1
|
Li AL, Guo KZ, Yu LR, Ge J, Zhou W, Zhang JP. Intercellular communication after myocardial infarction: Macrophage as the centerpiece. Ageing Res Rev 2025; 109:102757. [PMID: 40320153 DOI: 10.1016/j.arr.2025.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
Post-myocardial infarction (MI) injury, repair, and remodeling are complex biological events orchestrated by the heart and immune cell populations, with immune-inflammation at the core. Macrophages, as the main immune cell population active throughout the post-MI injury to repair processes, are the core of this "drama". Recently, single-cell sequencing and other techniques have revealed the heterogeneity of macrophage origins and the complexity of macrophage subpopulation transformation and intercellular communication after MI. Defining the changes in macrophage subpopulation dynamics and macrophage-centered intercellular communication after MI may represent new targeted therapeutic strategies. It also helps to select the optimal time point for anti-inflammatory or pro-repair accurately. Therefore, in this review, we summarize the major macrophage subpopulations active at different times after MI and their functional characteristics based on gene expression profiles. Meanwhile, we summarize macrophage-centered intercellular communication, focusing on how macrophages interact with cardiomyocytes, neutrophils, fibroblasts, endothelial cells, and other cardiac cells. Together, these dominate the transition from inflammatory injury to fibrotic repair in the infarcted heart. We also focus on the regulatory potential of immune metabolism in macrophage subpopulation transformation and intercellular communication after MI, particularly providing new insights about lactylation. We conclude by emphasizing macrophage-centric targeting strategies and clinical translational potential, to provide ideas for the clinical treatment of MI.
Collapse
Affiliation(s)
- Ao-Lin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Kang-Zheng Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Le-Rong Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jun Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wei Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China.
| |
Collapse
|
2
|
Koopmans T, van Rooij E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 2025:10.1038/s41569-025-01145-y. [PMID: 40195566 DOI: 10.1038/s41569-025-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue - a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth - nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation - forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
3
|
Wang S, Mei Z, Chen J, Zhao K, Kong R, McClements L, Zhang H, Liao A, Liu C. Maternal Immune Activation: Implications for Congenital Heart Defects. Clin Rev Allergy Immunol 2025; 68:36. [PMID: 40175706 DOI: 10.1007/s12016-025-09049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Congenital heart defects (CHD) are the most common major birth defects and one of the leading causes of death from congenital defects after birth. CHD can arise in pregnancy from the combination of genetic and non-genetic factors. The maternal immune activation (MIA) hypothesis is widely implicated in embryonic neurodevelopmental abnormalities. MIA has been found to be associated with the development of asthma, diabetes mellitus, and other diseases in the offspring. Given the important role of cardiac immune cells and cytokines in embryonic heart development, it is hypothesized that MIA may play a significant role in embryonic heart development. This review aims to stimulate further investigation into the relationship between MIA and CHD and to highlight the gaps in the knowledge. It evaluates the impact of MIA on CHD in the context of pregnancy complications, immune-related diseases, infections, and environmental and lifestyle factors. The review outlines the mechanisms by which immune cells and their secretome indirectly regulate the immuno-microenvironment of the embryonic heart by influencing placental development. Furthermore, the inflammatory cytokines cross the placenta to induce related reactions including oxidative stress in the embryonic heart directly. This review delineates the role of MIA in CHD and underscores the impact of maternal factors, especially immune factors, as well as the embryonic cardiac immuno-microenvironment, on embryonic heart development. This review extends our understanding of the importance of MIA in the pathogenesis of CHD and provides important insights into prenatal prevention and treatment strategies for this congenital condition.
Collapse
Affiliation(s)
- Sixing Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Second Clinical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zilin Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ruize Kong
- Department of Vascular Surgery, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China First People'S Hospital of Yunnan Province, Kunming, PR China
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Aihua Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
4
|
Miyara S, Adler M, Umansky KB, Häußler D, Bassat E, Divinsky Y, Elkahal J, Kain D, Lendengolts D, Ramirez Flores RO, Bueno-Levy H, Golani O, Shalit T, Gershovits M, Weizman E, Genzelinakh A, Kimchi DM, Shakked A, Zhang L, Wang J, Baehr A, Petrover Z, Sarig R, Dorn T, Moretti A, Saez-Rodriguez J, Kupatt C, Tanaka EM, Medzhitov R, Krüger A, Mayo A, Alon U, Tzahor E. Cold and hot fibrosis define clinically distinct cardiac pathologies. Cell Syst 2025; 16:101198. [PMID: 39970910 PMCID: PMC11922821 DOI: 10.1016/j.cels.2025.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/28/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
Fibrosis remains a major unmet medical need. Simplifying principles are needed to better understand fibrosis and to yield new therapeutic approaches. Fibrosis is driven by myofibroblasts that interact with macrophages. A mathematical cell-circuit model predicts two types of fibrosis: hot fibrosis driven by macrophages and myofibroblasts and cold fibrosis driven by myofibroblasts alone. Testing these concepts in cardiac fibrosis resulting from myocardial infarction (MI) and heart failure (HF), we revealed that acute MI leads to cold fibrosis whereas chronic injury (HF) leads to hot fibrosis. MI-driven cold fibrosis is conserved in pigs and humans. We computationally identified a vulnerability of cold fibrosis: the myofibroblast autocrine growth factor loop. Inhibiting this loop by targeting TIMP1 with neutralizing antibodies reduced myofibroblast proliferation and fibrosis post-MI in mice. Our study demonstrates the utility of the concepts of hot and cold fibrosis and the feasibility of a circuit-to-target approach to pinpoint a treatment strategy that reduces fibrosis. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Shoval Miyara
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Miri Adler
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Kfir B Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Häußler
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Elad Bassat
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Yalin Divinsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Elkahal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Kain
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Lendengolts
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ricardo O Ramirez Flores
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | - Hanna Bueno-Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Shalit
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Gershovits
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Eviatar Weizman
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Genzelinakh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Danielle M Kimchi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lingling Zhang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Andrea Baehr
- Klinik und Poliklinik für Innere Medizin I, University Clinic rechts der Isar, Technical University of Munich, Munich, Germany; DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Zachary Petrover
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rachel Sarig
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Alessandra Moretti
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany; First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, University Clinic rechts der Isar, Technical University of Munich, Munich, Germany; DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, Yale, New Haven, CT, USA
| | - Achim Krüger
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Rao W, Li D, Zhang Q, Liu T, Gu Z, Huang L, Dai J, Wang J, Hou X. Complex regulation of cardiac fibrosis: insights from immune cells and signaling pathways. J Transl Med 2025; 23:242. [PMID: 40022104 PMCID: PMC11869728 DOI: 10.1186/s12967-025-06260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/16/2025] [Indexed: 03/03/2025] Open
Abstract
Cardiac fibrosis is a physiological process that involves the formation of scar tissue in the heart in response to injury or damage. This process is initially a protective measure characterized by enhanced fibroblasts, which are responsible for producing extracellular matrix proteins that provide structural support to the heart. However, when fibrosis becomes excessive, it can lead to adverse outcomes, including increasing tissue stiffness and impaired cardiac function, which can ultimately result in heart failure with a poor prognosis. While fibroblasts are the primary cells involved in cardiac fibrosis, immune cells have also been found to play a vital role in its progression. Recent research has shown that immune cells exert multifaceted effects besides regulation of inflammatory response. Advanced research techniques such as single-cell sequencing and multiomics have provided insights into the specific subsets of immune cells involved in fibrosis and the complex regulation of the process. Targeted immunotherapy against fibrosis is gaining traction as a potential treatment option, but it is still unclear how immune cells achieve this regulation and whether distinct subsets are involved in different roles. To better understand the role of immune cells in cardiac fibrosis, it is essential to examine the classical signaling pathways that are closely related to fibrosis formation. We have also focused on the unique properties of diverse immune cells in cardiac fibrosis and their specific intercommunications. Therefore, this review will delve into the plasticity and heterogeneity of immune cells and their specific roles in cardiac fibrosis, which propose insights to facilitate the development of anti-fibrosis therapeutic strategies.
Collapse
Affiliation(s)
- Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghang Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xumin Hou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Li R, Li X, Zhang X, Yu J, Li Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Zheng K, Lai L, Zhang H, Huang P, Zhou C, Wu J, Ye W, Xia J. Macrophages in Cardiovascular Fibrosis: Novel Subpopulations, Molecular Mechanisms, and Therapeutic Targets. Can J Cardiol 2025; 41:309-322. [PMID: 39580052 DOI: 10.1016/j.cjca.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Cardiovascular fibrosis is a common pathological process that contributes to the development and progression of various cardiovascular diseases. Despite being widely believed to be an irreversible and relentless process, preclinical models and clinical trials have shown that cardiovascular fibrosis is an extremely dynamic process. Additionally, as part of the innate immune system, macrophages are heterogeneous cells that are pivotal in tissue regeneration and fibrosis. They participate in fibroblast activation, extracellular matrix remodelling, and the regression of fibrosis. Although we have made some advances in understanding macrophages in cardiovascular fibrosis, a gap still remains between their identification and conversion into effective treatments. Moreover, the traditional M1-M2 paradigm faces many challenges because it does not sufficiently clarify macrophage diversity and their functions. Exploring novel macrophage-based therapies is urgent for cardiovascular fibrosis treatment. Single-cell techniques have shed light on identifying novel subpopulations that differ in function and molecular signature under steady-state and pathological conditions. In this review, we outline the developmental origins of macrophages, which underlie their functions; and recent technology development in the single-cell era. In addition, we describe the markers and mediators of the newly defined macrophage subpopulations and the molecular mechanisms involved to elucidate potential approaches for targeting macrophages in cardiovascular fibrosis.
Collapse
Affiliation(s)
- Ran Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexiao Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
7
|
Abe K, Sasano T, Soejima Y, Fukayama H, Maeda S, Furukawa T. Hypermethylation of Hif3a and Ifltd1 is associated with atrial remodeling in pressure-overload murine model. Sci Rep 2025; 15:2699. [PMID: 39837857 PMCID: PMC11751168 DOI: 10.1038/s41598-025-85382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Atrial remodeling is a major pathophysiological mechanism of atrial fibrillation (AF). Atrial remodeling progresses with aging and background diseases, including hypertension, heart failure, and AF itself. However, its mechanism of action and reversibility have not been completely elucidated. In this study, we investigated the involvement of DNA methylation in atrial remodeling. Mice underwent transverse aortic constriction (TAC) to generate a pressure overload model. After 14 days, the TAC-operated mice showed a significant increase in the atrium/body weight ratio and deposition of collagen fibers in the atria. A comprehensive analysis using RNA-sequencing (RNA-Seq) and methyl-CpG-binding domain sequencing (MBD-Seq) in the left atrial tissue identified Hif3a and Ifltd1 as showing increased DNA methylation in their promoter regions and decreased RNA expression. In addition, we created a transient pressure overload model by removing the aortic constriction 3 or 7 days after the initial TAC procedure (R3 or R7 groups). A reduction in RNA expression was achieved at R3 for Hif3a and at R7 for Ifltd1. Heterozygous Dnmt1 gene-targeting mice (Dnmt1mut) showed disappearance of the reduction in RNA expression and an increase in the atrium/body weight ratio. Altogether, DNA methylation contributed to at least part of atrial remodeling in the pressure overload mouse model.
Collapse
Affiliation(s)
- Keiko Abe
- Department of Dental Anesthesiology and Orofacial Pain Management, Institute of Science Tokyo, Tokyo, Japan
- Department of Cardiovascular Medicine, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Yurie Soejima
- Department of Pathology and Anatomical Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Haruhisa Fukayama
- Department of Dental Anesthesiology and Orofacial Pain Management, Institute of Science Tokyo, Tokyo, Japan
| | - Shigeru Maeda
- Department of Dental Anesthesiology and Orofacial Pain Management, Institute of Science Tokyo, Tokyo, Japan
| | | |
Collapse
|
8
|
Zhang XZ, Li QL, Tang TT, Cheng X. Emerging Role of Macrophage-Fibroblast Interactions in Cardiac Homeostasis and Remodeling. JACC Basic Transl Sci 2025; 10:113-127. [PMID: 39958468 PMCID: PMC11830265 DOI: 10.1016/j.jacbts.2024.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 02/18/2025]
Abstract
As major noncardiomyocyte components in cardiac tissues, macrophages and fibroblasts play crucial roles in maintaining cardiac homeostasis, orchestrating reparative responses after cardiac injuries, facilitating adaptive cardiac remodeling, and contributing to adverse cardiac remodeling, owing to their inherent heterogeneity and plasticity. Recent advances in research methods have yielded novel insights into the intricate interactions between macrophages and fibroblasts in the cardiac context. This review aims to comprehensively examine the molecular mechanisms governing macrophage-fibroblast interactions in cardiac homeostasis and remodeling, emphasize recent advancements in the field, and offer an evaluation from a translational standpoint.
Collapse
Affiliation(s)
- Xu-Zhe Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin-Lin Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Ting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Lanzer JD, Wienecke LM, Ramirez Flores RO, Zylla MM, Kley C, Hartmann N, Sicklinger F, Schultz JH, Frey N, Saez-Rodriguez J, Leuschner F. Single-cell transcriptomics reveal distinctive patterns of fibroblast activation in heart failure with preserved ejection fraction. Basic Res Cardiol 2024; 119:1001-1028. [PMID: 39311911 PMCID: PMC11628589 DOI: 10.1007/s00395-024-01074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 12/10/2024]
Abstract
Inflammation, fibrosis and metabolic stress critically promote heart failure with preserved ejection fraction (HFpEF). Exposure to high-fat diet and nitric oxide synthase inhibitor N[w]-nitro-l-arginine methyl ester (L-NAME) recapitulate features of HFpEF in mice. To identify disease-specific traits during adverse remodeling, we profiled interstitial cells in early murine HFpEF using single-cell RNAseq (scRNAseq). Diastolic dysfunction and perivascular fibrosis were accompanied by an activation of cardiac fibroblast and macrophage subsets. Integration of fibroblasts from HFpEF with two murine models for heart failure with reduced ejection fraction (HFrEF) identified a catalog of conserved fibroblast phenotypes across mouse models. Moreover, HFpEF-specific characteristics included induced metabolic, hypoxic and inflammatory transcription factors and pathways, including enhanced expression of Angiopoietin-like 4 (Angptl4) next to basement membrane compounds, such as collagen IV (Col4a1). Fibroblast activation was further dissected into transcriptional and compositional shifts and thereby highly responsive cell states for each HF model were identified. In contrast to HFrEF, where myofibroblast and matrifibrocyte activation were crucial features, we found that these cell states played a subsidiary role in early HFpEF. These disease-specific fibroblast signatures were corroborated in human myocardial bulk transcriptomes. Furthermore, we identified a potential cross-talk between macrophages and fibroblasts via SPP1 and TNFɑ with estimated fibroblast target genes including Col4a1 and Angptl4. Treatment with recombinant ANGPTL4 ameliorated the murine HFpEF phenotype and diastolic dysfunction by reducing collagen IV deposition from fibroblasts in vivo and in vitro. In line, ANGPTL4, was elevated in plasma samples of HFpEF patients and particularly high levels associated with a preserved global-longitudinal strain. Taken together, our study provides a comprehensive characterization of molecular fibroblast activation patterns in murine HFpEF, as well as the identification of Angiopoietin-like 4 as central mechanistic regulator with protective effects.
Collapse
Affiliation(s)
- Jan D Lanzer
- Institute for Computational Biomedicine, Heidelberg University, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Internal Medicine II, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Laura M Wienecke
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Ricardo O Ramirez Flores
- Institute for Computational Biomedicine, Heidelberg University, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Maura M Zylla
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Celina Kley
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Niklas Hartmann
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Florian Sicklinger
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | - Norbert Frey
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany.
| | - Florian Leuschner
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany.
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Psarras S. The Macrophage-Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules 2024; 14:1403. [PMID: 39595580 PMCID: PMC11591949 DOI: 10.3390/biom14111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Stromal and immune cells and their interactions have gained the attention of cardiology researchers and clinicians in recent years as their contribution in cardiac repair is increasingly recognized. The repair process in the heart is a particularly critical constellation of complex molecular and cellular events and interactions that characteristically fail to ensure adequate recovery following injury, insult, or exposure to stress conditions in this regeneration-hostile organ. The tremendous consequence of this pronounced inability to maintain homeostatic states is being translated in numerous ways promoting progress into heart failure, a deadly, irreversible condition requiring organ transplantation. Fibrosis is in fact a repair response eventually promoting cardiac dysfunction and cardiac fibroblasts are the major cellular players in this process, overproducing collagens and other extracellular matrix components when activated. On the other hand, macrophages may differentially affect fibroblasts and cardiac repair depending on their status and subsets. The opposite interaction is also probable. We discuss here the multifaceted aspects and crosstalk of this cell dipole and the opportunities it may offer for beneficial manipulation approaches that will hopefully lead to progress in heart disease interventions.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 115 27 Athens, Greece
| |
Collapse
|
11
|
Kadyrov FF, Koenig AL, Amrute JM, Dun H, Li W, Weinheimer CJ, Nigro JM, Kovacs A, Bredemeyer AL, Yang S, Das S, Penna VR, Parvathaneni A, Lai L, Hartmann N, Kopecky BJ, Kreisel D, Lavine KJ. Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1337-1355. [PMID: 39433910 DOI: 10.1038/s44161-024-00553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Myocardial infarction initiates cardiac remodeling and is central to heart failure pathogenesis. Following myocardial ischemia-reperfusion injury, monocytes enter the heart and differentiate into diverse subpopulations of macrophages. Here we show that deletion of Hif1α, a hypoxia response transcription factor, in resident cardiac macrophages led to increased remodeling and overrepresentation of macrophages expressing arginase 1 (Arg1). Arg1+ macrophages displayed an inflammatory gene signature and may represent an intermediate state of monocyte differentiation. Lineage tracing of Arg1+ macrophages revealed a monocyte differentiation trajectory consisting of multiple transcriptionally distinct states. We further showed that deletion of Hif1α in resident cardiac macrophages resulted in arrested progression through this trajectory and accumulation of an inflammatory intermediate state marked by persistent Arg1 expression. Depletion of the Arg1+ trajectory accelerated cardiac remodeling following ischemic injury. Our findings unveil distinct trajectories of monocyte differentiation and identify hypoxia sensing as an important determinant of monocyte differentiation following myocardial infarction.
Collapse
Affiliation(s)
- Farid F Kadyrov
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew L Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Junedh M Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hao Dun
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wenjun Li
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carla J Weinheimer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jessica M Nigro
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrea L Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shibali Das
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay R Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alekhya Parvathaneni
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lulu Lai
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Niklas Hartmann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin J Kopecky
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
12
|
Liang P, Ness J, Rapp J, Boneva S, Schwämmle M, Jung M, Schlunck G, Agostini H, Bucher F. Characterization of the angiomodulatory effects of Interleukin 11 cis- and trans-signaling in the retina. J Neuroinflammation 2024; 21:230. [PMID: 39294742 PMCID: PMC11412048 DOI: 10.1186/s12974-024-03223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND The IL-6 cytokine family, with its crucial and pleiotropic intracellular signaling pathway STAT3, is a promising target for treating vasoproliferative retinal diseases. Previous research has shown that IL-6 cis-signaling (via membrane-bound receptors) and trans-signaling (via soluble receptors) can have distinct effects on target cells, leading to their application in various disease treatments. While IL-6 has been extensively studied, less is known about the angiogenic effects of IL-11, another member of the IL-6 family, in the retina. Therefore, the aim of this study was to characterize the effects of IL-11 on retinal angiogenesis. MAIN TEXT In vitreous samples from proliferative diabetic retinopathy (PDR) patients, elevated levels of IL-11Rα, but not IL-11, were detected. In vitro studies using vascular endothelial cells revealed distinct effects of cis- and trans-signaling: cis-signaling (IL-11 alone) had antiangiogenic effects, while trans-signaling (IL-11 + sIL-11Rα) had proangiogenic and pro-migratory effects. These differences can be attributed to their individual signaling responses and associated transcriptomic changes. Notably, no differences in cis- and trans-signaling were detected in primary mouse Müller cell cultures. STAT3 and STAT1 siRNA knockdown experiments revealed opposing effects on IL-11 signaling, with STAT3 functioning as an antiproliferative and proapoptotic player while STAT1 acts in opposition to STAT3. In vivo, both IL-11 and IL-11 + sIL-11Rα led to a reduction in retinal neovascularization. Immunohistochemical staining revealed Müller cell activation in response to treatment, suggesting that IL-11 affects multiple retinal cell types in vivo beyond vascular endothelial cells. CONCLUSIONS Cis- and trans-signaling by IL-11 have contrasting angiomodulatory effects on endothelial cells in vitro. In vivo, cis- and trans-signaling also influence Müller cells, ultimately determining the overall angiomodulatory impact on the retina, highlighting the intricate interplay between vascular and glial cells in the retina.
Collapse
Affiliation(s)
- Paula Liang
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Jan Ness
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Julian Rapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
- Department of Medicine I, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Malte Jung
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany.
| |
Collapse
|
13
|
Mialet-Perez J, Belaidi E. Interplay between hypoxia inducible Factor-1 and mitochondria in cardiac diseases. Free Radic Biol Med 2024; 221:13-22. [PMID: 38697490 DOI: 10.1016/j.freeradbiomed.2024.04.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ischemic heart diseases and cardiomyopathies are characterized by hypoxia, energy starvation and mitochondrial dysfunction. HIF-1 acts as a cellular oxygen sensor, tuning the balance of metabolic and oxidative stress pathways to provide ATP and sustain cell survival. Acting on mitochondria, HIF-1 regulates different processes such as energy substrate utilization, oxidative phosphorylation and mitochondrial dynamics. In turn, mitochondrial homeostasis modifications impact HIF-1 activity. This underlies that HIF-1 and mitochondria are tightly interconnected to maintain cell homeostasis. Despite many evidences linking HIF-1 and mitochondria, the mechanistic insights are far from being understood, particularly in the context of cardiac diseases. Here, we explore the current understanding of how HIF-1, reactive oxygen species and cell metabolism are interconnected, with a specific focus on mitochondrial function and dynamics. We also discuss the divergent roles of HIF in acute and chronic cardiac diseases in order to highlight that HIF-1, mitochondria and oxidative stress interaction deserves to be deeply investigated. While the strategies aiming at stabilizing HIF-1 have provided beneficial effects in acute ischemic injury, some deleterious effects were observed during prolonged HIF-1 activation. Thus, deciphering the link between HIF-1 and mitochondria will help to optimize HIF-1 modulation and provide new therapeutic perspectives for the treatment of cardiovascular pathologies.
Collapse
Affiliation(s)
- Jeanne Mialet-Perez
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France
| | - Elise Belaidi
- Univ. Lyon 1, Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, LBTI UMR 5305, 69367, Lyon, France.
| |
Collapse
|
14
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
15
|
韩 国, 郝 琰, 李 若, 刘 维, 刘 俊, 聂 宇, 白 丽, 王 玉. [Loss of Myeloid-Derived Growth Factor Leads to Increased Fibrosis in Mice After Myocardial Infarction]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:886-892. [PMID: 39170023 PMCID: PMC11334291 DOI: 10.12182/20240760206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 08/23/2024]
Abstract
Objective To investigate the effect of the loss of myeloid-derived growth factor (Mydgf) on the transformation of cardiac fibroblasts into myofibroblasts after myocardial infarction (MI). Methods Two adult mouse groups, including a wild-type (WT) group and another group with Mydgf knockout (Mydgf-KO), were examined in the study. The mice in these two groups were tested for their cardiac function by measuring left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) (n=10). Quantitative real-time PCR (qRT-PCR) (n=3) was performed to determine the mRNA expression levels of myofibroblast markers, including α-smooth muscle actin (α-SMA), periostin (postn), type Ⅷ collagen (col8al), and connective tissue growth factor (ctgf). Western blot (n=3) was performed to verify the protein expression levels of α-SMA. MI modeling was performed on the WT and the Mydgf-KO mice. Postoperative LVEF and LVFS (n=10) were then measured. The hearts were harvested and Masson staining was performed to determine the infarcted area (n=10). The heart samples of Mydgf-KO and WT mice were collected at d 7 and d 14 after MI, respectively, to verify the expression of myofibroblast markers (n=3). Results Compared with WT mice, LVEF and LVFS in adult Mydgf-KO mice showed no significant changes (all P>0.05). However, the mRNA levels of α-SMA and postn were upregulated, and α-SMA protein expression was also increased (all P<0.05). After MI, compared with WT mice, LVEF and LVFS in Mydgf-KO mice decreased, and the infarcted area increased significantly (all P<0.05). Furthermore, mRNA levels of α-SMA, col8al, postn, and ctgf were increased in Mydgf-KO mice. In addition, the α-SMA protein expression level was upregulated and α-SMA-positive fibroblasts were increased (P<0.05). Conclusion Mydgf deletion promotes the transformation of cardiac fibroblasts into myofibroblasts and aggravates myocardial fibrosis after MI.
Collapse
Affiliation(s)
- 国玲 韩
- 山西医科大学基础医学院 生物化学与分子生物学教研室 (太原 030001)Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - 琰琰 郝
- 山西医科大学基础医学院 生物化学与分子生物学教研室 (太原 030001)Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - 若朴 李
- 山西医科大学基础医学院 生物化学与分子生物学教研室 (太原 030001)Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - 维静 刘
- 山西医科大学基础医学院 生物化学与分子生物学教研室 (太原 030001)Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - 俊 刘
- 山西医科大学基础医学院 生物化学与分子生物学教研室 (太原 030001)Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - 宇 聂
- 山西医科大学基础医学院 生物化学与分子生物学教研室 (太原 030001)Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - 丽娜 白
- 山西医科大学基础医学院 生物化学与分子生物学教研室 (太原 030001)Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - 玉瑶 王
- 山西医科大学基础医学院 生物化学与分子生物学教研室 (太原 030001)Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
16
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
17
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Dufeys C, Bodart J, Bertrand L, Beauloye C, Horman S. Fibroblasts and platelets: a face-to-face dialogue at the heart of cardiac fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H655-H669. [PMID: 38241009 DOI: 10.1152/ajpheart.00559.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
Myocardial fibrosis is a feature found in most cardiac diseases and a key element contributing to heart failure and its progression. It has therefore become a subject of particular interest in cardiac research. Mechanisms leading to pathological cardiac remodeling and heart failure are diverse, including effects on cardiac fibroblasts, the main players in cardiac extracellular matrix synthesis, but also on cardiomyocytes, immune cells, endothelial cells, and more recently, platelets. Although transforming growth factor-β (TGF-β) is a primary regulator of fibrosis development, the cellular and molecular mechanisms that trigger its activation after cardiac injury remain poorly understood. Different types of anti-TGF-β drugs have been tested for the treatment of cardiac fibrosis and have been associated with side effects. Therefore, a better understanding of these mechanisms is of great clinical relevance and could allow us to identify new therapeutic targets. Interestingly, it has been shown that platelets infiltrate the myocardium at an early stage after cardiac injury, producing large amounts of cytokines and growth factors. These molecules can directly or indirectly regulate cells involved in the fibrotic response, including cardiac fibroblasts and immune cells. In particular, platelets are known to be a major source of TGF-β1. In this review, we have provided an overview of the classical cellular effectors involved in the pathogenesis of cardiac fibrosis, focusing on the emergent role of platelets, while discussing opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Cécile Dufeys
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Julie Bodart
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Chen XY, Wang TT, Shen Q, Ma H, Li ZH, Yu XN, Huang XF, Qing LS, Luo P. Preclinical Investigations on Anti-fibrotic Potential of Long-Term Oral Therapy of Sodium Astragalosidate in Animal Models of Cardiac and Renal Fibrosis. ACS Pharmacol Transl Sci 2024; 7:421-431. [PMID: 38357273 PMCID: PMC10863439 DOI: 10.1021/acsptsci.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
In traditional Chinese medicine, Radix Astragali has played a vital role in treating progressive fibrotic diseases. One of its main active components, astragaloside IV, is a promising anti-fibrotic treatment despite its extremely low bioavailability. Our study aimed to optimize sodium astragalosidate (SA) by salt formation to improve solubility and oral absorption for anti-fibrotic therapy in vivo. Isoproterenol-induced myocardial fibrosis rat models and obese BKS-db mice presenting diabetic kidney fibrosis were used in this study. Daily oral administration of SA (20 mg/kg) for 14 days ameliorated cardiac fibrosis by reducing collagen accumulation and fibrosis-related inflammatory signals, including TNF-α, IL-1β, and IL-6. In db/db mice, SA (5,10, and 20 mg/kg per day for 8 weeks) dose-dependently alleviated lipid metabolism impairment and renal dysfunction when administered orally. Furthermore, Western blot and immunohistochemistry analyses demonstrated that SA treatment inhibited renal fibrosis by suppressing TGF-β1/Smads signaling. Taken together, our findings provide the oral-route medication availability of SA, which thus might offer a novel lead compound in preclinical trial-enabling studies for developing a long-term therapy to treat and prevent fibrosis.
Collapse
Affiliation(s)
- Xiao-Yi Chen
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Tian-Tian Wang
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Qing Shen
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Collaborative
Innovation Center of Seafood Deep Processing, Zhejiang Province Joint
Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hao Ma
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Zhan-Hua Li
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Xi-Na Yu
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Xiao-Feng Huang
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Lin-Sen Qing
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Pei Luo
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| |
Collapse
|
20
|
Pan J, Zhang L, Li D, Li Y, Lu M, Hu Y, Sun B, Zhang Z, Li C. Hypoxia-inducible factor-1: Regulatory mechanisms and drug therapy in myocardial infarction. Eur J Pharmacol 2024; 963:176277. [PMID: 38123007 DOI: 10.1016/j.ejphar.2023.176277] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Myocardial infarction (MI), an acute cardiovascular disease characterized by coronary artery blockage, inadequate blood supply, and subsequent ischemic necrosis of the myocardium, is one of the leading causes of death. The cellular, physiological, and pathological responses following MI are complex, involving multiple intertwined pathological mechanisms. Hypoxia-inducible factor-1 (HIF-1), a crucial regulator of hypoxia, plays a significant role in of the development of MI by modulating the behavior of various cells such as cardiomyocytes, endothelial cells, macrophages, and fibroblasts under hypoxic conditions. HIF-1 regulates various post-MI adaptive reactions to acute ischemia and hypoxia through various mechanisms. These mechanisms include angiogenesis, energy metabolism, oxidative stress, inflammatory response, and ventricular remodeling. With its crucial role in MI, HIF-1 is expected to significantly influence the treatment of MI. However, the drugs available for the treatment of MI targeting HIF-1 are currently limited, and most contain natural compounds. The development of precision-targeted drugs modulating HIF-1 has therapeutic potential for advancing MI treatment research and development. This study aimed to summarize the regulatory role of HIF-1 in the pathological responses of various cells following MI, the diverse mechanisms of action of HIF-1 in MI, and the potential drugs targeting HIF-1 for treating MI, thus providing the theoretical foundations for potential clinical therapeutic targets.
Collapse
Affiliation(s)
- Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongxiao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanlong Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bowen Sun
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, 266000, China.
| |
Collapse
|
21
|
Sasaki T, Kuse Y, Nakamura S, Shimazawa M. Progranulin-deficient macrophages cause cardiotoxicity under hypoxic conditions. Biochem Biophys Res Commun 2024; 691:149341. [PMID: 38039836 DOI: 10.1016/j.bbrc.2023.149341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Myocardial infarction (MI) induces structural and electrical cardiac remodeling in response to ischemic insult, causing lethal arrhythmias and sudden death. Progranulin (PGRN) is a glycoprotein mainly expressed in macrophages that modulates the immune responses. In this study, we investigated the direct influence of PGRN knockout (Grn-/-) macrophages on post-MI pathophysiology. An MI mouse model was established by ligating the left coronary artery for RNA sequencing and electrocardiographic analysis. Bone marrow-derived macrophages (BMDMs) were injected into mice and supernatant was collected for the measurement of reactive oxygen species (ROS) levels and extracellular flux analysis. Administration of Grn-/- BMDMs prolonged the QT intervals in the MI mouse model. Moreover, genes highly expressed in macrophages were upregulated in Grn-/- heart after MI. Post-hypoxic supernatant of Grn-/- BMDMs increased the oxygen-glucose deprivation-induced cardiomyocyte death. Grn-/- BMDMs exhibited increased ROS production, oxygen consumption, and extracellular acidification under hypoxia and inflammatory conditions. These findings suggest that PGRN deficiency causes cardiotoxicity via secretory components of macrophages that exhibit metabolic abnormalities under hypoxia.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshiki Kuse
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
22
|
Di X, Chen J, Li Y, Wang M, Wei J, Li T, Liao B, Luo D. Crosstalk between fibroblasts and immunocytes in fibrosis: From molecular mechanisms to clinical trials. Clin Transl Med 2024; 14:e1545. [PMID: 38264932 PMCID: PMC10807359 DOI: 10.1002/ctm2.1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The impact of fibroblasts on the immune system provides insight into the function of fibroblasts. In various tissue microenvironments, multiple fibroblast subtypes interact with immunocytes by secreting growth factors, cytokines, and chemokines, leading to wound healing, fibrosis, and escape of cancer immune surveillance. However, the specific mechanisms involved in the fibroblast-immunocyte interaction network have not yet been fully elucidated. MAIN BODY AND CONCLUSION Therefore, we systematically reviewed the molecular mechanisms of fibroblast-immunocyte interactions in fibrosis, from the history of cellular evolution and cell subtype divisions to the regulatory networks between fibroblasts and immunocytes. We also discuss how these communications function in different tissue and organ statuses, as well as potential therapies targeting the reciprocal fibroblast-immunocyte interplay in fibrosis. A comprehensive understanding of these functional cells under pathophysiological conditions and the mechanisms by which they communicate may lead to the development of effective and specific therapies targeting fibrosis.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jiawei Chen
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Menghua Wang
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Deyi Luo
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
23
|
Xu P, Yi Y, Xiong L, Luo Y, Xie C, Luo D, Zeng Z, Liu A. Oncostatin M/Oncostatin M Receptor Signal Induces Radiation-Induced Heart Fibrosis by Regulating SMAD4 in Fibroblast. Int J Radiat Oncol Biol Phys 2024; 118:203-217. [PMID: 37610394 DOI: 10.1016/j.ijrobp.2023.07.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/15/2023] [Accepted: 07/22/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Radiation-induced heart fibrosis (RIHF) is a severe consequence of radiation-induced heart damage (RIHD) leading to impaired cardiac function. The involvement of oncostatin M (OSM) and its receptor (OSMR) in RIHD remains unclear. This study aimed to investigate the specific mechanism of OSM/OSMR in RIHF/RIHD. METHODS AND MATERIALS RNA sequencing was performed on heart tissues from a RIHD mouse model. OSM levels were assessed in serum samples obtained from patients receiving thoracic radiation therapy (RT), as well as in RIHF mouse heart tissues and serum using enzyme-linked immunosorbent assay. Fiber activation was evaluated through costimulation of primary cardiac fibroblasts and NIH3T3 cells with RT and OSM, using Western blotting, immunofluorescence, and quantitative Polymerase Chain Reaction (qPCR). Adeno-associated virus serotype 9-mediated overexpression or silencing of OSM specifically in the heart was performed in vivo to assess cardiac fibrosis levels by transthoracic echocardiography and pathologic examination. The regulatory mechanism of OSM on the transcription level of SMAD4 was further explored in vitro using mass spectrometric analysis, chromatin immunoprecipitation-qPCR, and DNA pull-down. RESULTS OSM levels were elevated in the serum of patients after thoracic RT as well as in RIHF mouse cardiac endothelial cells and mouse serum. The OSM rate (post-RT/pre-RT) and the heart exposure dose in RT patients showed a positive correlation. Silencing OSMR in RIHF mice reduced fibrosis, while OSMR overexpression increased fibrotic responses. Furthermore, increased OSM promoted histone acetylation (H3K27ac) in the SMAD4 promoter region, influencing SMAD4 transcription and subsequently enhancing fibrotic response. CONCLUSIONS The findings demonstrated that OSM/OSMR signaling promotes SMAD4 transcription in cardiac fibroblasts through H3K27 hyperacetylation, thereby promoting radiation-induced cardiac fibrosis and manifestations of RIHD.
Collapse
Affiliation(s)
- Peng Xu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi Province, China; Radiation Induced Heart Damage Institute of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yali Yi
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi Province, China; Radiation Induced Heart Damage Institute of Nanchang University, Nanchang, Jiangxi Province, China
| | - Le Xiong
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi Province, China; Radiation Induced Heart Damage Institute of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yuxi Luo
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi Province, China
| | - Caifeng Xie
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, China
| | - Daya Luo
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhimin Zeng
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi Province, China; Radiation Induced Heart Damage Institute of Nanchang University, Nanchang, Jiangxi Province, China.
| | - Anwen Liu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, Jiangxi Province, China; Radiation Induced Heart Damage Institute of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
24
|
Xu Y, Zhu Y, Xu J, Mao H, Li J, Zhu X, Kong X, Zhang J. Analysis of microRNA expression in rat kidneys after VEGF inhibitor treatment under different degrees of hypoxia. Physiol Genomics 2023; 55:504-516. [PMID: 37642276 PMCID: PMC11178269 DOI: 10.1152/physiolgenomics.00023.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Previously, we found that the incidence of kidney injury in patients with chronic hypoxia was related to the partial pressure of arterial oxygen. However, at oxygen concentrations that contribute to kidney injury, the changes in the relationship between microRNAs (miRNAs) and the hypoxia-inducible factor-1α (HIF-1α)-vascular endothelial growth factor (VEGF) axis and the key miRNAs involved in this process have not been elucidated. Therefore, we elucidated the relationship between VEGF and kidney injury at different oxygen concentrations and the mechanisms mediated by miRNAs. Sprague-Dawley rats were exposed to normobaric hypoxia and categorized into six groups based on the concentration of the oxygen inhaled and injection of the angiogenesis inhibitor bevacizumab, a humanized anti-VEGF monoclonal antibody. Renal tissue samples were processed to determine pathological and morphological changes and HIF-1α, VEGF, and miRNA expression. We performed a clustering analysis of high-risk pathways and key hub genes. The results were validated using two Gene Expression Omnibus datasets (GSE94717 and GSE30718). As inhaled oxygen concentration decreased, destructive changes in the kidney tissues became more severe. Although the kidney possesses a self-protective mechanism under an intermediate degree of hypoxia (10% O2), bevacizumab injections disrupted this mechanism, and VEGF expression was associated with the ability of the kidney to repair itself. rno-miR-124-3p was identified as a crucial miRNA; a key gene target, Mapk14, was identified during this process. VEGF plays an important role in kidney protection from injury under different hypoxia levels. Specific miRNAs and their target genes may serve as biomarkers that provide new insights into kidney injury treatment.NEW & NOTEWORTHY Renal tolerance to hypoxic environments is limited, and the degree of hypoxia does not show a linear relationship with angiogenesis. VEGF plays an important role in the kidney's self-protective mechanism under different levels of hypoxia. miR-124-3p may be particularly important in kidney repair, and it may modulate VEGF expression through the miR-124-3p/Mapk14 signaling pathway. These microRNAs may serve as biomarkers that provide new insights into kidney injury treatment.
Collapse
Affiliation(s)
- Yaya Xu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Yueniu Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Jiayue Xu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Haoyun Mao
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Jiru Li
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Xiaodong Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Xiangmei Kong
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Jianhua Zhang
- Department of Pediatric Respiratory Department, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
25
|
Baloglu E. HIF-2α Controls Expression and Intracellular Trafficking of the α2-Subunit of Na,K-ATPase in Hypoxic H9c2 Cardiomyocytes. Biomedicines 2023; 11:2879. [PMID: 38001879 PMCID: PMC10669276 DOI: 10.3390/biomedicines11112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
The Na,K-ATPase (NKA) pump plays essential roles for optimal function of the heart. NKA activity decreases in necropsy materials from ischemic heart disease, heart failure and in experimental models. Cellular adaptation to hypoxia is regulated by hypoxia-induced transcription factors (HIF); we tested whether HIFs are involved in regulating the expression and intracellular dynamics of the α2-isoform of NKA (α2-NKA). HIF-1α and HIF-2α expression was suppressed in H9c2 cardiomyocytes by adenoviral infection, where cells were kept in 1% O2 for 24 h. The silencing efficiency of HIFs was tested on the mRNA and protein expression. We measured the mRNA expression of α2-NKA in HIF-silenced and hypoxia-exposed cells. The membrane and intracellular expression of α2-NKA was measured after labelling the cell surface with NHS-SS-biotin, immunoprecipitation and Western blotting. Hypoxia increased the mRNA expression of α2-NKA 5-fold compared to normoxic cells in an HIF-2α-sensitive manner. The plasma membrane expression of α2-NKA increased in hypoxia by 2-fold and was fully prevented by HIF-2α silencing. Intracellular expression of α2-NKA was not affected. These results showed for the first time that in hypoxic cardiomyocytes α2-NKA is transcriptionally and translationally regulated by HIF-2α. The molecular mechanism behind this regulation needs further investigation.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
26
|
Zuo W, Sun R, Ji Z, Ma G. Macrophage-driven cardiac inflammation and healing: insights from homeostasis and myocardial infarction. Cell Mol Biol Lett 2023; 28:81. [PMID: 37858035 PMCID: PMC10585879 DOI: 10.1186/s11658-023-00491-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Early and prompt reperfusion therapy has markedly improved the survival rates among patients enduring myocardial infarction (MI). Nonetheless, the resulting adverse remodeling and the subsequent onset of heart failure remain formidable clinical management challenges and represent a primary cause of disability in MI patients worldwide. Macrophages play a crucial role in immune system regulation and wield a profound influence over the inflammatory repair process following MI, thereby dictating the degree of myocardial injury and the subsequent pathological remodeling. Despite numerous previous biological studies that established the classical polarization model for macrophages, classifying them as either M1 pro-inflammatory or M2 pro-reparative macrophages, this simplistic categorization falls short of meeting the precision medicine standards, hindering the translational advancement of clinical research. Recently, advances in single-cell sequencing technology have facilitated a more profound exploration of macrophage heterogeneity and plasticity, opening avenues for the development of targeted interventions to address macrophage-related factors in the aftermath of MI. In this review, we provide a summary of macrophage origins, tissue distribution, classification, and surface markers. Furthermore, we delve into the multifaceted roles of macrophages in maintaining cardiac homeostasis and regulating inflammation during the post-MI period.
Collapse
Affiliation(s)
- Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Renhua Sun
- Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng, 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
27
|
Gurler B, Gencay G, Baloglu E. Hypoxia and HIF-1α Regulate the Activity and Expression of Na,K-ATPase Subunits in H9c2 Cardiomyoblasts. Curr Issues Mol Biol 2023; 45:8277-8288. [PMID: 37886965 PMCID: PMC10605391 DOI: 10.3390/cimb45100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The optimal function of the Na,K-ATPase (NKA) pump is essential for the heart. In ischemic heart disease, NKA activity decreases due to the decreased expression of the pump subunits. Here, we tested whether the hypoxia-inducible transcription factor (HIF-1α), the key signaling molecule regulating the adaptation of cells to hypoxia, is involved in controlling the expression and cellular dynamics of α1- and β1-NKA isoforms and of NKA activity in in-vitro hypoxic H9c2 cardiomyoblasts. HIF-1α was silenced through adenoviral infection, and cells were kept in normoxia (19% O2) or hypoxia (1% O2) for 24 h. We investigated the mRNA and protein expression of α1-, β1-NKA using RT-qPCR and Western blot in whole-cell lysates, cell membranes, and cytoplasmic fractions after labeling the cell surface with NHS-SS-biotin and immunoprecipitation. NKA activity and intracellular ATP levels were also measured. We found that in hypoxia, silencing HIF-1α prevented the decreased mRNA expression of α1-NKA but not of β1-NKA. Hypoxia decreased the plasma membrane expression of α1-NKA and β1- NKA compared to normoxic cells. In hypoxic cells, HIF-1α silencing prevented this effect by inhibiting the internalization of α1-NKA. Total protein expression was not affected. The decreased activity of NKA in hypoxic cells was fully prevented by silencing HIF-1α independent of cellular ATP levels. This study is the first to show that in hypoxic H9c2 cardiomyoblasts, HIF-1α controls the internalization and membrane insertion of α1-NKA subunit and of NKA activity. The mechanism behind this regulation needs further investigation.
Collapse
Affiliation(s)
- Beyza Gurler
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey;
| | - Gizem Gencay
- Department of Molecular and Translational Biomedicine, Institute of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey;
| | - Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| |
Collapse
|
28
|
Chen Y, Zhou J, Xu S, Nie J. Role of Interleukin-6 Family Cytokines in Organ Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:239-253. [PMID: 37900004 PMCID: PMC10601952 DOI: 10.1159/000530288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 10/31/2023]
Abstract
Background Organ fibrosis remains an important cause of high incidence rate and mortality worldwide. The prominent role of interleukin-6 (IL-6) family members represented by IL-6 in inflammation has been extensively studied, and drugs targeting IL-6 have been used clinically. Because of the close relationship between inflammation and fibrosis, researches on the role of IL-6 family members in organ fibrosis are also gradually emerging. Summary In this review, we systematically reviewed the role of IL-6 family members in fibrosis and their possible mechanisms. We listed the role of IL-6 family members in organ fibrosis and drew two diagrams to illustrate the downstream signal transductions of IL-6 family members. We also summarized the effect of some IL-6 family members' antagonists in a table. Key Messages Fibrosis contributes to organ structure damage, organ dysfunction, and eventually organ failure. Although IL-6 family cytokines have similar downstream signal pathways, different members play various roles in an organ-specific manner which might be partly due to their different target cell populations. The pathogenic role of individual member in various diseases needs to be deciphered carefully.
Collapse
Affiliation(s)
- Ying Chen
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxin Zhou
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihui Xu
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Nie
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Zhang Y, Yu L, Qiu R, Cao L, Ye G, Lin R, Wang Y, Wang G, Hu B, Hou H. 3D hypoxia-mimicking and anti-synechia hydrogel enabling promoted neovascularization for renal injury repair and regeneration. Mater Today Bio 2023; 21:100694. [PMID: 37346780 PMCID: PMC10279555 DOI: 10.1016/j.mtbio.2023.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
In-situ renal tissue engineering is promising yet challenging for renal injury repair and regeneration due to the highly vascularized structure of renal tissue and complex high-oxidative stress and ischemic microenvironment. Herein, a novel biocompatible 3D porous hydrogel (DFO-gel) with sustained release capacity of hypoxia mimicking micromolecule drug deferoxamine (DFO) was developed for in-situ renal injury repair. In vitro and in vivo experimental results demonstrated that the developed DFO-gels can exert the synchronous benefit of scavenging excess reactive oxygen species (ROS) regulating inflammatory microenvironment and promoting angiogenesis for effective renal injury repair by up-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). The in-situ neogenesis of neonatal glomerular- and tubular-like structures in the implanted areas in the partially nephrectomized rats also suggested the potential for promoting renal injury repair and regeneration. This multifunctional hydrogel can not only exhibit the sustained release and promoted bio-uptake capacity for DFO, but also improve the renal injured microenvironment by alleviating oxidative and inflammatory stress, accelerating neovascularization, and promoting efficient anti-synechia. We believe this work offers a promising strategy for renal injury repair and regeneration.
Collapse
Affiliation(s)
- Yuehang Zhang
- Division of Nephrology, State Key Lab for Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Division of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Lei Yu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Renjie Qiu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Lisha Cao
- Division of Nephrology, State Key Lab for Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Genlan Ye
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Yongqin Wang
- Division of Nephrology, State Key Lab for Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Guobao Wang
- Division of Nephrology, State Key Lab for Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Bianxiang Hu
- Division of Nephrology, State Key Lab for Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| |
Collapse
|
30
|
Jian Y, Zhou X, Shan W, Chen C, Ge W, Cui J, Yi W, Sun Y. Crosstalk between macrophages and cardiac cells after myocardial infarction. Cell Commun Signal 2023; 21:109. [PMID: 37170235 PMCID: PMC10173491 DOI: 10.1186/s12964-023-01105-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/18/2023] [Indexed: 05/13/2023] Open
Abstract
Cardiovascular diseases, such as myocardial infarction (MI), are a leading cause of death worldwide. Acute MI (AMI) inflicts massive injury to the coronary microcirculation, causing large-scale cardiomyocyte death due to ischemia and hypoxia. Inflammatory cells such as monocytes and macrophages migrate to the damaged area to clear away dead cells post-MI. Macrophages are pleiotropic cells of the innate immune system, which play an essential role in the initial inflammatory response that occurs following MI, inducing subsequent damage and facilitating recovery. Besides their recognized role within the immune response, macrophages participate in crosstalk with other cells (including cardiomyocytes, fibroblasts, immune cells, and vascular endothelial cells) to coordinate post-MI processes within cardiac tissue. Macrophage-secreted exosomes have recently attracted increasing attention, which has led to a more elaborate understanding of macrophage function. Currently, the functional roles of macrophages in the microenvironment of the infarcted heart, particularly with regard to their interaction with surrounding cells, remain unclear. Understanding the specific mechanisms that mediate this crosstalk is essential in treating MI. In this review, we discuss the origin of macrophages, changes in their distribution post-MI, phenotypic and functional plasticity, as well as the specific signaling pathways involved, with a focus on the crosstalk with other cells in the heart. Thus, we provide a new perspective on the treatment of MI. Further in-depth research is required to elucidate the mechanisms underlying crosstalk between macrophages and other cells within cardiac tissue for the identification of potential therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Cheng Chen
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Ge
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
31
|
Baloglu E. Hypoxic Stress-Dependent Regulation of Na,K-ATPase in Ischemic Heart Disease. Int J Mol Sci 2023; 24:ijms24097855. [PMID: 37175562 PMCID: PMC10177966 DOI: 10.3390/ijms24097855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
In cardiomyocytes, regular activity of the Na,K-ATPase (NKA) and its Na/K pump activity is essential for maintaining ion gradients, excitability, propagation of action potentials, electro-mechanical coupling, trans-membrane Na+ and Ca2+ gradients and, thus, contractility. The activity of NKA is impaired in ischemic heart disease and heart failure, which has been attributed to decreased expression of the NKA subunits. Decreased NKA activity leads to intracellular Na+ and Ca2+ overload, diastolic dysfunction and arrhythmias. One signal likely related to these events is hypoxia, where hypoxia-inducible factors (HIF) play a critical role in the adaptation of cells to low oxygen tension. HIF activity increases in ischemic heart, hypertension, heart failure and cardiac fibrosis; thus, it might contribute to the impaired function of NKA. This review will mainly focus on the regulation of NKA in ischemic heart disease in the context of stressed myocardium and the hypoxia-HIF axis and argue on possible consequences of treatment.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
32
|
Tejedor S, Buigues M, González-King H, Silva AM, García NA, Dekker N, Sepúlveda P. Oncostatin M-Enriched Small Extracellular Vesicles Derived from Mesenchymal Stem Cells Prevent Isoproterenol-Induced Fibrosis and Enhance Angiogenesis. Int J Mol Sci 2023; 24:ijms24076467. [PMID: 37047440 PMCID: PMC10095085 DOI: 10.3390/ijms24076467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Myocardial fibrosis is a pathological hallmark of cardiac dysfunction. Oncostatin M (OSM) is a pleiotropic cytokine that can promote fibrosis in different organs after sustained exposure. However, OSM released by macrophages during cardiac fibrosis suppresses cardiac fibroblast activation by modulating transforming growth factor beta 1 (TGF-β1) expression and extracellular matrix deposition. Small extracellular vesicles (SEVs) from mesenchymal stromal cells (MSCs) are being investigated to treat myocardial infarction, using different strategies to bolster their therapeutic ability. Here, we generated TERT-immortalized human MSC cell lines (MSC-T) engineered to overexpress two forms of cleavage-resistant OSM fused to CD81TM (OSM-SEVs), which allows the display of the cytokine at the surface of secreted SEVs. The therapeutic potential of OSM-SEVs was assessed in vitro using human cardiac ventricular fibroblasts (HCF-Vs) activated by TGF-β1. Compared with control SEVs, OSM-loaded SEVs reduced proliferation in HCF-V and blunted telo-collagen expression. When injected intraperitoneally into mice treated with isoproterenol, OSM-loaded SEVs reduced fibrosis, prevented cardiac hypertrophy, and increased angiogenesis. Overall, we demonstrate that the enrichment of functional OSM on the surface of MSC-T-SEVs increases their potency in terms of anti-fibrotic and pro-angiogenic properties, which opens new perspectives for this novel biological product in cell-free-based therapies.
Collapse
|
33
|
He WF, Yan LF. [The regulatory role and related mechanisms of macrophages in wound healing]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:106-113. [PMID: 36878519 DOI: 10.3760/cma.j.cn501225-20230110-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Wound healing is a complex process under precise regulation, including multiple stages such as inflammation, anti-inflammatory, and regeneration. Macrophages play an important regulatory role in the differentiated process of wound healing due to their obvious plasticity. If macrophages fail to express specific functions in a timely manner, it will affect the healing function of tissues and lead to pathological tissue healing. Therefore, it is of great significance to understand the different functions of different types of macrophages and to regulate them specifically in different stages of wound healing to promote the healing and regeneration of wound tissue. In this paper, we illustrate the different functions of macrophages in the wound and their basic mechanisms, according to the basic process of wound healing, and emphasize the strategies of macrophage regulation that may be applied to clinical treatment in the future.
Collapse
Affiliation(s)
- W F He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - L F Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
34
|
Li R, Xiang C, Li Y, Nie Y. Targeting immunoregulation for cardiac regeneration. J Mol Cell Cardiol 2023; 177:1-8. [PMID: 36801268 DOI: 10.1016/j.yjmcc.2023.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Inducing endogenous cardiomyocyte proliferation and heart regeneration is a promising strategy to treat ischemic heart failure. The immune response has recently been considered critical in cardiac regeneration. Thus, targeting the immune response is a potent strategy to improve cardiac regeneration and repair after myocardial infarction. Here we reviewed the characteristics of the relationship between the postinjury immune response and heart regenerative capacity and summarized the latest studies focusing on inflammation and heart regeneration to identify potent targets of the immune response and strategies in the immune response to promote cardiac regeneration.
Collapse
Affiliation(s)
- Ruopu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chenying Xiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yixun Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou 450046, China.
| |
Collapse
|
35
|
Alieva AM, Butenko AV, Teplova NV, Reznik EV, Valiev RK, Skripnichenko EА, Sozykin AV, Nikitin IG. The role of interleukin-6 in the development of cardiovascular diseases: A review. CONSILIUM MEDICUM 2023. [DOI: 10.26442/20751753.2022.12.201948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Currently, the search and study of new biological markers that can provide early diagnosis of cardiovascular diseases, serve as a laboratory tool for assessing the effectiveness of treatment, or be used as prognostic markers and risk stratification criteria is ongoing. Our literature review indicates the potentially important diagnostic and prognostic value of assessing members of the interleukin-6 family. It is expected that further scientific and clinical studies will demonstrate the possibility of using members of the interleukin-6 family as an additional laboratory tool for the diagnosis, risk stratification and prediction of cardiovascular events in cardiac patients. It is necessary to evaluate in detail the possibilities of blockade of these interleukin-6 molecules in patients with cardiovascular diseases in vitro and in vivo.
Collapse
|
36
|
Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J Cardiol 2023; 81:202-208. [PMID: 36127212 DOI: 10.1016/j.jjcc.2022.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 12/29/2022]
Abstract
Oxygen is essential for living organisms. Molecular oxygen binds to hemoglobin and is delivered to every organ in the body. In several cardiovascular diseases or anemia, local oxygen tension drops below its physiological level and tissue hypoxia develops. In such conditions, the expression of hypoxia-responsive genes increases to alleviate the respective condition. The hypoxia-responsive genes include the genes coding erythropoietin (EPO), vascular endothelial growth factor-A, and glycolytic enzymes. Hypoxia-inducible factor (HIF)-1α, HIF-2α, and HIF-3α are transcription factors that regulate the hypoxia-responsive genes. The HIF-α proteins are continuously degraded by an oxygen-dependent degrading pathway involving HIF-prolyl hydroxylases (HIF-PHs) and von Hippel-Lindau tumor suppressor protein. However, upon hypoxia, this degradation ceases and the HIF-α proteins form heterodimers with HIF-1β (a constitutive subunit of HIF), which results in the induction of hypoxia responsive genes. HIF-1α and HIF-2α are potential therapeutic targets for renal anemia, where EPO production is impaired due to chronic kidney diseases. Small molecule HIF-PH inhibitors are currently used to activate HIF-α signaling and to increase plasma hemoglobin levels by restoring EPO production. In this review, we will discuss the current understanding of the roles of the HIF-α signaling pathway in cardiovascular diseases. This will include the roles of HIF-1α in cardiomyocytes as well as in stromal cells including macrophages.
Collapse
Affiliation(s)
- Tatsuyuki Sato
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
37
|
Zhu K, Yao Y, Wang K, Shao F, Zhu Z, Song Y, Zhou Z, Jiang D, Lan X, Qin C. Berberin sustained-release nanoparticles were enriched in infarcted rat myocardium and resolved inflammation. J Nanobiotechnology 2023; 21:33. [PMID: 36709291 PMCID: PMC9883926 DOI: 10.1186/s12951-023-01790-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Inflammatory regulation induced by macrophage polarization is essential for cardiac repair after myocardial infarction (MI). Berberin (BBR) is an isoquinoline tetrasystemic alkaloid extracted from plants. This study analyzes the most likely mechanism of BBR in MI treatment determined via network pharmacology, showing that BBR acts mainly through inflammatory responses. Because platelets (PLTs) can be enriched in the infarcted myocardium, PLT membrane-coated polylactic-co-glycolic acid (PLGA) nanoparticles (BBR@PLGA@PLT NPs) are used, which show enrichment in the infarcted myocardium to deliver BBR sustainably. Compared with PLGA nanoparticles, BBR@PLGA@PLT NPs are more enriched in the infarcted myocardium and exhibit less uptake in the liver. On day three after MI, BBR@PLGA@PLT NPs administration significantly increases the number of repaired macrophages and decreases the number of inflammatory macrophages and apoptotic cells in infarcted rat myocardium. On the 28th day after MI, the BBR@PLGA@PLT group exhibits a protective effect on cardiac function, reduced cardiac collagen deposition, improved scar tissue stiffness, and an excellent angiogenesis effect. In addition, BBR@PLGA@PLT group has no significant impact on major organs either histologically or enzymologically. In summary, the therapeutic effect of BBR@PLGA@PLT NPs on MI is presented in detail from the perspective of the resolution of inflammation, and a new solution for MI treatment is proposed.
Collapse
Affiliation(s)
- Ke Zhu
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,Department of Nuclear Medicine, The First People’s Hospital of Zigong, Zigong, Sichuan China
| | - Yu Yao
- grid.33199.310000 0004 0368 7223Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Kun Wang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.24516.340000000123704535Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, The First People’s Hospital of Zigong, Zigong, Sichuan China
| | - Ziyang Zhu
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Yangmeihui Song
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Zhangyongxue Zhou
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Dawei Jiang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| | - Xiaoli Lan
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| | - Chunxia Qin
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| |
Collapse
|
38
|
Wang L, Zhang W, Li C, Chen X, Huang J. Identification of biomarkers related to copper metabolism in patients with pulmonary arterial hypertension. BMC Pulm Med 2023; 23:31. [PMID: 36690956 PMCID: PMC9868507 DOI: 10.1186/s12890-023-02326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The pathogenesis of pulmonary arterial hypertension (PAH) and associated biomarkers remain to be studied. Copper metabolism is an emerging metabolic research direction in many diseases, but its role in PAH is still unclear. METHODS PAH-related datasets were downloaded from the Gene Expression Omnibus database, and 2067 copper metabolism-related genes (CMGs) were obtained from the GeneCards database. Differential expression analysis and the Venn algorithm were used to acquire the differentially expressed CMGs (DE-CMGs). DE-CMGs were then used for the coexpression network construction to screen candidate key genes associated with PAH. Furthermore, the predictive performance of the model was verified by receiver operating characteristic (ROC) analysis, and genes with area under the curve (AUC) values greater than 0.8 were selected as diagnostic genes. Then support vector machine, least absolute shrinkage and selection operator regression, and Venn diagrams were applied to detect biomarkers. Moreover, gene set enrichment analysis was performed to explore the function of the biomarkers, and immune-related analyses were utilized to study the infiltration of immune cells. The drug-gene interaction database was used to predict potential therapeutic drugs for PAH using the biomarkers. Biomarkers expression in clinical samples was verified by real-time quantitative PCR. RESULTS Four biomarkers (DDIT3, NFKBIA, OSM, and PTGER4) were screened. The ROC analysis showed that the 4 biomarkers performed well (AUCs > 0.7). The high expression groups for the 4 biomarkers were enriched in protein activity-related pathways including protein export, spliceosome and proteasome. Furthermore, 8 immune cell types were significantly different between the two groups, including naive B cells, memory B cells, and resting memory CD4 T cells. Afterward, a gene-drug network was constructed. This network illustrated that STREPTOZOCIN, IBUPROFEN, and CELECOXIB were shared by the PTGER4 and DDIT3. Finally, the results of RT-qPCR in clinical samples further confirmed the results of the public database for the expression of NFKBIA and OSM. CONCLUSION In conclusion, four biomarkers (DDIT3, NFKBIA, OSM, and PTGER4) with considerable diagnostic values were identified, and a gene-drug network was further constructed. The results of this study may have significant implications for the development of new diagnostic biomarkers and actionable targets to expand treatment options for PAH patients.
Collapse
Affiliation(s)
- Lei Wang
- grid.452672.00000 0004 1757 5804Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), Xi’an, 710004 Shaanxi China
| | - Wei Zhang
- grid.452438.c0000 0004 1760 8119Department of Emergency, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Cong Li
- grid.452672.00000 0004 1757 5804Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), Xi’an, 710004 Shaanxi China
| | - Xin Chen
- grid.452672.00000 0004 1757 5804Department of Radiology, The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), Xi’an, 710004 Shaanxi China
| | - Jing Huang
- grid.452438.c0000 0004 1760 8119Department of Rheumatism and Immunology, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
39
|
Chen H, Chew G, Devapragash N, Loh JZ, Huang KY, Guo J, Liu S, Tan ELS, Chen S, Tee NGZ, Mia MM, Singh MK, Zhang A, Behmoaras J, Petretto E. The E3 ubiquitin ligase WWP2 regulates pro-fibrogenic monocyte infiltration and activity in heart fibrosis. Nat Commun 2022; 13:7375. [PMID: 36450710 PMCID: PMC9712659 DOI: 10.1038/s41467-022-34971-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Non-ischemic cardiomyopathy (NICM) can cause left ventricular dysfunction through interstitial fibrosis, which corresponds to the failure of cardiac tissue remodeling. Recent evidence implicates monocytes/macrophages in the etiopathology of cardiac fibrosis, but giving their heterogeneity and the antagonizing roles of macrophage subtypes in fibrosis, targeting these cells has been challenging. Here we focus on WWP2, an E3 ubiquitin ligase that acts as a positive genetic regulator of human and murine cardiac fibrosis, and show that myeloid specific deletion of WWP2 reduces cardiac fibrosis in hypertension-induced NICM. By using single cell RNA sequencing analysis of immune cells in the same model, we establish the functional heterogeneity of macrophages and define an early pro-fibrogenic phase of NICM that is driven by Ccl5-expressing Ly6chigh monocytes. Among cardiac macrophage subtypes, WWP2 dysfunction primarily affects Ly6chigh monocytes via modulating Ccl5, and consequentially macrophage infiltration and activation, which contributes to reduced myofibroblast trans-differentiation. WWP2 interacts with transcription factor IRF7, promoting its non-degradative mono-ubiquitination, nuclear translocation and transcriptional activity, leading to upregulation of Ccl5 at transcriptional level. We identify a pro-fibrogenic macrophage subtype in non-ischemic cardiomyopathy, and demonstrate that WWP2 is a key regulator of IRF7-mediated Ccl5/Ly6chigh monocyte axis in heart fibrosis.
Collapse
Affiliation(s)
- Huimei Chen
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China
| | - Gabriel Chew
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Nithya Devapragash
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Jui Zhi Loh
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Kevin Y. Huang
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Jing Guo
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Shiyang Liu
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Elisabeth Li Sa Tan
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Shuang Chen
- grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China ,grid.452511.6Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, 210008 China
| | - Nicole Gui Zhen Tee
- grid.419385.20000 0004 0620 9905National Heart Centre Singapore, Singapore, 169609 Singapore
| | - Masum M. Mia
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Manvendra K. Singh
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Aihua Zhang
- grid.452511.6Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, 210008 China
| | - Jacques Behmoaras
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.413629.b0000 0001 0705 4923Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, W12 0NN UK
| | - Enrico Petretto
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
40
|
Komori T, Morikawa Y. Essential roles of the cytokine oncostatin M in crosstalk between muscle fibers and immune cells in skeletal muscle after aerobic exercise. J Biol Chem 2022; 298:102686. [PMID: 36370846 PMCID: PMC9720348 DOI: 10.1016/j.jbc.2022.102686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Crosstalk between muscle fibers and immune cells is well known in the processes of muscle repair after exercise, especially resistance exercise. In aerobic exercise, however, this crosstalk is not fully understood. In the present study, we found that macrophages, especially anti-inflammatory (M2) macrophages, and neutrophils accumulated in skeletal muscles of mice 24 h after a single bout of an aerobic exercise. The expression of oncostatin M (OSM), a member of the interleukin 6 family of cytokines, was also increased in muscle fibers immediately after the exercise. In addition, we determined that deficiency of OSM in mice inhibited the exercise-induced accumulation of M2 macrophages and neutrophils, whereas intramuscular injection of OSM increased these immune cells in skeletal muscles. Furthermore, the chemokines related to the recruitment of macrophages and neutrophils were induced in skeletal muscles after aerobic exercise, which were attenuated in OSM-deficient mice. Among them, CC chemokine ligand 2, CC chemokine ligand 7, and CXC chemokine ligand 1 were induced by OSM in skeletal muscles. Next, we analyzed the direct effects of OSM on the skeletal muscle macrophages, because the OSM receptor β subunit was expressed predominantly in macrophages in the skeletal muscle. OSM directly induced the expression of these chemokines and anti-inflammatory markers in the skeletal muscle macrophages. From these findings, we conclude that OSM is essential for aerobic exercise-induced accumulation of M2 macrophages and neutrophils in the skeletal muscle partly through the regulation of chemokine expression in macrophages.
Collapse
|
41
|
Jengelley DHA, Wang M, Narasimhan A, Rupert JE, Young AR, Zhong X, Horan DJ, Robling AG, Koniaris LG, Zimmers TA. Exogenous Oncostatin M induces Cardiac Dysfunction, Musculoskeletal Atrophy, and Fibrosis. Cytokine 2022; 159:155972. [PMID: 36054964 PMCID: PMC10468097 DOI: 10.1016/j.cyto.2022.155972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023]
Abstract
Musculoskeletal diseases such as muscular dystrophy, cachexia, osteoarthritis, and rheumatoid arthritis impair overall physical health and reduce survival. Patients suffer from pain, dysfunction, and dysmobility due to inflammation and fibrosis in bones, muscles, and joints, both locally and systemically. The Interleukin-6 (IL-6) family of cytokines, most notably IL-6, is implicated in musculoskeletal disorders and cachexia. Here we show elevated circulating levels of OSM in murine pancreatic cancer cachexia and evaluate the effects of the IL-6 family member, Oncostatin M (OSM), on muscle and bone using adeno-associated virus (AAV) mediated over-expression of murine OSM in wildtype and IL-6 deficient mice. Initial studies with high titer AAV-OSM injection yielded high circulating OSM and IL-6, thrombocytosis, inflammation, and 60% mortality without muscle loss within 4 days. Subsequently, to mimic OSM levels in cachexia, a lower titer of AAV-OSM was used in wildtype and Il6 null mice, observing effects out to 4 weeks and 12 weeks. AAV-OSM caused muscle atrophy and fibrosis in the gastrocnemius, tibialis anterior, and quadriceps of the injected limb, but these effects were not observed on the non-injected side. In contrast, OSM induced both local and distant trabecular bone loss as shown by reduced bone volume, trabecular number, and thickness, and increased trabecular separation. OSM caused cardiac dysfunction including reduced ejection fraction and reduced fractional shortening. RNA-sequencing of cardiac muscle revealed upregulation of genes related to inflammation and fibrosis. None of these effects were different in IL-6 knockout mice. Thus, OSM induces local muscle atrophy, systemic bone loss, tissue fibrosis, and cardiac dysfunction independently of IL-6, suggesting a role for OSM in musculoskeletal conditions with these characteristics, including cancer cachexia.
Collapse
Affiliation(s)
- Daenique H A Jengelley
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Meijing Wang
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Ashok Narasimhan
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Joseph E Rupert
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Andrew R Young
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoling Zhong
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Daniel J Horan
- Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Alexander G Robling
- Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Leonidas G Koniaris
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Teresa A Zimmers
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Otolaryngology, Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
42
|
Moskalik A, Ratajska A, Majchrzak B, Jankowska-Steifer E, Bartkowiak K, Bartkowiak M, Niderla-Bielińska J. miR-31-5p-Modified RAW 264.7 Macrophages Affect Profibrotic Phenotype of Lymphatic Endothelial Cells In Vitro. Int J Mol Sci 2022; 23:13193. [PMID: 36361979 PMCID: PMC9657882 DOI: 10.3390/ijms232113193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Cardiac lymphatic vessel (LyV) remodeling as a contributor to heart failure has not been extensively evaluated in metabolic syndrome (MetS). Our studies have shown structural changes in cardiac LyV in MetS that contribute to the development of edema and lead to myocardial fibrosis. Tissue macrophages may affect LyV via secretion of various substances, including noncoding RNAs. The aim of the study was to evaluate the influence of macrophages modified by miR-31-5p, a molecule that regulates fibrosis and lymphangiogenesis, on lymphatic endothelial cells (LECs) in vitro. The experiments were carried out on the RAW 264.7 macrophage cell line and primary dermal lymphatic endothelial cells. RAW 264.7 macrophages were transfected with miR-31-5p and supernatant from this culture was used for LEC stimulation. mRNA expression levels for genes associated with lymphangiogenesis and fibrosis were measured with qRT-PCR. Selected results were confirmed with ELISA or Western blotting. miR-31-5p-modified RAW 264.7 macrophages secreted increased amounts of VEGF-C and TGF-β and a decreased amount of IGF-1. The supernatant from miR-31-5p-modified RAW 264.7 downregulated the mRNA expression for genes regulating endothelial-to-mesenchymal transition (EndoMT) and fibrosis in LECs. Our results suggest that macrophages under the influence of miR-31-5p show the potential to inhibit LEC-dependent fibrosis. However, more studies are needed to confirm this effect in vivo.
Collapse
Affiliation(s)
- Aneta Moskalik
- Postgraduate School of Molecular Medicine, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Barbara Majchrzak
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Krzysztof Bartkowiak
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Mateusz Bartkowiak
- Department of History of Medicine, Medical University of Warsaw, 00-581 Warsaw, Poland
| | - Justyna Niderla-Bielińska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
43
|
Rankouhi TR, Keulen DV, Tempel D, Venhorst J. Oncostatin M: Risks and Benefits of a Novel Therapeutic Target for Atherosclerosis. Curr Drug Targets 2022; 23:1345-1369. [PMID: 35959619 DOI: 10.2174/1389450123666220811101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of death worldwide. It is predicted that approximately 23.6 million people will die from CVDs annually by 2030. Therefore, there is a great need for an effective therapeutic approach to combat this disease. The European Cardiovascular Target Discovery (CarTarDis) consortium identified Oncostatin M (OSM) as a potential therapeutic target for atherosclerosis. The benefits of modulating OSM - an interleukin (IL)-6 family cytokine - have since been studied for multiple indications. However, as decades of high attrition rates have stressed, the success of a drug target is determined by the fine balance between benefits and the risk of adverse events. Safety issues should therefore not be overlooked. OBJECTIVE In this review, a risk/benefit analysis is performed on OSM inhibition in the context of atherosclerosis treatment. First, OSM signaling characteristics and its role in atherosclerosis are described. Next, an overview of in vitro, in vivo, and clinical findings relating to both the benefits and risks of modulating OSM in major organ systems is provided. Based on OSM's biological function and expression profile as well as drug intervention studies, safety concerns of inhibiting this target have been identified, assessed, and ranked for the target population. CONCLUSION While OSM may be of therapeutic value in atherosclerosis, drug development should also focus on de-risking the herein identified major safety concerns: tissue remodeling, angiogenesis, bleeding, anemia, and NMDA- and glutamate-induced neurotoxicity. Close monitoring and/or exclusion of patients with various comorbidities may be required for optimal therapeutic benefit.
Collapse
Affiliation(s)
- Tanja Rouhani Rankouhi
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Daniëlle van Keulen
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Dennie Tempel
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Jennifer Venhorst
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| |
Collapse
|
44
|
Ferlito A, Campochiaro C, Tomelleri A, Dagna L, De Luca G. Primary heart involvement in systemic sclerosis, from conventional to innovative targeted therapeutic strategies. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2022; 7:179-188. [PMID: 36211207 PMCID: PMC9537702 DOI: 10.1177/23971983221083772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/08/2022] [Indexed: 10/03/2023]
Abstract
Primary heart involvement is frequent in systemic sclerosis, even though often sub-clinical, and includes cardiac abnormalities that are predominantly attributable to systemic sclerosis rather than other causes and/or complications. A timely diagnosis is crucial to promptly start the appropriate therapy and to prevent the potential life-threatening early and late complications. There is little evidence on how to best manage systemic sclerosis-primary heart involvement as no specific treatment recommendations for heart disease are available, and a shared treatment approach is still lacking. The objective of this review is to summarize the state of the art of current literature and the overall management strategies and therapeutic approaches for systemic sclerosis-primary heart involvement. Novel insights into pathogenic mechanisms of systemic sclerosis-primary heart involvement are presented to facilitate the comprehension of therapeutic targets and novel treatment strategies.
Collapse
Affiliation(s)
| | - Corrado Campochiaro
- Vita-Salute San Raffaele University,
Milan, Italy
- Unit of Immunology, Rheumatology,
Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandro Tomelleri
- Vita-Salute San Raffaele University,
Milan, Italy
- Unit of Immunology, Rheumatology,
Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Lorenzo Dagna
- Vita-Salute San Raffaele University,
Milan, Italy
- Unit of Immunology, Rheumatology,
Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Giacomo De Luca
- Vita-Salute San Raffaele University,
Milan, Italy
- Unit of Immunology, Rheumatology,
Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
45
|
Chen G, Jiang H, Yao Y, Tao Z, Chen W, Huang F, Chen X. Macrophage, a potential targeted therapeutic immune cell for cardiomyopathy. Front Cell Dev Biol 2022; 10:908790. [PMID: 36247005 PMCID: PMC9561843 DOI: 10.3389/fcell.2022.908790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiomyopathy is a major cause of heart failure, leading to systolic and diastolic dysfunction and promoting adverse cardiac remodeling. Macrophages, as key immune cells of the heart, play a crucial role in inflammation and fibrosis. Moreover, exogenous and cardiac resident macrophages are functionally and phenotypically different during cardiac injury. Although experimental evidence has shown that macrophage-targeted therapy is promising in cardiomyopathy, clinical translation remains challenging. In this article, the molecular mechanism of macrophages in cardiomyopathy has been discussed in detail based on existing literature. The issues and considerations of clinical treatment strategies for myocardial fibrosis has also been analyzed.
Collapse
Affiliation(s)
- Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongwei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhonghao Tao
- Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
46
|
Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, Wu J, Sun C. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol 2022; 13:979116. [PMID: 36119037 PMCID: PMC9479340 DOI: 10.3389/fimmu.2022.979116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The development and response to treatment of tumor are modulated by inflammation, and chronic inflammation promotes tumor progression and therapy resistance. This article summarizes the dynamic evolution of inflammation from acute to chronic in the process of tumor development, and its effect on T cells from activation to the promotion of exhaustion. We review the mechanisms by which inflammatory cells and inflammatory cytokines regulate T cell exhaustion and methods for targeting chronic inflammation to improve the efficacy of immunotherapy. It is great significance to refer to the specific state of inflammation and T cells at different stages of tumor development for accurate clinical decision-making of immunotherapy and improving the efficiency of tumor immunotherapy.
Collapse
Affiliation(s)
- Liguang Fang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunjing Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Xiaomin Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- *Correspondence: Changgang Sun,
| |
Collapse
|
47
|
Jiang YL, Niu S, Lin Z, Li L, Yang P, Rao P, Yang L, Jiang L, Sun L. Injectable hydrogel with dual-sensitive behavior for targeted delivery of oncostatin M to improve cardiac restoration after myocardial infarction. J Mater Chem B 2022; 10:6514-6531. [PMID: 35997155 DOI: 10.1039/d2tb00623e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Myocardial infarction (MI) is a common cardiovascular disease that seriously endangers human health and complex pathophysiology (e.g., coronary artery obstruction, myocardial apoptosis, necrosis, inflammation, fibrosis, etc.) is involved. Therein, the loss of cardiomyocytes after MI in adults leads to gradual heart failure, which probably brings irreparable damage to the patient. Unfortunately, due to a cluster of limitations, currently used MI repair approaches always exhibit simple functions, low efficiency, and can hardly match the myocardial ischemia environment and clinical needs. In this study, we selected oncostatin M (OSM), a pleiotropic cytokine belonging to the interleukin-6 family that possesses an important role in cardiomyocyte dedifferentiation, cell proliferation, and regulation of inflammatory processes. Moreover, an injectable hydrogel with pH- and temperature-responsive behavior that can react with the acidic microenvironment of the ischemic myocardium was developed to deliver OSM locally. The functional hydrogel (poly (chitosan-co-citric acid-co-N-isopropyl acrylamide), P(CS-CA-NIPAM)) was fabricated by the facile reversible addition-fragmentation chain transfer polymerization and can be injected into the lesion site directly. After the gelation in situ, the OSM-loaded hydrogel exhibited continuous and localized release of OSM in response to specific pH and changes in MI rats, thereby accelerating angiogenesis and proliferation of cardiomyocytes, inhibiting myocardial fibrosis and improving cardiac function effectively. This study may provide a new perspective for the application of dual-sensitive hydrogels clinically, especially in tissue engineering for MI repair and drug delivery.
Collapse
Affiliation(s)
- Yong-Liang Jiang
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Shiwei Niu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, P. R. China
| | - Zhi Lin
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, P. R. China
| | - Ping Yang
- Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, P. R. China
| | - Peng Rao
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Lin Yang
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| | - Lihong Jiang
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650100, P. R. China.
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
| |
Collapse
|
48
|
Shim HB, Deniset JF, Kubes P. Neutrophils in homeostasis and tissue repair. Int Immunol 2022; 34:399-407. [PMID: 35752158 DOI: 10.1093/intimm/dxac029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/25/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are the most abundant innate immune cell and are equipped with highly destructive molecular cargo. As such, these cells were long thought to be short-lived killer cells that unleash their full cytotoxic programs on pathogens following infection and on host bystander cells after sterile injury. However, this view of neutrophils is overly simplistic and as a result is outdated. Numerous studies now collectively highlight neutrophils as far more complex and having a host of homeostatic and tissue-reparative functions. In this review, we summarize these underappreciated roles across organs and injury models.
Collapse
Affiliation(s)
- Hanjoo Brian Shim
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Justin F Deniset
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
49
|
Xia R, Tomsits P, Loy S, Zhang Z, Pauly V, Schüttler D, Clauss S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 2022; 13:900094. [PMID: 35812333 PMCID: PMC9257039 DOI: 10.3389/fphys.2022.900094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Collapse
Affiliation(s)
- Ruibing Xia
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Simone Loy
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Zhihao Zhang
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
50
|
Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis. Nat Commun 2022; 13:3275. [PMID: 35672400 PMCID: PMC9174232 DOI: 10.1038/s41467-022-30630-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/03/2022] [Indexed: 01/07/2023] Open
Abstract
Tissue fibrosis and organ dysfunction are hallmarks of age-related diseases including heart failure, but it remains elusive whether there is a common pathway to induce both events. Through single-cell RNA-seq, spatial transcriptomics, and genetic perturbation, we elucidate that high-temperature requirement A serine peptidase 3 (Htra3) is a critical regulator of cardiac fibrosis and heart failure by maintaining the identity of quiescent cardiac fibroblasts through degrading transforming growth factor-β (TGF-β). Pressure overload downregulates expression of Htra3 in cardiac fibroblasts and activated TGF-β signaling, which induces not only cardiac fibrosis but also heart failure through DNA damage accumulation and secretory phenotype induction in failing cardiomyocytes. Overexpression of Htra3 in the heart inhibits TGF-β signaling and ameliorates cardiac dysfunction after pressure overload. Htra3-regulated induction of spatio-temporal cardiac fibrosis and cardiomyocyte secretory phenotype are observed specifically in infarct regions after myocardial infarction. Integrative analyses of single-cardiomyocyte transcriptome and plasma proteome in human reveal that IGFBP7, which is a cytokine downstream of TGF-β and secreted from failing cardiomyocytes, is the most predictable marker of advanced heart failure. These findings highlight the roles of cardiac fibroblasts in regulating cardiomyocyte homeostasis and cardiac fibrosis through the Htra3-TGF-β-IGFBP7 pathway, which would be a therapeutic target for heart failure. Cardiac fibrosis is a hallmark of heart failure. Here the authors use single-cell RNA-sequencing, spatial transcriptomics, and genetic manipulations, to show that Htra3 regulates cardiac fibrosis by keeping fibroblasts quiescent and by degrading TGF-beta.
Collapse
|