1
|
Lévêque A, Duputié A, Vignon V, Duez F, Godé C, Mazoyer C, Arnaud J. Levels and Spatial Patterns of Effective Population Sizes in the Southern Damselfly ( Coenagrion mercuriale): On the Need to Carefully Interpret Single-Point and Temporal Estimations to Set Conservation Guidelines. Evol Appl 2024; 17:e70062. [PMID: 39720624 PMCID: PMC11667679 DOI: 10.1111/eva.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
The effective population size (N e) is a key parameter in conservation and evolutionary biology, reflecting the strength of genetic drift and inbreeding. Although demographic estimations of N e are logistically and time-consuming, genetic methods have become more widely used due to increasing data availability. Nonetheless, accurately estimating N e remains challenging, with few studies comparing N e estimates across molecular markers types and estimators such as single-sample methods based on linkage disequilibrium or sibship analyses versus methods based on temporal variance in allele frequencies. This study aims at bridging this gap by analysing single-sample and temporally spaced populations in the southern damselfly (Coenagrion mercuriale), a bioindicator Odonata species of conservation concern found in southwestern Europe's freshwater stream networks. A total of 77 local populations were sampled from a semi-urbanised area located in eastern France near Strasbourg city, yielding 2842 individuals that were genotyped with microsatellites and 958 of which were also genotyped for 2092 SNPs. Spatial genetic structure was stable over time, suggesting porosity between alternate-year cohorts. When accounting for spatial genetic structure, single-sample and temporal estimations of N e were consistent for each set of molecular markers. Biologically meaningful results were obtained when the effect of migration was minimising by considering metapopulation N e estimates based on the level of genetic differentiation and population boundaries. In terms of applied conservation and management, most depicted metapopulations displayed large N e, indicating no immediate need for conservation measures to mitigate anthropogenic pressures, provided that a continuous suitable freshwater network is maintained. However, urbanisation negatively impacted N e levels in populations close to Strasbourg city. Because N e is used to inform conservation decisions, caution is crucial in interpreting N e estimates, especially in continuously distributed populations undergoing migration. Altogether, our study highlights the challenge of obtaining robust N e estimates and the necessity of careful interpretation to set relevant conservation guidelines.
Collapse
Affiliation(s)
- Agathe Lévêque
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
- Office de Génie Écologique (O.G.E.)StrasbourgFrance
| | - Anne Duputié
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
| | - Vincent Vignon
- Office de Génie Écologique (O.G.E.)StrasbourgFrance
- ALKIOSAvignonFrance
| | - Fabien Duez
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198—Evo‐Eco‐PaleoLilleFrance
| | | | | |
Collapse
|
2
|
Kess T, Lehnert SJ, Bentzen P, Duffy S, Messmer A, Dempson JB, Newport J, Whidden C, Robertson MJ, Chaput G, Breau C, April J, Gillis C, Kent M, Nugent CM, Bradbury IR. Variable parallelism in the genomic basis of age at maturity across spatial scales in Atlantic Salmon. Ecol Evol 2024; 14:e11068. [PMID: 38584771 PMCID: PMC10995719 DOI: 10.1002/ece3.11068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 04/09/2024] Open
Abstract
Complex traits often exhibit complex underlying genetic architectures resulting from a combination of evolution from standing variation, hard and soft sweeps, and alleles of varying effect size. Increasingly, studies implicate both large-effect loci and polygenic patterns underpinning adaptation, but the extent that common genetic architectures are utilized during repeated adaptation is not well understood. Sea age or age at maturation represents a significant life history trait in Atlantic Salmon (Salmo salar), the genetic basis of which has been studied extensively in European Atlantic populations, with repeated identification of large-effect loci. However, the genetic basis of sea age within North American Atlantic Salmon populations remains unclear, as does the potential for a parallel trans-Atlantic genomic basis to sea age. Here, we used a large single-nucleotide polymorphism (SNP) array and low-coverage whole-genome resequencing to explore the genomic basis of sea age variation in North American Atlantic Salmon. We found significant associations at the gene and SNP level with a large-effect locus (vgll3) previously identified in European populations, indicating genetic parallelism, but found that this pattern varied based on both sex and geographic region. We also identified nonrepeated sets of highly predictive loci associated with sea age among populations and sexes within North America, indicating polygenicity and low rates of genomic parallelism. Despite low genome-wide parallelism, we uncovered a set of conserved molecular pathways associated with sea age that were consistently enriched among comparisons, including calcium signaling, MapK signaling, focal adhesion, and phosphatidylinositol signaling. Together, our results indicate parallelism of the molecular basis of sea age in North American Atlantic Salmon across large-effect genes and molecular pathways despite population-specific patterns of polygenicity. These findings reveal roles for both contingency and repeated adaptation at the molecular level in the evolution of life history variation.
Collapse
Affiliation(s)
- Tony Kess
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Sarah J. Lehnert
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Steven Duffy
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Amber Messmer
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - J. Brian Dempson
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Jason Newport
- Marine Environmental Research Infrastructure for Data Integration and Application NetworkHalifaxNova ScotiaCanada
| | | | - Martha J. Robertson
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Gerald Chaput
- Fisheries and Oceans CanadaGulf Fisheries CentreMonctonNew BrunswickCanada
| | - Cindy Breau
- Fisheries and Oceans CanadaGulf Fisheries CentreMonctonNew BrunswickCanada
| | - Julien April
- Ministère des Forêts de la Faune et des ParcsQuebecQuebecCanada
| | - Carole‐Anne Gillis
- Gespe'gewa'gi, Mi'gma'qi, ListugujGespe'gewa'gi Institute of Natural UnderstandingQuebecQuebecCanada
| | - Matthew Kent
- Centre for Integrative GeneticsNorwegian University of Life SciencesÅsNorway
| | - Cameron M. Nugent
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Ian R. Bradbury
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| |
Collapse
|
3
|
Verleih M, Visnovska T, Nguinkal JA, Rebl A, Goldammer T, Andreassen R. The Discovery and Characterization of Conserved and Novel miRNAs in the Different Developmental Stages and Organs of Pikeperch ( Sander lucioperca). Int J Mol Sci 2023; 25:189. [PMID: 38203361 PMCID: PMC10778745 DOI: 10.3390/ijms25010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Micro RNAs (miRNAs) are short non-coding RNAs that act as post-transcriptional gene expression regulators. Genes regulated in vertebrates include those affecting growth and development or stress and immune response. Pikeperch (Sander lucioperca) is a species that is increasingly being considered for farming in recirculation aquaculture systems. We characterized the pikeperch miRNA repertoire to increase the knowledge of the genomic mechanisms affecting performance and health traits by applying small RNA sequencing to different developmental stages and organs. There were 234 conserved and 8 novel miRNA genes belonging to 104 families. A total of 375 unique mature miRNAs were processed from these genes. Many mature miRNAs showed high relative abundances or were significantly more expressed at early developmental stages, like the miR-10 and miR-430 family, let-7, the miRNA clusters 106-25-93, and 17-19-92. Several miRNAs associated with immune responses (e.g., slu-mir-731-5p, slu-mir-2188-5p, and slu-mir-8159-5p) were enriched in the spleen. The mature miRNAs slu-mir-203a-3p and slu-mir-205-5p were enriched in gills. These miRNAs are similarly abundant in many vertebrates, indicating that they have shared regulatory functions. There was also a significantly increased expression of the disease-associated miR-462/miR-731 cluster in response to hypoxia stress. This first pikeperch miRNAome reference resource paves the way for future functional studies to identify miRNA-associated variations that can be utilized in marker-assisted breeding programs.
Collapse
Affiliation(s)
- Marieke Verleih
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0424 Oslo, Norway
| | - Julien A. Nguinkal
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tom Goldammer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet—Oslo Metropolitan University, 0167 Oslo, Norway;
| |
Collapse
|
4
|
Lehnert SJ, Bradbury IR, Wringe BF, Van Wyngaarden M, Bentzen P. Multifaceted framework for defining conservation units: An example from Atlantic salmon ( Salmo salar) in Canada. Evol Appl 2023; 16:1568-1585. [PMID: 37752960 PMCID: PMC10519414 DOI: 10.1111/eva.13587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
Conservation units represent important components of intraspecific diversity that can aid in prioritizing and protecting at-risk populations, while also safeguarding unique diversity that can contribute to species resilience. In Canada, identification and assessments of conservation units is done by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). COSEWIC can recognize conservation units below the species level (termed "designatable units"; DUs) if the unit has attributes that make it both discrete and evolutionarily significant. There are various ways in which a DU can meet criteria of discreteness and significance, and increasing access to "big data" is providing unprecedented information that can directly inform both criteria. Specifically, the incorporation of genomic data for an increasing number of non-model species is informing more COSEWIC assessments; thus, a repeatable, robust framework is needed for integrating these data into DU characterization. Here, we develop a framework that uses a multifaceted, weight of evidence approach to incorporate multiple data types, including genetic and genomic data, to inform COSEWIC DUs. We apply this framework to delineate DUs of Atlantic salmon (Salmo salar, L.), an economically, culturally, and ecologically significant species, that is also characterized by complex hierarchical population structure. Specifically, we focus on an in-depth example of how our approach was applied to a previously data limited region of northern Canada that was defined by a single large DU. Application of our framework with newly available genetic and genomic data led to subdividing this DU into three new DUs. Although our approach was developed to meet criteria of COSEWIC, it is widely applicable given similarities in the definitions of a conservation unit.
Collapse
Affiliation(s)
- Sarah J. Lehnert
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Ian R. Bradbury
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Brendan F. Wringe
- Bedford Institute of OceanographyFisheries and Oceans CanadaDartmouthNova ScotiaCanada
| | | | - Paul Bentzen
- Biology DepartmentDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
5
|
Oldham T, Oppedal F, Fjelldal PG, Hansen TJ. Adaptive photoperiod interpretation modulates phenological timing in Atlantic salmon. Sci Rep 2023; 13:2618. [PMID: 36788276 PMCID: PMC9929253 DOI: 10.1038/s41598-023-27583-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/04/2023] [Indexed: 02/16/2023] Open
Abstract
Photoperiod, the portion of 24-h cycle during which an organism is exposed to illumination, is an important phenological cue in many animals. However, despite its influence on critical biological processes, there remain many unknowns regarding how variations in light intensity translate into perceived photoperiod. This experiment examined how light intensity variations affect perceived photoperiod in Atlantic salmon (Salmo salar) to determine whether photoperiod interpretation is, a) fixed such that anything above a minimum detection threshold is regarded as 'illumination', or b) adaptive and varies with recent light exposure. To do this we compared the frequency of smoltification and sexual maturation between groups of male parr which were exposed to one of eight light regimes on a 12:12 cycling regime (12-hour day/12-hour night). The eight regimes were divided into two treatments, four with 'High' daytime light intensity and four with 'Low' daytime light intensity. The 'High' and 'Low' intensity treatments were each sub-divided into four groups for which the subjective 'night' light intensity was 100%, 10%, 1% and 0% of the daytime light intensity, with four replicate tanks of each treatment. The results show that above a minimum detection threshold, Atlantic salmon have adaptive photoperiod interpretation which varies with recent light exposure, and that adaptive photoperiod interpretation modulates the timing of the parr-smolt transformation and sexual maturation. Further, we show that photoperiod interpretation varies between closely related families. Given the influence of phenological timing on species survival, our results reveal a critical role for integration of photoperiod interpretation in attempts to understand how geographically shifting thermal niches due to climate change will affect future populations.
Collapse
Affiliation(s)
- Tina Oldham
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway.
| | - Frode Oppedal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Tom Johnny Hansen
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| |
Collapse
|
6
|
Chen Y, Rasool MA, Hussain S, Meng S, Yao Y, Wang X, Liu Y. Bird community structure is driven by urbanization level, blue-green infrastructure configuration and precision farming in Taizhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160096. [PMID: 36372169 DOI: 10.1016/j.scitotenv.2022.160096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Land use/land cover (LULC) changes and high urbanization rates are the main drivers of avian habitat loss in developing countries. However, few studies have examined the effects of urbanization intensity on avian diversity distribution and its importance in guiding eco-friendly urban planning. We surveyed bird distribution (n = 67 species) in different seasons using local ecological knowledge (LEK) and transect line methods in Jiangyan District from July 2018 to May 2019. One-way analysis of variance (ANOVA) was used to assess the effects of urbanization levels on birds relative density and richness during spring-summer (breeding season) and autumn-winter seasons (non-breeding season). Generalized linear models (GLM) were identified for the landscape composition and configuration that drive relative density and richness in native bird communities. Using redundancy analysis (RDA), we identified the landscape composition and configuration factors affecting bird foraging and roosting at urbanization levels. The results showed high dependency of waders and granivores on paddy fields and dry arable land respectively during the breeding season. During non-breeding season, wetland abundance, land cover, connectivity and total area of BGI were important habitat factors in attracting birds. Moreover, the landscape composition and configuration factors of BGI: wetlands as well as farmland habitats, are the main environmental cues that influence bird foraging. Therefore, to increase habitat suitability over landscape matrix, we propose creation of multiple waterbodies and green corridors of variable types and sizes on natural patches to improve the connectivity of ecological network. We also recommend land management interventions in farmland ecosystems, which could contribute to natural habitat restoration and improve bird biodiversity in urban areas.
Collapse
Affiliation(s)
- Yixue Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China
| | | | - Sarfraz Hussain
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Shuang Meng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Yipeng Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Xue Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Yuhong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
7
|
Reid BN, Pinsky ML. Simulation-Based Evaluation of Methods, Data Types, and Temporal Sampling Schemes for Detecting Recent Population Declines. Integr Comp Biol 2022; 62:1849-1863. [PMID: 36104155 PMCID: PMC9801984 DOI: 10.1093/icb/icac144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 01/05/2023] Open
Abstract
Understanding recent population trends is critical to quantifying species vulnerability and implementing effective management strategies. To evaluate the accuracy of genomic methods for quantifying recent declines (beginning <120 generations ago), we simulated genomic data using forward-time methods (SLiM) coupled with coalescent simulations (msprime) under a number of demographic scenarios. We evaluated both site frequency spectrum (SFS)-based methods (momi2, Stairway Plot) and methods that employ linkage disequilibrium information (NeEstimator, GONE) with a range of sampling schemes (contemporary-only samples, sampling two time points, and serial sampling) and data types (RAD-like data and whole-genome sequencing). GONE and momi2 performed best overall, with >80% power to detect severe declines with large sample sizes. Two-sample and serial sampling schemes could accurately reconstruct changes in population size, and serial sampling was particularly valuable for making accurate inferences when genotyping errors or minor allele frequency cutoffs distort the SFS or under model mis-specification. However, sampling only contemporary individuals provided reliable inferences about contemporary size and size change using either site frequency or linkage-based methods, especially when large sample sizes or whole genomes from contemporary populations were available. These findings provide a guide for researchers designing genomics studies to evaluate recent demographic declines.
Collapse
Affiliation(s)
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Jeffery NW, Lehnert SJ, Kess T, Layton KKS, Wringe BF, Stanley RR. Application of Omics Tools in Designing and Monitoring Marine Protected Areas For a Sustainable Blue Economy. Front Genet 2022; 13:886494. [PMID: 35812740 PMCID: PMC9257101 DOI: 10.3389/fgene.2022.886494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
Abstract
A key component of the global blue economy strategy is the sustainable extraction of marine resources and conservation of marine environments through networks of marine protected areas (MPAs). Connectivity and representativity are essential factors that underlie successful implementation of MPA networks, which can safeguard biological diversity and ecosystem function, and ultimately support the blue economy strategy by balancing ocean use with conservation. New “big data” omics approaches, including genomics and transcriptomics, are becoming essential tools for the development and maintenance of MPA networks. Current molecular omics techniques, including population-scale genome sequencing, have direct applications for assessing population connectivity and for evaluating how genetic variation is represented within and among MPAs. Effective baseline characterization and long-term, scalable, and comprehensive monitoring are essential for successful MPA management, and omics approaches hold great promise to characterize the full range of marine life, spanning the microbiome to megafauna across a range of environmental conditions (shallow sea to the deep ocean). Omics tools, such as eDNA metabarcoding can provide a cost-effective basis for biodiversity monitoring in large and remote conservation areas. Here we provide an overview of current omics applications for conservation planning and monitoring, with a focus on metabarcoding, metagenomics, and population genomics. Emerging approaches, including whole-genome sequencing, characterization of genomic architecture, epigenomics, and genomic vulnerability to climate change are also reviewed. We demonstrate that the operationalization of omics tools can enhance the design, monitoring, and management of MPAs and thus will play an important role in a modern and comprehensive blue economy strategy.
Collapse
Affiliation(s)
- Nicholas W. Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada
- *Correspondence: Nicholas W. Jeffery,
| | - Sarah J. Lehnert
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, NL, Canada
| | - Tony Kess
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, NL, Canada
| | - Kara K. S. Layton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Brendan F. Wringe
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada
| | - Ryan R.E. Stanley
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada
| |
Collapse
|
9
|
Genetic approaches for increasing fitness in endangered species. Trends Ecol Evol 2022; 37:332-345. [PMID: 35027225 DOI: 10.1016/j.tree.2021.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
The global rate of wildlife extinctions is accelerating, and the persistence of many species requires conservation breeding programs. A central paradigm of these programs is to preserve the genetic diversity of the founder populations. However, this may preserve original characteristics that make them vulnerable to extinction. We introduce targeted genetic intervention (TGI) as an alternative approach that promotes traits that enable species to persist in the face of threats by changing the incidence of alleles that impact on fitness. The TGI toolkit includes methods with established efficacy in model organisms and agriculture but are largely untried for conservation, such as synthetic biology and artificial selection. We explore TGI approaches as a species-restoration tool for intractable threats including infectious disease and climate change.
Collapse
|
10
|
Willi Y, Kristensen TN, Sgrò CM, Weeks AR, Ørsted M, Hoffmann AA. Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proc Natl Acad Sci U S A 2022; 119:e2105076119. [PMID: 34930821 PMCID: PMC8740573 DOI: 10.1073/pnas.2105076119] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
About 50 y ago, Crow and Kimura [An Introduction to Population Genetics Theory (1970)] and Ohta and Kimura [Genet. Res. 22, 201-204 (1973)] laid the foundations of conservation genetics by predicting the relationship between population size and genetic marker diversity. This work sparked an enormous research effort investigating the importance of population dynamics, in particular small population size, for population mean performance, population viability, and evolutionary potential. In light of a recent perspective [J. C. Teixeira, C. D. Huber, Proc. Natl. Acad. Sci. U.S.A. 118, 10 (2021)] that challenges some fundamental assumptions in conservation genetics, it is timely to summarize what the field has achieved, what robust patterns have emerged, and worthwhile future research directions. We consider theory and methodological breakthroughs that have helped management, and we outline some fundamental and applied challenges for conservation genetics.
Collapse
Affiliation(s)
- Yvonne Willi
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Torsten N Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Andrew R Weeks
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Cesar Australia, Brunswick, VIC 3056, Australia
| | - Michael Ørsted
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
- Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia;
| |
Collapse
|
11
|
Watson KB, Lehnert SJ, Bentzen P, Kess T, Einfeldt A, Duffy S, Perriman B, Lien S, Kent M, Bradbury IR. Environmentally associated chromosomal structural variation influences fine-scale population structure of Atlantic Salmon (Salmo salar). Mol Ecol 2021; 31:1057-1075. [PMID: 34862998 DOI: 10.1111/mec.16307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 01/17/2023]
Abstract
Chromosomal rearrangements (e.g., inversions, fusions, and translocations) have long been associated with environmental variation in wild populations. New genomic tools provide the opportunity to examine the role of these structural variants in shaping adaptive differences within and among wild populations of non-model organisms. In Atlantic Salmon (Salmo salar), variations in chromosomal rearrangements exist across the species natural range, yet the role and importance of these structural variants in maintaining adaptive differences among wild populations remains poorly understood. We genotyped Atlantic Salmon (n = 1429) from 26 populations within a highly genetically structured region of southern Newfoundland, Canada with a 220K SNP array. Multivariate analysis, across two independent years, consistently identified variation in a structural variant (translocation between chromosomes Ssa01 and Ssa23), previously associated with evidence of trans-Atlantic secondary contact, as the dominant factor influencing population structure in the region. Redundancy analysis suggested that variation in the Ssa01/Ssa23 chromosomal translocation is strongly correlated with temperature. Our analyses suggest environmentally mediated selection acting on standing genetic variation in genomic architecture introduced through secondary contact may underpin fine-scale local adaptation in Placentia Bay, Newfoundland, Canada, a large and deep embayment, highlighting the importance of chromosomal structural variation as a driver of contemporary adaptive divergence.
Collapse
Affiliation(s)
- K Beth Watson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Sarah J Lehnert
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tony Kess
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Antony Einfeldt
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Steven Duffy
- Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Ben Perriman
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ian R Bradbury
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
12
|
Summer Is Coming! Tackling Ocean Warming in Atlantic Salmon Cage Farming. Animals (Basel) 2021; 11:ani11061800. [PMID: 34208637 PMCID: PMC8234874 DOI: 10.3390/ani11061800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Atlantic salmon (Salmo salar) cage farming has traditionally been located at higher latitudes where cold seawater temperatures favor this practice. However, these regions can be impacted by ocean warming and heat waves that push seawater temperature beyond the thermo-tolerance limits of this species. As more mass mortality events are reported every year due to abnormal sea temperatures, the Atlantic salmon cage aquaculture industry acknowledges the need to adapt to a changing ocean. This paper reviews adult Atlantic salmon thermal tolerance limits, as well as the deleterious eco-physiological consequences of heat stress, with emphasis on how it negatively affects sea cage aquaculture production cycles. Biotechnological solutions targeting the phenotypic plasticity of Atlantic salmon and its genetic diversity, particularly that of its southernmost populations at the limit of its natural zoogeographic distribution, are discussed. Some of these solutions include selective breeding programs, which may play a key role in this quest for a more thermo-tolerant strain of Atlantic salmon that may help the cage aquaculture industry to adapt to climate uncertainties more rapidly, without compromising profitability. Omics technologies and precision breeding, along with cryopreservation breakthroughs, are also part of the available toolbox that includes other solutions that can allow cage farmers to continue to produce Atlantic salmon in the warmer waters of the oceans of tomorrow.
Collapse
|
13
|
Cote D, Van Leeuwen TE, Bath AJ, Gonzales EK, Cote A. Social–ecological management results in sustained recovery of an imperiled salmon population. Restor Ecol 2021. [DOI: 10.1111/rec.13401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- D. Cote
- North Atlantic Fisheries Centre Fisheries and Oceans Canada, 80 East White Hills Road, P.O. Box 5667 St. John's NL A1C 5X1 Canada
| | - T. E. Van Leeuwen
- North Atlantic Fisheries Centre Fisheries and Oceans Canada, 80 East White Hills Road, P.O. Box 5667 St. John's NL A1C 5X1 Canada
| | - A. J. Bath
- Department of Geography Memorial University, Science Building St. John's NL A1B 3X9 Canada
| | - E. K. Gonzales
- Parks Canada 300‐300 West Georgia St. Vancouver BC V6B 6B4 Canada
| | - A.L. Cote
- Parks Canada, Terra Nova National Park General Delivery Glovertown Newfoundland A0G 2L0 Canada
| |
Collapse
|
14
|
Crozier LG, Burke BJ, Chasco BE, Widener DL, Zabel RW. Climate change threatens Chinook salmon throughout their life cycle. Commun Biol 2021; 4:222. [PMID: 33603119 PMCID: PMC7892847 DOI: 10.1038/s42003-021-01734-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022] Open
Abstract
Widespread declines in Atlantic and Pacific salmon (Salmo salar and Oncorhynchus spp.) have tracked recent climate changes, but managers still lack quantitative projections of the viability of any individual population in response to future climate change. To address this gap, we assembled a vast database of survival and other data for eight wild populations of threatened Chinook salmon (O. tshawytscha). For each population, we evaluated climate impacts at all life stages and modeled future trajectories forced by global climate model projections. Populations rapidly declined in response to increasing sea surface temperatures and other factors across diverse model assumptions and climate scenarios. Strong density dependence limited the number of salmon that survived early life stages, suggesting a potentially efficacious target for conservation effort. Other solutions require a better understanding of the factors that limit survival at sea. We conclude that dramatic increases in smolt survival are needed to overcome the negative impacts of climate change for this threatened species.
Collapse
Affiliation(s)
- Lisa G Crozier
- Fish Ecology Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
| | - Brian J Burke
- Fish Ecology Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Brandon E Chasco
- Fish Ecology Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Daniel L Widener
- Ocean Associates, Inc. Under contract to Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Richard W Zabel
- Fish Ecology Division, Northwest Fisheries Science Center National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
15
|
Luikart G, Antao T, Hand BK, Muhlfeld CC, Boyer MC, Cosart T, Trethewey B, Al-Chockhachy R, Waples RS. Detecting population declines via monitoring the effective number of breeders (N b ). Mol Ecol Resour 2020; 21:379-393. [PMID: 32881365 DOI: 10.1111/1755-0998.13251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
Abstract
Estimating the effective population size and effective number of breeders per year (Nb ) can facilitate early detection of population declines. We used computer simulations to quantify bias and precision of the one-sample LDNe estimator of Nb in age-structured populations using a range of published species life history types, sample sizes, and DNA markers. Nb estimates were biased by ~5%-10% when using SNPs or microsatellites in species ranging from fishes to mosquitoes, frogs, and seaweed. The bias (high or low) was similar for different life history types within a species suggesting that life history variation in populations will not influence Nb estimation. Precision was higher for 100 SNPs (H ≈ 0.30) than for 15 microsatellites (H ≈ 0.70). Confidence intervals (CIs) were occasionally too narrow, and biased high when Nb was small (Nb < 50); however, the magnitude of bias would unlikely influence management decisions. The CIs (from LDNe) were sufficiently narrow to achieve high statistical power (≥0.80) to reject the null hypothesis that Nb = 50 when the true Nb = 30 and when sampling 50 individuals and 200 SNPs. Similarly, CIs were sufficiently narrow to reject Nb = 500 when the true Nb = 400 and when sampling 200 individuals and 5,000 loci. Finally, we present a linear regression method that provides high power to detect a decline in Nb when sampling at least five consecutive cohorts. This study provides guidelines and tools to simulate and estimate Nb for age structured populations (https://github.com/popgengui/agestrucnb/), which should help biologists develop sensitive monitoring programmes for early detection of changes in Nb and population declines.
Collapse
Affiliation(s)
- Gordon Luikart
- Flathead Lake Biological Station, Montana Conservation Genomics Laboratory, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Tiago Antao
- The Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Brian K Hand
- Flathead Lake Biological Station, Montana Conservation Genomics Laboratory, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Clint C Muhlfeld
- Northern Rocky Mountain Science Center, U.S. Geological Survey, Glacier National Park, Northern Rocky Mountain Science Center, West Glacier, MT, USA
| | | | - Ted Cosart
- Flathead Lake Biological Station, Montana Conservation Genomics Laboratory, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Brian Trethewey
- Flathead Lake Biological Station, Montana Conservation Genomics Laboratory, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Robert Al-Chockhachy
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, USA
| | - Robin S Waples
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
16
|
Hohenlohe PA, Funk WC, Rajora OP. Population genomics for wildlife conservation and management. Mol Ecol 2020; 30:62-82. [PMID: 33145846 PMCID: PMC7894518 DOI: 10.1111/mec.15720] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/02/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Biodiversity is under threat worldwide. Over the past decade, the field of population genomics has developed across nonmodel organisms, and the results of this research have begun to be applied in conservation and management of wildlife species. Genomics tools can provide precise estimates of basic features of wildlife populations, such as effective population size, inbreeding, demographic history and population structure, that are critical for conservation efforts. Moreover, population genomics studies can identify particular genetic loci and variants responsible for inbreeding depression or adaptation to changing environments, allowing for conservation efforts to estimate the capacity of populations to evolve and adapt in response to environmental change and to manage for adaptive variation. While connections from basic research to applied wildlife conservation have been slow to develop, these connections are increasingly strengthening. Here we review the primary areas in which population genomics approaches can be applied to wildlife conservation and management, highlight examples of how they have been used, and provide recommendations for building on the progress that has been made in this field.
Collapse
Affiliation(s)
- Paul A Hohenlohe
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Om P Rajora
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
17
|
Genome-wide genetic diversity yields insights into genomic responses of candidate climate-selected loci in an Andean wetland plant. Sci Rep 2020; 10:16851. [PMID: 33033367 PMCID: PMC7546723 DOI: 10.1038/s41598-020-73976-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022] Open
Abstract
Assessing population evolutionary potential has become a central tenet of conservation biology. Since adaptive responses require allelic variation at functional genes, consensus has grown that genetic variation at genes under selection is a better surrogate for adaptive evolutionary potential than neutral genetic diversity. Although consistent with prevailing theory, this argument lacks empirical support and ignores recent theoretical advances questioning the very concept of neutral genetic diversity. In this study, we quantified genome-wide responses of single nucleotide polymorphism loci linked to climatic factors over a strong latitudinal gradient in natural populations of the high Andean wetland plant, Carex gayana, and then assessed whether genetic variation of candidate climate-selected loci better predicted their genome-wide responses than genetic variation of non-candidate loci. Contrary to this expectation, genomic responses of climate-linked loci only related significantly to environmental variables and genetic diversity of non-candidate loci. The effects of genome-wide genetic diversity detected in this study may be a result of either the combined influence of small effect variants or neutral and demographic factors altering the adaptive evolutionary potential of C. gayana populations. Regardless of the processes involved, our results redeem genome-wide genetic diversity as a potentially useful indicator of population adaptive evolutionary potential.
Collapse
|
18
|
Snake River sockeye and Chinook salmon in a changing climate: Implications for upstream migration survival during recent extreme and future climates. PLoS One 2020; 15:e0238886. [PMID: 32997674 PMCID: PMC7526937 DOI: 10.1371/journal.pone.0238886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022] Open
Abstract
In 2015, the Pacific marine heat wave, low river flows, and record high water temperatures in the Columbia River Basin contributed to a near-complete failure of the adult migration of endangered Snake River sockeye salmon (Oncorhynchus nerka, NOAA Fisheries 2016). These extreme weather events may become the new normal due to anthropogenic climate change, with catastrophic consequences for endangered species. Existing anthropogenic pressures may amplify vulnerability to climate change, but these potential synergies have rarely been quantified. We examined factors affecting survival of endangered sockeye (Oncorhynchus nerka) and threatened Chinook salmon (O. tshawytscha) as they migrated upstream through eight dams and reservoirs to spawning areas in the Snake River Basin. Our extensive database included histories of 17,279 individual fish that migrated since 2004. A comparison between conditions in 2015 and daily temperatures and flows in a regulated basin forced by output from global climate models showed that 2015 did have many characteristics of projected future mean conditions. To evaluate potential salmon responses, we modeled migration timing and apparent survival under historical and future climate scenarios (2040s). For Chinook salmon, adult survival from the first dam encountered to spawning grounds dropped by 4-15%, depending on the climate scenario. For sockeye, survival dropped by ~80% from their already low levels. Through sensitivity analyses, we observed that the adult sockeye migration would need to shift more than 2 weeks earlier than predicted to maintain survival rates typical of those seen during 2008-2017. Overall, the greater impacts of climate change on adult sockeye compared with adult Chinook salmon reflected differences in life history and environmental sensitivities, which were compounded for sockeye by larger effect sizes from other anthropogenic factors. Compared with Chinook, sockeye was more negatively affected by a history of juvenile transportation and by similar temperatures and flows. The largest changes in temperature and flow were projected to be upstream from the hydrosystem, where direct mitigation through hydrosystem management is not an option. Unfortunately, Snake River sockeye have likely lost much of their adaptive capacity with the loss of the wild population. Further work exploring habitat restoration or additional mitigation actions is urgently needed.
Collapse
|
19
|
Cortés AJ, López-Hernández F, Osorio-Rodriguez D. Predicting Thermal Adaptation by Looking Into Populations' Genomic Past. Front Genet 2020; 11:564515. [PMID: 33101385 PMCID: PMC7545011 DOI: 10.3389/fgene.2020.564515] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular evolution offers an insightful theory to interpret the genomic consequences of thermal adaptation to previous events of climate change beyond range shifts. However, disentangling often mixed footprints of selective and demographic processes from those due to lineage sorting, recombination rate variation, and genomic constrains is not trivial. Therefore, here we condense current and historical population genomic tools to study thermal adaptation and outline key developments (genomic prediction, machine learning) that might assist their utilization for improving forecasts of populations' responses to thermal variation. We start by summarizing how recent thermal-driven selective and demographic responses can be inferred by coalescent methods and in turn how quantitative genetic theory offers suitable multi-trait predictions over a few generations via the breeder's equation. We later assume that enough generations have passed as to display genomic signatures of divergent selection to thermal variation and describe how these footprints can be reconstructed using genome-wide association and selection scans or, alternatively, may be used for forward prediction over multiple generations under an infinitesimal genomic prediction model. Finally, we move deeper in time to comprehend the genomic consequences of thermal shifts at an evolutionary time scale by relying on phylogeographic approaches that allow for reticulate evolution and ecological parapatric speciation, and end by envisioning the potential of modern machine learning techniques to better inform long-term predictions. We conclude that foreseeing future thermal adaptive responses requires bridging the multiple spatial scales of historical and predictive environmental change research under modern cohesive approaches such as genomic prediction and machine learning frameworks.
Collapse
Affiliation(s)
- Andrés J Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia.,Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia
| | - Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology (Caltech), Pasadena, CA, United States
| |
Collapse
|
20
|
Geffroy B, Wedekind C. Effects of global warming on sex ratios in fishes. JOURNAL OF FISH BIOLOGY 2020; 97:596-606. [PMID: 32524610 DOI: 10.1111/jfb.14429] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
In fishes, sex is determined by genetics, the environment or an interaction of both. Temperature is among the most important environmental factors that can affect sex determination. As a consequence, changes in temperature at critical developmental stages can induce biases in primary sex ratios in some species. However, early sex ratios can also be biased by sex-specific tolerances to environmental stresses that may, in some cases, be amplified by changes in water temperature. Sex-specific reactions to environmental stress have been observed at early larval stages before gonad formation starts. It is therefore necessary to distinguish between temperature effects on sex determination, generally acting through the stress axis or epigenetic mechanisms, and temperature effects on sex-specific mortality. Both are likely to affect sex ratios and hence population dynamics. Moreover, in cases where temperature effects on sex determination lead to genotype-phenotype mismatches, long-term effects on population dynamics are possible, for example temperature-induced masculinization potentially leading to the loss of Y chromosomes or feminization to male-biased operational sex ratios in future generations. To date, most studies under controlled conditions conclude that if temperature affects sex ratios, elevated temperatures mostly lead to a male bias. The few studies that have been performed on wild populations seem to confirm this general trend. Recent findings suggest that transgenerational plasticity could mitigate the effects of warming on sex ratios in some populations.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, University of Montpellier, Ifremer, IRD, CNRS, Palavas-les-Flots, France
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Gianì S, Silletti S, Gavazzi F, Morello L, Spinsanti G, Parati K, Breviario D. aTBP: A versatile tool for fish genotyping. PLoS One 2020; 15:e0237111. [PMID: 32750100 PMCID: PMC7402489 DOI: 10.1371/journal.pone.0237111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
Animal Tubulin-Based-Polymorphism (aTBP), an intron length polymorphism method recently developed for vertebrate genotyping, has been successfully applied to the identification of several fish species. Here, we report data that demonstrate the ability of the aTBP method to assign a specific profile to fish species, each characterized by the presence of commonly shared amplicons together with additional intraspecific polymorphisms. Within each aTBP profile, some fragments are also recognized that can be attributed to taxonomic ranks higher than species, e.g. genus and family. Versatility of application across different taxonomic ranks combined with the presence of a significant number of DNA polymorphisms, makes the aTBP method an additional and useful tool for fish genotyping, suitable for different purposes such as species authentication, parental recognition and detection of allele variations in response to environmental changes.
Collapse
Affiliation(s)
- Silvia Gianì
- Department Scienze Bioagroalimentari, Istituto Biologia e Biotecnologia Agraria, National Research Council, Milano, Italy
| | - Silvia Silletti
- Department Scienze Bioagroalimentari, Istituto Biologia e Biotecnologia Agraria, National Research Council, Milano, Italy
| | - Floriana Gavazzi
- Department Scienze Bioagroalimentari, Istituto Biologia e Biotecnologia Agraria, National Research Council, Milano, Italy
| | - Laura Morello
- Department Scienze Bioagroalimentari, Istituto Biologia e Biotecnologia Agraria, National Research Council, Milano, Italy
| | | | - Katia Parati
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Rivolta d’Adda (CR), Italy
| | - Diego Breviario
- Department Scienze Bioagroalimentari, Istituto Biologia e Biotecnologia Agraria, National Research Council, Milano, Italy
- * E-mail:
| |
Collapse
|
22
|
Lehnert SJ, Baillie SM, MacMillan J, Paterson IG, Buhariwalla CF, Bradbury IR, Bentzen P. Multiple decades of stocking has resulted in limited hatchery introgression in wild brook trout ( Salvelinus fontinalis) populations of Nova Scotia. Evol Appl 2020; 13:1069-1089. [PMID: 32431753 PMCID: PMC7232767 DOI: 10.1111/eva.12923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Many populations of freshwater fishes are threatened with losses, and increasingly, the release of hatchery individuals is one strategy being implemented to support wild populations. However, stocking of hatchery individuals may pose long-term threats to wild populations, particularly if genetic interactions occur between wild and hatchery individuals. One highly prized sport fish that has been heavily stocked throughout its range is the brook trout (Salvelinus fontinalis). In Nova Scotia, Canada, hatchery brook trout have been stocked since the early 1900s, and despite continued stocking efforts, populations have suffered declines in recent decades. Before this study, the genetic structure of brook trout populations in the province was unknown; however, given the potential negative consequences associated with hatchery stocking, it is possible that hatchery programs have adversely affected the genetic integrity of wild populations. To assess the influence of hatchery supplementation on wild populations, we genotyped wild brook trout from 12 river systems and hatchery brook trout from two major hatcheries using 100 microsatellite loci. Genetic analyses of wild trout revealed extensive population genetic structure among and within river systems and significant isolation-by-distance. Hatchery stocks were genetically distinct from wild populations, and most populations showed limited to no evidence of hatchery introgression (<5% hatchery ancestry). Only a single location had a substantial number of hatchery-derived trout and was located in the only river where a local strain is used for supplementation. The amount of hatchery stocking within a watershed did not influence the level of hatchery introgression. Neutral genetic structure of wild populations was influenced by geography with some influence of climate and stocking indices. Overall, our study suggests that long-term stocking has not significantly affected the genetic integrity of wild trout populations, highlighting the variable outcomes of stocking and the need to evaluate the consequences on a case-by-case basis.
Collapse
Affiliation(s)
- Sarah J. Lehnert
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Shauna M. Baillie
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - John MacMillan
- Inland Fisheries DivisionNova Scotia Department of Fisheries and AquaculturePictouNSCanada
| | - Ian G. Paterson
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Colin F. Buhariwalla
- Inland Fisheries DivisionNova Scotia Department of Fisheries and AquaculturePictouNSCanada
| | - Ian R. Bradbury
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Paul Bentzen
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| |
Collapse
|
23
|
Almodóvar A, Leal S, Nicola GG, Hórreo JL, García-Vázquez E, Elvira B. Long-term stocking practices threaten the original genetic diversity of the southernmost European populations of Atlantic salmon Salmo salar. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Many Atlantic salmon Salmo salar populations in Europe are threatened by previous stocking with foreign hatchery strains. Temporal patterns of genetic characteristics of salmon from northern Spain, the southernmost European populations, were compared before and after species decline and heavy stocking with specimens from northern Europe. Eleven microsatellite loci were analysed in archival (scales from 1958-1960) and contemporary (2007-2008) samples from the River Sella. Temporal analyses revealed a similar heterozygosity between archival and contemporary samples, despite a drastic decrease in population abundance, while the contemporary sample showed a higher allelic richness due to the occurrence of foreign alleles. Considering only the alleles with at least 4% frequency in the archival sample, 2 alleles exclusive to the River Sella were absent in the contemporary sample, and 14 alleles showed a decrease of at least 4% frequency. Four alleles common in Scotland showed a high occurrence in the contemporary sample, so they are good candidates as markers of introgression of foreign genes. The heavy stocking with non-native Scottish broodstocks between 1970 and 1990 caused the introgression found in the contemporary sample when compared with the pristine population. An abrupt decrease was evident when the estimates of effective number of breeders were adjusted to take into account overlapping generations (NbAdj), effective population size (NeAdj) estimated from NbAdj, and number of breeders estimated using the sibship assignment method (NbSIB). The very low effective size values found in the contemporary sample, together with the detrimental synergy between genetic drift and high rates of introgression, represent a severe risk for the conservation of native salmon.
Collapse
Affiliation(s)
- A Almodóvar
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid (UCM), Madrid 28040, Spain
| | - S Leal
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid (UCM), Madrid 28040, Spain
| | - GG Nicola
- Department of Environmental Sciences, University of Castilla-La Mancha (UCLM), Toledo 45071, Spain
| | - JL Hórreo
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences (MNCN), Spanish National Research Council (CSIC), Madrid 28006, Spain
| | - E García-Vázquez
- Department of Functional Biology, University of Oviedo, Oviedo 33003, Spain
| | - B Elvira
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid (UCM), Madrid 28040, Spain
| |
Collapse
|
24
|
Bekkevold D, Höjesjö J, Nielsen EE, Aldvén D, Als TD, Sodeland M, Kent MP, Lien S, Hansen MM. Northern European Salmo trutta (L.) populations are genetically divergent across geographical regions and environmental gradients. Evol Appl 2020; 13:400-416. [PMID: 31993085 PMCID: PMC6976966 DOI: 10.1111/eva.12877] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/22/2019] [Indexed: 12/19/2022] Open
Abstract
The salmonid fish Brown trout is iconic as a model for the application of conservation genetics to understand and manage local interspecific variation. However, there is still scant information about relationships between local and large-scale population structure, and to what extent geographical and environmental variables are associated with barriers to gene flow. We used information from 3,782 mapped SNPs developed for the present study and conducted outlier tests and gene-environment association (GEA) analyses in order to examine drivers of population structure. Analyses comprised >2,600 fish from 72 riverine populations spanning a central part of the species' distribution in northern Europe. We report hitherto unidentified genetic breaks in population structure, indicating strong barriers to gene flow. GEA loci were widely spread across genomic regions and showed correlations with climatic, abiotic and geographical parameters. In some cases, individual loci showed consistent GEA across the geographical regions Britain, Europe and Scandinavia. In other cases, correlations were observed only within a sub-set of regions, suggesting that locus-specific variation was associated with local processes. A paired-population sampling design allowed us to evaluate sampling effects on detection of outlier loci and GEA. Two widely applied methods for outlier detection (pcadapt and bayescan) showed low overlap in loci identified as statistical outliers across sub-sets of data. Two GEA analytical approaches (LFMM and RDA) showed good correspondence concerning loci associated with specific variables, but LFMM identified five times more statistically significant associations than RDA. Our results emphasize the importance of carefully considering the statistical methods applied for the hypotheses being tested in outlier analysis. Sampling design may have lower impact on results if the objective is to identify GEA loci and their population distribution. Our study provides new insights into trout populations, and results have direct management implications in serving as a tool for identification of conservation units.
Collapse
Affiliation(s)
- Dorte Bekkevold
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Johan Höjesjö
- Department of Biological & Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Einar Eg Nielsen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | | | - Marte Sodeland
- Department of Natural SciencesUniversity of AgderKristiansandNorway
| | | | - Sigbjørn Lien
- Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Michael Møller Hansen
- Department of Bioscience – Genetics, Ecology and EvolutionAarhus UniversityAarhusDenmark
| |
Collapse
|
25
|
Abstract
Salmon were among the first nonmodel species for which systematic population genetic studies of natural populations were conducted, often to support management and conservation. The genomics revolution has improved our understanding of the evolutionary ecology of salmon in two major ways: (a) Large increases in the numbers of genetic markers (from dozens to 104-106) provide greater power for traditional analyses, such as the delineation of population structure, hybridization, and population assignment, and (b) qualitatively new insights that were not possible with traditional genetic methods can be achieved by leveraging detailed information about the structure and function of the genome. Studies of the first type have been more common to date, largely because it has taken time for the necessary tools to be developed to fully understand the complex salmon genome. We expect that the next decade will witness many new studies that take full advantage of salmonid genomic resources.
Collapse
Affiliation(s)
- Robin S Waples
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA;
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195-5020, USA;
| | - Craig R Primmer
- Organismal & Evolutionary Biology Research Program and Biotechnology Institute, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|