129, Millaa Millaa, QLD, Australia.
| | | | | | - Jon Brodie
- Formerly ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
17
|
Abstract
Increasing evidence suggests that coral reefs exposed to elevated turbidity may be more resilient to climate change impacts and serve as an important conservation hotspot. However, logistical difficulties in studying turbid environments have led to poor representation of these reef types within the scientific literature, with studies using different methods and definitions to characterize turbid reefs. Here we review the geological origins and growth histories of turbid reefs from the Holocene (past), their current ecological and environmental states (present), and their potential responses and resilience to increasing local and global pressures (future). We classify turbid reefs using new descriptors based on their turbidity regime (persistent, fluctuating, transitional) and sources of sediment input (natural versus anthropogenic). Further, by comparing the composition, function and resilience of two of the most studied turbid reefs, Paluma Shoals Reef Complex, Australia (natural turbidity) and Singapore reefs (anthropogenic turbidity), we found them to be two distinct types of turbid reefs with different conservation status. As the geographic range of turbid reefs is expected to increase due to local and global stressors, improving our understanding of their responses to environmental change will be central to global coral reef conservation efforts.
Collapse
|
18
|
Brunner CA, Uthicke S, Ricardo GF, Hoogenboom MO, Negri AP. Climate change doubles sedimentation-induced coral recruit mortality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:143897. [PMID: 33454467 DOI: 10.1016/j.scitotenv.2020.143897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Coral reef replenishment is threatened by global climate change and local water-quality degradation, including smothering of coral recruits by sediments generated by anthropogenic activities. Here we show that the ability of Acropora millepora recruits to remove sediments diminishes under future climate conditions, leading to increased mortality. Recruits raised under future climate scenarios for fourteen weeks (highest treatment: +1.2 °C, pCO2: 950 ppm) showed twofold higher mortality following repeated sediment deposition (50% lethal sediment concentration LC50: 14-24 mg cm-2) compared to recruits raised under current climate conditions (LC50: 37-51 mg cm-2), depending on recruit age at the time of sedimentation. Older and larger recruits were more resistant to sedimentation and only ten-week-old recruits grown under current climate conditions survived sediment loads possible during dredging operations. This demonstrates that water-quality guidelines for managing sediment concentrations will need to be climate-adjusted to protect future coral recruitment.
Collapse
Affiliation(s)
- Christopher A Brunner
- James Cook University School of Marine and Tropical Biology, Townsville, Queensland, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Queensland, Australia; Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Gerard F Ricardo
- Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | - Mia O Hoogenboom
- James Cook University School of Marine and Tropical Biology, Townsville, Queensland, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, Queensland, Australia.
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, Queensland, Australia; AIMS@JCU, School of Marine and Tropical Biology, James Cook University and Australian Institute of Marine Science, Townsville, Queensland, Australia.
| |
Collapse
|
19
|
Geisler AN, Austin E, Nguyen J, Hamzavi I, Jagdeo J, Lim HW. Visible light. Part II: Photoprotection against visible and ultraviolet light. J Am Acad Dermatol 2021; 84:1233-1244. [PMID: 33640513 DOI: 10.1016/j.jaad.2020.11.074] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023]
Abstract
Cutaneous photobiology studies have focused primarily on the ultraviolet portion of the solar spectrum. Visible light (VL), which comprises 50% of the electromagnetic radiation that reaches the Earth's surface and, as discussed in Part I of this CME, has cutaneous biologic effects, such as pigment darkening and erythema. Photoprotection against VL includes avoiding the sun, seeking shade, and using photoprotective clothing. The organic and inorganic ultraviolet filters used in sunscreens do not protect against VL, only tinted sunscreens do. In the United States, these filters are regulated by the Food and Drug Administration as an over-the-counter drug and are subject to more stringent regulations than in Europe, Asia, and Australia. There are no established guidelines regarding VL photoprotection. Alternative measures to confer VL photoprotection are being explored. These novel methods include topical, oral, and subcutaneous agents. Further development should focus on better protection in the ultraviolet A1 (340-400 nm) and VL ranges while enhancing the cosmesis of the final products.
Collapse
Affiliation(s)
| | - Evan Austin
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York
| | - Julie Nguyen
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York
| | - Iltefat Hamzavi
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| | - Jared Jagdeo
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York.
| | - Henry W Lim
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
20
|
Good AM, Bahr KD. The coral conservation crisis: interacting local and global stressors reduce reef resiliency and create challenges for conservation solutions. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04319-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractCoral reefs are one of the most productive and biodiverse ecosystems in the world. Humans rely on these coral reef ecosystems to provide significant ecological and economic resources; however, coral reefs are threatened by numerous local and global anthropogenic factors that cause significant environmental change. The interactions of these local and global human impacts may increase the rate of coral reef degradation. For example, there are many local influences (i.e., sedimentation and submarine groundwater discharge) that may exacerbate coral bleaching and mortality. Therefore, researchers and resource managers cannot limit their narratives and actions to mitigating a sole stressor. With the continued increase in greenhouse gas emissions, management strategies and restoration techniques need to account for the scale at which environmental change occurs. This review aims to outline the various local and global anthropogenic stressors threatening reef resiliency and address the recent disagreements surrounding present-day conservation practices. Unfortunately, there is no one solution to preserve and restore all coral reefs. Each coral reef region is challenged by numerous interactive stressors that affect its ecosystem response, recovery, and services in various ways. This review discusses, while global reef degradation occurs, local solutions should be implemented to efficiently protect the coral reef ecosystem services that are valuable to marine and terrestrial environments.
Collapse
|
21
|
Gissi E, Manea E, Mazaris AD, Fraschetti S, Almpanidou V, Bevilacqua S, Coll M, Guarnieri G, Lloret-Lloret E, Pascual M, Petza D, Rilov G, Schonwald M, Stelzenmüller V, Katsanevakis S. A review of the combined effects of climate change and other local human stressors on the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142564. [PMID: 33035971 DOI: 10.1016/j.scitotenv.2020.142564] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Climate change (CC) is a key, global driver of change of marine ecosystems. At local and regional scales, other local human stressors (LS) can interact with CC and modify its effects on marine ecosystems. Understanding the response of the marine environment to the combined effects of CC and LS is crucial to inform marine ecosystem-based management and planning, yet our knowledge of the potential effects of such interactions is fragmented. At a global scale, we explored how cumulative effect assessments (CEAs) have addressed CC in the marine realm and discuss progress and shortcomings of current approaches. For this we conducted a systematic review on how CEAs investigated at different levels of biological organization ecological responses, functional aspects, and the combined effect of CC and HS. Globally, the effects of 52 LS and of 27 CC-related stressors on the marine environment have been studied in combination, such as industrial fisheries with change in temperature, or sea level rise with artisanal fisheries, marine litter, change in sediment load and introduced alien species. CC generally intensified the effects of LS at species level. At trophic groups and ecosystem levels, the effects of CC either intensified or mitigated the effects of other HS depending on the trophic groups or the environmental conditions involved, thus suggesting that the combined effects of CC and LS are context-dependent and vary among and within ecosystems. Our results highlight that large-scale assessments on the spatial interaction and combined effects of CC and LS remain limited. More importantly, our results strengthen the urgent need of CEAs to capture local-scale effects of stressors that can exacerbate climate-induced changes. Ultimately, this will allow identifying management measures that aid counteracting CC effects at relevant scales.
Collapse
Affiliation(s)
- Elena Gissi
- IUAV University of Venice, Tolentini 191, Santa Croce, 30135 Venice, Italy.
| | - Elisabetta Manea
- IUAV University of Venice, Tolentini 191, Santa Croce, 30135 Venice, Italy
| | - Antonios D Mazaris
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Simonetta Fraschetti
- Università Federico II di Napoli, Napoli, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Vasiliki Almpanidou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stanislao Bevilacqua
- Department of Life Sciences, University of Trieste, Trieste, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy
| | - Marta Coll
- Institute of Marine Science, ICM-CSIC, Passeig Marítim de la Barceloneta, no 37-49, 08003 Barcelona, Spain; Ecopath International Initiative, Barcelona, Spain
| | - Giuseppe Guarnieri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy
| | - Elena Lloret-Lloret
- Institute of Marine Science, ICM-CSIC, Passeig Marítim de la Barceloneta, no 37-49, 08003 Barcelona, Spain; Ecopath International Initiative, Barcelona, Spain
| | - Marta Pascual
- Basque Centre for Climate Change (BC3), Edificio Sede N°1 Planta 1/Parque Científico UPV-EHU, Barrio Sarriena, s/n, 48940 Leioa, Bizkaia, Spain
| | - Dimitra Petza
- Department of Marine Sciences, University of the Aegean, University Hill, 81100 Mytilene, Greece; Directorate for Fisheries Policy & Fishery Resources Utilisation, Directorate General for Fisheries, Ministry of Rural Development & Food, 150 Syggrou Avenue, 17671 Athens, Greece
| | - Gil Rilov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa 31080, Israel
| | - Maura Schonwald
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa 31080, Israel
| | | | - Stelios Katsanevakis
- Department of Marine Sciences, University of the Aegean, University Hill, 81100 Mytilene, Greece
| |
Collapse
|
22
|
Becker DM, Silbiger NJ. Nutrient and sediment loading affect multiple facets of functionality in a tropical branching coral. J Exp Biol 2020; 223:jeb225045. [PMID: 32943577 DOI: 10.1242/jeb.225045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
Coral reefs, one of the most diverse ecosystems in the world, face increasing pressures from global and local anthropogenic stressors. Therefore, a better understanding of the ecological ramifications of warming and land-based inputs (e.g. sedimentation and nutrient loading) on coral reef ecosystems is necessary. In this study, we measured how a natural nutrient and sedimentation gradient affected multiple facets of coral functionality, including endosymbiont and coral host response variables, holobiont metabolic responses and percent cover of Pocillopora acuta colonies in Mo'orea, French Polynesia. We used thermal performance curves to quantify the relationship between metabolic rates and temperature along the environmental gradient. We found that algal endosymbiont percent nitrogen content, endosymbiont densities and total chlorophyll a content increased with nutrient input, while endosymbiont nitrogen content per cell decreased, likely representing competition among the algal endosymbionts. Nutrient and sediment loading decreased coral metabolic responses to thermal stress in terms of their thermal performance and metabolic rate processes. The acute thermal optimum for dark respiration decreased, along with the maximal performance for gross photosynthetic and calcification rates. Gross photosynthetic and calcification rates normalized to a reference temperature (26.8°C) decreased along the gradient. Lastly, percent cover of P. acuta colonies decreased by nearly two orders of magnitude along the nutrient gradient. These findings illustrate that nutrient and sediment loading affect multiple levels of coral functionality. Understanding how local-scale anthropogenic stressors influence the responses of corals to temperature can inform coral reef management, particularly in relation to the mediation of land-based inputs into coastal coral reef ecosystems.
Collapse
Affiliation(s)
- Danielle M Becker
- Department of Biology, California State University, Northridge, CA 91330, USA
| | - Nyssa J Silbiger
- Department of Biology, California State University, Northridge, CA 91330, USA
| |
Collapse
|
23
|
Quimpo TJR, Requilme JNC, Gomez EJ, Sayco SLG, Tolentino MPS, Cabaitan PC. Low coral bleaching prevalence at the Bolinao-Anda Reef Complex, northwestern Philippines during the 2016 thermal stress event. MARINE POLLUTION BULLETIN 2020; 160:111567. [PMID: 32891963 DOI: 10.1016/j.marpolbul.2020.111567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Here, we examined the coral bleaching responses during the 2016 thermal stress event and post-bleaching changes in coral communities in the heavily disturbed reefs of the Bolinao-Anda Reef Complex (BARC), northwestern Philippines. Less than 25% of colonies bleached, with 77% attributed to five genera (Dipsastrea, Porites, Fungia, Seriatopora, and Montipora). Coral bleaching prevalence was associated with site location, coral composition, and coral abundance, suggesting that small-scale variation (<20 km) in coral communities (taxa and density) influences spatial variation in coral bleaching prevalence. There was no noticeable change in coral composition and cover two years after the bleaching event as exposure to chronic disturbance likely selected for the dominance of stress tolerant coral taxa and communities. Results show that the 2016 thermal stress event caused coral bleaching but with low prevalence at the BARC, which suggests that disturbed reefs may provide spatial refuge to coral communities from thermal stress.
Collapse
Affiliation(s)
- Timothy Joseph R Quimpo
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Jeremiah Noelle C Requilme
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Elizabeth J Gomez
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Sherry Lyn G Sayco
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Mark Paulo S Tolentino
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Patrick C Cabaitan
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines.
| |
Collapse
|
24
|
Koester A, Migani V, Bunbury N, Ford A, Sanchez C, Wild C. Early trajectories of benthic coral reef communities following the 2015/16 coral bleaching event at remote Aldabra Atoll, Seychelles. Sci Rep 2020; 10:17034. [PMID: 33046828 PMCID: PMC7550576 DOI: 10.1038/s41598-020-74077-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023] Open
Abstract
Documenting post-bleaching trajectories of coral reef communities is crucial to understand their resilience to climate change. We investigated reef community changes following the 2015/16 bleaching event at Aldabra Atoll, where direct human impact is minimal. We combined benthic data collected pre- (2014) and post-bleaching (2016–2019) at 12 sites across three locations (lagoon, 2 m depth; seaward west and east, 5 and 15 m depth) with water temperature measurements. While seaward reefs experienced relative hard coral reductions of 51–62%, lagoonal coral loss was lower (− 34%), probably due to three-fold higher daily water temperature variability there. Between 2016 and 2019, hard coral cover did not change on deep reefs which remained dominated by turf algae and Halimeda, but absolute cover on shallow reefs increased annually by 1.3% (east), 2.3% (west) and 3.0% (lagoon), reaching, respectively, 54%, 68% and 93% of the pre-bleaching cover in 2019. Full recovery at the shallow seaward locations may take at least five more years, but remains uncertain for the deeper reefs. The expected increase in frequency and severity of coral bleaching events is likely to make even rapid recovery as observed in Aldabra’s lagoon too slow to prevent long-term reef degradation, even at remote sites.
Collapse
Affiliation(s)
- Anna Koester
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany.
| | - Valentina Migani
- Institute for Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 5, 28359, Bremen, Germany
| | - Nancy Bunbury
- Seychelles Islands Foundation, PO Box 853, Victoria, Mahé, Seychelles.,Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| | - Amanda Ford
- School of Marine Studies, Faculty of Science, Technology and Environment, University of the South Pacific, Suva, Fiji
| | - Cheryl Sanchez
- Seychelles Islands Foundation, PO Box 853, Victoria, Mahé, Seychelles
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359, Bremen, Germany
| |
Collapse
|
25
|
Thompson A, Martin K, Logan M. Development of the coral index, a summary of coral reef resilience as a guide for management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111038. [PMID: 32778318 DOI: 10.1016/j.jenvman.2020.111038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Coral reef management is increasingly focused on supporting the resilience of coral communities to increasing and cumulative pressures. The coral index provides a concise summary of coral community resilience that can be efficiently communicated to a range of management and policy stakeholders. We detail the development of the index both as a technical reference for users but also as an example of an approach that could be more generally applied to the reporting of ecosystem resilience. The index is sensitive to acute impacts that are expected when coral communities are exposed to disturbances such as cyclones, bleaching events or crown-of-thorns outbreaks. Importantly, spatial and temporal trends in the index enable the identification of areas and periods of reduced resilience that suggest chronic environmental pressure imposed by runoff. The ability to summarise complex ecological processes into a single index provides an efficient and intuitive tool for the communication of where, when and which pressures are impacting ecosystem resilience.
Collapse
Affiliation(s)
- Angus Thompson
- Australian Institute of Marine Science, PMB # 3, Townsville, MC, 4810, Australia.
| | - Katherine Martin
- Great Barrier Reef Marine Park Authority, John Gorton Building, King Edward, Terrace, Parks, 2600, Australian, Australia.
| | - Murray Logan
- Australian Institute of Marine Science, PMB # 3, Townsville, MC, 4810, Australia.
| |
Collapse
|
26
|
Evans RD, Wilson SK, Fisher R, Ryan NM, Babcock R, Blakeway D, Bond T, Dorji P, Dufois F, Fearns P, Lowe RJ, Stoddart J, Thomson DP. Early recovery dynamics of turbid coral reefs after recurring bleaching events. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110666. [PMID: 32510431 DOI: 10.1016/j.jenvman.2020.110666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
The worlds' coral reefs are declining due to the combined effects of natural disturbances and anthropogenic pressures including thermal coral bleaching associated with global climate change. Nearshore corals are receiving increased anthropogenic stress from coastal development and nutrient run-off. Considering forecast increases in global temperatures, greater understanding of drivers of recovery on nearshore coral reefs following widespread bleaching events is required to inform management of local stressors. The west Pilbara coral reefs, with cross-shelf turbidity gradients coupled with a large nearby dredging program and recent history of repeated coral bleaching due to heat stress, represent an opportune location to study recovery from multiple disturbances. Mean coral cover at west Pilbara reefs was monitored from 2009 to 2018 and declined from 45% in 2009 to 5% in 2014 following three heat waves. Recruitment and juvenile abundance of corals were monitored from 2014 to 2018 and were combined with biological and physical data to identify which variables enhanced or hindered early-stage coral recovery of all hard corals and separately for the acroporids, the genera principally responsible for recovery in the short-term (<7 years). From 2014 to 2018, coral cover increased from 5 to 10% but recovery varied widely among sites (0-13%). Hard coral cover typically recovered most at shallower sites that had higher abundance of herbivorous fish, less macroalgae, and lower turbidity. Similarly, acroporid corals recovered most at sites with lower turbidity and macroalgal cover. Juvenile acroporid densities were a good indicator of recovery at least two years after they were recorded. However, recruitment to settlement tiles was not a good predictor of total coral or acroporid recovery. This study shows that coral recovery can be slower in areas of high turbidity and the rate may be reduced by local pressures, such as dredging. Management should focus on improving or maintaining local water quality to increase the likelihood of coral recovery under climate stress. Further, in turbid environments, juvenile coral density predicts early coral recovery better than recruits on tiles and may be a more cost-effective technique for monitoring recovery potential.
Collapse
Affiliation(s)
- Richard D Evans
- Department of Biodiversity, Conservation and Attractions, Kensington, W.A, 6151, Australia; Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia.
| | - Shaun K Wilson
- Department of Biodiversity, Conservation and Attractions, Kensington, W.A, 6151, Australia; Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Rebecca Fisher
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Nicole M Ryan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Russ Babcock
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | | | - Todd Bond
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; School of Biological Science, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Passang Dorji
- Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Bentley, WA, 6102, Australia
| | - Francois Dufois
- IFREMER, DYNECO/DHYSED, ZI Pointe du Diable, 29280, Plouzané, France
| | - Peter Fearns
- Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Bentley, WA, 6102, Australia
| | - Ryan J Lowe
- School of Biological Science, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Jim Stoddart
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; MScience Pty Ltd, Perth, WA, Australia
| | - Damian P Thomson
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| |
Collapse
|
27
|
Ito S, Watanabe T, Yano M, Watanabe TK. Influence of local industrial changes on reef coral calcification. Sci Rep 2020; 10:7892. [PMID: 32398869 PMCID: PMC7217905 DOI: 10.1038/s41598-020-64877-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/19/2020] [Indexed: 11/09/2022] Open
Abstract
Coral reefs are currently facing multiple disturbances caused by natural/anthropogenic factors. Recent industrial development might influence reef environments and ecosystems; however, few direct comparisons of coral calcification with the histories of local industries exist. We show the coral Ba/Ca record and growth histories for 46 years collected from Sumiyo Bay, Amami-Oshima Island, Japan. Coral Ba/Ca was mainly controlled by the sediment loads in seawater, which are introduced through the two local rivers. Coral Ba/Ca records have been characterized by two distinct historical periods: the decadal fluctuation corresponding to the traditional silk fabric industry (1960s ~ 1995) and the increasing trend corresponding to the development of quarries and the construction industry (1996 ~). Coral Ba/Ca records and local industrial histories were also linked to coral calcification. A long-term quantitative assessment of reef environments and local industrial changes could provide an evaluation of the survival strategies of reef-building corals in the future.
Collapse
Affiliation(s)
- Saori Ito
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tsuyoshi Watanabe
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan. .,KIKAI institute for coral reef sciences, Kikai town, 891-6151, Japan.
| | - Megumi Yano
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takaaki K Watanabe
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
28
|
Smith JN, Mongin M, Thompson A, Jonker MJ, De'ath G, Fabricius KE. Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with present-day ocean acidification. GLOBAL CHANGE BIOLOGY 2020; 26:2149-2160. [PMID: 32048410 DOI: 10.1111/gcb.14985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Seawater acidification from increasing CO2 is often enhanced in coastal waters due to elevated nutrients and sedimentation. Our understanding of the effects of ocean and coastal acidification on present-day ecosystems is limited. Here we use data from three independent large-scale reef monitoring programs to assess coral reef responses associated with changes in mean aragonite saturation state (Ωar ) in the Great Barrier Reef World Heritage Area (GBR). Spatial declines in mean Ωar are associated with monotonic declines in crustose coralline algae (up to 3.1-fold) and coral juvenile densities (1.3-fold), while non-calcifying macroalgae greatly increase (up to 3.2-fold), additionally to their natural changes across and along the GBR. These three key groups of organisms are important proxies for coral reef health. Our data suggest a tipping point at Ωar 3.5-3.6 for these coral reef health indicators. Suspended sediments acted as an additive stressor. The latter suggests that effective water quality management to reduce suspended sediments might locally and temporarily reduce the pressure from ocean acidification on these organisms.
Collapse
Affiliation(s)
- Joy N Smith
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | | | - Angus Thompson
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | | | - Glenn De'ath
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | | |
Collapse
|