1
|
Hifumi R, Toyama Y, Ikeda K, Hashimoto T, Imai T, Inagi S, Tomita I. Tetraarylphosphonium Cations with Excellent Alkaline-Resistant Performance for Anion-Exchange Membranes. CHEMSUSCHEM 2025; 18:e202402366. [PMID: 39737562 PMCID: PMC12051230 DOI: 10.1002/cssc.202402366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/01/2025]
Abstract
To realize the robust anion exchange membrane (AEM)-based water splitting modules and fuel cells, the design and synthesis of tetraarylphosphonium (TAP) cations are described as a new class of cationic building blocks that exhibit remarkable alkaline stability under harsh conditions. TAP cations with highly sterically demanding aromatic substituents were efficiently synthesized from triarylphosphine derivatives and highly reactive arynes, whose alkaline degradation proved to be suppressed dramatically by the sterically demanding substituents. In the case of bis(2,5-dimethylphenyl)bis(2,4,6-trimethylphenyl)phosphonium, for example, approximately 60% of the cation survived for 27 d under the forced conditions (i.e., in 4 M KOH/CD3OH at 80 °C), while tetraphenylphosphonium degraded completely within 10 min in 1 M KOH/CD3OH at that temperature. Through the decomposition of the alkaline-stable TAP cations, not only triarylphosphine oxides, which are often reported to form via the nucleophilic attack toward the cationic phosphorus center, but also triarylphosphines were detected, which suggested the presence of other degradation mechanisms due to the sterically demanding aromatic substituents. In kinetic analyses, bis(2,5-dimethylphenyl)bis(2,4,6-trimethylphenyl)phosphonium was found to exhibit 52 times higher stability compared to benzyltrimethylammonium, which is often employed as the cationic building block for AEMs.
Collapse
Affiliation(s)
- Ryoyu Hifumi
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyInstitute of Science TokyoNagatsuta-cho 4259-G1-9Midori-ku, Yokohama226-8501Japan
| | - Yoshikazu Toyama
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyInstitute of Science TokyoNagatsuta-cho 4259-G1-9Midori-ku, Yokohama226-8501Japan
| | - Keisuke Ikeda
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyInstitute of Science TokyoNagatsuta-cho 4259-G1-9Midori-ku, Yokohama226-8501Japan
| | - Tetsuaki Hashimoto
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyInstitute of Science TokyoNagatsuta-cho 4259-G1-9Midori-ku, Yokohama226-8501Japan
| | - Tomohiro Imai
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyInstitute of Science TokyoNagatsuta-cho 4259-G1-9Midori-ku, Yokohama226-8501Japan
| | - Shinsuke Inagi
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyInstitute of Science TokyoNagatsuta-cho 4259-G1-9Midori-ku, Yokohama226-8501Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyInstitute of Science TokyoNagatsuta-cho 4259-G1-9Midori-ku, Yokohama226-8501Japan
| |
Collapse
|
2
|
Zhang Q, Ren R, Yin L, Sun L. Alkali-Stable Cations and Anion Exchange Membranes. Chemistry 2025; 31:e202404264. [PMID: 39961782 DOI: 10.1002/chem.202404264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Anion exchange membranes (AEMs) based energy conversion and storage devices have attracted attention as an innovative technology due to their advantageous alkaline catalytic kinetics and cost-effectiveness. AEMs play a crucial role in these devices and have shown significant progress in terms of ionic conductivity, mechanical properties, alkaline stability, and other essential characteristics. Nevertheless, their durability remains a limiting factor preventing the large-scale deployment of AEMs based devices. The attack of hydroxide ions on the cations is an inherent issue that needs to be addressed to enhance the lifetime of the AEMs. Therefore, the design of more stable cationic groups is essential to maintain the initial properties of AEMs and extend the device lifetime. This concept systematically summarizes the development and stability enhancement strategies of the cationic groups for AEMs in recent years, with particular emphasis on the emerging cyclic cationic groups. Furthermore, the stability differences of cations in small molecules versus AEMs are systematically discussed, as well as prospective research toward stable AEMs.
Collapse
Affiliation(s)
- Qihang Zhang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Rong Ren
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Liqiang Yin
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, Zhejiang Province, China
| |
Collapse
|
3
|
Imai T, Hifumi R, Inagi S, Tomita I. Synthesis of Triarylsulfonium Salts with Sterically Demanding Substituents and Their Alkaline Stability. J Org Chem 2025; 90:3420-3427. [PMID: 40012354 PMCID: PMC11894653 DOI: 10.1021/acs.joc.4c03147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
As cationic functional groups with excellent alkaline resistance that are potentially applicable to building blocks of robust anion exchange membrane (AEM) materials for water splitting and fuel cell modules, we describe the synthesis of triarylsulfonium (TAS) salts bearing sterically demanding substituents by the reaction of arynes with diaryl sulfides/sulfoxides and by the Friedel-Crafts reaction of diaryl sulfoxides. The TAS cations possessing three substituted benzene rings, such as tris(2,5-dimethylphenyl)sulfonium and bis(2,5-dimethylphenyl)mesitylsulfonium, were effectively produced through the appropriate choice of reactions and reagents. The alkaline stability of the TAS cations thus obtained was evaluated from their time-course 1H NMR spectra in 1 M KOH/CD3OD, from which the alkaline resistance of the TAS cations increased dramatically as the steric bulkiness of the aromatic substituents attached to the TAS cations increased. Among them, bis(2,5-dimethylphenyl)mesitylsulfonium was found to exhibit 25 times higher alkaline resistance performance compared to benzyltrimethylammonium, a conventional quaternary ammonium cation. The decomposition mechanism of the TAS cations in the basic methanol media was studied in detail, and it was concluded that the decomposition occurred by the nucleophilic ipso-substitution by the methoxide anions.
Collapse
Affiliation(s)
- Tomohiro Imai
- Department of Chemical Science
and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Nagatsuta-cho 4259-G-1, Midori-ku, Yokohama 226-8501, Japan
| | - Ryoyu Hifumi
- Department of Chemical Science
and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Nagatsuta-cho 4259-G-1, Midori-ku, Yokohama 226-8501, Japan
| | - Shinsuke Inagi
- Department of Chemical Science
and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Nagatsuta-cho 4259-G-1, Midori-ku, Yokohama 226-8501, Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science
and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Nagatsuta-cho 4259-G-1, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
4
|
Lei H, Yang X, Chen Z, Rawach D, Du L, Liang Z, Li D, Zhang G, Tavares AC, Sun S. Multiscale Understanding of Anion Exchange Membrane Fuel Cells: Mechanisms, Electrocatalysts, Polymers, and Cell Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410106. [PMID: 39797443 PMCID: PMC11854883 DOI: 10.1002/adma.202410106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Anion exchange membrane fuel cells (AEMFCs) are among the most promising sustainable electrochemical technologies to help solve energy challenges. Compared to proton exchange membrane fuel cells (PEMFCs), AEMFCs offer a broader choice of catalyst materials and a less corrosive operating environment for the bipolar plates and the membrane. This can lead to potentially lower costs and longer operational life than PEMFCs. These significant advantages have made AEMFCs highly competitive in the future fuel cell market, particularly after advancements in developing non-platinum-group-metal anode electrocatalysts, anion exchange membranes and ionomers, and in understanding the relationships between cell operating conditions and mass transport in AEMFCs. This review aims to compile recent literature to provide a comprehensive understanding of AEMFCs in three key areas: i) the mechanisms of the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) in alkaline media; ii) recent advancements in the synthesis routes and structure-property relationships of cutting-edge HOR and ORR electrocatalysts, as well as anion exchange membranes and ionomers; and iii) fuel cell operating conditions, including water management and impact of CO2. Finally, based on these aspects, the future development and perspectives of AEMFCs are proposed.
Collapse
Affiliation(s)
- Huiyu Lei
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Xiaohua Yang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Zhangsen Chen
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Diane Rawach
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Lei Du
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Zhenxing Liang
- Key Laboratory on Fuel Cell Technology of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510641P. R. China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichang443002P. R. China
| | - Gaixia Zhang
- Department of Electrical EngineeringÉcole de Technologie Supérieure (ÉTS)MontréalQuébecH3C 1K3Canada
| | - Ana C. Tavares
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS)Centre Énergie Matériaux TélécommunicationsVarennesQuébecJ3×1P7Canada
| |
Collapse
|
5
|
Sahoo A, Jaiswal S, Das S, Patra A. Imidazolium and Pyridinium-Based Ionic Porous Organic Polymers: Advances in Transformative Solutions for Oxoanion Sequestration and Non-Redox CO 2 Fixation. Chempluschem 2024; 89:e202400189. [PMID: 38963082 DOI: 10.1002/cplu.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
The rapid pace of industrialization has led to a multitude of detrimental environmental consequences, including water pollution and global warming. Consequently, there is an urgent need to devise appropriate materials to address these challenges. Ionic porous organic polymers (iPOPs) have emerged as promising materials for oxoanion sequestration and non-redox CO2 fixation. Notably, iPOPs offer hydrothermal stability, structural tunability, a charged framework, and readily available nucleophilic counteranions. This review explores the significance of pores and charged functionalities alongside design strategies outlined in existing literature, mainly focusing on the incorporation of pyridinium and imidazolium units into nitrogen-rich iPOPs for oxoanion sequestration and non-redox CO2 fixation. The present review also addresses the current challenges and future prospects, delineating the design and development of innovative iPOPs for water treatment and heterogeneous catalysis.
Collapse
Affiliation(s)
- Aniket Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Shilpi Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| |
Collapse
|
6
|
Guerrero-Pérez MO. Perspectives and State of the Art of Membrane Separation Technology as a Key Element in the Development of Hydrogen Economy. MEMBRANES 2024; 14:228. [PMID: 39590614 PMCID: PMC11596072 DOI: 10.3390/membranes14110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Due to the objectives established by the European Union and other countries, hydrogen production will be a key technology in the coming decades. There are several starting materials and procedures for its production. All methods have advantages and disadvantages, and the improvements in their performance and decreases in operational costs will be decisive in determining which of them is implemented. For all cases, including for the storage and transport of hydrogen, membranes determine the performance of the process, as well as the operational costs. The present contribution summarizes the most recent membrane technologies for the main methods of hydrogen production, including the challenges to overcome in each case.
Collapse
|
7
|
Chu D, Shao R, Zhang J, Zhou Q, Zheng Z, Xu Y, Liu L. Partially PEG-Grafted Poly(Terphenyl Piperidinium) Anion Exchange Membranes with Balanced Properties for Alkaline Fuel Cells. Macromol Rapid Commun 2024; 45:e2400336. [PMID: 38924226 DOI: 10.1002/marc.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Poly(ethylene glycol) (PEG) or oligo (ethylene glycol) (OEG) grafted anion exchange membranes (AEMs) exhibit improved ionic conductivity, high alkaline stability, and subsequent boosted AEM fuel cell performance, but too much PEG/OEG side chains may can result in a reduction in the ion exchange capacity (IEC), which can have adverse effects on ion transport. Here, a series of partially PEG-grafted poly(terphenyl piperidinium) with different side chain length are synthesized using simple postpolymerization modification to produce AEMs with balanced properties. The polar and flexible PEG side chains are responsible for the controlled water uptake and swelling, superior hydroxide conductivity (122 mS cm-1 at 80 °C with an IEC of 1.99 mmol g-1), and enhanced alkaline stability compared to the reference sample without PEG grafts (PTP). More importantly, the performance of AEM fuel cell (AEMFC) with the membrane containing partial PEG side chains surpasses that with PTP membrane, demonstrating a highest peak power density of 1110 mW cm-2 at 80 °C under optimized conditions. This work provides a novel approach to the fabrication of high-performance AEM materials with balanced properties for alkaline fuel cell application.
Collapse
Affiliation(s)
- Dongrui Chu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Runan Shao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Jingjing Zhang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Qiyu Zhou
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhichao Zheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yangyang Xu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Lei Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
8
|
Tao R, Shao M, Kim Y. Polyarylene-Based Anion Exchange Membranes for Fuel Cells. Chemistry 2024; 30:e202401208. [PMID: 38953321 DOI: 10.1002/chem.202401208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 07/04/2024]
Abstract
Anion exchange membrane fuel cell (AEMFC) is an emerging and promising technology that can help realize a carbon-neutral, sustainable economy. Also, compared to the proton exchange membrane counterpart, AEMFC can achieve comparable cell outputs with lower costs due to the applicability of non-platinum group metal electrocatalysts for the reaction on the electrodes' surfaces. However, the wide application of the AEMFCs has been impeded by the unsatisfactory stability and performance of the hydroxide-conductive membranes in the past. Recently researchers have made breakthroughs using polyarylene (PA)-based AEMs. This article summarizes the recent advances of a class of AEMs with aromatic backbone without ether bonds, mainly synthesized by Friedel-Crafts polycondensation. Such PA-based AEMs showed high chemical/mechanical stabilities and ionic conductivity, and even the fuel cell with those AEMs showed impressive peak power density of up to 2.58 W cm-2. In this concept article, we classify major strategies for making PA-based AEMs to show the recent trends, highlight synthesis, characterization, and properties, and provide a brief outlook.
Collapse
Affiliation(s)
- Ran Tao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- CIAC-HKUST Joint Laboratory for Hydrogen Energy, The Hong Kong University of Science and Technology Clear Watery Bay, Kowloon, Hong Kong SAR, China
- Guangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Mi Z, Wang T, Xiao L, Wang G, Zhuang L. Catalytic Peculiarity of Alkali Metal Cation-Free Electrode/Polyelectrolyte Interfaces Toward CO 2 Reduction. J Am Chem Soc 2024; 146:17377-17383. [PMID: 38871485 DOI: 10.1021/jacs.4c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A prominent feature of modern electrochemical technologies, such as fuel cells and electrolysis, is the employing of polyelectrolytes instead of liquid electrolytes. Unlike the well-studied electrode/liquid electrolyte interfaces, however, the catalytic characteristics of electrode/polyelectrolyte interfaces remain largely unexplored, mostly due to the lack of reliable probing methods. Herein, we report a universally applicable approach to investigating electrocatalytic reactions at electrode/polyelectrolyte interfaces under normal electrochemical conditions. By coating a thin layer of anion-exchange membrane (AEM) onto the electrode surface, solutions with bulky organic cations were well separated, thus a pure electrode/polyelectrolyte interface can be established in a regular electrochemical setup and studied using in situ spectroscopies, e.g., attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). We found that the blank Au surface was inert toward the CO2 reduction reaction (CO2RR) in the absence of alkali metal cations, whereas coating with an AEM can dramatically turn on the catalytic activity. ATR-SEIRAS revealed that the hydrogen bond network of water at the Au/AEM interface was enhanced in comparison to that on the blank Au surface, which facilitated the hydrogenation process of the CO2RR. These findings further our fundamental understanding of the catalytic behavior of electrode/polyelectrolyte interfaces and benefit the development of relevant electrochemical technologies.
Collapse
Affiliation(s)
- Zhensheng Mi
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Tuo Wang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Gongwei Wang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
11
|
Zhang H, Song W, Sun L, Yang C, Zhang X, Wu M, Wu L, Ge X, Xu T. Anion Exchange Membrane with Pendulous Piperidinium on Twisted All-Carbon Backbone for Fuel Cell. MEMBRANES 2024; 14:121. [PMID: 38921488 PMCID: PMC11205426 DOI: 10.3390/membranes14060121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
As a central component for anion exchange membrane fuel cells (AEMFCs), the anion exchange membrane is now facing the challenge of further improving its conductivity and alkali stability. Herein, a twisted all-carbon backbone is designed by introducing stereo-contorted units with piperidinium groups dangled at the twisted sites. The rigid and twisted backbone improves the conduction of hydroxide and brings down the squeezing effect of the backbone on piperidine rings. Accordingly, an anion exchange membrane prepared through this method exhibits adapted OH- conductivity, low swelling ratio and excellent alkali stability, even in high alkali concentrations. Further, a fuel cell assembled with a such-prepared membrane can reach a power density of 904.2 mW/cm2 and be capable of continuous operation for over 50 h. These results demonstrate that the designed membrane has good potential for applications in AEMFCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaolin Ge
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (W.S.); (L.S.); (C.Y.); (X.Z.); (M.W.); (L.W.)
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (W.S.); (L.S.); (C.Y.); (X.Z.); (M.W.); (L.W.)
| |
Collapse
|
12
|
Henkensmeier D, Cho WC, Jannasch P, Stojadinovic J, Li Q, Aili D, Jensen JO. Separators and Membranes for Advanced Alkaline Water Electrolysis. Chem Rev 2024; 124:6393-6443. [PMID: 38669641 PMCID: PMC11117188 DOI: 10.1021/acs.chemrev.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Traditionally, alkaline water electrolysis (AWE) uses diaphragms to separate anode and cathode and is operated with 5-7 M KOH feed solutions. The ban of asbestos diaphragms led to the development of polymeric diaphragms, which are now the state of the art material. A promising alternative is the ion solvating membrane. Recent developments show that high conductivities can also be obtained in 1 M KOH. A third technology is based on anion exchange membranes (AEM); because these systems use 0-1 M KOH feed solutions to balance the trade-off between conductivity and the AEM's lifetime in alkaline environment, it makes sense to treat them separately as AEM WE. However, the lifetime of AEM increased strongly over the last 10 years, and some electrode-related issues like oxidation of the ionomer binder at the anode can be mitigated by using KOH feed solutions. Therefore, AWE and AEM WE may get more similar in the future, and this review focuses on the developments in polymeric diaphragms, ion solvating membranes, and AEM.
Collapse
Affiliation(s)
- Dirk Henkensmeier
- Hydrogen
· Fuel Cell Research Center, Korea
Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST
Green School, Korea University, Seoul 02841, Republic of Korea
| | - Won-Chul Cho
- Department
of Future Energy Convergence, Seoul National
University of Science & Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811, Korea
| | - Patric Jannasch
- Polymer
& Materials Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | | | - Qingfeng Li
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - David Aili
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - Jens Oluf Jensen
- Department
of Energy Conversion and Storage, Technical
University of Denmark (DTU), Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Rase D, Manna N, Kushwaha R, Jain C, Singh HD, Shekhar P, Singh P, Singh YK, Vaidhyanathan R. Design enhancement in hydroxide ion conductivity of viologen-bakelite organic frameworks for a flexible rechargeable zinc-air battery. Chem Sci 2024; 15:6949-6957. [PMID: 38725505 PMCID: PMC11077532 DOI: 10.1039/d4sc00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/24/2024] [Indexed: 05/12/2024] Open
Abstract
Quasi-solid-state rechargeable zinc-air batteries (ZABs) are suitable for the generation of portable clean energy due to their high energy and power density, safety, and cost-effectiveness. Compared to the typical alkaline aqueous electrolyte in a ZAB, polymer or gel-based electrolytes can suppress the dissolution of zinc, preventing the precipitation of undesirable irreversible zinc compounds. Their low electronic conductivity minimizes zinc dendrite formation. However, gel electrolytes suffer from capacity fade due to the loss of the volatile solvent, failing to deliver high-energy and high-power ZABs. Consequently, developing polymers with high hydroxide ion conductivity and chemical durability is paramount. We report cationic C-C bonded robust polymers with stoichiometrically controlled mobile hydroxide ions as solid-state hydroxide ion transporters. To boot, we increased the viologen-hydroxide-ion concentration through "by-design" monomers. The polymers constructed with these designer monomers exhibit a commensurate increase in their ionic conductivity. The polymer prepared with 4 OH- ion-containing monomer was superior to the one with 3 OH-. The conductivity increases from 7.30 × 10-4 S cm-1 (30 °C) to 2.96 × 10-3 S cm-1 (30 °C) at 95% RH for IISERP-POF12_OH (2_OH) and IISERP-POF13_OH (3_OH), respectively. A rechargeable ZAB (RZAB) constructed using 3_OH@PVA (polyvinyl alcohol) as the electrolyte membrane and Pt/C + RuO2 catalyst delivers a power density of 158 mW cm-2. In comparison, RZABs with a PVA interlayer provided only 72 mW cm-2. Notably, the device suffered an initial charge-discharge voltage gap of merely 0.55 V at 10 mA cm-2, which increased by only 2 mV after 50 hours of running. The battery operated at 10 mA cm-2 and worked steadily for 67 hours. We accomplished a flexible and rechargeable zinc-air battery (F-RZAB) exhibiting a maximum power density of 79 mW cm-2. This demonstration of a cationic viologen-bakelite polymer-based flexible secondary ZAB with versatile stochiometric hydroxide-ion tunability marks an important achievement in hydroxide-ion conducting solid-state electrolyte development.
Collapse
Affiliation(s)
- Deepak Rase
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Narugopal Manna
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Rinku Kushwaha
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Chitvan Jain
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Himan Dev Singh
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Pragalbh Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Piyush Singh
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Yashraj Kumar Singh
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Ramanathan Vaidhyanathan
- Department of Chemistry, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- Centre for Energy Science, Indian Institute of Science Education and Research Dr Homi Bhabha Road, Pashan Pune 411008 India
- The Centre of Excellence for Carbon Capture and Removal, Svante Incorporation 8800 Glenlyon Pkwy Burnaby British Columbia V5J 5K3 Canada
| |
Collapse
|
14
|
Yin L, Ren R, He L, Zheng W, Guo Y, Wang L, Lee H, Du J, Li Z, Tang T, Ding G, Sun L. Stable Anion Exchange Membrane Bearing Quinuclidinium for High-performance Water Electrolysis. Angew Chem Int Ed Engl 2024; 63:e202400764. [PMID: 38501852 DOI: 10.1002/anie.202400764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Anion exchange membranes (AEMs) are core components in anion exchange membrane water electrolyzers (AEM-WEs). However, the stability of functional quaternary ammonium cations, especially under high temperatures and harsh alkaline conditions, seriously affects their performance and durability. Herein, we synthesized a 1-methyl-3,3-diphenylquinuclidinium molecular building unit. Density functional theory (DFT) calculations and accelerated aging analysis indicated that the quinine ring structure was exceedingly stable, and the SN2 degradation mechanism dominated. Through acid-catalyzed Friedel-Crafts polymerization, a series of branched poly(aryl-quinuclidinium) (PAQ-x) AEMs with controllable molecular weight and adjustable ion exchange capacity (IEC) were prepared. The stable quinine structure in PAQ-x was verified and retained in the ex situ alkaline stability. Furthermore, the branched polymer structure reduces the swelling rate and water uptake to achieve a tradeoff between dimensional stability and ionic conductivity, significantly improving the membrane's overall performance. Importantly, PAQ-5 was used in non-noble metal-based AEM-WE, achieving a high current density of 8 A cm-2 at 2 V and excellent stability over 2446 h in a gradient constant current test. Based on the excellent alkaline stability of this diaryl-quinuclidinium group, it can be further considered as a multifunctional building unit to create multi-topological polymers for energy conversion devices used in alkaline environments.
Collapse
Affiliation(s)
- Liqiang Yin
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Rong Ren
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Lanlan He
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Wentao Zheng
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Husileng Lee
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Jian Du
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Zhiheng Li
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Tang Tang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Guoheng Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| |
Collapse
|
15
|
Douglin JC, Sekar A, Singh RK, Chen Z, Li J, Dekel DR. Hydrogenated TiO 2 Carbon Support for PtRu Anode Catalyst in High-Performance Anion-Exchange Membrane Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307497. [PMID: 38088587 DOI: 10.1002/smll.202307497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Indexed: 05/18/2024]
Abstract
The availability of durable, high-performance electrocatalysts for the hydrogen oxidation reaction (HOR) is currently a constraint for anion-exchange membrane fuel cells (AEMFCs). Herein, a rapid microwave-assisted synthesis method is used to develop a core-shell catalyst support based on a hydrogenated TiO2/carbon for PtRu nanoparticles (NPs). The hydrogenated TiO2 provides a strong metal-support interaction with the PtRu NPs, which improves the catalyst's oxophilicity and HOR activity compared to commercial PtRu/C and enables greater size control of the catalyst NPs. The as-synthesized PtRu/TiO2/C-400 electrocatalyst exhibits respectable performance in an AEMFC operated at 80 °C, yielding the highest current density (up to 3× higher) within the catalytic region (compared at 0.80-0.90 V) and voltage efficiency (68%@ 0.5 A cm-2) values in the compared literature. In addition, the cell demonstrates promising short-term voltage stability with a minor voltage decay of 1.5 mV h-1. This "first-of-its-kind in alkaline" work may open further research avenues to develop rapid synthesis methods to prepare advanced core-shell metal-oxide/carbon supports for electrocatalysts for use in the next-generation of AEMFCs with potential applicability to the broader electrochemical systems research community.
Collapse
Affiliation(s)
- John C Douglin
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Archana Sekar
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Ramesh K Singh
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- CO2 Research and Green Technologies Centre, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Zihua Chen
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Jun Li
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
16
|
Radford CL, Saatkamp T, Bennet AJ, Holdcroft S. An organic proton cage that is ultra-resistant to hydroxide-promoted degradation. Nat Commun 2024; 15:3395. [PMID: 38649343 PMCID: PMC11035699 DOI: 10.1038/s41467-024-47809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Alkaline polymer membrane electrochemical energy conversion devices offer the prospect of using non-platinum group catalysts. However, their cationic functionalities are currently not sufficiently stable for vapor-phase applications, such as fuel cells. Herein, we report 1,6-diazabicyclo[4.4.4]tetradecan-1,6-ium (in-DBD), a cationic proton cage, that is orders of magnitude more resistant to hydroxide-promoted degradation than state-of-the-art organic cations under ultra-dry conditions and elevated temperature, and the first organic cation-hydroxide to persist at critically low hydration levels ( < 10% RH at 80 °C). This high stability against hydroxide-promoted degradation is due to the unique combination of endohedral protection and intra-bridgehead hydrogen bonding that prevents the removal of the inter-cavity proton and lowers the susceptibility to Hofmann elimination. We anticipate this discovery will facilitate a step-change in the advancement of materials and electrochemical devices utilizing anion-exchange membranes based on in-DBD that will enable stable operation under extreme alkaline conditions.
Collapse
Affiliation(s)
- Chase L Radford
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Torben Saatkamp
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Andrew J Bennet
- Department of Chemistry, Simon Fraser University, Burnaby, Canada.
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
17
|
Liu L, Ma H, Khan M, Hsiao BS. Recent Advances and Challenges in Anion Exchange Membranes Development/Application for Water Electrolysis: A Review. MEMBRANES 2024; 14:85. [PMID: 38668113 PMCID: PMC11051812 DOI: 10.3390/membranes14040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
In recent years, anion exchange membranes (AEMs) have aroused widespread interest in hydrogen production via water electrolysis using renewable energy sources. The two current commercial low-temperature water electrolysis technologies used are alkaline water electrolysis (AWE) and proton exchange membrane (PEM) water electrolysis. The AWE technology exhibited the advantages of high stability and increased cost-effectiveness with low hydrogen production efficiency. In contrast, PEM water electrolysis exhibited high hydrogen efficiency with low stability and cost-effectiveness, respectively. Unfortunately, the major challenges that AEMs, as well as the corresponding ion transportation membranes, including alkaline hydrogen separator and proton exchange membranes, still face are hydrogen production efficiency, long-term stability, and cost-effectiveness under working conditions, which exhibited critical issues that need to be addressed as a top priority. This review comprehensively presented research progress on AEMs in recent years, providing a thorough understanding of academic studies and industrial applications. It focused on analyzing the chemical structure of polymers and the performance of AEMs and established the relationship between the structure and efficiency of the membranes. This review aimed to identify approaches for improving AEM ion conductivity and alkaline stability. Additionally, future research directions for the commercialization of anion exchange membranes were discussed based on the analysis and assessment of the current applications of AEMs in patents.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Madani Khan
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
18
|
Wang Y, Wang S, Sui Z, Gu Y, Zhang Y, Gao J, Lei Y, Zhao J, Li N, Wu J, Wang Z. "Fishbone" Design of Amino/N-Spirocyclic Cations toward High-Performance Poly(triphenylene piperidine) Anion-Exchange Membranes for Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4003-4012. [PMID: 38207002 DOI: 10.1021/acsami.3c16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
N-Spirocyclic cations have excellent alkali resistance stability, and precise design of the structure of N-spirocyclic anion-exchange membranes (AEMs) improves their comprehensive performance. Here, we design and synthesize high-performance poly(triphenylene piperidine) membranes based on the "fishbone" design of amino/N-spirocyclic cations. The "fishbone" design does not disrupt the overall stabilized conformation but promotes a microphase separation structure, while exerting the synergistic effect of piperidine cations and spirocyclic cations, resulting in a membrane with good conductivity and alkali resistance stability. The hydroxide conductivity of the QPTPip-ASU-X membrane reached up to 133.5 mS cm-1 at 80 °C. The QPTPip-ASU-15 membrane was immersed in a 2 M NaOH solution at 80 °C for 1200 h, and the conductivity was maintained at 91.02%. In addition, the QPTPip-ASU-5 membrane had the highest peak power density of 255 mW cm-2.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Song Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Zhiyan Sui
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yiman Gu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yanchao Zhang
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Jian Gao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yijia Lei
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Jialin Zhao
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Na Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - JingYi Wu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Zhe Wang
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
- Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun 130012, China
| |
Collapse
|
19
|
Zeng M, He X, Wen J, Zhang G, Zhang H, Feng H, Qian Y, Li M. N-Methylquinuclidinium-Based Anion Exchange Membrane with Ultrahigh Alkaline Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306675. [PMID: 37548334 DOI: 10.1002/adma.202306675] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Anion-exchange-membrane (AEM) water electrolysis is a promising technology for hydrogen production from renewable energy sources. However, the bottleneck of its development is the poor comprehensive performance of AEM, especially the stability at highly concentrated alkaline condition and temperature. Herein, a new cationic group N-methylquinuclidinium with enhanced alkaline stability is proposed and hereby a full-carbon chain poly(aryl quinuclidinium) AEM is prepared. Compared with reported AEMs, it shows ultrahigh comprehensive alkaline stability (no chemical decomposition, no decay of conductivity) in 10 m NaOH aqueous solution at 80 °C for more than 1800 h, excellent dimensional stability (swelling ratio: <10% in pure water, <2% in 10 m NaOH) in OH- form at 80 °C, high OH- conductivity (≈139.1 mS cm-1 at 80 °C), and high mechanical properties (tensile strength: 41.5 MPa, elongation at break: 50%). The water electrolyzer using the AEM exhibits a high current density (1.94 A cm-2 at 2.0 V) when assembled with nickel-alloy foam electrodes, and high durability when assembled with nickel foam electrodes.
Collapse
Affiliation(s)
- Mengying Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Xianying He
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ju Wen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ganbing Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Hongbo Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Hanhua Feng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yu Qian
- School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ming Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
20
|
Kim YS. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303914. [PMID: 37814366 DOI: 10.1002/advs.202303914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Indexed: 10/11/2023]
Abstract
Ionomeric binders in catalyst layers, abbreviated as ionomers, play an essential role in the performance of polymer-electrolyte membrane fuel cells and electrolyzers. Due to environmental issues associated with perfluoroalkyl substances, alternative hydrocarbon ionomers have drawn substantial attention over the past few years. This review surveys literature to discuss ionomer requirements for the electrodes of fuel cells and electrolyzers, highlighting design principles of hydrocarbon ionomers to guide the development of advanced hydrocarbon ionomers.
Collapse
Affiliation(s)
- Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
21
|
Dorenbos G. Simulated and Experimental Trends Regarding Water Uptake in Polymeric Electrolyte Membranes. J Phys Chem B 2023; 127:9630-9641. [PMID: 37882051 DOI: 10.1021/acs.jpcb.3c05309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Polymeric membranes in an anion or a proton exchange membrane fuel cell need sufficient hydration in order to provide a high hydroxide ion or proton conductivity. The water uptake for six model ionomer membranes, all of the same ion exchange capacity, is modeled by dissipative particle dynamics. The architectures cover three types of families that are of potential interest in fuel cell membrane research. All architectures consist of connected hydrophobic backbone A beads, to which side chains are grafted. For the type I family, the hydrophilic (functional) C beads are pendent on (amphiphilic) [AxC] side chains. The type II architecture contains both hydrophobic [A4] and short hydrophilic [C] side chains. For type III, the C beads are embedded along various locations within the [AxCAy] side chains (x + y = constant). For similar equilibrium time, the membrane water volume fraction increases with side chain length x for type I, and for type III, it increases with the distance x that C beads are separated from the backbone. Among the architectures (types I and III) for which the number of covalent C-A bonds are the same, the water uptake increases with the average number of A-A and A-C bonds (dpd springs) between A beads and the nearest C bead. A picture emerges in which for similar ion exchange capacity model membranes water uptake increases as a function of ⟨Nbondphob-phyl⟩.
Collapse
Affiliation(s)
- G Dorenbos
- Private Researcher, Belle Crea 502, 1107-2 Susono 410-1118, Japan
| |
Collapse
|
22
|
Song W, Zhang X, Yang C, Yang Z, Wu L, Ge X, Xu T. Alkaline Membranes toward Electrochemical Energy Devices: Recent Development and Future Perspectives. ACS CENTRAL SCIENCE 2023; 9:1538-1557. [PMID: 37637731 PMCID: PMC10450879 DOI: 10.1021/acscentsci.3c00597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Indexed: 08/29/2023]
Abstract
Anion-exchange membranes (AEMs) that can selectively transport OH-, namely, alkaline membranes, are becoming increasingly crucial in a variety of electrochemical energy devices. Understanding the membrane design approaches can help to break through the constraints of undesired performance and lab-scale production. In this Outlook, the research progress of alkaline membranes in terms of backbone structures, synthesis methods, and related applications is organized and discussed. The evaluation of synthesis methods and description of membrane stability enhancement strategies provide valuable insights for structural design. Finally, to accelerate the deployment of relevant technologies in alkaline media, the future priority of alkaline membranes that needs to be addressed is presented from the perspective of science and engineering.
Collapse
Affiliation(s)
- Wanjie Song
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Xin Zhang
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Cui Yang
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Zhengjin Yang
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Liang Wu
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Xiaolin Ge
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| | - Tongwen Xu
- Key
Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation
Centre of Chemistry for Energy Materials, School of Chemistry and
Material Science, University of Science
and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
23
|
Song W, Peng K, Xu W, Liu X, Zhang H, Liang X, Ye B, Zhang H, Yang Z, Wu L, Ge X, Xu T. Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices. Nat Commun 2023; 14:2732. [PMID: 37169752 PMCID: PMC10175247 DOI: 10.1038/s41467-023-38350-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
The lack of high-performance and substantial supply of anion-exchange membranes is a major obstacle to future deployment of relevant electrochemical energy devices. Here, we select two isomers (m-terphenyl and p-terphenyl) and balance their ratio to prepare anion-exchange membranes with well-connected and uniformly-distributed ultramicropores based on robust chemical structures. The anion-exchange membranes display high ion-conducting, excellent barrier properties, and stability exceeding 8000 h at 80 °C in alkali. The assembled anion-exchange membranes present a desirable combination of performance and durability in several electrochemical energy storage devices: neutral aqueous organic redox flow batteries (energy efficiency of 77.2% at 100 mA cm-2, with negligible permeation of redox-active molecules over 1100 h), water electrolysis (current density of 5.4 A cm-2 at 1.8 V, 90 °C, with durability over 3000 h), and fuel cells (power density of 1.61 W cm-2 under a catalyst loading of 0.2 mg cm-2, with open-circuit voltage durability test over 1000 h). As a demonstration of upscaled production, the anion-exchange membranes achieve roll-to-roll manufacturing with a width greater than 1000 mm.
Collapse
Affiliation(s)
- Wanjie Song
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Kang Peng
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Wei Xu
- State Key Laboratory of Particle Detectionand Electronics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Xiang Liu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Huaqing Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Xian Liang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detectionand Electronics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detectionand Electronics, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Zhengjin Yang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Liang Wu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China.
| | - Xiaolin Ge
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China.
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China.
| |
Collapse
|
24
|
Overton P, Konovalova A, Fraser K, Holdcroft S. The First Example of a Poly(arylimidazole) by Polycondensation of AB-type Monomers: Control of Molecular Mass by End-Capping, and Functionalization to Poly(arylimidazolium)s. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
25
|
Xu Z, Delgado S, Atanasov V, Morawietz T, Gago AS, Friedrich KA. Novel Pyrrolidinium-Functionalized Styrene-b-ethylene-b-butylene-b-styrene Copolymer Based Anion Exchange Membrane with Flexible Spacers for Water Electrolysis. MEMBRANES 2023; 13:328. [PMID: 36984715 PMCID: PMC10057012 DOI: 10.3390/membranes13030328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Anion exchange membranes (AEM) are core components for alkaline electrochemical energy technologies, such as water electrolysis and fuel cells. They are regarded as promising alternatives for proton exchange membranes (PEM) due to the possibility of using platinum group metal (PGM)-free electrocatalysts. However, their chemical stability and conductivity are still of great concern, which is appearing to be a major challenge for developing AEM-based energy systems. Herein, we highlight an AEM with styrene-b-ethylene-b-butylene-b-styrene copolymer (SEBS) as a backbone and pyrrolidinium or piperidinium functional groups tethered on flexible ethylene oxide spacer side-chains (SEBS-Py2O6). This membrane reached 27.8 mS cm-1 hydroxide ion conductivity at room temperature, which is higher compared to previously obtained piperidinium-functionalized SEBS reaching up to 10.09 mS cm-1. The SEBS-Py206 combined with PGM-free electrodes in an AWE water electrolysis (AEMWE) cell achieves 520 mA cm-2 at 2 V in 0.1 M KOH and 171 mA cm-2 in ultra-pure water (UPW). This high performance indicates that SEBS-Py2O6 membranes are suitable for application in water electrolysis.
Collapse
Affiliation(s)
- Ziqi Xu
- German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
| | - Sofia Delgado
- Laboratory for Process Engineering, Environmental, Biotechnology and Energy (LEPABE), Faculty of Engineering of University of Porto, Rua Roberto Frias S/n, 4200-465 Porto, Portugal
| | - Vladimir Atanasov
- Institute of Chemical Process Engineering, University of Stuttgart, Boeblinger Strasse 78, 70199 Stuttgart, Germany
| | - Tobias Morawietz
- German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
- Faculty of Science, Energy and Building Services, Esslingen University of Applied Sciences, Kanalstraße 33, 73728 Esslingen am Neckar, Germany
| | - Aldo Saul Gago
- German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
| | - Kaspar Andreas Friedrich
- German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
- Institute of Building Energetics, Thermal Engineering and Energy Storage (IGTE), University of Stuttgart, Pfaffenwaldring 6, 70569 Stuttgart, Germany
| |
Collapse
|
26
|
Li X, Wang Z, Chen Y, Li Y, Guo J, Zheng J, Li S, Zhang S. Imidazolium-based AEMs with high dimensional and alkaline-resistance stabilities for extended temperature range of alkaline fuel cells. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Xiang T, Si H. Theoretical study of the degradation mechanisms of substituted imidazolium cations. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
28
|
Willdorf-Cohen S, Zhegur-Khais A, Ponce-González J, Bsoul-Haj S, Varcoe JR, Diesendruck CE, Dekel DR. Alkaline Stability of Anion-Exchange Membranes. ACS APPLIED ENERGY MATERIALS 2023; 6:1085-1092. [PMID: 36937111 PMCID: PMC10016746 DOI: 10.1021/acsaem.2c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Recently, the development of durable anion-exchange membrane fuel cells (AEMFCs) has increased in intensity due to their potential to use low-cost, sustainable components. However, the decomposition of the quaternary ammonium (QA) cationic groups in the anion-exchange membranes (AEMs) during cell operation is still a major challenge. Many different QA types and functionalized polymers have been proposed that achieve high AEM stabilities in strongly alkaline aqueous solutions. We previously developed an ex situ technique to measure AEM alkaline stabilities in an environment that simulates the low-hydration conditions in an operating AEMFC. However, this method required the AEMs to be soluble in DMSO solvent, so decomposition could be monitored using 1H nuclear magnetic resonance (NMR). We now report the extension of this ex situ protocol to spectroscopically measure the alkaline stability of insoluble AEMs. The stability ofradiation-grafted (RG) poly(ethylene-co-tetrafluoroethylene)-(ETFE)-based poly(vinylbenzyltrimethylammonium) (ETFE-TMA) and poly(vinylbenzyltriethylammonium) (ETFE-TEA) AEMs were studied using Raman spectroscopy alongside changes in their true OH- conductivities and ion-exchange capacities (IEC). A crosslinked polymer made from poly(styrene-co-vinylbenzyl chloride) random copolymer and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) was also studied. The results are consistent with our previous studies based on QA-type model small molecules and soluble poly(2,6-dimethylphenylene oxide) (PPO) polymers. Our work presents a reliable ex situ technique to measure the true alkaline stability of AEMs for fuel cells and water electrolyzers.
Collapse
Affiliation(s)
- Sapir Willdorf-Cohen
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Avital Zhegur-Khais
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Julia Ponce-González
- School
of Chemistry and Chemical Engineering, University
of Surrey, GuildfordGU2 7XH, U.K.
| | - Saja Bsoul-Haj
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - John R. Varcoe
- School
of Chemistry and Chemical Engineering, University
of Surrey, GuildfordGU2 7XH, U.K.
| | - Charles E. Diesendruck
- Schulich
Faculty of Chemistry, Technion—Israel
Institute of Technology, Haifa3200003, Israel
- The
Nancy & Stephen Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Dario R. Dekel
- The
Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa3200003, Israel
- The
Nancy & Stephen Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, Haifa3200003, Israel
| |
Collapse
|
29
|
Allushi A, Bakvand PM, Jannasch P. Polyfluorenes Bearing N, N-Dimethylpiperidinium Cations on Short Spacers for Durable Anion Exchange Membranes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andrit Allushi
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| | - Pegah Mansouri Bakvand
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| | - Patric Jannasch
- Polymer & Materials Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00Lund, Sweden
| |
Collapse
|
30
|
Liu L, Bai L, Liu Z, Miao S, Pan J, Shen L, Shi Y, Li N. Side-chain structural engineering on poly(terphenyl piperidinium) anion exchange membrane for water electrolysers. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Wang Q, Huang L, Wang Z, Zheng J, Zhang Q, Qin G, Li S, Zhang S. High Conductive Anion Exchange Membranes from All-Carbon Twisted Intrinsic Microporous Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Qian Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Lei Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Zimo Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Qifeng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Guorui Qin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
32
|
Min K, Lee Y, Choi Y, Kwon OJ, Kim TH. High-performance anion exchange membranes achieved by crosslinking two aryl ether-free polymers: poly(bibenzyl N-methyl piperidine) and SEBS. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Nemeth T, Nauser T, Gubler L. On the Radical-Induced Degradation of Quaternary Ammonium Cations for Anion-Exchange Membrane Fuel Cells and Electrolyzers. CHEMSUSCHEM 2022; 15:e202201571. [PMID: 36131629 PMCID: PMC9828592 DOI: 10.1002/cssc.202201571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Four benzylic-type quaternary ammonium (QA) compounds with different electron density at the phenyl group were evaluated for their susceptibility against degradation by radicals. Time-resolved absorption spectroscopy indicated that radicals with oxidizing and reducing character were formed upon oxidation by HO⋅ and O⋅- (conjugate base of HO⋅). It was estimated that, dependent on the QA, 18-41 % of the formed radicals were oxidizing with standard electrode potentials (E0 ) above 0.276 V and 13-23 % exceeded 0.68 V, while 13-48 % were reducing with E0 <-0.448 V. The stability of these model compounds against oxidation and reductive dealkylation was evaluated at both neutral and strongly alkaline conditions, pH 14. Under both conditions, electron-donating groups promoted radical degradation, while electron-withdrawing ones increased stability. Therefore, durability against radical-induced degradation shows an opposite trend to alkaline stability and needs to be considered during the rational design of novel anion-exchange membranes for fuel cells and electrolyzers.
Collapse
Affiliation(s)
- Tamas Nemeth
- Electrochemistry LaboratoryPaul Scherrer Institut5232Villigen PSISwitzerland
- Laboratory of Inorganic ChemistryETH ZurichVladimir-Prelog-Weg 18093ZurichSwitzerland
| | - Thomas Nauser
- Laboratory of Inorganic ChemistryETH ZurichVladimir-Prelog-Weg 18093ZurichSwitzerland
| | - Lorenz Gubler
- Electrochemistry LaboratoryPaul Scherrer Institut5232Villigen PSISwitzerland
| |
Collapse
|
34
|
Li X, Yang K, Wang Z, Chen Y, Li Y, Guo J, Zheng J, Li S, Zhang S. Chain Architecture Dependence of Morphology and Water Transport in Poly(fluorene alkylene)-Based Anion-Exchange Membranes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Xiaofeng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Kuan Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Zimo Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Yonggang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Jing Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
35
|
Willdorf-Cohen S, Kaushansky A, Dekel DR, Diesendruck CE. Hydroxide Chemoselectivity Changes with Water Microsolvation. J Phys Chem Lett 2022; 13:10216-10221. [PMID: 36288549 DOI: 10.1021/acs.jpclett.2c02637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solvent molecules are known to affect chemical reactions, especially if they interact with one or more of the reactants or catalysts. In ion microsolvation, i.e., solvent molecules in the first solvation sphere, strong electronic interactions are created, leading to significant changes in charge distribution and consequently on their nucleophilicity/electrophilicity and acidity/basicity. Despite a long history of research in the field, fundamental issues regarding the effects of ion microsolvation are still open, especially in the condensed phase. Using reactions between hydroxide and relatively stable quaternary ammonium salts as an example, we show that water microsolvation can change hydroxide's chemoselectivity by differently affecting its basicity and nucleophilicity. In this example, the hydroxide reactivity as a nucleophile is less affected by water microsolvation than its reactivity as a base. These disparities are discussed by calculating and comparing oxidation potentials and polarizabilities of the different water-hydroxide clusters.
Collapse
Affiliation(s)
- Sapir Willdorf-Cohen
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Alexander Kaushansky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
36
|
Molecular dynamics insight into phase separation and transport in anion-exchange membranes: Effect of hydrophobicity of backbones. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Mansouri Bakvand P, Jannasch P. Poly(arylene alkylene)s with pendent benzyl-tethered ammonium cations for anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Mechanically flexible bulky imidazolium-based anion exchange membranes by grafting PEG pendants for alkaline fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Imidazolium structural isomer pyrazolium: A better alkali-stable anion conductor for anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Yang W, Yan J, Xu P, Chen J, Fang Q, Lin D, Yan Y, Zhang Q. Role of Ionic Concentration and Distribution in Anionic Conductivity: Case Study on a Series of Cobaltocenium-Containing Anion Exchange Membranes with Precise Structure Control. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weihong Yang
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Jing Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Peng Xu
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Jin Chen
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Qianyi Fang
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Daolei Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yan
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, P. R. China
| |
Collapse
|
41
|
Zhao Z, Zhang M, Du W, Xiao Y, Yang Z, Dong D, Zhang X, Fan M. Strong and Flexible High-Performance Anion Exchange Membranes with Long-Distance Interconnected Ion Transport Channels for Alkaline Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38132-38143. [PMID: 35971597 DOI: 10.1021/acsami.2c05872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs), which operate on a variety of green fuels, can achieve high power without emitting greenhouse gases. However, the lack of high ionic conductivity and long-term durability of anion-exchange membranes (AEMs) as their key components is a major obstacle hindering the commercial application of AEMFCs. Here, a series of homogeneous semi-interpenetrating network (semi-IPN) AEMs formed by cross-linking a copolymer of styrene (St) and 4-vinylbenzyl chloride (VBC) with branched polyethylenimine (BPEI) were designed. The pure carbon copolymer skeleton without sulfone/ether bonds accompanied by the semi-IPN endows the AEMs with excellent chemical stability. Moreover, the cross-linking effect of flexible BPEI chains is supposed to promote the "strong-flexible" mechanical properties, while the presence of multiquaternary ammonium groups can boost the formation of microphase separation, thereby enhancing the ionic conductivity of these AEMs. Consequently, the optimized (S1V1)3Q AEM exhibits an excellent hydroxide conductivity of 106 mS cm-1 at 80 °C, as well as more than 81% residual conductivity after soaking in 1 M NaOH at 60 °C for 720 h. Furthermore, the H2/O2 fuel cell assembled with (S1V1)3Q AEM delivers a peak power density of 150.2 mW cm-2 at 60 °C and 40% relative humidity. All results indicate that the approach of combining a pure carbon backbone polymer with a semi-IPN structure may be a viable strategy for fabricating AEMs that can be used in AEMFCs for long-term applications.
Collapse
Affiliation(s)
- Zhixin Zhao
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minghua Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Wenhao Du
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yafei Xiao
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhaojie Yang
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Dawei Dong
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xi Zhang
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minmin Fan
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
42
|
Gao WT, Gao XL, Gou WW, Wang JJ, Cai ZH, Zhang QG, Zhu AM, Liu QL. High-performance tetracyclic aromatic anion exchange membranes containing twisted binaphthyl for fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Min K, Chae JE, Lee Y, Kim HJ, Kim TH. Crosslinked poly(m-terphenyl N-methyl piperidinium)-SEBS membranes with aryl-ether free and kinked backbones as highly stable and conductive anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Li D, Chu X, Liu L. 绿氢领域电解水制氢聚合物膜材料研究进展及发展建议. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 320] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
46
|
Aggarwal K, Li S, Ivry E, Dekel DR, Diesendruck CE. N-Heterocyclic Carbene Ligands’ Electronic Effects on Metallopolymer Anion Exchange Membranes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kanika Aggarwal
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Songlin Li
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Elisa Ivry
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Dario R. Dekel
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Israel Institute of Technology, Haifa 3200003, Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
47
|
Kou X, Ma Y, Pan C, Huang Y, Duan Y, Yang Y. Effects of the Cationic Structure on the Adsorption Performance of Ionic Polymers toward Au(III): an Experimental and DFT Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6116-6127. [PMID: 35512263 DOI: 10.1021/acs.langmuir.2c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ionic polymers have been proven to be promising adsorbents in recovering Au(III) due to their advantages of simple synthesis and high adsorption efficiency. However, the unclarity of the relationship between the adsorption ability of ionic polymers and their cationic structures hinders further optimization of their adsorption performance. This study synthesized a series of ionic polymers with pyridinium, imidazolium, piperidinium, pyrrolidinium, and triethylammonium cations to discover the effects of the cationic structure on their adsorption properties. Experimental results show that the existence of anion-π interaction between aromatic cations and [AuCl4]- makes the aromatic cations-anion interaction stronger, which does not enhance the adsorption performance of the aromatic-based ionic polymer. This is due to the charge delocalization in the aromatic ring, resulting in a lower electrostatic potential (ESP) of aromatic cations than that of aliphatic cations with a localized charge. The higher the ESP of cations, the better the adsorption performance of the corresponding ionic polymer. This study serves as a deep understanding of the cationic structure-adsorptive performance relationship of the ionic polymer at the molecular level and further provides a theoretical guidance to optimize the adsorption performance of ionic polymers.
Collapse
Affiliation(s)
- Xin Kou
- The Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province; School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yutian Ma
- Jinchuan Group Co., Ltd., Jinchang 737100, P. R. China
| | - Congming Pan
- Jinchuan Group Co., Ltd., Jinchang 737100, P. R. China
| | - Yong Huang
- The Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province; School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yulai Duan
- Local Characteristic Resource Utilization and New Materials Key Laboratory of Universities in Yunnan; College of Science, Honghe University, Mengzi 661199, P. R. China
| | - Ying Yang
- The Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province; School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
48
|
Synthesis and properties of a new ether-free poly(bis-alkylpiperidinium) polymer for the anion exchange membrane. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Krivina RA, Lindquist GA, Yang MC, Cook AK, Hendon CH, Motz AR, Capuano C, Ayers KE, Hutchison JE, Boettcher SW. Three-Electrode Study of Electrochemical Ionomer Degradation Relevant to Anion-Exchange-Membrane Water Electrolyzers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18261-18274. [PMID: 35435656 DOI: 10.1021/acsami.1c22472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Among existing water electrolysis (WE) technologies, anion-exchange-membrane water electrolyzers (AEMWEs) show promise for low-cost operation enabled by the basic solid-polymer electrolyte used to conduct hydroxide ions. The basic environment within the electrolyzer, in principle, allows the use of non-platinum-group metal catalysts and less-expensive cell components compared to acidic-membrane systems. Nevertheless, AEMWEs are still underdeveloped, and the degradation and failure modes are not well understood. To improve performance and durability, supporting electrolytes such as KOH and K2CO3 are often added to the water feed. The effect of the anion interactions with the ionomer membrane (particularly other than OH-), however, remains poorly understood. We studied three commercial anion-exchange ionomers (Aemion, Sustainion, and PiperION) during oxygen evolution (OER) at oxidizing potentials in several supporting electrolytes and characterized their chemical stability with surface-sensitive techniques. We analyzed factors including the ionomer conductivity, redox potential, and pH tolerance to determine what governs ionomer stability during OER. Specifically, we discovered that the oxidation of Aemion at the electrode surface is favored in the presence of CO32-/HCO3- anions perhaps due to the poor conductivity of that ionomer in the carbonate/bicarbonate form. Sustainion tends to lose its charge-carrying groups as a result of electrochemical degradation favored in basic electrolytes. PiperION seems to be similarly negatively affected by a pH drop and low carbonate/bicarbonate conductivity under the applied oxidizing potential. The insight into the interactions of the supporting electrolyte anions with the ionomer/membrane helps shed light on some of the degradation pathways possible inside of the AEMWE and enables the informed design of materials for water electrolysis.
Collapse
Affiliation(s)
- Raina A Krivina
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Grace A Lindquist
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Min Chieh Yang
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Amanda K Cook
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Andrew R Motz
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | | | | | - James E Hutchison
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Shannon W Boettcher
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
50
|
Shirase Y, Matsumoto A, Lim KL, Tryk DA, Miyatake K, Inukai J. Properties and Morphologies of Anion-Exchange Membranes with Different Lengths of Fluorinated Hydrophobic Chains. ACS OMEGA 2022; 7:13577-13587. [PMID: 35559206 PMCID: PMC9088773 DOI: 10.1021/acsomega.1c06958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
An anion-exchange electrolyte membrane, QPAF(C6)-4, polymerized with hydrophobic 1,4'-bis(3-chlorophenyl)perfluorohexane and hydrophilic (6,6'-(2,7-dichloro-9H-fluorene-9.9-diyl)bis(N,N-dimethylhexan-1-amine) is physically flexible and chemically stable. The drawbacks are relatively large water swelling and lower OH- conductivity at higher water uptakes, which are considered to be due to the entanglement of the flexible hydrophobic structure of the membrane. In this study, a QPAF(C4)-4 membrane was newly synthesized with shortened hydrophobic fluoroalkyl chains. Unexpectedly, QPAF(C4)-4 showed a higher water uptake and a lower bulk/surface conductivity than QPAF(C6)-4 possibly due to the decrease in hydrophobicity with a smaller number of fluorine atoms. The thermal stability of QPAF(C4)-4 was higher than that of QAPF(C6)-4, possibly due to the rigidity of the QAPF(C4)-4 structure. A higher mechanical strength of QAPF(C6)-4 than that of QPAF(C4)-4 could be explained by the larger interactions between molecules, as shown in the ultraviolet-visible spectrum. The interactions of molecules were understood in more detail with density functional theory calculations. Both the chemical structures of the polymers and the arrangements of the polymers in the membranes were found to influence the membrane properties.
Collapse
Affiliation(s)
- Yuto Shirase
- Integrated
Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Akinobu Matsumoto
- Fuel
Cell Nanomaterials Center, University of
Yamanashi, 6-43 Miyamae-cho, Kofu 400-0021, Japan
| | - Kean Long Lim
- Fuel
Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Donald A. Tryk
- Fuel
Cell Nanomaterials Center, University of
Yamanashi, 6-43 Miyamae-cho, Kofu 400-0021, Japan
| | - Kenji Miyatake
- Fuel
Cell Nanomaterials Center, University of
Yamanashi, 6-43 Miyamae-cho, Kofu 400-0021, Japan
- Clean
Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8510, Japan
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Junji Inukai
- Fuel
Cell Nanomaterials Center, University of
Yamanashi, 6-43 Miyamae-cho, Kofu 400-0021, Japan
- Fuel
Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
- Clean
Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8510, Japan
| |
Collapse
|