1
|
Ma Z, Pan S, Yang Y, Ren H, Yin S, Chen Q, An Z, Zhao X, Xu Z. Lipid droplets: Emerging therapeutic targets for age-related metabolic diseases. Ageing Res Rev 2025; 108:102758. [PMID: 40300696 DOI: 10.1016/j.arr.2025.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
Lipids metabolism is crucial in regulating aging and metabolic diseases. Lipid droplets (LDs) are dynamic, complex organelles responsible for the storage and release of neutral lipids, essential for maintaining lipid homeostasis and energy metabolism. Aging accelerates the accumulation of LDs, functional deterioration, and metabolic disorders, thereby inducing age-related metabolic diseases (ARMDs). This review examines published datasets on the association between LDs and ARMDs, focusing on the structure and function of LDs, their interactions with other organelles, and associated proteins. Furthermore, we explore the potential mechanisms by which LDs mediate the onset of ARMDs, including Alzheimer's disease (AD), sarcopenia, metabolic cardiomyopathy, non-alcoholic fatty liver disease (NAFLD), and cancer. Lastly, we discuss intervention strategies aimed at targeting LDs to improve outcomes in ARMDs, including exercise, dietary, and pharmacological interventions.
Collapse
Affiliation(s)
- Zheying Ma
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Shou Pan
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Yaming Yang
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Huiqian Ren
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Sikun Yin
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Qianyu Chen
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zhenxian An
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xiaoqin Zhao
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- School of Physical Education and Health Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
2
|
Behera P, Mishra M. Lipid Droplet in Lipodystrophy and Neurodegeneration. Biol Cell 2025; 117:e70009. [PMID: 40249069 DOI: 10.1111/boc.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 02/22/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Lipid droplets are ubiquitous yet distinct intracellular organelles that are gaining attention for their uses outside of energy storage. Their formation, role in the physiological function, and the onset of the pathology have been gaining attention recently. Their structure, synthesis, and turnover play dynamic roles in both lipodystrophy and neurodegeneration. Factors like development, aging, inflammation, and cellular stress regulate the synthesis of lipid droplets. The biogenesis of lipid droplets has a critical role in reducing cellular stress. Lipid droplets, in response to stress, sequester hazardous lipids into their neutral lipid core, preserving energy and redox balance while guarding against lipotoxicity. Thus, the maintenance of lipid droplet homeostasis in adipose tissue, CNS, and other body tissues is essential for maintaining organismal health. Insulin resistance, hypertriglyceridemia, and lipid droplet accumulation are the severe metabolic abnormalities that accompany lipodystrophy-related fat deficit. Accumulation of lipid droplets is detected in almost all neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Hereditary spastic paraplegia. Hence, the regulation of lipid droplets can be used as an alternative approach to the treatment of several diseases. The current review summarizes the structure, composition, biogenesis, and turnover of lipid droplets, with an emphasis on the factors responsible for the accumulation and importance of lipid droplets in lipodystrophy and neurodegenerative disease.
Collapse
Affiliation(s)
- Priyatama Behera
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| |
Collapse
|
3
|
Mo JH, Zhai C, Jung K, Li Y, Yan Y, Dong MQ, Mak HY. A distant TANGO1 family member promotes vitellogenin export from the ER in C. elegans. iScience 2025; 28:111860. [PMID: 39981517 PMCID: PMC11841073 DOI: 10.1016/j.isci.2025.111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/14/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Vitellogenin is thought to share a common ancestor with human apolipoprotein B (ApoB) for systemic lipid transport. In Caenorhabditis elegans, although a general route for inter-tissue vitellogenin transport has been described, the full mechanism that underlies its intracellular trafficking within the intestine remains obscure. In humans, the TANGO1 family of proteins generates membrane carriers to accommodate bulky ApoB-containing lipoprotein particles for their endoplasmic reticulum (ER) export. TANGO1 orthologs have hitherto been discovered in most metazoans, except nematodes. Here, we report the C. elegans TNGL-1 as a mediator of vitellogenin export from the ER. Depletion of TNGL-1 causes the retention of vitellogenin in the ER lumen. Furthermore, the TNGL-1 C-terminal unstructured domain and its luminal globular domain are required for its proper localization and cargo engagement, respectively. Our findings support TNGL-1 as a distant TANGO1 family member and point to the universal requirement of TANGO1-based mechanisms for the secretion of specific metazoan proteins.
Collapse
Affiliation(s)
- Jimmy H. Mo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chao Zhai
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Kwangsek Jung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yan Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yonghong Yan
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
4
|
Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W, Shen Y, Wang B, Li J, Song J. Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J Neuroinflammation 2025; 22:7. [PMID: 39806503 PMCID: PMC11730833 DOI: 10.1186/s12974-025-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders. Additionally, we also emphasize the paradoxical role of LDs in post-cerebral ischemia inflammation and explore potential underlying mechanisms, aiming to identify novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Longxiao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yunfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhongbo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liangchao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyang Yan
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenkai Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bolong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
5
|
Reichert I, Lee JY, Weber L, Fuh MM, Schlaeger L, Rößler S, Kinast V, Schlienkamp S, Conradi J, Vondran FWR, Pfaender S, Scaturro P, Steinmann E, Bartenschlager R, Pietschmann T, Heeren J, Lauber C, Vieyres G. The triglyceride-synthesizing enzyme diacylglycerol acyltransferase 2 modulates the formation of the hepatitis C virus replication organelle. PLoS Pathog 2024; 20:e1012509. [PMID: 39241103 PMCID: PMC11410266 DOI: 10.1371/journal.ppat.1012509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/18/2024] [Accepted: 08/15/2024] [Indexed: 09/08/2024] Open
Abstract
The replication organelle of hepatitis C virus (HCV), called membranous web, is derived from the endoplasmic reticulum (ER) and mainly comprises double membrane vesicles (DMVs) that concentrate the viral replication complexes. It also tightly associates with lipid droplets (LDs), which are essential for virion morphogenesis. In particular acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a rate-limiting enzyme in triglyceride synthesis, promotes early steps of virus assembly. The close proximity between ER membranes, DMVs and LDs therefore permits the efficient coordination of the HCV replication cycle. Here, we demonstrate that exaggerated LD accumulation due to the excessive expression of the DGAT1 isozyme, DGAT2, dramatically impairs the formation of the HCV membranous web. This effect depended on the enzymatic activity and ER association of DGAT2, whereas the mere LD accumulation was not sufficient to hamper HCV RNA replication. Our lipidomics data indicate that both HCV infection and DGAT2 overexpression induced membrane lipid biogenesis and markedly increased phospholipids with long chain polyunsaturated fatty acids, suggesting a dual use of these lipids and their possible competition for LD and DMV biogenesis. On the other hand, overexpression of DGAT2 depleted specific phospholipids, particularly oleyl fatty acyl chain-containing phosphatidylcholines, which, in contrast, are increased in HCV-infected cells and likely essential for viral infection. In conclusion, our results indicate that lipid exchanges occurring during LD biogenesis regulate the composition of intracellular membranes and thereby affect the formation of the HCV replication organelle. The potent antiviral effect observed in our DGAT2 overexpression system unveils lipid flux that may be relevant in the context of steatohepatitis, a hallmark of HCV infection, but also in physiological conditions, locally in specific subdomains of the ER membrane. Thus, LD formation mediated by DGAT1 and DGAT2 might participate in the spatial compartmentalization of HCV replication and assembly factories within the membranous web.
Collapse
Affiliation(s)
| | - Ji-Young Lee
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Laura Weber
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Sarah Schlienkamp
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Janina Conradi
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Stephanie Pfaender
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | | | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Gabrielle Vieyres
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
6
|
Li C, Sun XN, Funcke JB, Vanharanta L, Joffin N, Li Y, Prasanna X, Paredes M, Joung C, Gordillo R, Vörös C, Kulig W, Straub L, Chen S, Velasco J, Cobb A, Padula DL, Wang MY, Onodera T, Varlamov O, Li Y, Liu C, Nawrocki AR, Zhao S, Oh DY, Wang ZV, Goodman JM, Wynn RM, Vattulainen I, Han Y, Ikonen E, Scherer PE. Adipogenin Dictates Adipose Tissue Expansion by Facilitating the Assembly of a Dodecameric Seipin Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605195. [PMID: 39211078 PMCID: PMC11360994 DOI: 10.1101/2024.07.25.605195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Adipogenin (Adig) is an evolutionarily conserved microprotein and is highly expressed in adipose tissues and testis. Here, we identify Adig as a critical regulator for lipid droplet formation in adipocytes. We determine that Adig interacts directly with seipin, leading to the formation of a rigid complex. We solve the structure of the seipin/Adig complex by Cryo-EM at 2.98Å overall resolution. Surprisingly, seipin can form two unique oligomers, undecamers and dodecamers. Adig selectively binds to the dodecameric seipin complex. We further find that Adig promotes seipin assembly by stabilizing and bridging adjacent seipin subunits. Functionally, Adig plays a key role in generating lipid droplets in adipocytes. In mice, inducible overexpression of Adig in adipocytes substantially increases fat mass, with enlarged lipid droplets. It also elevates thermogenesis during cold exposure. In contrast, inducible adipocyte-specific Adig knockout mice manifest aberrant lipid droplet formation in brown adipose tissues and impaired cold tolerance.
Collapse
|
7
|
Bai X, Smith HE, Golden A. Identification of genetic suppressors for a BSCL2 lipodystrophy pathogenic variant in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050524. [PMID: 38454882 PMCID: PMC11051982 DOI: 10.1242/dmm.050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Seipin (BSCL2), a conserved endoplasmic reticulum protein, plays a critical role in lipid droplet (LD) biogenesis and in regulating LD morphology, pathogenic variants of which are associated with Berardinelli-Seip congenital generalized lipodystrophy type 2 (BSCL2). To model BSCL2 disease, we generated an orthologous BSCL2 variant, seip-1(A185P), in Caenorhabditis elegans. In this study, we conducted an unbiased chemical mutagenesis screen to identify genetic suppressors that restore embryonic viability in the seip-1(A185P) mutant background. A total of five suppressor lines were isolated and recovered from the screen. The defective phenotypes of seip-1(A185P), including embryonic lethality and impaired eggshell formation, were significantly suppressed in each suppressor line. Two of the five suppressor lines also alleviated the enlarged LDs in the oocytes. We then mapped a suppressor candidate gene, lmbr-1, which is an ortholog of human limb development membrane protein 1 (LMBR1). The CRISPR/Cas9 edited lmbr-1 suppressor alleles, lmbr-1(S647F) and lmbr-1(P314L), both significantly suppressed embryonic lethality and defective eggshell formation in the seip-1(A185P) background. The newly identified suppressor lines offer valuable insights into potential genetic interactors and pathways that may regulate seipin in the lipodystrophy model.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harold E. Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy Golden
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Demirel-Yalciner T, Cetinkaya B, Sozen E, Ozer NK. Impact of Seipin in cholesterol mediated lipid droplet maturation; status of endoplasmic reticulum stress and lipophagy. Mech Ageing Dev 2024; 219:111933. [PMID: 38588730 DOI: 10.1016/j.mad.2024.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) defined by the increased number of lipid droplets (LDs) in hepatocytes, have risen continuously in parallel with the obesity. LDs and related proteins are known to affect cellular metabolism and signaling. Seipin, one of the most important LD-related proteins, plays a critical role in LD biogenesis. Although the role of adipose tissue-specific Seipin silencing is known, hepatocyte-specific silencing upon cholesterol-mediated lipid accumulation has not been investigated. In our study, we investigated the effect of Seipin on endoplasmic reticulum (ER) stress and lipophagy in cholesterol accumulated mouse hepatocyte cells. In this direction, cholesterol accumulation was induced by cholesterol-containing liposome, while Seipin mRNA and protein levels were reduced by siRNA. Our findings show that cholesterol containing liposome administration in hepatocytes increases both Seipin protein and number of large LDs. However Seipin silencing reduced the increase of cholesterol mediated large LDs and Glucose-regulated protein 78 (GRP78) mRNA. Additionally, lysosome-LD colocalization increased only in cells treated with cholesterol containing liposome, while the siRNA against Seipin did not lead any significant difference. According to our findings, we hypothesize that Seipin silencing in hepatocytes reduced cholesterol mediated LD maturation as well as GRP78 levels, but not lipophagy.
Collapse
Affiliation(s)
- Tugce Demirel-Yalciner
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul 34662, Turkey; Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey; Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul 34662, Turkey
| | - Bengu Cetinkaya
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul 34854, Turkey; Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Maltepe, Istanbul 34854, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul 34662, Turkey; Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul 34662, Turkey.
| |
Collapse
|
9
|
Angara RK, Sladek MF, Gilk SD. ER-LD Membrane Contact Sites: A Budding Area in the Pathogen Survival Strategy. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241304196. [PMID: 39697586 PMCID: PMC11653285 DOI: 10.1177/25152564241304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
The endoplasmic reticulum (ER) and lipid droplets (LDs) are essential organelles involved in lipid synthesis, storage, and transport. Physical membrane contacts between the ER and LDs facilitate lipid and protein exchange and thus play a critical role in regulating cellular lipid homeostasis. Recent research has revealed that ER-LD membrane contact sites are targeted by pathogens seeking to exploit host lipid metabolic processes. Both viruses and bacteria manipulate ER-LD membrane contact sites to enhance their replication and survival within the host. This review discusses the research advancements elucidating the mechanisms by which pathogens manipulate the ER-LD contacts through protein molecular mimicry and host cell protein manipulation, thereby hijacking host lipid metabolic processes to facilitate pathogenesis. Understanding the crosstalk between ER and LDs during infection provides deeper insight into host lipid regulation and uncovers potential therapeutic targets for treating infectious diseases.
Collapse
Affiliation(s)
- Rajendra Kumar Angara
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Margaret F. Sladek
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Stacey D. Gilk
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
10
|
Kumari RM, Khatri A, Chaudhary R, Choudhary V. Concept of lipid droplet biogenesis. Eur J Cell Biol 2023; 102:151362. [PMID: 37742390 PMCID: PMC7615795 DOI: 10.1016/j.ejcb.2023.151362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Lipid droplets (LD) are functionally conserved fat storage organelles found in all cell types. LDs have a unique structure comprising of a hydrophobic core of neutral lipids (fat), triacylglycerol (TAG) and cholesterol esters (CE) surrounded by a phospholipid monolayer. LD surface is decorated by a multitude of proteins and enzymes rendering this compartment functional. Accumulating evidence suggests that LDs originate from discrete ER-subdomains, demarcated by the lipodystrophy protein seipin, however, the mechanisms of which are not well understood. LD biogenesis factors together with biophysical properties of the ER membrane orchestrate spatiotemporal regulation of LD nucleation and growth at specific ER subdomains in response to metabolic cues. Defects in LD formation manifests in several human pathologies, including obesity, lipodystrophy, ectopic fat accumulation, and insulin resistance. Here, we review recent advances in understanding the molecular events during initial stages of eukaryotic LD assembly and discuss the critical role of factors that ensure fidelity of this process.
Collapse
Affiliation(s)
- R Mankamna Kumari
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Amit Khatri
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Ritika Chaudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Vineet Choudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
11
|
Jovičić EJ, Janež AP, Eichmann TO, Koren Š, Brglez V, Jordan PM, Gerstmeier J, Lainšček D, Golob-Urbanc A, Jerala R, Lambeau G, Werz O, Zimmermann R, Petan T. Lipid droplets control mitogenic lipid mediator production in human cancer cells. Mol Metab 2023; 76:101791. [PMID: 37586657 PMCID: PMC10470291 DOI: 10.1016/j.molmet.2023.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
OBJECTIVES Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids and precursors of oxygenated lipid mediators with diverse functions, including the control of cell growth, inflammation and tumourigenesis. However, the molecular pathways that control the availability of PUFAs for lipid mediator production are not well understood. Here, we investigated the crosstalk of three pathways in the provision of PUFAs for lipid mediator production: (i) secreted group X phospholipase A2 (GX sPLA2) and (ii) cytosolic group IVA PLA2 (cPLA2α), both mobilizing PUFAs from membrane phospholipids, and (iii) adipose triglyceride lipase (ATGL), which mediates the degradation of triacylglycerols (TAGs) stored in cytosolic lipid droplets (LDs). METHODS We combined lipidomic and functional analyses in cancer cell line models to dissect the trafficking of PUFAs between membrane phospholipids and LDs and determine the role of these pathways in lipid mediator production, cancer cell proliferation and tumour growth in vivo. RESULTS We demonstrate that lipid mediator production strongly depends on TAG turnover. GX sPLA2 directs ω-3 and ω-6 PUFAs from membrane phospholipids into TAG stores, whereas ATGL is required for their entry into lipid mediator biosynthetic pathways. ATGL controls the release of PUFAs from LD stores and their conversion into cyclooxygenase- and lipoxygenase-derived lipid mediators under conditions of nutrient sufficiency and during serum starvation. In starving cells, ATGL also promotes the incorporation of LD-derived PUFAs into phospholipids, representing substrates for cPLA2α. Furthermore, we demonstrate that the built-up of TAG stores by acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is required for the production of mitogenic lipid signals that promote cancer cell proliferation and tumour growth. CONCLUSION This study shifts the paradigm of PLA2-driven lipid mediator signalling and identifies LDs as central lipid mediator production hubs. Targeting DGAT1-mediated LD biogenesis is a promising strategy to restrict lipid mediator production and tumour growth.
Collapse
Affiliation(s)
- Eva Jarc Jovičić
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Anja Pucer Janež
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Špela Koren
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Vesna Brglez
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST, Centre of Excellence, Ljubljana, Slovenia
| | - Anja Golob-Urbanc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST, Centre of Excellence, Ljubljana, Slovenia
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, University of Graz, Graz, Austria
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Bai X, Smith HE, Golden A. Identification of Genetic Suppressors for a Berardinelli-Seip Congenital Generalized Lipodystrophy Type 2 (BSCL2) Pathogenic Variant in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559059. [PMID: 37790539 PMCID: PMC10542546 DOI: 10.1101/2023.09.22.559059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Maintaining the metabolic homeostasis of fatty acids is crucial for human health. Excess fatty acids are stored in lipid droplets (LDs), the primary energy reservoir that helps regulate fat and lipid homeostasis in nearly all cell types. Seipin (BSCL2), a conserved endoplasmic reticulum protein, plays a critical role in LD biogenesis and regulating LD morphology. Pathogenic variants of seipin are associated with multiple human genetic diseases, including Berardinelli-Seip Congenital Generalized Lipodystrophy Type 2 (BSCL2). However, the cellular and molecular mechanisms by which dysfunctional seipin leads to these diseases remain unclear. To model BSCL2 disease, we generated an orthologous BSCL2 pathogenic variant seip-1(A185P) using CRISPR/Cas9 genome editing in Caenorhabditis elegans . This variant led to severe developmental and cellular defects, including embryonic lethality, impaired eggshell formation, and abnormally enlarged LDs. We set out to identify genetic determinants that could suppress these defective phenotypes in the seip-1(A185P) mutant background. To this end, we conducted an unbiased chemical mutagenesis screen to identify genetic suppressors that restore embryonic viability in the seip-1(A185P) mutant background. A total of five suppressor lines were isolated and recovered from the screen. The defective phenotypes of seip-1(A185P) , including embryonic lethality and impaired eggshell formation, were significantly suppressed in each suppressor line. Two of the five suppressor lines also alleviated the enlarged LDs in the oocytes. We then mapped a suppressor candidate gene, R05D3.2 (renamed as lmbr-1 ), which is an ortholog of human LMBR1 (limb development membrane protein 1). The CRISPR/Cas9 edited lmbr-1 suppressor alleles, lmbr-1(Ser647Phe) and lmbr-1(Pro314Leu) , both significantly suppressed embryonic lethality and defective eggshell formation in the seip-1(A185P) background. The newly identified suppressor lines offer valuable insights into potential genetic interactors and pathways that may regulate seipin in the lipodystrophy model.
Collapse
|
13
|
Khaddaj R, Stribny J, Cottier S, Schneiter R. Perilipin 3 promotes the formation of membrane domains enriched in diacylglycerol and lipid droplet biogenesis proteins. Front Cell Dev Biol 2023; 11:1116491. [PMID: 37465010 PMCID: PMC10350540 DOI: 10.3389/fcell.2023.1116491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Lipid droplets (LDs) serve as intracellular stores of energy-rich neutral lipids. LDs form at discrete sites in the endoplasmic reticulum (ER) and they remain closely associated with the ER during lipogenic growth and lipolytic consumption. Their hydrophobic neutral lipid core is covered by a monolayer of phospholipids, which harbors a specific set of proteins. This LD surface is coated and stabilized by perilipins, a family of soluble proteins that specifically target LDs from the cytosol. We have previously used chimeric fusion proteins between perilipins and integral ER membrane proteins to test whether proteins that are anchored to the ER bilayer could be dragged onto the LD monolayer. Expression of these chimeric proteins induces repositioning of the ER membrane around LDs. Here, we test the properties of membrane-anchored perilipins in cells that lack LDs. Unexpectedly, membrane-anchored perilipins induce expansion and vesiculation of the perinuclear membrane resulting in the formation of crescent-shaped membrane domains that harbor LD-like properties. These domains are stained by LD-specific lipophilic dyes, harbor LD marker proteins, and they transform into nascent LDs upon induction of neutral lipid synthesis. These ER domains are enriched in diacylglycerol (DAG) and in ER proteins that are important for early steps of LD biogenesis, including seipin and Pex30. Formation of the domains in vivo depends on DAG levels, and we show that perilipin 3 (PLIN3) binds to liposomes containing DAG in vitro. Taken together, these observations indicate that perilipin not only serve to stabilize the surface of mature LDs but that they are likely to exert a more active role in early steps of LD biogenesis at ER subdomains enriched in DAG, seipin, and neutral lipid biosynthetic enzymes.
Collapse
Affiliation(s)
- Rasha Khaddaj
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jiri Stribny
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stéphanie Cottier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Papsdorf K, Miklas JW, Hosseini A, Cabruja M, Morrow CS, Savini M, Yu Y, Silva-García CG, Haseley NR, Murphy LM, Yao P, de Launoit E, Dixon SJ, Snyder MP, Wang MC, Mair WB, Brunet A. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. Nat Cell Biol 2023; 25:672-684. [PMID: 37127715 PMCID: PMC10185472 DOI: 10.1038/s41556-023-01136-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Dietary mono-unsaturated fatty acids (MUFAs) are linked to longevity in several species. But the mechanisms by which MUFAs extend lifespan remain unclear. Here we show that an organelle network involving lipid droplets and peroxisomes is critical for MUFA-induced longevity in Caenorhabditis elegans. MUFAs upregulate the number of lipid droplets in fat storage tissues. Increased lipid droplet number is necessary for MUFA-induced longevity and predicts remaining lifespan. Lipidomics datasets reveal that MUFAs also modify the ratio of membrane lipids and ether lipids-a signature associated with decreased lipid oxidation. In agreement with this, MUFAs decrease lipid oxidation in middle-aged individuals. Intriguingly, MUFAs upregulate not only lipid droplet number but also peroxisome number. A targeted screen identifies genes involved in the co-regulation of lipid droplets and peroxisomes, and reveals that induction of both organelles is optimal for longevity. Our study uncovers an organelle network involved in lipid homeostasis and lifespan regulation, opening new avenues for interventions to delay aging.
Collapse
Affiliation(s)
| | - Jason W Miklas
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amir Hosseini
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Matias Cabruja
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Christopher S Morrow
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marzia Savini
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yong Yu
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Carlos G Silva-García
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Pallas Yao
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Meng C Wang
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Institute of Neurosciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Cinnamaldehyde affects lipid droplets metabolism after adipogenic differentiation of C2C12 cells. Mol Biol Rep 2023; 50:2033-2039. [PMID: 36538173 DOI: 10.1007/s11033-022-08101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/08/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Based on our previous research conducted on cinnamaldehyde (CA) exhibiting its ability to improve the growth performance of fattening pigs and the adipogenesis induction model of C2C12 cells constructed in our laboratory, we explored the effects of CA on the generation and development of lipid droplets (LDs) in adipogenic differentiated C2C12 cells. METHODS AND RESULTS C2C12 cells were treated with either 0.4 mM or 0.8 mM CA. BODIPY staining and triglyceride measurements were conducted to observe the morphology of LDs, and Western blotting was used to measure the expression of their metabolism-related proteins. The results showed that the average number of LDs in the CA treatment groups was more than the control group (P < 0.05), whereas the average LD size and triglyceride content decreased (P < 0.05). Compared with the control group, the expression levels of fusion-related genes in the LDs of the CA treatment group significantly decreased, while decomposition-related genes and autophagy-related genes in the LDs in C2C12 cells significantly increased (P < 0.01). CONCLUSION Cinnamaldehyde promoted the decomposition and autophagy of lipid droplets in C2C12 cells and inhibited the fusion of lipid droplets.
Collapse
|
16
|
Wu S, Cui Y, Zhou M, Tao F, Wu W, Xing S, Sun R, Li X, Hu Q. pH-Triggered Charge Reversible Fluorescent Probe for Simultaneous Imaging of Lipid Droplets and Nucleoli in Living Cells. Anal Chem 2023; 95:4005-4014. [PMID: 36795765 DOI: 10.1021/acs.analchem.2c04230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cooperation between organelles is essential to maintain the normal functions of cells. Lipid droplets (LDs) and nucleoli, as important organelles, play an important role in the normal activities of cells. However, due to the lack of appropriate tools, in situ observation of the interaction between them has been rarely reported. In this work, taking into full consideration the pH and charge differences between LDs and nucleoli, a pH-triggered charge reversible fluorescent probe (LD-Nu) was constructed based on a cyclization-ring-opening mechanism. The in vitro pH titration experiment and 1H NMR showed that LD-Nu gradually transferred from the charged form to the electroneutral form with the increase of pH, and thus, the conjugate plane was reduced and its fluorescence blue-shifted. Most importantly, the physical contact between LDs and nucleoli was visualized for the first time. Meanwhile, the relationship between LDs and nucleoli was also further investigated, and the results showed that their interaction was more liable to be affected by the abnormality of LDs than those of nucleoli. Moreover, the cell imaging results displayed that the LDs both in the cytoplasm and nucleus were observed using the probe LD-Nu, and interestingly, the LDs in the cytoplasm were more susceptible to external stimuli than those in the nucleus. In a word, the probe LD-Nu can serve as a powerful tool for further exploration of the interaction mechanism between LDs and nucleoli in living cells.
Collapse
Affiliation(s)
- Shining Wu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yuezhi Cui
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Furong Tao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenli Wu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shu Xing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Rui Sun
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xuechen Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
17
|
Abstract
Cells store excess energy in the form of lipid droplets (LDs), a specialized sub-compartment of the endoplasmic reticulum (ER) network. The lipodystrophy protein seipin is a key player in LD biogenesis and ER-LD contact site maintenance. Recent structural and in silico studies have started to shed light on the molecular function of seipin as a LD nucleator in early LD biogenesis, whilst new cell biological work implies a role for seipin in ER-mitochondria contact sites and calcium metabolism. In this minireview, I discuss recent insights into the molecular function of seipin.
Collapse
Affiliation(s)
- Veijo T. Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
18
|
Arruda AP, Parlakgül G. Endoplasmic Reticulum Architecture and Inter-Organelle Communication in Metabolic Health and Disease. Cold Spring Harb Perspect Biol 2023; 15:a041261. [PMID: 35940911 PMCID: PMC9899651 DOI: 10.1101/cshperspect.a041261] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is a key organelle involved in the regulation of lipid and glucose metabolism, proteostasis, Ca2+ signaling, and detoxification. The structural organization of the ER is very dynamic and complex, with distinct subdomains such as the nuclear envelope and the peripheral ER organized into ER sheets and tubules. ER also forms physical contact sites with all other cellular organelles and with the plasma membrane. Both form and function of the ER are highly adaptive, with a potent capacity to respond to transient changes in environmental cues such as nutritional fluctuations. However, under obesity-induced chronic stress, the ER fails to adapt, leading to ER dysfunction and the development of metabolic pathologies such as insulin resistance and fatty liver disease. Here, we discuss how the remodeling of ER structure and contact sites with other organelles results in diversification of metabolic function and how perturbations to this structural flexibility by chronic overnutrition contribute to ER dysfunction and metabolic pathologies in obesity.
Collapse
Affiliation(s)
- Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Güneş Parlakgül
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
- Sabri Ülker Center for Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Application of Caenorhabditis elegans in Lipid Metabolism Research. Int J Mol Sci 2023; 24:ijms24021173. [PMID: 36674689 PMCID: PMC9860639 DOI: 10.3390/ijms24021173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.
Collapse
|
20
|
Short-Term Omega-3 Supplementation Modulates Novel Neurovascular and Fatty Acid Metabolic Proteome Changes in the Retina and Ophthalmic Artery of Mice with Targeted Cyp2c44 Gene Deletion. Cells 2022; 11:cells11213494. [PMID: 36359890 PMCID: PMC9658563 DOI: 10.3390/cells11213494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (CYP) gene mutations are a common predisposition associated with glaucoma. Although the molecular mechanisms are largely unknown, omega-3 polyunsaturated fatty acids (ω-3 PUFA) and their CYP-derived bioactive mediators play crucial roles in the ocular system. Here, we elucidated the proteome and cell-signalling alterations attributed to the main human CYP2C gene deficiency using a homologous murine model (Cyp2c44−/−), and unravelled the effects of acute ω-3 PUFA supplementation in two ocular vascular beds comprising the retrobulbar ophthalmic artery (OA) and retina (R). Male Cyp2c44−/− mice (KO) and their floxed littermates (WT) were gavaged daily for 7 days with 0.01 mL/g of ω-3 PUFA composed of menhaden fish oil. Another group in respective strains served as vehicle-treated controls. OA and R were isolated at day 8 post-treatment (n = 9/group) and subjected to mass spectrometry (MS)-based proteomics and in silico bioinformatics analyses. Cyp2c44−/− resulted in significant detrimental proteome changes associated with compromised vascular integrity and degeneration in the OA and R, respectively. However, notable changes in the OA after ω-3 PUFA intake were associated with the maintenance of intercellular junctional and endothelial cell functions, as well as activation of the fatty acid metabolic pathway in the KO mice. Conversely, ω-3 PUFA supplementation profoundly influenced the regulation of a large majority of retinal proteins involved in the preservation of neuronal and phototransduction activities in WT mice, namely synaptophysin, phosducin and guanylate cyclase-1, while significantly abrogating degenerative processes in the KO mice via the regulation of, namely, synaptotagmin-1 and beta-crystallin B2. In gist, this study demonstrated that dietary supplementation with ω-3 PUFA for a short period of seven days regulated specific neuro-vasculoprotective mechanisms to preserve the functionality of the OA and R in the absence of Cyp2c44. The potential adjunct use of ω-3 PUFA for glaucoma therapy needs further investigation.
Collapse
|
21
|
Zhu J, Lam SM, Yang L, Liang J, Ding M, Shui G, Huang X. Reduced phosphatidylcholine synthesis suppresses the embryonic lethality of seipin deficiency. LIFE METABOLISM 2022; 1:175-189. [PMID: 39872351 PMCID: PMC11749705 DOI: 10.1093/lifemeta/loac021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2025]
Abstract
Seipin plays a vital role in lipid droplet homeostasis, and its deficiency causes congenital generalized lipodystrophy type II in humans. It is not known whether the physiological defects are all caused by cellular lipid droplet defects. Loss-of-function mutation of seip-1, the Caenorhabditis elegans seipin ortholog, causes embryonic lethality and lipid droplet abnormality. We uncover nhr-114 and spin-4 as two suppressors of seip-1 embryonic lethality. Mechanistically, nhr-114 and spin-4 act in the "B12-one-carbon cycle-phosphatidylcholine (PC)" axis, and reducing PC synthesis suppresses the embryonic lethality of seip-1 mutants. Conversely, PC deficiency enhances the lipid droplet abnormality of seip-1 mutants. The suppression of seip-1 embryonic lethality by PC reduction requires polyunsaturated fatty acid. In addition, the suppression is enhanced by the knockdown of phospholipid scramblase epg-3. Therefore, seipin and PC exhibit opposite actions in embryogenesis, while they function similarly in lipid droplet homeostasis. Our results demonstrate that seipin-mediated embryogenesis is independent of lipid droplet homeostasis.
Collapse
Affiliation(s)
- Jinglin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Leilei Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Cao Z, Fung CW, Mak HY. A Flexible Network of Lipid Droplet Associated Proteins Support Embryonic Integrity of C. elegans. Front Cell Dev Biol 2022; 10:856474. [PMID: 35445028 PMCID: PMC9015696 DOI: 10.3389/fcell.2022.856474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to coordinating the storage and mobilization of neutral fat, lipid droplets (LDs) are conserved organelles that can accommodate additional cargos in order to support animal development. However, it is unclear if each type of cargo is matched with a specific subset of LDs. Here, we report that SEIP-1/seipin defines a subset of oocyte LDs that are required for proper eggshell formation in C. elegans. Using a photoconvertible fluorescent protein-based imaging assay, we found that SEIP-1 positive LDs were selectively depleted after fertilization, coincident of the formation of a lipid-rich permeability barrier of the eggshell. Loss of SEIP-1 function caused impenetrant embryonic arrest, which could be worsened by FAT-3/fatty acyl-CoA desaturase deficiency or suppressed by PLIN-1/Perilipin deficiency. The embryonic development of seip-1; plin-1 mutant in turn depended on the recruitment of RAB-18/Rab18 to LDs, which was not observed in wild type embryos. We propose that SEIP-1 dependent and independent mechanisms act in parallel to ensure the packaging and export of lipid-rich permeability barrier constituents, which involve LDs. The identity of these LDs, as defined by their associated proteins, exhibits unexpected plasticity that ultimately ensures the survival of embryos ex utero.
Collapse
Affiliation(s)
- Zhe Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chun Wing Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
23
|
Busta L, Chapman KD, Cahoon EB. Better together: Protein partnerships for lineage-specific oil accumulation. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102191. [PMID: 35220088 DOI: 10.1016/j.pbi.2022.102191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Plant-derived oils are a major agricultural product that exist in both ubiquitous forms such as common vegetable oils and in specialized forms such as castor oil and coconut oil. These specialized oils are the result of lineage-specific metabolic pathways that create oils rich in unusual fatty acids. Considerable progress has been made toward understanding the enzymes that mediate fatty acid biosynthesis, triacylglycerol assembly, and oil storage. However, efforts to translate this knowledge into renewable bioproducts via engineered oil-producing plants and algae have had limited success. Here, we review recent evidence that protein-protein interactions in each of the three major phases of oil formation appear to have profound effects on specialized oil accumulation. We suggest that furthering our knowledge of the noncatalytic attributes of enzymes and other proteins involved in oil formation will be a critical step toward creating renewable bioproducts derived from high performing, engineered oilseeds.
Collapse
Affiliation(s)
- Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA.
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
24
|
Schneiter R, Choudhary V. Seipin collaborates with the ER membrane to control the sites of lipid droplet formation. Curr Opin Cell Biol 2022; 75:102070. [PMID: 35306312 PMCID: PMC7615794 DOI: 10.1016/j.ceb.2022.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
Abstract
Most cells store metabolic energy in lipid droplets (LDs). LDs are composed of a hydrophobic core, covered by a phospholipid monolayer, and functionalized by a specific set of proteins. Formation of LDs takes place in the endoplasmic reticulum (ER), where neutral lipid biosynthetic enzymes are located. Recent evidence indicate that this process is confined to specific ER subdomains, where proteins meet to initiate LD assembly. The lipodystrophy protein Seipin, is emerging as a major coordinator of LD biogenesis. Seipin forms a large oligomeric toroidal structure, which traps neutral lipids to promote LD nucleation. Here, we discuss the role of LD biogenesis factors that associate with Seipin to assemble functional LDs.
Collapse
Affiliation(s)
- Roger Schneiter
- University of Fribourg, Department of Biology, 1700, Fribourg, Switzerland.
| | - Vineet Choudhary
- All India Institute of Medical Sciences (AIIMS), Department of Biotechnology, New Delhi, 110029, India.
| |
Collapse
|
25
|
Seipin forms a flexible cage at lipid droplet formation sites. Nat Struct Mol Biol 2022; 29:194-202. [PMID: 35210614 PMCID: PMC8930772 DOI: 10.1038/s41594-021-00718-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Lipid droplets (LDs) form in the endoplasmic reticulum by phase separation of neutral lipids. This process is facilitated by the seipin protein complex, which consists of a ring of seipin monomers, with a yet unclear function. Here, we report a structure of S. cerevisiae seipin based on cryogenic-electron microscopy and structural modeling data. Seipin forms a decameric, cage-like structure with the lumenal domains forming a stable ring at the cage floor and transmembrane segments forming the cage sides and top. The transmembrane segments interact with adjacent monomers in two distinct, alternating conformations. These conformations result from changes in switch regions, located between the lumenal domains and the transmembrane segments, that are required for seipin function. Our data indicate a model for LD formation in which a closed seipin cage enables triacylglycerol phase separation and subsequently switches to an open conformation to allow LD growth and budding.
Collapse
|
26
|
Xie K, Liu Y, Li X, Zhang H, Zhang S, Mak HY, Liu P. Dietary S. maltophilia induces supersized lipid droplets by enhancing lipogenesis and ER-LD contacts in C. elegans. Gut Microbes 2022; 14:2013762. [PMID: 35112996 PMCID: PMC8816401 DOI: 10.1080/19490976.2021.2013762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dietary and symbiotic bacteria can exert powerful influence on metazoan lipid metabolism. Recent studies have emerged that microbiota have a role in animal obesity and related health disorders, but the mechanisms by which bacteria influence lipid storage in their host are unknown. To reduce the complexity of the relationship between gut microbiota and the host, Caenorhabditis elegans (C. elegans) has been chosen as a model organism to study interspecies interaction. Here, we demonstrate that feeding C. elegans with an opportunistic pathogenic bacterium Stenotrophomonas maltophilia (S. maltophilia) retards growth and promotes excessive neutral lipid storage. Gene expression analysis reveals that dietary S. maltophilia induces a lipogenic transcriptional response that includes the SREBP ortholog SBP-1, and fatty acid desaturases FAT-6 and FAT-7. Live imaging and ultrastructural analysis suggest that excess neutral lipid is stored in greatly expanded lipid droplets (LDs), as a result of enhanced endoplasmic reticulum (ER)-LD interaction. We also report that loss of function mutations in dpy-9 in C. elegans confers resistance to S. maltophilia. Dietary S. maltophilia induces supersized LDs by enhancing lipogenesis and ER-LD contacts in C. elegans. This work delineates a new model for understanding microbial regulation of metazoan physiology.
Collapse
Affiliation(s)
- Kang Xie
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yangli Liu
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Xixia Li
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Shuyan Zhang
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,CONTACT Pingsheng Liu National Laboratory of Biomacromolecules, Cas Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
27
|
Mailler E, Guardia CM, Bai X, Jarnik M, Williamson CD, Li Y, Maio N, Golden A, Bonifacino JS. The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Nat Commun 2021; 12:6750. [PMID: 34799570 PMCID: PMC8605025 DOI: 10.1038/s41467-021-26999-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
The multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans. Moreover, ATG9A depletion blocks transfer of fatty acids from lipid droplets to mitochondria and, consequently, utilization of fatty acids in mitochondrial respiration. ATG9A localizes to vesicular-tubular clusters (VTCs) that are tightly associated with an ER subdomain enriched in another multispanning membrane scramblase, TMEM41B, and also in close proximity to phagophores, lipid droplets and mitochondria. These findings indicate that ATG9A plays a critical role in lipid mobilization from lipid droplets to autophagosomes and mitochondria, highlighting the importance of ATG9A in both autophagic and non-autophagic processes.
Collapse
Affiliation(s)
- Elodie Mailler
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Carlos M Guardia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xiaofei Bai
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Jarnik
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nunziata Maio
- Metals Biology and Molecular Medicine Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Prog Lipid Res 2021; 85:101141. [PMID: 34793861 DOI: 10.1016/j.plipres.2021.101141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play crucial roles in response to physiological and environmental cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). Increasing evidence suggests that distinct proteins and regulatory factors, which localize to membrane contact sites (MCS), are involved not only in interorganellar lipid exchange and transport, but also function in other important cellular processes, including autophagy, mitochondrial dynamics and inheritance, ion signaling and inter-regulation of these MCS. More and more tethers and molecular determinants are associated to MCS and to a diversity of cellular and pathophysiological processes, demonstrating the dynamics and importance of these junctions in health and disease. The conjugation of lipids with proteins in supramolecular complexes is known to be paramount for many biological processes, namely membrane biosynthesis, cell homeostasis, regulation of organelle division and biogenesis, and cell growth. Ultimately, this physical organization allows the contact sites to function as crucial metabolic hubs that control the occurrence of chemical reactions. This leads to biochemical and metabolite compartmentalization for the purposes of energetic efficiency and cellular homeostasis. In this review, we will focus on the structural and functional aspects of LD-organelle interactions and how they ensure signaling exchange and metabolites transfer between organelles.
Collapse
|
29
|
Deciphering Differential Life Stage Radioinduced Reproductive Decline in Caenorhabditis elegans through Lipid Analysis. Int J Mol Sci 2021; 22:ijms221910277. [PMID: 34638618 PMCID: PMC8508812 DOI: 10.3390/ijms221910277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Wildlife is chronically exposed to various sources of ionizing radiations, both environmental or anthropic, due to nuclear energy use, which can induce several defects in organisms. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help in predicting the effects at larger scales (i.e., population). In this study, we used a life stage dependent approach in order to better understand the molecular determinants of reproduction decrease in the roundworm C. elegans. Worms were chronically exposed to 50 mGy·h−1 external gamma ionizing radiations throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). Then, in addition to reproduction parameters, we performed a wide analysis of lipids (different class and fatty acid via FAMES), which are both important signaling molecules for reproduction and molecular targets of oxidative stress. Our results showed that reproductive defects are life stage dependent, that lipids are differently misregulated according to the considered exposure (e.g., upon embryogenesis and full development) and do not fully explain radiation induced reproductive defects. Finally, our results enable us to propose a conceptual model of lipid signaling after radiation stress in which both the soma and the germline participate.
Collapse
|
30
|
Lourenço AB, Artal-Sanz M. The Mitochondrial Prohibitin (PHB) Complex in C. elegans Metabolism and Ageing Regulation. Metabolites 2021; 11:metabo11090636. [PMID: 34564452 PMCID: PMC8472356 DOI: 10.3390/metabo11090636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
The mitochondrial prohibitin (PHB) complex, composed of PHB-1 and PHB-2, is an evolutionarily conserved context-dependent modulator of longevity. This extremely intriguing phenotype has been linked to alterations in mitochondrial function and lipid metabolism. The true biochemical function of the mitochondrial PHB complex remains elusive, but it has been shown to affect membrane lipid composition. Recent work, using large-scale biochemical approaches, has highlighted a broad effect of PHB on the C. elegans metabolic network. Collectively, the biochemical data support the notion that PHB modulates, at least partially, worm longevity through the moderation of fat utilisation and energy production via the mitochondrial respiratory chain. Herein, we review, in a systematic manner, recent biochemical insights into the impact of PHB on the C. elegans metabolome.
Collapse
Affiliation(s)
- Artur B. Lourenço
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km 1, 41013 Seville, Spain
- Correspondence: (A.B.L.); (M.A.-S.)
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km 1, 41013 Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
- Correspondence: (A.B.L.); (M.A.-S.)
| |
Collapse
|
31
|
Zembroski AS, Xiao C, Buhman KK. The Roles of Cytoplasmic Lipid Droplets in Modulating Intestinal Uptake of Dietary Fat. Annu Rev Nutr 2021; 41:79-104. [PMID: 34283920 DOI: 10.1146/annurev-nutr-110320-013657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary fat absorption is required for health but also contributes to hyperlipidemia and metabolic disease when dysregulated. One step in the process of dietary fat absorption is the formation of cytoplasmic lipid droplets (CLDs) in small intestinal enterocytes; these CLDs serve as dynamic triacylglycerol storage organelles that influence the rate at which dietary fat is absorbed. Recent studies have uncovered novel factors regulating enterocyte CLD metabolism that in turn influence the absorption of dietary fat. These include peroxisome proliferator-activated receptor α activation, compartmentalization of different lipid pools, the gut microbiome, liver X receptor and farnesoid X receptor activation, obesity, and physiological factors stimulating CLD mobilization. Understanding how enterocyte CLD metabolism is regulated is key in modulating the absorption of dietary fat in the prevention of hyperlipidemia and its associated metabolic disorders. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
32
|
Zeng L, Li X, Preusch CB, He GJ, Xu N, Cheung TH, Qu J, Mak HY. Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans. PLoS Genet 2021; 17:e1009635. [PMID: 34237064 PMCID: PMC8291716 DOI: 10.1371/journal.pgen.1009635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Here, we report that ALH-4 is a C. elegans aldehyde dehydrogenase that specifically associates with the endoplasmic reticulum, mitochondria and peroxisomes. Based on lipidomic and imaging analysis, we show that the loss of ALH-4 increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are sterile. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy to tackle pathology related to excess fatty aldehydes. Fatty aldehydes are generated during the turnover of membrane lipids and when cells are under oxidative stress. Because excess fatty aldehydes form toxic adducts with proteins and lipids, their levels are tightly controlled by a family of aldehyde dehydrogenases whose dysfunction has been implicated in genetic disease and cancer in humans. Here, we characterize mutant C. elegans that lack a conserved, membrane-associated aldehyde dehydrogenase ALH-4. Despite elevated levels of fatty aldehydes, these mutant worms survive by increasing the abundance of peroxisomes, which are important organelles for lipid metabolism. Such peroxisome proliferative response depends on the activation of transcription factors NHR-49 and NHR-79, via putative endocrine signals. Accordingly, the fertility of alh-4 mutant worms relies on NHR-49. Our work suggests a latent mechanism that may be activated during aldehyde dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lidan Zeng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xuesong Li
- Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Christopher B. Preusch
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Gary J. He
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ningyi Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tom H. Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- State Key Laboratory in Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jianan Qu
- Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
33
|
Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol 2021; 220:e202102136. [PMID: 34152362 PMCID: PMC8222944 DOI: 10.1083/jcb.202102136] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023] Open
Abstract
Lipid droplets are dynamic intracellular lipid storage organelles that respond to the physiological state of cells. In addition to controlling cell metabolism, they play a protective role for many cellular stressors, including oxidative stress. Despite prior descriptions of lipid droplets appearing in the brain as early as a century ago, only recently has the role of lipid droplets in cells found in the brain begun to be understood. Lipid droplet functions have now been described for cells of the nervous system in the context of development, aging, and an increasing number of neuropathologies. Here, we review the basic mechanisms of lipid droplet formation, turnover, and function and discuss how these mechanisms enable lipid droplets to function in different cell types of the nervous system under healthy and pathological conditions.
Collapse
Affiliation(s)
- Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Chi-Lun Chang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA
| | | | - Maria S. Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Lourenço AB, Rodríguez-Palero MJ, Doherty MK, Cabrerizo Granados D, Hernando-Rodríguez B, Salas JJ, Venegas-Calerón M, Whitfield PD, Artal-Sanz M. The Mitochondrial PHB Complex Determines Lipid Composition and Interacts With the Endoplasmic Reticulum to Regulate Ageing. Front Physiol 2021; 12:696275. [PMID: 34276415 PMCID: PMC8281979 DOI: 10.3389/fphys.2021.696275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic disorders are frequently associated with physiological changes that occur during ageing. The mitochondrial prohibitin complex (PHB) is an evolutionary conserved context-dependent modulator of longevity, which has been linked to alterations in lipid metabolism but which biochemical function remains elusive. In this work we aimed at elucidating the molecular mechanism by which depletion of mitochondrial PHB shortens the lifespan of wild type animals while it extends that of insulin signaling receptor (daf-2) mutants. A liquid chromatography coupled with mass spectrometry approach was used to characterize the worm lipidome of wild type and insulin deficient animals upon PHB depletion. Toward a mechanistic interpretation of the insights coming from this analysis, we used a combination of biochemical, microscopic, and lifespan analyses. We show that PHB depletion perturbed glycerophospholipids and glycerolipids pools differently in short- versus long-lived animals. Interestingly, PHB depletion in otherwise wild type animals induced the endoplasmic reticulum (ER) unfolded protein response (UPR), which was mitigated in daf-2 mutants. Moreover, depletion of DNJ-21, which functionally interacts with PHB in mitochondria, mimicked the effect of PHB deficiency on the UPRER and on the lifespan of wild type and insulin signaling deficient mutants. Our work shows that PHB differentially modulates lipid metabolism depending on the worm’s metabolic status and provides evidences for a new link between PHB and ER homeostasis in ageing regulation.
Collapse
Affiliation(s)
- Artur B Lourenço
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - María Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Mary K Doherty
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, United Kingdom
| | - David Cabrerizo Granados
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Blanca Hernando-Rodríguez
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Seville, Spain
| | | | - Phillip D Whitfield
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, United Kingdom
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
35
|
Mosquera JV, Bacher MC, Priess JR. Nuclear lipid droplets and nuclear damage in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009602. [PMID: 34133414 PMCID: PMC8208577 DOI: 10.1371/journal.pgen.1009602] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 01/01/2023] Open
Abstract
Fat stored in the form of lipid droplets has long been considered a defining characteristic of cytoplasm. However, recent studies have shown that nuclear lipid droplets occur in multiple cells and tissues, including in human patients with fatty liver disease. The function(s) of stored fat in the nucleus has not been determined, and it is possible that nuclear fat is beneficial in some situations. Conversely, nuclear lipid droplets might instead be deleterious by disrupting nuclear organization or triggering aggregation of hydrophobic proteins. We show here that nuclear lipid droplets occur normally in C. elegans intestinal cells and germ cells, but appear to be associated with damage only in the intestine. Lipid droplets in intestinal nuclei can be associated with novel bundles of microfilaments (nuclear actin) and membrane tubules that might have roles in damage repair. To increase the normal, low frequency of nuclear lipid droplets in wild-type animals, we used a forward genetic screen to isolate mutants with abnormally large or abundant nuclear lipid droplets. Genetic analysis and cloning of three such mutants showed that the genes encode the lipid regulator SEIP-1/seipin, the inner nuclear membrane protein NEMP-1/Nemp1/TMEM194A, and a component of COPI vesicles called COPA-1/α-COP. We present several lines of evidence that the nuclear lipid droplet phenotype of copa-1 mutants results from a defect in retrieving mislocalized membrane proteins that normally reside in the endoplasmic reticulum. The seip-1 mutant causes most germ cells to have nuclear lipid droplets, the largest of which occupy more than a third of the nuclear volume. Nevertheless, the nuclear lipid droplets do not trigger apoptosis, and the germ cells differentiate into gametes that produce viable, healthy progeny. Thus, our results suggest that nuclear lipid droplets are detrimental to intestinal nuclei, but have no obvious deleterious effect on germ nuclei.
Collapse
Affiliation(s)
| | - Meghan C. Bacher
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
36
|
Monson EA, Whelan DR, Helbig KJ. Lipid Droplet Motility Increases Following Viral Immune Stimulation. Int J Mol Sci 2021; 22:4418. [PMID: 33922664 PMCID: PMC8122965 DOI: 10.3390/ijms22094418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Lipid droplets (LDs) have traditionally been thought of as solely lipid storage compartments for cells; however, in the last decade, they have emerged as critical organelles in health and disease. LDs are highly dynamic within cells, and their movement is critical in organelle-organelle interactions. Their dynamics are known to change during cellular stress or nutrient deprivation; however, their movement during pathogen infections, especially at very early timepoints, is under-researched. This study aimed to track LD dynamics in vitro, in an astrocytic model of infection. Cells were either stimulated with a dsRNA viral mimic, poly I:C, or infected with the RNA virus, Zika virus. Individual LDs within infected cells were analysed to determine displacement and speed, and average LD characteristics for multiple individual cells calculated. Both LD displacement and mean speed were significantly enhanced in stimulated cells over a time course of infection with an increase seen as early as 2 h post-infection. With the emerging role for LDs during innate host responses, understanding their dynamics is critical to elucidate how these organelles influence the outcome of viral infection.
Collapse
Affiliation(s)
- Ebony A. Monson
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne 3086, Australia;
| | - Donna R. Whelan
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne 3086, Australia;
| |
Collapse
|
37
|
Redhai S, Boutros M. The Role of Organelles in Intestinal Function, Physiology, and Disease. Trends Cell Biol 2021; 31:485-499. [PMID: 33551307 DOI: 10.1016/j.tcb.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
The intestine maintains homeostasis by coordinating internal biological processes to adjust to fluctuating external conditions. The intestinal epithelium is continuously renewed and comprises multiple cell types, including absorptive cells, secretory cells, and resident stem cells. An important feature of this organ is its ability to coordinate many processes including cell proliferation, differentiation, regeneration, damage/stress response, immune activity, feeding behavior, and age-related changes by using conserved signaling pathways. However, the subcellular spatial organization of these signaling events and the organelles involved has only recently been studied in detail. Here we discuss how organelles of intestinal cells serve to initiate, mediate, and terminate signals, that are vital for homeostasis.
Collapse
Affiliation(s)
- Siamak Redhai
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, and Heidelberg University, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| |
Collapse
|
38
|
Prasanna X, Salo VT, Li S, Ven K, Vihinen H, Jokitalo E, Vattulainen I, Ikonen E. Seipin traps triacylglycerols to facilitate their nanoscale clustering in the endoplasmic reticulum membrane. PLoS Biol 2021; 19:e3000998. [PMID: 33481779 PMCID: PMC7857593 DOI: 10.1371/journal.pbio.3000998] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 02/03/2021] [Accepted: 11/02/2020] [Indexed: 11/19/2022] Open
Abstract
Seipin is a disk-like oligomeric endoplasmic reticulum (ER) protein important for lipid droplet (LD) biogenesis and triacylglycerol (TAG) delivery to growing LDs. Here we show through biomolecular simulations bridged to experiments that seipin can trap TAGs in the ER bilayer via the luminal hydrophobic helices of the protomers delineating the inner opening of the seipin disk. This promotes the nanoscale sequestration of TAGs at a concentration that by itself is insufficient to induce TAG clustering in a lipid membrane. We identify Ser166 in the α3 helix as a favored TAG occupancy site and show that mutating it compromises the ability of seipin complexes to sequester TAG in silico and to promote TAG transfer to LDs in cells. While the S166D-seipin mutant colocalizes poorly with promethin, the association of nascent wild-type seipin complexes with promethin is promoted by TAGs. Together, these results suggest that seipin traps TAGs via its luminal hydrophobic helices, serving as a catalyst for seeding the TAG cluster from dissolved monomers inside the seipin ring, thereby generating a favorable promethin binding interface.
Collapse
Affiliation(s)
- Xavier Prasanna
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Veijo T. Salo
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Shiqian Li
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Katharina Ven
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Helena Vihinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- * E-mail:
| |
Collapse
|
39
|
New friends for seipin — Implications of seipin partner proteins in the life cycle of lipid droplets. Semin Cell Dev Biol 2020; 108:24-32. [DOI: 10.1016/j.semcdb.2020.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
|
40
|
Cao Z, Wang X, Huang X, Mak HY. Are endoplasmic reticulum subdomains shaped by asymmetric distribution of phospholipids? Evidence from a C. elegans model system. Bioessays 2020; 43:e2000199. [PMID: 33169432 DOI: 10.1002/bies.202000199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Physical contact between organelles are widespread, in part to facilitate the shuttling of protein and lipid cargoes for cellular homeostasis. How do protein-protein and protein-lipid interactions shape organelle subdomains that constitute contact sites? The endoplasmic reticulum (ER) forms extensive contacts with multiple organelles, including lipid droplets (LDs) that are central to cellular fat storage and mobilization. Here, we focus on ER-LD contacts that are highlighted by the conserved protein seipin, which promotes LD biogenesis and expansion. Seipin is enriched in ER tubules that form cage-like structures around a subset of LDs. Such enrichment is strongly dependent on polyunsaturated and cyclopropane fatty acids. Based on these findings, we speculate on molecular events that lead to the formation of seipin-positive peri-LD cages in which protein movement is restricted. We hypothesize that asymmetric distribution of specific phospholipids distinguishes cage membrane tubules from the bulk ER.
Collapse
Affiliation(s)
- Zhe Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiaowei Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
41
|
Bai X, Huang LJ, Chen SW, Nebenfuehr B, Wysolmerski B, Wu JC, Olson SK, Golden A, Wang CW. Loss of the seipin gene perturbs eggshell formation in Caenorhabditiselegans. Development 2020; 147:dev192997. [PMID: 32820022 PMCID: PMC7578359 DOI: 10.1242/dev.192997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Seipin, an evolutionary conserved protein, plays pivotal roles during lipid droplet (LD) biogenesis and is associated with various human diseases with unclear mechanisms. Here, we analyzed Caenorhabditis elegans mutants deleted of the sole SEIPIN gene, seip-1 Homozygous seip-1 mutants displayed penetrant embryonic lethality, which is caused by the disruption of the lipid-rich permeability barrier, the innermost layer of the C. elegans embryonic eggshell. In C. elegans oocytes and embryos, SEIP-1 is associated with LDs and is crucial for controlling LD size and lipid homeostasis. The seip-1 deletion mutants reduced the ratio of polyunsaturated fatty acids (PUFAs) in their embryonic fatty acid pool. Interestingly, dietary supplementation of selected n-6 PUFAs rescued the embryonic lethality and defective permeability barrier. Accordingly, we propose that SEIP-1 may maternally regulate LD biogenesis and lipid homeostasis to orchestrate the formation of the permeability barrier for eggshell synthesis during embryogenesis. A lipodystrophy allele of seip-1 resulted in embryonic lethality as well and could be rescued by PUFA supplementation. These experiments support a great potential for using C. elegans to model SEIPIN-associated human diseases.
Collapse
Affiliation(s)
- Xiaofei Bai
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leng-Jie Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Sheng-Wen Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Benjamin Nebenfuehr
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Wysolmerski
- Department of Biology and Program in Molecular Biology, Pomona College, Claremont, CA 91711, USA
| | - Jui-Ching Wu
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Sara K Olson
- Department of Biology and Program in Molecular Biology, Pomona College, Claremont, CA 91711, USA
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
42
|
Le HH, Wrobel CJ, Cohen SM, Yu J, Park H, Helf MJ, Curtis BJ, Kruempel JC, Rodrigues PR, Hu PJ, Sternberg PW, Schroeder FC. Modular metabolite assembly in Caenorhabditis elegans depends on carboxylesterases and formation of lysosome-related organelles. eLife 2020; 9:61886. [PMID: 33063667 PMCID: PMC7641594 DOI: 10.7554/elife.61886] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Signaling molecules derived from attachment of diverse metabolic building blocks to ascarosides play a central role in the life history of C. elegans and other nematodes; however, many aspects of their biogenesis remain unclear. Using comparative metabolomics, we show that a pathway mediating formation of intestinal lysosome-related organelles (LROs) is required for biosynthesis of most modular ascarosides as well as previously undescribed modular glucosides. Similar to modular ascarosides, the modular glucosides are derived from highly selective assembly of moieties from nucleoside, amino acid, neurotransmitter, and lipid metabolism, suggesting that modular glucosides, like the ascarosides, may serve signaling functions. We further show that carboxylesterases that localize to intestinal organelles are required for the assembly of both modular ascarosides and glucosides via ester and amide linkages. Further exploration of LRO function and carboxylesterase homologs in C. elegans and other animals may reveal additional new compound families and signaling paradigms.
Collapse
Affiliation(s)
- Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Chester Jj Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Sarah M Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Maximilian J Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Joseph C Kruempel
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| | - Pedro Reis Rodrigues
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| |
Collapse
|
43
|
Teixeira V, Maciel P, Costa V. Leading the way in the nervous system: Lipid Droplets as new players in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158820. [PMID: 33010453 DOI: 10.1016/j.bbalip.2020.158820] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) are ubiquitous fat storage organelles composed of a neutral lipid core, comprising triacylglycerols (TAG) and sterol esters (SEs), surrounded by a phospholipid monolayer membrane with several decorating proteins. Recently, LD biology has come to the foreground of research due to their importance for energy homeostasis and cellular stress response. As aberrant LD accumulation and lipid depletion are hallmarks of numerous diseases, addressing LD biogenesis and turnover provides a new framework for understanding disease-related mechanisms. Here we discuss the potential role of LDs in neurodegeneration, while making some predictions on how LD imbalance can contribute to pathophysiology in the brain.
Collapse
Affiliation(s)
- Vitor Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
44
|
Salo VT, Hölttä-Vuori M, Ikonen E. Seipin-Mediated Contacts as Gatekeepers of Lipid Flux at the Endoplasmic Reticulum–Lipid Droplet Nexus. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420945820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid droplets (LDs) are dynamic cellular hubs of lipid metabolism. While LDs contact a plethora of organelles, they have the most intimate relationship with the endoplasmic reticulum (ER). Indeed, LDs are initially assembled at specialized ER subdomains, and recent work has unraveled an increasing array of proteins regulating ER-LD contacts. Among these, seipin, a highly conserved lipodystrophy protein critical for LD growth and adipogenesis, deserves special attention. Here, we review recent insights into the role of seipin in LD biogenesis and as a regulator of ER-LD contacts. These studies have also highlighted the evolving concept of ER and LDs as a functional continuum for lipid partitioning and pinpointed a role for seipin at the ER-LD nexus in controlling lipid flux between these compartments.
Collapse
Affiliation(s)
- Veijo T. Salo
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
45
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
46
|
Hugenroth M, Bohnert M. Come a little bit closer! Lipid droplet-ER contact sites are getting crowded. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118603. [PMID: 31733263 DOI: 10.1016/j.bbamcr.2019.118603] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Not so long ago, contact sites between the endoplasmic reticulum (ER) and lipid droplets (LDs) were largely unexplored on a molecular level. In recent years however, numerous proteins have been identified that are enriched or exclusively located at the interfaces between LDs and the ER. These comprise members of protein classes typically found in diverse types of contacts, such as organelle tethers and lipid transfer proteins, but also proteins that have no similarities to known contact site machineries. This structurally heterogeneous group of contact site residents might be required to fulfill unique aspects of LD-ER contact biology, such as de novo LD biogenesis, and maintenance of lipidic connections between LDs and ER. Here, we summarize the current knowledge on the molecular components of this special organelle contact site, and discuss their features and functions.
Collapse
Affiliation(s)
- Marie Hugenroth
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Germany.
| |
Collapse
|