1
|
Hauseman ZJ, Stauffer F, Beyer KS, Mollé S, Cavicchioli E, Marchand JR, Fodor M, Viscomi J, Dhembi A, Katz S, Faggion B, Lanter M, Kerr G, Schildknecht D, Handl C, Maddalo D, Pissot Soldermann C, Brady J, Shrestha O, Nguyen Z, Leder L, Cremosnik G, Lopez Romero S, Hassiepen U, Stams T, Linder M, Galli GG, Guthy DA, King DA, Maira SM, Thoma CR, Ehmke V, Tordella L. Targeting the SHOC2-RAS interaction in RAS-mutant cancers. Nature 2025:10.1038/s41586-025-08931-1. [PMID: 40335703 DOI: 10.1038/s41586-025-08931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/24/2025] [Indexed: 05/09/2025]
Abstract
Activating mutations in the rat sarcoma (RAS) genes HRAS, NRAS and KRAS collectively represent the most frequent oncogenic driver in human cancer1. They have previously been considered undruggable, but advances in the past few years have led to the clinical development of agents that target KRAS(G12C) and KRAS(G12D) mutants, yielding promises of therapeutic responses at tolerated doses2. However, clinical agents that selectively target NRAS(Q61*) mutants (* represents 'any'), the second-most-frequent oncogenic driver in melanoma, are still lacking. Here we identify SHOC2, a component of the SHOC2-MRAS-PP1C complex, as a dependency of RAS(Q61*) tumours in a nucleotide-state-dependent and isoform-agnostic manner. Mechanistically, we found that oncogenic NRAS(Q61R) forms a direct interaction with SHOC2, evidenced by X-ray co-crystal structure. In vitro high-throughput screening enabled the discovery of small molecules that bind to SHOC2 and disrupt the interaction with NRAS(Q61*). Structure-based optimization led to a cellularly active tool compound that shows inhibition of mitogen-activated protein kinase (MAPK) signalling and proliferation in RAS-mutant cancer models, most notably in NRAS(Q61*) settings. These findings provide evidence for a neomorph SHOC2-(canonical)RAS protein interaction that is pharmacologically actionable and relevant to cancer sustenance. Overall, this work provides the concept validation and foundation for developing new therapies at the core of the RAS signalling pathway.
Collapse
Affiliation(s)
| | | | - Kim S Beyer
- Novartis BioMedical Research, Basel, Switzerland
| | - Sandra Mollé
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | - Grainne Kerr
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | | | - Jacob Brady
- Novartis BioMedical Research, Cambridge, MA, USA
| | - Om Shrestha
- Novartis BioMedical Research, Cambridge, MA, USA
| | | | - Lukas Leder
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | - Travis Stams
- Novartis BioMedical Research, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Gu AY, Lee TW, Khan A, Zhang X, Hunter FW, Singleton DC, Jamieson SMF. Whole-genome CRISPR-Cas9 knockout screens identify SHOC2 as a genetic dependency in NRAS-mutant melanoma. Cancer Commun (Lond) 2025. [PMID: 40098299 DOI: 10.1002/cac2.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025] Open
Affiliation(s)
- Andrea Y Gu
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Tet Woo Lee
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Aziza Khan
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Xuenan Zhang
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Oncology Therapeutic Area, Johnson and Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | - Dean C Singleton
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Khattab S, Berisha A, Baran N, Piccaluga PP. Rat Sarcoma Virus Family Genes in Acute Myeloid Leukemia: Pathogenetic and Clinical Implications. Biomedicines 2025; 13:202. [PMID: 39857784 PMCID: PMC11760468 DOI: 10.3390/biomedicines13010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Acute myeloid leukemias (AMLs) comprise a group of genetically heterogeneous hematological malignancies that result in the abnormal growth of leukemic cells and halt the maturation process of normal hematopoietic stem cells. Despite using molecular and cytogenetic risk classification to guide treatment decisions, most AML patients survive for less than five years. A deeper comprehension of the disease's biology and the use of new, targeted therapy approaches could potentially increase cure rates. RAS oncogene mutations are common in AML patients, being observed in about 15-20% of AML cases. Despite extensive efforts to find targeted therapy for RAS-mutated AMLs, no effective and tolerable RAS inhibitor has received approval for use against AMLs. The frequency of RAS mutations increases in the context of AMLs' chemoresistance; thus, novel anti-RAS strategies to overcome drug resistance and improve patients' therapy responses and overall survival are the need of the hour. In this article, we aim to update the current knowledge on the role of RAS mutations and anti-RAS strategies in AML treatments.
Collapse
Affiliation(s)
- Shaimaa Khattab
- Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
- Medical Research Institute, Alexandria University, Alexandria 21526, Egypt
| | - Adriatik Berisha
- Division of Hematology, University of Pristina, 10000 Pristina, Kosovo
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Section of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| |
Collapse
|
4
|
Ngoi NYL, Gallo D, Torrado C, Nardo M, Durocher D, Yap TA. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 2025; 22:46-64. [PMID: 39627502 DOI: 10.1038/s41571-024-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR-Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Gallo
- Repare Therapeutics, Inc., Montreal, Quebec, Canada
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Li N, Liu CF, Zhang W, Rao GW. A New Dawn for Targeted Cancer Therapy: Small Molecule Covalent Binding Inhibitor Targeting K-Ras (G12C). Curr Med Chem 2025; 32:647-677. [PMID: 37936461 DOI: 10.2174/0109298673258913231019113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
K-Ras is a frequently mutated oncogene in human malignancies, and the development of inhibitors targeting various oncogenic K-Ras mutant proteins is a major challenge in targeted cancer therapy, especially K-Ras(G12C) is the most common mutant, which occurs in pancreatic ductal adenocarcinoma (PDAC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and other highly prevalent malignancies. In recent years, significant progress has been made in developing small molecule covalent inhibitors targeting K-Ras(G12C), thanks to the production of nucleophilic cysteine by the G12C mutant, breaking the "spell" that K-Ras protein cannot be used as a drug target. With the successful launch of sotorasib and adagrasib, the development of small molecule inhibitors targeting various K-Ras mutants has continued to gain momentum. In recent years, with the popularization of highly sensitive surface plasmon resonance (SPR) technology, fragment-based drug design strategies have shown great potential in the development of small molecule inhibitors targeting K-Ras(G12C), but with the increasing number of clinically reported acquired drug resistance, addressing inhibitor resistance has gradually become the focus of this field, indirectly indicating that such small molecule inhibitors still the potential for the development of these small molecule inhibitors are also indirectly indicated. This paper traces the development of small molecule covalent inhibitors targeting K-Ras(G12C), highlighting and analyzing the structural evolution and optimization process of each series of inhibitors and the previous inhibitor design methods and strategies, as well as their common problems and general solutions, in order to provide inspiration and help to the subsequent researchers.
Collapse
Affiliation(s)
- Na Li
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
6
|
Miranda-Román MA, Lee CJ, Fishinevich E, Ran L, Patel AJ, Yan J, Khudoynazarova MN, Warda S, Pachai MR, Chen Y, Chi P. MEK Inhibitors Lead to PDGFR Pathway Upregulation and Sensitize Tumors to RAF Dimer Inhibitors in NF1-Deficient Malignant Peripheral Nerve Sheath Tumor. Clin Cancer Res 2024; 30:5154-5165. [PMID: 39269317 PMCID: PMC11565172 DOI: 10.1158/1078-0432.ccr-24-1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive subtype of soft-tissue sarcoma with a high propensity to metastasize and extremely limited treatment options. Loss of the RAS-GAP NF1 leads to sustained RAF/MEK/ERK signaling in MPNST. However, single-agent MEK inhibitors (MEKi) have failed to elicit a sustained inhibition of the MAPK signaling pathway in MPNST. EXPERIMENTAL DESIGN We used pharmacological, biochemical, and genetic perturbations of the receptor tyrosine kinase and MAPK signaling pathway regulators to investigate the mechanisms of MEKi resistance and evaluated combination therapeutic strategies in various preclinical MPNST models in vitro and in vivo. RESULTS Here, we report that MEKi treatment resistance in MPNST involves two adaptive pathways: direct transcriptional upregulation of the receptor tyrosine kinase PDGFRβ and MEKi-induced increase in RAF dimer formation and activation of downstream signaling. Although the pharmacologic combination of a MEKi with a PDGFRβ-specific inhibitor was more effective than treatment with the MEKi alone, the combination of the MEKi and RAF dimer inhibitors led to a robust inhibition of MAPK pathway signaling. This combination treatment was effective in vitro and in vivo, as demonstrated by the significant increase in drug synergism and its high effectiveness in decreasing MPNST viability. CONCLUSIONS Our findings suggest that the combination of MEKis and PDGFR and/or RAF dimer inhibitors can overcome MEKi resistance and may serve as a novel targeted therapeutic strategy for patients with NF1-deficient MPNST, which in turn could impact future clinical investigations for this patient population.
Collapse
Affiliation(s)
- Miguel A. Miranda-Román
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eve Fishinevich
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Leili Ran
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amish J. Patel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan Yan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohini R. Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
7
|
Ghadrdoost Nakhchi B, Kosuru R, Chrzanowska M. Towards Targeting Endothelial Rap1B to Overcome Vascular Immunosuppression in Cancer. Int J Mol Sci 2024; 25:9853. [PMID: 39337337 PMCID: PMC11432579 DOI: 10.3390/ijms25189853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The vascular endothelium, a specialized monolayer of endothelial cells (ECs), is crucial for maintaining vascular homeostasis by controlling the passage of substances and cells. In the tumor microenvironment, Vascular Endothelial Growth Factor A (VEGF-A) drives tumor angiogenesis, leading to endothelial anergy and vascular immunosuppression-a state where ECs resist cytotoxic CD8+ T cell infiltration, hindering immune surveillance. Immunotherapies have shown clinical promise. However, their effectiveness is significantly reduced by tumor EC anergy. Anti-angiogenic treatments aim to normalize tumor vessels and improve immune cell infiltration. Despite their potential, these therapies often cause significant systemic toxicities, necessitating new treatments. The small GTPase Rap1B emerges as a critical regulator of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) signaling in ECs. Our studies using EC-specific Rap1B knockout mice show that the absence of Rap1B impairs tumor growth, alters vessel morphology, and increases CD8+ T cell infiltration and activation. This indicates that Rap1B mediates VEGF-A's immunosuppressive effects, making it a promising target for overcoming vascular immunosuppression in cancer. Rap1B shares structural and functional similarities with RAS oncogenes. We propose that targeting Rap1B could enhance therapies' efficacy while minimizing adverse effects by reversing endothelial anergy. We briefly discuss strategies successfully developed for targeting RAS as a model for developing anti-Rap1 therapies.
Collapse
Affiliation(s)
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Wilson PG, Abdelmoti L, Gao T, Galperin E. The expression of congenital Shoc2 variants induces AKT-dependent crosstalk activation of the ERK1/2 pathway. Hum Mol Genet 2024; 33:1592-1604. [PMID: 38881369 PMCID: PMC11373329 DOI: 10.1093/hmg/ddae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
The Shoc2 scaffold protein is crucial in transmitting signals within the Epidermal Growth Factor Receptor (EGFR)-mediated Extracellular signal-Regulated Kinase (ERK1/2) pathway. While the significance of Shoc2 in this pathway is well-established, the precise mechanisms through which Shoc2 governs signal transmission remain to be fully elucidated. Hereditary variants in Shoc2 are responsible for Noonan Syndrome with Loose anagen Hair (NSLH). However, due to the absence of known enzymatic activity in Shoc2, directly assessing how these variants affect its function is challenging. ERK1/2 phosphorylation is used as a primary parameter of Shoc2 function, but the impact of Shoc2 mutants on the pathway activation is unclear. This study investigates how the NSLH-associated Shoc2 variants influence EGFR signals in the context of the ERK1/2 and AKT downstream signaling pathways. We show that when the ERK1/2 pathway is a primary signaling pathway activated downstream of EGFR, Shoc2 variants cannot upregulate ERK1/2 phosphorylation to the level of the WT Shoc2. Yet, when the AKT and ERK1/2 pathways were activated, in cells expressing Shoc2 variants, ERK1/2 phosphorylation was higher than in cells expressing WT Shoc2. In cells expressing the Shoc2 NSLH mutants, we found that the AKT signaling pathway triggers the PAK activation, followed by phosphorylation of Raf-1/MEK1/2 and activation of the ERK1/2 signaling axis. Hence, our studies reveal a previously unrecognized feedback regulation downstream of the EGFR and provide additional evidence for the role of Shoc2 as a "gatekeeper" in controlling the selection of downstream effectors within the EGFR signaling network.
Collapse
Affiliation(s)
- Patricia G Wilson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| |
Collapse
|
9
|
Mozzarelli AM, Simanshu DK, Castel P. Functional and structural insights into RAS effector proteins. Mol Cell 2024; 84:2807-2821. [PMID: 39025071 PMCID: PMC11316660 DOI: 10.1016/j.molcel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Alessandro M Mozzarelli
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
10
|
Jeon H, Tkacik E, Eck MJ. Signaling from RAS to RAF: The Molecules and Their Mechanisms. Annu Rev Biochem 2024; 93:289-316. [PMID: 38316136 DOI: 10.1146/annurev-biochem-052521-040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Bonsor DA, Simanshu DK. RAS and SHOC2 Roles in RAF Activation and Therapeutic Considerations. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:97-113. [PMID: 38882927 PMCID: PMC11178279 DOI: 10.1146/annurev-cancerbio-062822-030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mutations in RAS proteins play a pivotal role in the development of human cancers, driving persistent RAF activation and deregulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway. While progress has been made in targeting specific oncogenic RAS proteins, effective drug-based therapies for the majority of RAS mutations remain limited. Recent investigations on RAS-RAF complexes and the SHOC2-MRAS-PP1C holoenzyme complex have provided crucial insights into the structural and functional aspects of RAF activation within the MAPK signaling pathway. Moreover, these studies have also unveiled new blueprints for developing inhibitors allowing us to think beyond the current RAS and MEK inhibitors. In this review, we explore the roles of RAS and SHOC2 in activating RAF and discuss potential therapeutic strategies to target these proteins. A comprehensive understanding of the molecular interactions involved in RAF activation and their therapeutic implications holds the potential to drive innovative approaches in combating RAS/RAF-driven cancers.
Collapse
Affiliation(s)
- Daniel A. Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
12
|
You X, Dou L, Tan M, Xiong X, Sun Y. SHOC2 plays an oncogenic or tumor-suppressive role by differentially targeting the MAPK and mTORC1 signals in liver cancer. LIFE MEDICINE 2024; 3:lnae023. [PMID: 39871893 PMCID: PMC11749279 DOI: 10.1093/lifemedi/lnae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/21/2024] [Indexed: 01/29/2025]
Abstract
SHOC2 is a scaffold protein that activates the RAS-MAPK signal. Our recent study showed that SHOC2 is also a negative regulator of the mTORC1 signal in lung cancer cells. Whether and how SHOC2 differentially regulates the RAS-MAPK vs. the mTORC1 signals in liver cancer remains unknown. Here, we showed that S HOC2 is overexpressed in human liver cancer tissues, and SHOC2 overexpression promotes the growth and survival of liver cancer cells via activation of the RAS-MAPK signal, although the mTORC1 signal is inactivated. SHOC2 knockdown suppresses the growth of liver cancer cells mainly through inactivating the RAS-MAPK signal. Thus, in the cell culture models, SHOC2 regulation of growth is dependent of the RAS-MAPK but not the mTORC1 signal. Interestingly, in a mouse liver cancer model induced by diethylnitrosamine (DEN)-high-fat diet (HFD), hepatocyte-specific Shoc2 deletion inactivates the Ras-Mapk signal but has no effect in liver tumorigenesis. However, in the Pten loss-induced liver cancer model, Shoc2 deletion further activates mTorc1 without affecting the Ras-Mapk signal and promotes liver tumorigenesis. Collectively, it appears that SHOC2 could act as either an oncogene (via activating the MAPK signal) or a tumor suppressor (via inactivating the mTORC1 signal) in the manner dependent of the dominancy of the MAPK vs. mTORC1 signals.
Collapse
Affiliation(s)
- Xiahong You
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Longyu Dou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Mingjia Tan
- Department of Radiation Oncology, University of Michigan, Ann Arbor MI 48109, United States
| | - Xiufang Xiong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou 310029, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
13
|
Yin H, Tang Q, Xia H, Bi F. Targeting RAF dimers in RAS mutant tumors: From biology to clinic. Acta Pharm Sin B 2024; 14:1895-1923. [PMID: 38799634 PMCID: PMC11120325 DOI: 10.1016/j.apsb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
Collapse
Affiliation(s)
- Huanhuan Yin
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Perurena N, Situ L, Cichowski K. Combinatorial strategies to target RAS-driven cancers. Nat Rev Cancer 2024; 24:316-337. [PMID: 38627557 DOI: 10.1038/s41568-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lisa Situ
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Rosell R, Codony-Servat J, González J, Santarpia M, Jain A, Shivamallu C, Wang Y, Giménez-Capitán A, Molina-Vila MA, Nilsson J, González-Cao M. KRAS G12C-mutant driven non-small cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2024; 195:104228. [PMID: 38072173 DOI: 10.1016/j.critrevonc.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
KRAS G12C mutations in non-small cell lung cancer (NSCLC) partially respond to KRAS G12C covalent inhibitors. However, early adaptive resistance occurs due to rewiring of signaling pathways, activating receptor tyrosine kinases, primarily EGFR, but also MET and ligands. Evidence indicates that treatment with KRAS G12C inhibitors (sotorasib) triggers the MRAS:SHOC2:PP1C trimeric complex. Activation of MRAS occurs from alterations in the Scribble and Hippo-dependent pathways, leading to YAP activation. Other mechanisms that involve STAT3 signaling are intertwined with the activation of MRAS. The high-resolution MRAS:SHOC2:PP1C crystallization structure allows in silico analysis for drug development. Activation of MRAS:SHOC2:PP1C is primarily Scribble-driven and downregulated by HUWE1. The reactivation of the MRAS complex is carried out by valosin containing protein (VCP). Exploring these pathways as therapeutic targets and their impact on different chemotherapeutic agents (carboplatin, paclitaxel) is crucial. Comutations in STK11/LKB1 often co-occur with KRAS G12C, jeopardizing the effect of immune checkpoint (anti-PD1/PDL1) inhibitors.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain; IOR, Hospital Quiron-Dexeus, Barcelona, Spain.
| | | | - Jessica González
- Germans Trias i Pujol Research Institute, Badalona (IGTP), Spain
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Italy
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Yu Wang
- Genfleet Therapeutics, Shanghai, China
| | | | | | - Jonas Nilsson
- Department Radiation Sciences, Oncology, Umeå University, Sweden
| | | |
Collapse
|
16
|
Geng W, Cao M, Dong K, An J, Gao H. SHOC2 mediates the drug-resistance of triple-negative breast cancer cells to everolimus. Cancer Biol Ther 2023; 24:2206362. [PMID: 37170083 PMCID: PMC10177683 DOI: 10.1080/15384047.2023.2206362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Aberrant activation of the mTOR pathway is a characteristic alteration in triple-negative breast cancer, but the mTOR pathway inhibitor everolimus is not effective for the triple-negative breast cancer (TNBC) patients. Presently, we showed that the activation of ERK pathway was an important mechanism of resistance to everolimus in TNBC cells in this study. SHOC2, a key protein mediating the Ras-Raf-ERK pathway, could act as a scaffolding protein to facilitate the activation of the pathway by mediating the interaction of key components of the pathway. Our results showed that everolimus activated the Raf-ERK pathway by promoting the interaction between SHOC2 and c-Raf and that knockdown of SHOC2 significantly inhibited the Raf-ERK pathway induced by everolimus. We further demonstrated that SHOC2 expression levels were closely related to the sensitivity of TNBC cells to everolimus and that interference with SHOC2 expression in combination with everolimus had significant effects on the cell cycle progression and apoptosis in vitro experiments. Western blotting analysis showed that cell cycle regulators and apoptosis-related proteins were significantly altered by the combination treatment. Xenograft model also demonstrated that knockdown of SHOC2 significantly increased the sensitivity of tumor to everolimus in nude mice. In conclusion, our study showed that SHOC2 is a key factor in regulating the sensitivity of TNBC cells to everolimus and that combined therapy may be a more effective therapeutic approach for TNBC patients.
Collapse
Affiliation(s)
- Wenwen Geng
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Meiling Cao
- Department of Rheumatology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Ke Dong
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Junhua An
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- CONTACT Haidong Gao Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Hefei Road No.758, Qingdao266000, China
| |
Collapse
|
17
|
Wilson P, Abdelmoti L, Gao T, Galperin E. The expression of congenital Shoc2 variants induces AKT-dependent feedback activation of the ERK1/2 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573219. [PMID: 38187642 PMCID: PMC10769455 DOI: 10.1101/2023.12.23.573219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The Shoc2 scaffold protein is crucial in transmitting signals within the Epidermal Growth Factor Receptor (EGFR)-mediated Extracellular signal-regulated Kinase (ERK1/2) pathway. While the significance of Shoc2 in this pathway is well-established, the precise mechanisms through which Shoc2 governs signal transmission remain to be fully elucidated. Hereditary mutations in Shoc2 are responsible for Noonan Syndrome with Loose anagen Hair (NSLH). However, due to the absence of known enzymatic activity in Shoc2, directly assessing how these mutations affect its function is challenging. ERK1/2 phosphorylation is used as a primary parameter of Shoc2 function, but the impact of Shoc2 mutants on the pathway activation is unclear. This study investigates how the NSLH-associated Shoc2 variants influence EGFR signals in the context of the ERK1/2 and AKT downstream signaling pathways. We show that when the ERK1/2 pathway is a primary signaling pathway activated downstream of EGFR, Shoc2 variants cannot upregulate ERK1/2 phosphorylation to the level of the WT Shoc2. Yet, when the AKT and ERK1/2 pathways were activated, in cells expressing Shoc2 variants, ERK1/2 phosphorylation was higher than in cells expressing WT Shoc2. We found that, in cells expressing the Shoc2 NSLH mutants, the AKT signaling pathway triggers the PAK activation, followed by phosphorylation and Raf-1/MEK1/2 /ERK1/2 signaling axis activation. Hence, our studies reveal a previously unrecognized feedback regulation downstream of the EGFR and provide evidence for the Shoc2 role as a "gatekeeper" in controlling the selection of downstream effectors within the EGFR signaling network.
Collapse
|
18
|
Wang P, Laster K, Jia X, Dong Z, Liu K. Targeting CRAF kinase in anti-cancer therapy: progress and opportunities. Mol Cancer 2023; 22:208. [PMID: 38111008 PMCID: PMC10726672 DOI: 10.1186/s12943-023-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
- Basic Medicine Sciences Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
19
|
Bonsor DA, Simanshu DK. Structural insights into the role of SHOC2-MRAS-PP1C complex in RAF activation. FEBS J 2023; 290:4852-4863. [PMID: 37074066 PMCID: PMC10584989 DOI: 10.1111/febs.16800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023]
Abstract
RAF activation is a key step for signalling through the mitogen-activated protein kinase (MAPK) pathway. The SHOC2 protein, along with MRAS and PP1C, forms a high affinity, heterotrimeric holoenzyme that activates RAF kinases by dephosphorylating a specific phosphoserine. Recently, our research, along with that of three other teams, has uncovered valuable structural and functional insights into the SHOC2-MRAS-PP1C (SMP) holoenzyme complex. In this structural snapshot, we review SMP complex assembly, the dependency on the bound-nucleotide state of MRAS, the substitution of MRAS by the canonical RAS proteins and the roles of SHOC2 and MRAS on PP1C activity and specificity. Furthermore, we discuss the effect of several RASopathy mutations identified within the SMP complex and explore potential therapeutic approaches for targeting the SMP complex in RAS/RAF-driven cancers and RASopathies.
Collapse
Affiliation(s)
- Daniel A. Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
20
|
Huang G, Zhang W, Tian H. Evaluation of the radiosensitizing effect of MEK inhibitor KZ-001 on non-small cell lung cancer cells in vitro. ASIAN BIOMED 2023; 17:230-237. [PMID: 37899758 PMCID: PMC10602635 DOI: 10.2478/abm-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) has a poor prognosis and usually presents resistance against radiotherapy. MEK inhibitors have been proven to possess a radiosensitization effect. The compound KZ-001 as a particular MEK inhibitor is superior to the listed MEK inhibitor AZD6244. Objective To investigate whether KZ-001 could enhance the radiosensitivity of NSCLC cell lines in vitro. Methods MTT and colony formation assay were used to evaluate the radiosensitivity effect of KZ-001. Immunofluorescence, cell cycle, apoptosis staining, and western blot experiments were used to explore the radiosensitivity mechanism. Results KZ-001 significantly decreased A549 cell viability at 6 Gy and 8 Gy radiation doses and caused the radiosensitivity at 1 Gy, 4 Gy, and 6 Gy in colony formation experiments. The A549 apoptosis ratio induced by irradiation (IR) combined with KZ-001 increased significantly in comparison with that by IR monotherapy (10.57% vs. 6.23%, P = 0.0055). The anti-apoptosis marker Bcl-XL was found downregulated in KZ-001 and IR-treated A549/H460 cells, but apoptosis marker Bax was downregulated in H460. Extracellular regulated protein kinases (ERK1/2) phosphorylation of H460 cells could be blocked both by IR alone and IR combined with KZ-001. IR combined with KZ-001 is able to inhibit ERK activation of A549 cells apparently. KZ-001 increased the proportion of G2 phase in irradiated cells from 21.24% to 32.22%. KZ-001 could also significantly increase the double-strand break damage cell ratio to more than 30% compared to the irradiation alone group. Conclusions MEK1/2 inhibitor KZ-001 is a potential radiosensitizer for clinical applications.
Collapse
Affiliation(s)
- Gongchao Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
| | - Wenqin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
| | - Hongqi Tian
- Shanghai Kechow Pharma, Inc., Shanghai201203, China
| |
Collapse
|
21
|
Rosell R, Jain A, Codony-Servat J, Jantus-Lewintre E, Morrison B, Ginesta JB, González-Cao M. Biological insights in non-small cell lung cancer. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0108. [PMID: 37381723 PMCID: PMC10466437 DOI: 10.20892/j.issn.2095-3941.2023.0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Lung oncogenesis relies on intracellular cysteine to overcome oxidative stress. Several tumor types, including non-small cell lung cancer (NSCLC), upregulate the system xc- cystine/glutamate antiporter (xCT) through overexpression of the cystine transporter SLC7A11, thus sustaining intracellular cysteine levels to support glutathione synthesis. Nuclear factor erythroid 2-related factor 2 (NRF2) serves as a master regulator of oxidative stress resistance by regulating SLC7A11, whereas Kelch-like ECH-associated protein (KEAP1) acts as a cytoplasmic repressor of the oxidative responsive transcription factor NRF2. Mutations in KEAP1/NRF2 and p53 induce SLC7A11 activation in NSCLC. Extracellular cystine is crucial in supplying the intracellular cysteine levels necessary to combat oxidative stress. Disruptions in cystine availability lead to iron-dependent lipid peroxidation, thus resulting in a type of cell death called ferroptosis. Pharmacologic inhibitors of xCT (either SLC7A11 or GPX4) induce ferroptosis of NSCLC cells and other tumor types. When cystine uptake is impaired, the intracellular cysteine pool can be sustained by the transsulfuration pathway, which is catalyzed by cystathionine-B-synthase (CBS) and cystathionine g-lyase (CSE). The involvement of exogenous cysteine/cystine and the transsulfuration pathway in the cysteine pool and downstream metabolites results in compromised CD8+ T cell function and evasion of immunotherapy, diminishing immune response and potentially reducing the effectiveness of immunotherapeutic interventions. Pyroptosis is a previously unrecognized form of regulated cell death. In NSCLCs driven by EGFR, ALK, or KRAS, selective inhibitors induce pyroptotic cell death as well as apoptosis. After targeted therapy, the mitochondrial intrinsic apoptotic pathway is activated, thus leading to the cleavage and activation of caspase-3. Consequently, gasdermin E is activated, thus leading to permeabilization of the cytoplasmic membrane and cell-lytic pyroptosis (indicated by characteristic cell membrane ballooning). Breakthroughs in KRAS G12C allele-specific inhibitors and potential mechanisms of resistance are also discussed herein.
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona 08028, Spain
- IOR, Hospital Quiron-Dexeus, Barcelona 08028, Spain
| | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | | | - Eloisa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de Valencia; Mixed Unit TRIAL (General University Hospital of Valencia Research Foundation and Príncipe Felipe Research Center), CIBERONC, Valencia 46014, Spain
| | - Blake Morrison
- Sumitomo Pharma Oncology, Inc., Cambridge, MA and Lehi, UT 84043, USA
| | | | | |
Collapse
|
22
|
Adachi Y, Kimura R, Hirade K, Yanase S, Nishioka Y, Kasuga N, Yamaguchi R, Ebi H. Scribble mis-localization induces adaptive resistance to KRAS G12C inhibitors through feedback activation of MAPK signaling mediated by YAP-induced MRAS. NATURE CANCER 2023; 4:829-843. [PMID: 37277529 DOI: 10.1038/s43018-023-00575-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
Tumor cells evade targeted drugs by rewiring their genetic and epigenetic networks. Here, we identified that inhibition of MAPK signaling rapidly induces an epithelial-to-mesenchymal transition program by promoting re-localization of an apical-basal polarity protein, Scribble, in oncogene-addicted lung cancer models. Mis-localization of Scribble suppressed Hippo-YAP signaling, leading to YAP nuclear translocation. Furthermore, we discovered that a RAS superfamily protein MRAS is a direct target of YAP. Treatment with KRAS G12C inhibitors induced MRAS expression, which formed a complex with SHOC2, precipitating feedback activation of MAPK signaling. Abrogation of YAP activation or MRAS induction enhanced the efficacy of KRAS G12C inhibitor treatment in vivo. These results highlight a role for protein localization in the induction of a non-genetic mechanism of resistance to targeted therapies in lung cancer. Furthermore, we demonstrate that induced MRAS expression is a key mechanism of adaptive resistance following KRAS G12C inhibitor treatment.
Collapse
Affiliation(s)
- Yuta Adachi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Ryo Kimura
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Kentaro Hirade
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Shogo Yanase
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Yuki Nishioka
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Natsumi Kasuga
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.
- Division of Advanced Cancer Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
23
|
Du H, Hou S, Zhang L, Liu C, Yu T, Zhang W. LncRNA FALEC increases the proliferation, migration and drug resistance of cholangiocarcinoma through competitive regulation of miR-20a-5p/SHOC2 axis. Aging (Albany NY) 2023; 15:3759-3770. [PMID: 37166421 PMCID: PMC10449288 DOI: 10.18632/aging.204709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND LncRNA is an important regulatory factor in the human genome. We aim to explore the roles of LncFALEC and miR-20a-5p/SHOC2 axis on the proliferation, migration, and Fluorouracil (5-FU) resistance of cholangiocarcinoma (CCA). METHODS In this study, the expression of FALEC and miR-20a-5p in CCA tissues and cell lines (HuCCT1, QBC939, and Huh-28) was detected by RT-qPCR. The FALEC in 5-FU-resistant CCA cell lines (QBC939-R, Huh-28-R) was knocked down to evaluate its effects on cell proliferation, migration, invasion, and drug resistance. RESULTS Our analysis showed that compared with the adjacent non-tumor tissues, FALEC was significantly higher in the CCA tissues and even higher in the samples from 5-FU-resistant patients. Knockdown FALEC increased the sensitivity of 5-FU and decreased migration and invasion of CCA cells. Dual luciferase reporter confirmed that FALEC sponges miR-20a-5p and down-regulated its expression. Moreover, SHOC2 leucine-rich repeat scaffold protein (SHOC2) was the target gene of miR-20a-5p. We found overexpression of FALEC (FALEC-OE) increased resistance of CCA cells to 5-FU significantly, which might contribute to increased SHOC2 expression and activation of the ERK1/2 signaling pathway. CONCLUSIONS In summary, our study revealed that down-regulation of FALEC could inhibit the proliferation, migration, and invasion of CCA cells in vitro by regulating the miR-20a-5p/SHOC2 axis and participating in 5-FU resistance by mediating the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Haiming Du
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Senlin Hou
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lichao Zhang
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chao Liu
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Tingting Yu
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei Zhang
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
24
|
Alam SK, Wang L, Zhu Z, Hoeppner LH. IKKα promotes lung adenocarcinoma growth through ERK signaling activation via DARPP-32-mediated inhibition of PP1 activity. NPJ Precis Oncol 2023; 7:33. [PMID: 36966223 PMCID: PMC10039943 DOI: 10.1038/s41698-023-00370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/08/2023] [Indexed: 03/27/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 80-85% cases of lung cancer cases. Diagnosis at advanced stages is common, after which therapy-refractory disease progression frequently occurs. Therefore, a better understanding of the molecular mechanisms that control NSCLC progression is necessary to develop new therapies. Overexpression of IκB kinase α (IKKα) in NSCLC correlates with poor patient survival. IKKα is an NF-κB-activating kinase that is important in cell survival and differentiation, but its regulation of oncogenic signaling is not well understood. We recently demonstrated that IKKα promotes NSCLC cell migration by physically interacting with dopamine- and cyclic AMP-regulated phosphoprotein, Mr 32000 (DARPP-32), and its truncated splice variant, t-DARPP. Here, we show that IKKα phosphorylates DARPP-32 at threonine 34, resulting in DARPP-32-mediated inhibition of protein phosphatase 1 (PP1), subsequent inhibition of PP1-mediated dephosphorylation of ERK, and activation of ERK signaling to promote lung oncogenesis. Correspondingly, IKKα ablation in human lung adenocarcinoma cells reduced their anchorage-independent growth in soft agar. Mice challenged with IKKα-ablated HCC827 cells exhibited less lung tumor growth than mice orthotopically administered control HCC827 cells. Our findings suggest that IKKα drives NSCLC growth through the activation of ERK signaling via DARPP-32-mediated inhibition of PP1 activity.
Collapse
Affiliation(s)
- Sk Kayum Alam
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
| | - Li Wang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zhu Zhu
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
25
|
Santarpia M, Ciappina G, Spagnolo CC, Squeri A, Passalacqua MI, Aguilar A, Gonzalez-Cao M, Giovannetti E, Silvestris N, Rosell R. Targeted therapies for KRAS-mutant non-small cell lung cancer: from preclinical studies to clinical development-a narrative review. Transl Lung Cancer Res 2023; 12:346-368. [PMID: 36895930 PMCID: PMC9989806 DOI: 10.21037/tlcr-22-639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023]
Abstract
Background and Objective Non-small cell lung cancer (NSCLC) with Kirsten rat sarcoma viral oncogene homolog (KRAS) driver alterations harbors a poor prognosis with standard therapies, including chemotherapy and/or immunotherapy with anti-programmed cell death protein 1 (anti-PD-1) or anti-programmed death ligand-1 (anti-PD-L1) antibodies. Selective KRAS G12C inhibitors have been shown to provide significant clinical benefit in pretreated NSCLC patients with KRAS G12C mutation. Methods In this review, we describe KRAS and the biology of KRAS-mutant tumors and review data from preclinical studies and clinical trials on KRAS-targeted therapies in NSCLC patients with KRAS G12C mutation. Key Content and Findings KRAS is the most frequently mutated oncogene in human cancer. The G12C is the most common KRAS mutation found in NSCLC. Sotorasib is the first, selective KRAS G12C inhibitor to receive approval based on demonstration of significant clinical benefit and tolerable safety profile in previously treated, KRAS G12C-mutated NSCLC. Adagrasib, a highly selective covalent inhibitor of KRAS G12C, has also shown efficacy in pretreated patients and other novel KRAS inhibitors are being under evaluation in early-phase studies. Similarly to other oncogene-directed therapies, mechanisms of intrinsic and acquired resistance limiting the activity of these agents have been described. Conclusions The discovery of selective KRAS G12C inhibitors has changed the therapeutic scenario of KRAS G12C-mutant NSCLC. Various studies testing KRAS inhibitors in different settings of disease, as single-agent or in combination with targeted agents for synthetic lethality and immunotherapy, are currently ongoing in this molecularly-defined subgroup of patients to further improve clinical outcomes.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Giuliana Ciappina
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Calogera Claudia Spagnolo
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Andrea Squeri
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Maria Ilenia Passalacqua
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Andrés Aguilar
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain
| | - Maria Gonzalez-Cao
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, San Giuliano, Italy
| | - Nicola Silvestris
- Department of Human Pathology "G. Barresi", Medical Oncology Unit, University of Messina, Messina, Italy
| | - Rafael Rosell
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain.,Catalan Institute of Oncology, ICO, Badalona, Spain
| |
Collapse
|
26
|
Li T, Kikuchi O, Zhou J, Wang Y, Pokharel B, Bastl K, Gokhale P, Knott A, Zhang Y, Doench JG, Ho ZV, Catenacci DV, Bass AJ. Developing SHP2-based combination therapy for KRAS-amplified cancer. JCI Insight 2023; 8:152714. [PMID: 36752207 PMCID: PMC9977440 DOI: 10.1172/jci.insight.152714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Gastroesophageal adenocarcinomas (GEAs) harbor recurrent amplification of KRAS, leading to marked overexpression of WT KRAS protein. We previously demonstrated that SHP2 phosphatase, which acts to promote KRAS and downstream MAPK pathway activation, is a target in these tumors when combined with MEK inhibition. We hypothesized that SHP2 inhibitors may serve as a foundation for developing novel combination inhibitor strategies for therapy of KRAS-amplified GEA, including with targets outside the MAPK pathway. Here, we explore potential targets to effectively augment the efficacy of SHP2 inhibition, starting with genome-wide CRISPR screens in KRAS-amplified GEA cell lines with and without SHP2 inhibition. We identify candidate targets within the MAPK pathway and among upstream RTKs that may enhance SHP2 efficacy in KRAS-amplified GEA. Additional in vitro and in vivo experiments demonstrated the potent cytotoxicity of pan-ERBB kinase inhibitions in vitro and in vivo. Furthermore, beyond targets within the MAPK pathway, we demonstrate that inhibition of CDK4/6 combines potently with SHP2 inhibition in KRAS-amplified GEA, with greater efficacy of this combination in KRAS-amplified, compared with KRAS-mutant, tumors. These results suggest therapeutic combinations for clinical study in KRAS-amplified GEAs.
Collapse
Affiliation(s)
- Tianxia Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Osamu Kikuchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jin Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yichen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Babita Pokharel
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Klavdija Bastl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Prafulla Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Aine Knott
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yanxi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - John G. Doench
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Zandra V. Ho
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Daniel V.T. Catenacci
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Adam J. Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA.,Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Tan M, Chang Y, Liu X, Li H, Tang Z, Nyati MK, Sun Y. The Sag-Shoc2 axis regulates conversion of mPanINs to cystic lesions in Kras pancreatic tumor model. Cell Rep 2022; 41:111837. [PMID: 36543126 DOI: 10.1016/j.celrep.2022.111837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/15/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
SAG/RBX2 is an E3 ligase, whereas SHOC2 is a RAS-RAF positive regulator. In this study, we address how Sag-Shoc2 crosstalk regulates pancreatic tumorigenesis induced by KrasG12D. Sag deletion increases the size of pancreas and causes the conversion of murine pancreatic intraepithelial neoplasms (mPanINs) to neoplastic cystic lesions with a mechanism involving Shoc2 accumulation, suggesting that Sag determines the pathological process via targeting Shoc2. Shoc2 deletion significantly inhibits pancreas growth, mPanIN formation, and acinar cell transdifferentiation, indicating that Shoc2 is essential for KrasG12D-induced pancreatic tumorigenesis. Likewise, in a primary acinar 3D culture, Sag deletion inhibits acinar-to-ductal transdifferentiation, while Shoc2 deletion significantly reduces the duct-like structures. Mechanistically, SAG is an E3 ligase that targets SHOC2 for degradation to affect both Mapk and mTorc1 pathways. Shoc2 deletion completely rescues the phenotype of neoplastic cystic lesions induced by Sag deletion, indicating physiological relevance of the Sag-Shoc2 crosstalk. Thus, the Sag-Shoc2 axis specifies the pancreatic tumor types induced by KrasG12D.
Collapse
Affiliation(s)
- Mingjia Tan
- Department of Radiation Oncology, NCRC, Building 520, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yu Chang
- Department of Radiation Oncology, NCRC, Building 520, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xiaoqiang Liu
- Department of Radiation Oncology, NCRC, Building 520, University of Michigan, Ann Arbor, MI 48105, USA
| | - Hua Li
- Department of Radiation Oncology, NCRC, Building 520, University of Michigan, Ann Arbor, MI 48105, USA
| | - Zaiming Tang
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Mukesh K Nyati
- Department of Radiation Oncology, NCRC, Building 520, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yi Sun
- Cancer Institute, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University Cancer Center, Hangzhou 310029, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
28
|
Llaurado Fernandez M, Hijmans EM, Gennissen AM, Wong NK, Li S, Wisman GBA, Hamilton A, Hoenisch J, Dawson A, Lee CH, Bittner M, Kim H, DiMattia GE, Lok CA, Lieftink C, Beijersbergen RL, de Jong S, Carey MS, Bernards R, Berns K. NOTCH Signaling Limits the Response of Low-Grade Serous Ovarian Cancers to MEK Inhibition. Mol Cancer Ther 2022; 21:1862-1874. [PMID: 36198031 PMCID: PMC9716250 DOI: 10.1158/1535-7163.mct-22-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/30/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
Low-grade serous ovarian cancer (LGSOC) is a rare subtype of epithelial ovarian cancer with high fatality rates in advanced stages due to its chemoresistant properties. LGSOC is characterized by activation of MAPK signaling, and recent clinical trials indicate that the MEK inhibitor (MEKi) trametinib may be a good treatment option for a subset of patients. Understanding MEKi-resistance mechanisms and subsequent identification of rational drug combinations to suppress resistance may greatly improve LGSOC treatment strategies. Both gain-of-function and loss-of-function CRISPR-Cas9 genome-wide libraries were used to screen LGSOC cell lines to identify genes that modulate the response to MEKi. Overexpression of MAML2 and loss of MAP3K1 were identified, both leading to overexpression of the NOTCH target HES1, which has a causal role in this process as its knockdown reversed MEKi resistance. Interestingly, increased HES1 expression was also observed in selected spontaneous trametinib-resistant clones, next to activating MAP2K1 (MEK1) mutations. Subsequent trametinib synthetic lethality screens identified SHOC2 downregulation as being synthetic lethal with MEKis. Targeting SHOC2 with pan-RAF inhibitors (pan-RAFis) in combination with MEKi was effective in parental LGSOC cell lines, in MEKi-resistant derivatives, in primary ascites cultures from patients with LGSOC, and in LGSOC (cell line-derived and patient-derived) xenograft mouse models. We found that the combination of pan-RAFi with MEKi downregulated HES1 levels in trametinib-resistant cells, providing an explanation for the synergy that was observed. Combining MEKis with pan-RAFis may provide a promising treatment strategy for patients with LGSOC, which warrants further clinical validation.
Collapse
Affiliation(s)
- Marta Llaurado Fernandez
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - E. Marielle Hijmans
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annemiek M.C. Gennissen
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nelson K.Y. Wong
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Shang Li
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - G. Bea A. Wisman
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aleksandra Hamilton
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Joshua Hoenisch
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Amy Dawson
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Cheng-Han Lee
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Madison Bittner
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Hannah Kim
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada
| | - Gabriel E. DiMattia
- Mary and John Knight Translational Ovarian Cancer Research Unit, London Health Sciences Center
| | - Christianne A.R. Lok
- Center for Gynecologic Oncology Amsterdam, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mark S. Carey
- Department of Obstetrics and Gynaecology, University of British Columbia Vancouver, British Columbia, Canada.,Corresponding Authors: Katrien Berns, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121955. E-mail: ; and Mark S. Carey, Vancouver, British Columbia V6Z 2K8, Canada. Phone: 160-4875-4268; E-mail: ; René Bernards, Plesmanlaan 121,1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121952; E-mail:
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Corresponding Authors: Katrien Berns, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121955. E-mail: ; and Mark S. Carey, Vancouver, British Columbia V6Z 2K8, Canada. Phone: 160-4875-4268; E-mail: ; René Bernards, Plesmanlaan 121,1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121952; E-mail:
| | - Katrien Berns
- Division of Molecular Carcinogenesis, Oncode Institute, Cancer Genomics Center Netherlands, the Netherlands Cancer Institute, Amsterdam, the Netherlands.,Corresponding Authors: Katrien Berns, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121955. E-mail: ; and Mark S. Carey, Vancouver, British Columbia V6Z 2K8, Canada. Phone: 160-4875-4268; E-mail: ; René Bernards, Plesmanlaan 121,1066 CX Amsterdam, the Netherlands. Phone: 31-20-5121952; E-mail:
| |
Collapse
|
29
|
Norcross RG, Abdelmoti L, Rouchka EC, Andreeva K, Tussey O, Landestoy D, Galperin E. Shoc2 controls ERK1/2-driven neural crest development by balancing components of the extracellular matrix. Dev Biol 2022; 492:156-171. [PMID: 36265687 PMCID: PMC10019579 DOI: 10.1016/j.ydbio.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.
Collapse
Affiliation(s)
- Rebecca G Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA; Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA
| | - Olivia Tussey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daileen Landestoy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
30
|
Shi C, Ren S, Zhao X, Li Q. lncRNA MALAT1 regulates the resistance of breast cancer cells to paclitaxel via the miR-497-5p/ SHOC2 axis. Pharmacogenomics 2022; 23:973-985. [PMID: 36420706 DOI: 10.2217/pgs-2022-0077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aim: To explore the roles of lncRNA MALAT1 and SHOC2 in breast cancer, and the potential connections to chemotherapy resistance in breast cancer. Materials & methods: Paclitaxel-resistant breast cancer cells were induced by gradually increasing intermittent doses. Bioinformatic analyses were performed to predict the regulated miRNAs of MALAT1. Results: High expressions of MALAT1 and SHOC2 contribute to paclitaxel resistance in breast cancer cells. MALAT1 sponges miR-497-5p enhance SHOC2 expression in paclitaxel-resistant breast cancer cells and contribute to paclitaxel resistance in breast cancer cells. Conclusion: Patients with high expression of MALAT1 and SHOC2 have a poorer response to paclitaxel. Upregulation of miR-497-5p could improve the treatment response to paclitaxel in patients with breast cancer by inhibiting MALAT1 and SHOC2.
Collapse
Affiliation(s)
- Chang Shi
- The Fourth Department of General Surgery, the Second Hospital of Hebei Medical University
| | - Shuangjie Ren
- Department of Traditional Chinese Medicine Surgery, the Second Hospital of Hebei Medical University
| | - Xiaodong Zhao
- The Fourth Department of General Surgery, the Second Hospital of Hebei Medical University
| | - Qinghuai Li
- The Sixth Department of General Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| |
Collapse
|
31
|
Feng J, Lian Z, Xia X, Lu Y, Hu K, Zhang Y, Liu Y, Hu L, Yuan K, Sun Z, Pang X. Targeting metabolic vulnerability in mitochondria conquers MEK inhibitor resistance in KRAS-mutant lung cancer. Acta Pharm Sin B 2022; 13:1145-1163. [PMID: 36970205 PMCID: PMC10031260 DOI: 10.1016/j.apsb.2022.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/01/2022] Open
Abstract
MEK is a canonical effector of mutant KRAS; however, MEK inhibitors fail to yield satisfactory clinical outcomes in KRAS-mutant cancers. Here, we identified mitochondrial oxidative phosphorylation (OXPHOS) induction as a profound metabolic alteration to confer KRAS-mutant non-small cell lung cancer (NSCLC) resistance to the clinical MEK inhibitor trametinib. Metabolic flux analysis demonstrated that pyruvate metabolism and fatty acid oxidation were markedly enhanced and coordinately powered the OXPHOS system in resistant cells after trametinib treatment, satisfying their energy demand and protecting them from apoptosis. As molecular events in this process, the pyruvate dehydrogenase complex (PDHc) and carnitine palmitoyl transferase IA (CPTIA), two rate-limiting enzymes that control the metabolic flux of pyruvate and palmitic acid to mitochondrial respiration were activated through phosphorylation and transcriptional regulation. Importantly, the co-administration of trametinib and IACS-010759, a clinical mitochondrial complex I inhibitor that blocks OXPHOS, significantly impeded tumor growth and prolonged mouse survival. Overall, our findings reveal that MEK inhibitor therapy creates a metabolic vulnerability in the mitochondria and further develop an effective combinatorial strategy to circumvent MEK inhibitors resistance in KRAS-driven NSCLC.
Collapse
|
32
|
Bonsor DA, Alexander P, Snead K, Hartig N, Drew M, Messing S, Finci LI, Nissley DV, McCormick F, Esposito D, Rodriguez-Viciana P, Stephen AG, Simanshu DK. Structure of the SHOC2-MRAS-PP1C complex provides insights into RAF activation and Noonan syndrome. Nat Struct Mol Biol 2022; 29:966-977. [PMID: 36175670 PMCID: PMC10365013 DOI: 10.1038/s41594-022-00841-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Daniel A Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Patrick Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelly Snead
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Hartig
- UCL Cancer Institute, University College London, London, UK
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lorenzo I Finci
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
33
|
Combinatorial approaches for mitigating resistance to KRAS-targeted therapies. Biochem J 2022; 479:1985-1997. [PMID: 36065754 PMCID: PMC9555794 DOI: 10.1042/bcj20220440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
Approximately 15% of all cancer patients harbor mutated KRAS. Direct inhibitors of KRAS have now been generated and are beginning to make progress through clinical trials. These include a suite of inhibitors targeting the KRASG12C mutation commonly found in lung cancer. We investigated emergent resistance to representative examples of different classes of Ras targeted therapies. They all exhibited rapid reactivation of Ras signaling within days of exposure and adaptive responses continued to change over long-term treatment schedules. Whilst the gene signatures were distinct for each inhibitor, they commonly involved up-regulation of upstream nodes promoting mutant and wild-type Ras activation. Experiments to reverse resistance unfortunately revealed frequent desensitization to members of a panel of anti-cancer therapeutics, suggesting that salvage approaches are unlikely to be feasible. Instead, we identified triple inhibitor combinations that resulted in more durable responses to KRAS inhibitors and that may benefit from further pre-clinical evaluation.
Collapse
|
34
|
Liau NPD, Johnson MC, Izadi S, Gerosa L, Hammel M, Bruning JM, Wendorff TJ, Phung W, Hymowitz SG, Sudhamsu J. Structural basis for SHOC2 modulation of RAS signalling. Nature 2022; 609:400-407. [PMID: 35768504 PMCID: PMC9452301 DOI: 10.1038/s41586-022-04838-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
The RAS-RAF pathway is one of the most commonly dysregulated in human cancers1-3. Despite decades of study, understanding of the molecular mechanisms underlying dimerization and activation4 of the kinase RAF remains limited. Recent structures of inactive RAF monomer5 and active RAF dimer5-8 bound to 14-3-39,10 have revealed the mechanisms by which 14-3-3 stabilizes both RAF conformations via specific phosphoserine residues. Prior to RAF dimerization, the protein phosphatase 1 catalytic subunit (PP1C) must dephosphorylate the N-terminal phosphoserine (NTpS) of RAF11 to relieve inhibition by 14-3-3, although PP1C in isolation lacks intrinsic substrate selectivity. SHOC2 is as an essential scaffolding protein that engages both PP1C and RAS to dephosphorylate RAF NTpS11-13, but the structure of SHOC2 and the architecture of the presumptive SHOC2-PP1C-RAS complex remain unknown. Here we present a cryo-electron microscopy structure of the SHOC2-PP1C-MRAS complex to an overall resolution of 3 Å, revealing a tripartite molecular architecture in which a crescent-shaped SHOC2 acts as a cradle and brings together PP1C and MRAS. Our work demonstrates the GTP dependence of multiple RAS isoforms for complex formation, delineates the RAS-isoform preference for complex assembly, and uncovers how the SHOC2 scaffold and RAS collectively drive specificity of PP1C for RAF NTpS. Our data indicate that disease-relevant mutations affect complex assembly, reveal the simultaneous requirement of two RAS molecules for RAF activation, and establish rational avenues for discovery of new classes of inhibitors to target this pathway.
Collapse
Affiliation(s)
- Nicholas P D Liau
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Matthew C Johnson
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Saeed Izadi
- Pharmaceutical Development, Genentech, South San Francisco, CA, USA
| | - Luca Gerosa
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Michal Hammel
- Physical Bioscience Division, Lawrence Berkeley National Labs, Berkeley, CA, USA
| | - John M Bruning
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Timothy J Wendorff
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Wilson Phung
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Sarah G Hymowitz
- Department of Structural Biology, Genentech, South San Francisco, CA, USA.
- The Column Group, San Francisco, CA, USA.
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, CA, USA.
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
35
|
Clinical Translation of Combined MAPK and Autophagy Inhibition in RAS Mutant Cancer. Int J Mol Sci 2021; 22:ijms222212402. [PMID: 34830283 PMCID: PMC8623813 DOI: 10.3390/ijms222212402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/23/2023] Open
Abstract
RAS (rat sarcoma virus) mutant cancers remain difficult to treat despite the advances in targeted therapy and immunotherapy. Targeted therapies against the components of mitogen-activated protein kinase (MAPK) pathways, including RAS, RAF, MEK, and ERK, have demonstrated activity in BRAF mutant and, in limited cases, RAS mutant cancer. RAS mutant cancers have been found to activate adaptive resistance mechanisms such as autophagy during MAPK inhibition. Here, we review the recent clinically relevant advances in the development of the MAPK pathway and autophagy inhibitors and focus on their application to RAS mutant cancers. We provide analysis of the preclinical rationale for combining the MAPK pathway and autophagy and highlight the most recent clinical trials that have been launched to capitalize on this potentially synthetic lethal approach to cancer therapy.
Collapse
|
36
|
Kim HJ, Lee HN, Jeong MS, Jang SB. Oncogenic KRAS: Signaling and Drug Resistance. Cancers (Basel) 2021; 13:cancers13225599. [PMID: 34830757 PMCID: PMC8616169 DOI: 10.3390/cancers13225599] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
RAS proteins play a role in many physiological signals transduction processes, including cell growth, division, and survival. The Ras protein has amino acids 188-189 and functions as GTPase. These proteins are switch molecules that cycle between inactive GDP-bound and active GTP-bound by guanine nucleotide exchange factors (GEFs). KRAS is one of the Ras superfamily isoforms (N-RAS, H-RAS, and K-RAS) that frequently mutate in cancer. The mutation of KRAS is essentially performing the transformation in humans. Since most RAS proteins belong to GTPase, mutated and GTP-bound active RAS is found in many cancers. Despite KRAS being an important molecule in mostly human cancer, including pancreatic and breast, numerous efforts in years past have persisted in cancer therapy targeting KRAS mutant. This review summarizes the biological characteristics of these proteins and the recent progress in the exploration of KRAS-targeted anticancer, leading to new insight.
Collapse
Affiliation(s)
- Hyeon Jin Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea; (H.J.K.); (H.N.L.)
| | - Han Na Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea; (H.J.K.); (H.N.L.)
| | - Mi Suk Jeong
- Institute for Plastic Information and Energy Materials and Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (S.B.J.); Fax: +82-51-581-2544 (S.B.J.)
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea; (H.J.K.); (H.N.L.)
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (S.B.J.); Fax: +82-51-581-2544 (S.B.J.)
| |
Collapse
|
37
|
Zhao Y, Murciano-Goroff YR, Xue JY, Ang A, Lucas J, Mai TT, Da Cruz Paula AF, Saiki AY, Mohn D, Achanta P, Sisk AE, Arora KS, Roy RS, Kim D, Li C, Lim LP, Li M, Bahr A, Loomis BR, de Stanchina E, Reis-Filho JS, Weigelt B, Berger M, Riely G, Arbour KC, Lipford JR, Li BT, Lito P. Diverse alterations associated with resistance to KRAS(G12C) inhibition. Nature 2021; 599:679-683. [PMID: 34759319 PMCID: PMC8887821 DOI: 10.1038/s41586-021-04065-2] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/27/2021] [Indexed: 01/29/2023]
Abstract
Inactive state-selective KRAS(G12C) inhibitors1-8 demonstrate a 30-40% response rate and result in approximately 6-month median progression-free survival in patients with lung cancer9. The genetic basis for resistance to these first-in-class mutant GTPase inhibitors remains under investigation. Here we evaluated matched pre-treatment and post-treatment specimens from 43 patients treated with the KRAS(G12C) inhibitor sotorasib. Multiple treatment-emergent alterations were observed across 27 patients, including alterations in KRAS, NRAS, BRAF, EGFR, FGFR2, MYC and other genes. In preclinical patient-derived xenograft and cell line models, resistance to KRAS(G12C) inhibition was associated with low allele frequency hotspot mutations in KRAS(G12V or G13D), NRAS(Q61K or G13R), MRAS(Q71R) and/or BRAF(G596R), mirroring observations in patients. Single-cell sequencing in an isogenic lineage identified secondary RAS and/or BRAF mutations in the same cells as KRAS(G12C), where they bypassed inhibition without affecting target inactivation. Genetic or pharmacological targeting of ERK signalling intermediates enhanced the antiproliferative effect of G12C inhibitor treatment in models with acquired RAS or BRAF mutations. Our study thus suggests a heterogenous pattern of resistance with multiple subclonal events emerging during G12C inhibitor treatment. A subset of patients in our cohort acquired oncogenic KRAS, NRAS or BRAF mutations, and resistance in this setting may be delayed by co-targeting of ERK signalling intermediates. These findings merit broader evaluation in prospective clinical trials.
Collapse
Affiliation(s)
- Yulei Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | | | - Jenny Y Xue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | | | - Jessica Lucas
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Trang T Mai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | | | | | | | | | - Ann E Sisk
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kanika S Arora
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rohan S Roy
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Dongsung Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Chuanchuan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Lee P Lim
- Resolution Bioscience, Kirkland, WA, USA
| | - Mark Li
- Resolution Bioscience, Kirkland, WA, USA
| | - Amber Bahr
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R Loomis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gregory Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn C Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Bob T Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Piro Lito
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
38
|
Vasic V, Jones MSO, Haslinger D, Knaus LS, Schmeisser MJ, Novarino G, Chiocchetti AG. Translating the Role of mTOR- and RAS-Associated Signalopathies in Autism Spectrum Disorder: Models, Mechanisms and Treatment. Genes (Basel) 2021; 12:genes12111746. [PMID: 34828352 PMCID: PMC8624393 DOI: 10.3390/genes12111746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Mutations affecting mTOR or RAS signaling underlie defined syndromes (the so-called mTORopathies and RASopathies) with high risk for Autism Spectrum Disorder (ASD). These syndromes show a broad variety of somatic phenotypes including cancers, skin abnormalities, heart disease and facial dysmorphisms. Less well studied are the neuropsychiatric symptoms such as ASD. Here, we assess the relevance of these signalopathies in ASD reviewing genetic, human cell model, rodent studies and clinical trials. We conclude that signalopathies have an increased liability for ASD and that, in particular, ASD individuals with dysmorphic features and intellectual disability (ID) have a higher chance for disruptive mutations in RAS- and mTOR-related genes. Studies on rodent and human cell models confirm aberrant neuronal development as the underlying pathology. Human studies further suggest that multiple hits are necessary to induce the respective phenotypes. Recent clinical trials do only report improvements for comorbid conditions such as epilepsy or cancer but not for behavioral aspects. Animal models show that treatment during early development can rescue behavioral phenotypes. Taken together, we suggest investigating the differential roles of mTOR and RAS signaling in both human and rodent models, and to test drug treatment both during and after neuronal development in the available model systems.
Collapse
Affiliation(s)
- Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
| | - Mattson S. O. Jones
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Denise Haslinger
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Lisa S. Knaus
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Andreas G. Chiocchetti
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-80658
| |
Collapse
|
39
|
Li HY, Qi WL, Wang YX, Meng LH. Covalent inhibitor targets KRasG12C: A new paradigm for drugging the undruggable and challenges ahead. Genes Dis 2021; 10:403-414. [DOI: 10.1016/j.gendis.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
|
40
|
Matos B, Howl J, Jerónimo C, Fardilha M. Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: A promising approach in cancer treatment. Drug Discov Today 2021; 26:2680-2698. [PMID: 34390863 DOI: 10.1016/j.drudis.2021.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
Cancer is the second leading cause of death worldwide. Despite the availability of numerous therapeutic options, tumor heterogeneity and chemoresistance have limited the success of these treatments, and the development of effective anticancer therapies remains a major focus in oncology research. The serine/threonine-protein phosphatase 1 (PP1) and its complexes have been recognized as potential drug targets. Research on the modulation of PP1 complexes is currently at an early stage, but has immense potential. Chemically diverse compounds have been developed to disrupt or stabilize different PP1 complexes in various cancer types, with the objective of inhibiting disease progression. Beneficial results obtained in vitro now require further pre-clinical and clinical validation. In conclusion, the modulation of PP1 complexes seems to be a promising, albeit challenging, therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
41
|
Pudewell S, Ahmadian MR. Spotlight on Accessory Proteins: RTK-RAS-MAPK Modulators as New Therapeutic Targets. Biomolecules 2021; 11:biom11060895. [PMID: 34208655 PMCID: PMC8234298 DOI: 10.3390/biom11060895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
The RTK-RAS-MAPK axis is one of the most extensively studied signaling cascades and is related to the development of both cancers and RASopathies. In the last 30 years, many ideas and approaches have emerged for directly targeting constituent members of this cascade, predominantly in the context of cancer treatment. These approaches are still insufficient due to undesirable drug toxicity, resistance, and low efficacy. Significant advances have been made in understanding the spatiotemporal features of the constituent members of the RTK-RAS-MAPK axis, which are linked and modulated by many accessory proteins. Given that the majority of such modulators are now emerging as attractive therapeutic targets, a very small number of accessory inhibitors have yet to be discovered.
Collapse
|
42
|
Pudewell S, Wittich C, Kazemein Jasemi NS, Bazgir F, Ahmadian MR. Accessory proteins of the RAS-MAPK pathway: moving from the side line to the front line. Commun Biol 2021; 4:696. [PMID: 34103645 PMCID: PMC8187363 DOI: 10.1038/s42003-021-02149-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Health and disease are directly related to the RTK-RAS-MAPK signalling cascade. After more than three decades of intensive research, understanding its spatiotemporal features is afflicted with major conceptual shortcomings. Here we consider how the compilation of a vast array of accessory proteins may resolve some parts of the puzzles in this field, as they safeguard the strength, efficiency and specificity of signal transduction. Targeting such modulators, rather than the constituent components of the RTK-RAS-MAPK signalling cascade may attenuate rather than inhibit disease-relevant signalling pathways.
Collapse
Affiliation(s)
- Silke Pudewell
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Christoph Wittich
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Neda S. Kazemein Jasemi
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
43
|
A Leucine-Rich Repeat Protein Provides a SHOC2 the RAS Circuit: a Structure-Function Perspective. Mol Cell Biol 2021; 41:MCB.00627-20. [PMID: 33526449 DOI: 10.1128/mcb.00627-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SHOC2 is a prototypical leucine-rich repeat protein that promotes downstream receptor tyrosine kinase (RTK)/RAS signaling and plays important roles in several cellular and developmental processes. Gain-of-function germ line mutations of SHOC2 drive the RASopathy Noonan-like syndrome, and SHOC2 mediates adaptive resistance to mitogen-activated protein kinase (MAPK) inhibitors. Similar to many scaffolding proteins, SHOC2 facilitates signal transduction by enabling proximal protein interactions and regulating the subcellular localization of its binding partners. Here, we review the structural features of SHOC2 that mediate its known functions, discuss these elements in the context of various binding partners and signaling pathways, and highlight areas of SHOC2 biology where a consensus view has not yet emerged.
Collapse
|
44
|
Cho E, Lou HJ, Kuruvilla L, Calderwood DA, Turk BE. PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK. Cell Rep 2021; 34:108928. [PMID: 33789117 PMCID: PMC8068315 DOI: 10.1016/j.celrep.2021.108928] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/26/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Flux through the RAF-MEK-ERK protein kinase cascade is shaped by phosphatases acting on the core components of the pathway. Despite being an established drug target and a hub for crosstalk regulation, little is known about dephosphorylation of MEK, the central kinase within the cascade. Here, we identify PPP6C, a phosphatase frequently mutated or downregulated in melanoma, as a major MEK phosphatase in cells exhibiting oncogenic ERK pathway activation. Recruitment of MEK to PPP6C occurs through an interaction with its associated regulatory subunits. Loss of PPP6C causes hyperphosphorylation of MEK at activating and crosstalk phosphorylation sites, promoting signaling through the ERK pathway and decreasing sensitivity to MEK inhibitors. Recurrent melanoma-associated PPP6C mutations cause MEK hyperphosphorylation, suggesting that they promote disease at least in part by activating the core oncogenic pathway driving melanoma. Collectively, our studies identify a key negative regulator of ERK signaling that may influence susceptibility to targeted cancer therapies. Through an shRNA screen, Cho et al. identify PPP6C as a phosphatase that inactivates the kinase MEK, sensitizing tumor cells to clinical MEK inhibitors. This study suggests that cancer-associated loss-of-function PPP6C mutations prevalent in melanoma serve to activate the core oncogenic RAF-MEK-ERK pathway that drives the disease.
Collapse
Affiliation(s)
- Eunice Cho
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leena Kuruvilla
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
45
|
Healy FM, Prior IA, MacEwan DJ. The importance of Ras in drug resistance in cancer. Br J Pharmacol 2021; 179:2844-2867. [PMID: 33634485 DOI: 10.1111/bph.15420] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
In this review, we analyse the impact of oncogenic Ras mutations in mediating cancer drug resistance and the progress made in the abrogation of this resistance, through pharmacological targeting. At a physiological level, Ras is implicated in many cellular proliferation and survival pathways. However, mutations within this small GTPase can be responsible for the initiation of cancer, therapeutic resistance and failure, and ultimately disease relapse. Often termed "undruggable," Ras is notoriously difficult to target directly, due to its structure and intrinsic activity. Thus, Ras-mediated drug resistance remains a considerable pharmacological problem. However, with advances in both analytical techniques and novel drug classes, the therapeutic landscape against Ras is changing. Allele-specific, direct Ras-targeting agents have reached clinical trials for the first time, indicating there may, at last, be hope of targeting such an elusive but significant protein for better more effective cancer therapy.
Collapse
Affiliation(s)
- Fiona M Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| | - Ian A Prior
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| | - David J MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| |
Collapse
|
46
|
Jang H, Stevens P, Gao T, Galperin E. The leucine-rich repeat signaling scaffolds Shoc2 and Erbin: cellular mechanism and role in disease. FEBS J 2021; 288:721-739. [PMID: 32558243 PMCID: PMC7958993 DOI: 10.1111/febs.15450] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Leucine-rich repeat-containing proteins (LRR proteins) are involved in supporting a large number of cellular functions. In this review, we summarize recent advancements in understanding functions of the LRR proteins as signaling scaffolds. In particular, we explore what we have learned about the mechanisms of action of the LRR scaffolds Shoc2 and Erbin and their roles in normal development and disease. We discuss Shoc2 and Erbin in the context of their multiple known interacting partners in various cellular processes and summarize often unexpected functions of these proteins through analysis of their roles in human pathologies. We also review these LRR scaffold proteins as promising therapeutic targets and biomarkers with potential application across various pathologies.
Collapse
Affiliation(s)
- HyeIn Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Payton Stevens
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
47
|
Carvalho AS, Moraes MCS, Hyun Na C, Fierro-Monti I, Henriques A, Zahedi S, Bodo C, Tranfield EM, Sousa AL, Farinho A, Rodrigues LV, Pinto P, Bárbara C, Mota L, de Abreu TT, Semedo J, Seixas S, Kumar P, Costa-Silva B, Pandey A, Matthiesen R. Is the Proteome of Bronchoalveolar Lavage Extracellular Vesicles a Marker of Advanced Lung Cancer? Cancers (Basel) 2020; 12:cancers12113450. [PMID: 33233545 PMCID: PMC7699733 DOI: 10.3390/cancers12113450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Bronchoalveolar lavage is routinely collected during bronchoscopy for cytology analysis in the diagnostic of lung cancer. Due to low sensitivity of this method, early-stage cancers are undetected, lowering the treatment success. In this study, we analyzed extracellular vesicles isolated from bronchoalveolar lavage of lung cancer suspects by mass spectrometry-based proteomics. The protein composition of bronchoalveolar lavage extracellular vesicles of late-stage cancer showed a higher proteome complexity associated with mortality within the two year follow-up period. We identified a potential therapeutic target DNMT3B complex which was significantly expressed in bronchoalveolar lavage extracellular vesicles as well as in tumor tissue. Bronchoalveolar lavage extracellular vesicles proteome analysis of immune markers indicates the presence of markers of innate immune and fibroblast cells. Abstract Acellular bronchoalveolar lavage (BAL) proteomics can partially separate lung cancer from non-lung cancer patients based on principal component analysis and multivariate analysis. Furthermore, the variance in the proteomics data sets is correlated mainly with lung cancer status and, to a lesser extent, smoking status and gender. Despite these advances BAL small and large extracellular vehicles (EVs) proteomes reveal aberrant protein expression in paracrine signaling mechanisms in cancer initiation and progression. We consequently present a case-control study of 24 bronchoalveolar lavage extracellular vesicle samples which were analyzed by state-of-the-art liquid chromatography-mass spectrometry (LC-MS). We obtained evidence that BAL EVs proteome complexity correlated with lung cancer stage 4 and mortality within two years´ follow-up (p value = 0.006). The potential therapeutic target DNMT3B complex is significantly up-regulated in tumor tissue and BAL EVs. The computational analysis of the immune and fibroblast cell markers in EVs suggests that patients who deceased within the follow-up period display higher marker expression indicative of innate immune and fibroblast cells (four out of five cases). This study provides insights into the proteome content of BAL EVs and their correlation to clinical outcomes.
Collapse
Affiliation(s)
- Ana Sofia Carvalho
- Computational and Experimental Biology Group, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal; (I.F.-M.); (A.H.); (S.Z.)
- Correspondence: (A.S.C.); (R.M.)
| | - Maria Carolina Strano Moraes
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Doca de Pedroucos, 1400-038 Lisbon, Portugal; (M.C.S.M.); (C.B.); (B.C.-S.)
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Ivo Fierro-Monti
- Computational and Experimental Biology Group, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal; (I.F.-M.); (A.H.); (S.Z.)
| | - Andreia Henriques
- Computational and Experimental Biology Group, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal; (I.F.-M.); (A.H.); (S.Z.)
| | - Sara Zahedi
- Computational and Experimental Biology Group, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal; (I.F.-M.); (A.H.); (S.Z.)
| | - Cristian Bodo
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Doca de Pedroucos, 1400-038 Lisbon, Portugal; (M.C.S.M.); (C.B.); (B.C.-S.)
| | - Erin M Tranfield
- Electron Microscopy Facility, Instituto Gulbenkian de Ciência—Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; (E.M.T.); (A.L.S.)
| | - Ana Laura Sousa
- Electron Microscopy Facility, Instituto Gulbenkian de Ciência—Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; (E.M.T.); (A.L.S.)
| | - Ana Farinho
- iNOVA4Health—Advancing Precision Medicine, CEDOC—Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal;
| | - Luís Vaz Rodrigues
- Department of Pneumology, Unidade Local de Saúde da Guarda (USLGuarda), 6300-659 Guarda, Portugal;
| | - Paula Pinto
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal; (P.P.); (L.M.); (T.T.d.A.); (J.S.)
| | - Cristina Bárbara
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Leonor Mota
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal; (P.P.); (L.M.); (T.T.d.A.); (J.S.)
| | - Tiago Tavares de Abreu
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal; (P.P.); (L.M.); (T.T.d.A.); (J.S.)
| | - Júlio Semedo
- Unidade de Técnicas Invasivas Pneumológicas, Pneumologia II, Hospital Pulido Valente, Centro Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal; (P.P.); (L.M.); (T.T.d.A.); (J.S.)
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal;
| | - Prashant Kumar
- Institute of Bioinformatics, Discoverer building, ITPL, Bangalore 560066, India; (P.K.); (A.P.)
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, Doca de Pedroucos, 1400-038 Lisbon, Portugal; (M.C.S.M.); (C.B.); (B.C.-S.)
| | - Akhilesh Pandey
- Institute of Bioinformatics, Discoverer building, ITPL, Bangalore 560066, India; (P.K.); (A.P.)
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rune Matthiesen
- Computational and Experimental Biology Group, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Campo dos Martires da Patria, 130, 1169-056 Lisboa, Portugal; (I.F.-M.); (A.H.); (S.Z.)
- Correspondence: (A.S.C.); (R.M.)
| |
Collapse
|
48
|
Terai H, Hamamoto J, Emoto K, Masuda T, Manabe T, Kuronuma S, Kobayashi K, Masuzawa K, Ikemura S, Nakayama S, Kawada I, Suzuki Y, Takeuchi O, Suzuki Y, Ohtsuki S, Yasuda H, Soejima K, Fukunaga K. SHOC2 Is a Critical Modulator of Sensitivity to EGFR-TKIs in Non-Small Cell Lung Cancer Cells. Mol Cancer Res 2020; 19:317-328. [PMID: 33106373 DOI: 10.1158/1541-7786.mcr-20-0664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
EGFR mutation-positive patients with non-small cell lung cancer (NSCLC) respond well to treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKI); however, treatment with EGFR-TKIs is not curative, owing to the presence of residual cancer cells with intrinsic or acquired resistance to this class of drugs. Additional treatment targets that may enhance the efficacy of EGFR-TKIs remain elusive. Using a CRISPR/Cas9-based screen, we identified the leucine-rich repeat scaffold protein SHOC2 as a key modulator of sensitivity to EGFR-TKI treatment. On the basis of in vitro assays, we demonstrated that SHOC2 expression levels strongly correlate with the sensitivity to EGFR-TKIs and that SHOC2 affects the sensitivity to EGFR-TKIs in NSCLC cells via SHOC2/MRAS/PP1c and SHOC2/SCRIB signaling. The potential SHOC2 inhibitor celastrol phenocopied SHOC2 depletion. In addition, we confirmed that SHOC2 expression levels were important for the sensitivity to EGFR-TKIs in vivo. Furthermore, IHC showed the accumulation of cancer cells that express high levels of SHOC2 in lung cancer tissues obtained from patients with NSCLC who experienced acquired resistance to EGFR-TKIs. These data indicate that SHOC2 may be a therapeutic target for patients with NSCLC or a biomarker to predict sensitivity to EGFR-TKI therapy in EGFR mutation-positive patients with NSCLC. Our findings may help improve treatment strategies for patients with NSCLC harboring EGFR mutations. IMPLICATIONS: This study showed that SHOC2 works as a modulator of sensitivity to EGFR-TKIs and the expression levels of SHOC2 can be used as a biomarker for sensitivity to EGFR-TKIs.
Collapse
Affiliation(s)
- Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan. .,Division of Bioregulatory Medicine, Department of Pharmacology, Kitasato University, Tokyo, Japan.,Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Division of Bioregulatory Medicine, Department of Pharmacology, Kitasato University, Tokyo, Japan
| | - Katsura Emoto
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadashi Manabe
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Kuronuma
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Keigo Kobayashi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keita Masuzawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Sohei Nakayama
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Yukio Suzuki
- Division of Bioregulatory Medicine, Department of Pharmacology, Kitasato University, Tokyo, Japan.,Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Identification of NEO1 as a prognostic biomarker and its effects on the progression of colorectal cancer. Cancer Cell Int 2020; 20:510. [PMID: 33088218 PMCID: PMC7568410 DOI: 10.1186/s12935-020-01604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Background Due to the high morbidity and poor clinical outcomes, early predictive and prognostic biomarker identification is desiderated in colorectal cancer (CRC). As a homologue of the Deleted in Colorectal Cancer (DCC) gene, the role of Neogenin-1 (NEO1) in CRC remained unveiled. This study was designed to probe into the effects and potential function of NEO1 in CRC. Methods Online databases, Gene Set Enrichment Analysis (GSEA), quantitative real-time PCR and western blotting were used to evaluate NEO1 expression in colorectal cancer tissues. Survival analysis was performed to predict the prognosis of CRC patients based on NEO1 expression level. Then, cell proliferation was detected by colony formation and Cell Counting Kit 8 (CCK-8) assays. CRC cell migration and invasion were examined by transwell assays. Finally, we utilized the Gene Set Variation Analysis (GSVA) and GSEA to dig the potential mechanisms of NEO1 in CRC. Results Oncomine database and The Cancer Genome Atlas (TCGA) database showed that NEO1 was down-regulated in CRC. Further results validated that NEO1 mRNA and protein expression were both significantly lower in CRC tumor tissues than in the adjacent tissues in our clinical samples. NEO1 expression was decreased with the progression of CRC. Survival and other clinical characteristic analyses exhibited that low NEO1 expression was related with poor prognosis. A gain-of-function study showed that overexpression of NEO1 restrained proliferation, migration and invasion of CRC cells while a loss-of-function showed the opposite effects. Finally, functional pathway enrichment analysis revealed that NEO1 low expression samples were enriched in inflammation-related signaling pathways, EMT and angiogenesis. Conclusion A tumor suppressor gene NEO1 was identified and verified to be correlated with the prognosis and progression of CRC, which could serve as a prognostic biomarker for CRC patients.
Collapse
|
50
|
Sharma S, Dincer C, Weidemüller P, Wright GJ, Petsalaki E. CEN-tools: an integrative platform to identify the contexts of essential genes. Mol Syst Biol 2020; 16:e9698. [PMID: 33073517 PMCID: PMC7569414 DOI: 10.15252/msb.20209698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
An emerging theme from large-scale genetic screens that identify genes essential for cell fitness is that essentiality of a given gene is highly context-specific. Identification of such contexts could be the key to defining gene function and also to develop novel therapeutic interventions. Here, we present Context-specific Essentiality Network-tools (CEN-tools), a website and python package, in which users can interrogate the essentiality of a gene from large-scale genome-scale CRISPR screens in a number of biological contexts including tissue of origin, mutation profiles, expression levels and drug responses. We show that CEN-tools is suitable for the systematic identification of genetic dependencies and for more targeted queries. The associations between genes and a given context are represented as dependency networks (CENs), and we demonstrate the utility of these networks in elucidating novel gene functions. In addition, we integrate the dependency networks with existing protein-protein interaction networks to reveal context-dependent essential cellular pathways in cancer cells. Together, we demonstrate the applicability of CEN-tools in aiding the current efforts to define the human cellular dependency map.
Collapse
Affiliation(s)
- Sumana Sharma
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
- Cell Surface Signalling LaboratoryWellcome Sanger InstituteCambridgeUK
- Present address:
MRC Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Cansu Dincer
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
| | - Paula Weidemüller
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
| | - Gavin J Wright
- Cell Surface Signalling LaboratoryWellcome Sanger InstituteCambridgeUK
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
| |
Collapse
|