1
|
Cimino PJ, Keiser DJ, Parrish AG, Holland EC, Szulzewsky F. C-terminal fusion partner activity contributes to the oncogenic functions of YAP1::TFE3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647316. [PMID: 40291683 PMCID: PMC12026745 DOI: 10.1101/2025.04.04.647316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
YAP1 gene fusions are found in a multitude of human tumors, are potent oncogenic drivers, and are the likely initiating tumorigenic events in these tumors. We and others have previously shown that a YAP1 fusion proteins exert TEAD-dependent oncogenic YAP1 activity that is resistant to inhibitory Hippo pathway signaling. However, the contributions of the C-terminal fusion partners to the oncogenic functions of YAP1 fusion proteins are understudied. Here, we used the RCAS/tv-a system to express eight different YAP1 gene fusions in vivo and observed significant differences in the latencies of tumors induced by the various YAP1 fusions. We observed that tumors induced by YAP1::TFE3 displayed a significantly different histomorphology compared to tumors induced by other YAP1 fusions or activated non-fusion YAP1. To assess the extent to which the functional TFE3 domains (DNA binding: leucine zipper (LZ) and basic-helix-loop-helix (bHLH); activation domain (AD)) contribute to the oncogenic functions of YAP1::TFE3, we generated several mutant variants and performed functional in vitro and in vivo assays. In vitro, mutation or deletion of the TFE3 DNA binding domains (LZ, bHLH) resulted in reduced TFE3 activity but increased YAP1 activity of YAP1::TFE3. In vivo, deletion of the LZ and bHLH domains did not result in a decrease in tumor incidence but induced the formation of more YAP1-like tumors that lacked prominent features of YAP1::TFE3-driven tumors. By contrast, loss of the TFE3 AD almost completely abrogated tumor formation. Our results suggest that the TFE3 domains significantly contribute to the oncogenic activity of YAP1::TFE3.
Collapse
|
2
|
Bakes E, Cheng R, Mañucat-Tan N, Ramaswamy V, Hansford JR. Advances in molecular prognostication and treatments in ependymoma. J Neurooncol 2025; 172:317-326. [PMID: 39757304 DOI: 10.1007/s11060-024-04923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Ependymoma is the third most common brain tumour of childhood and historically has posed a major challenge to both pediatric and adult neuro-oncologists. Ependymoma can occur anywhere in the central nervous system throughout the entire age spectrum. Treatment options have been limited to surgery and radiation, and outcomes have been widely disparate across studies. Indeed, these disparate outcomes have rendered it extraordinarily difficult to compare studies and to truly understand which patients are low and high-risk. Over the past two decades there have been tremendous advances in our understanding of the biology of ependymoma, which have changed risk stratification dramatically. Indeed, it is now well accepted that ependymoma comprises multiple distinct entities, whereby each compartment (supratentorial, posterior fossa, spinal) are distinct, and within each compartment there exist unique groups. The driver events, demographics and response to treatment vary widely across these groups and allow for a better classification of thee disease. Herein, we review the advances in the molecular stratification of ependymoma including how an improved classification and risk stratification allows for more precise therapies.
Collapse
Affiliation(s)
- Emma Bakes
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Rachel Cheng
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Noralyn Mañucat-Tan
- South Australia Health and Medical Research Institute, Adelaide, SA, Australia
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology, Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada.
- Departments of Medical Biophysics and Pediatrics, University of Toronto, Toronto, ON, Canada.
| | - Jordan R Hansford
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia.
- South Australia Health and Medical Research Institute, Adelaide, SA, Australia.
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Kamizela AE, Leongamornlert D, Williams N, Wang X, Nyamondo K, Dawson K, Spencer Chapman M, Guo J, Lee J, Mane K, Milne K, Green AR, Chevassut T, Campbell PJ, Ellinor PT, Huntly BJP, Baxter EJ, Nangalia J. Timing and trajectory of BCR::ABL1-driven chronic myeloid leukaemia. Nature 2025; 640:982-990. [PMID: 40205062 PMCID: PMC12018454 DOI: 10.1038/s41586-025-08817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 02/20/2025] [Indexed: 04/11/2025]
Abstract
Mutation of some genes drives uncontrolled cell proliferation and cancer. The Philadelphia chromosome in chronic myeloid leukaemia (CML) provided the very first such genetic link to cancer1,2. However, little is known about the trajectory to CML, the rate of BCR::ABL1 clonal expansion and how this affects disease. Using whole-genome sequencing of 1,013 haematopoietic colonies from nine patients with CML aged 22 to 81 years, we reconstruct phylogenetic trees of haematopoiesis. Intronic breaks in BCR and ABL1 were not always observed, and out-of-frame exonic breakpoints in BCR, requiring exon skipping to derive BCR::ABL1, were also noted. Apart from ASXL1 and RUNX1 mutations, extra myeloid gene mutations were mostly present in wild-type cells. We inferred explosive growth attributed to BCR::ABL1 commencing 3-14 years (confidence interval 2-16 years) before diagnosis, with annual growth rates exceeding 70,000% per year. Mutation accumulation was higher in BCR::ABL1 cells with shorter telomere lengths, reflecting their excessive cell divisions. Clonal expansion rates inversely correlated with the time to diagnosis. BCR::ABL1 in the general population mirrored CML incidence, and advanced and/or blast phase CML was characterized by subsequent genomic evolution. These data highlight the oncogenic potency of BCR::ABL1 fusion and contrast with the slow and sequential clonal trajectories of most cancers.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Middle Aged
- Adult
- Aged
- Aged, 80 and over
- Male
- Mutation/genetics
- Female
- Young Adult
- Time Factors
- Phylogeny
- Clone Cells/pathology
- Clone Cells/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Whole Genome Sequencing
- Philadelphia Chromosome
- Repressor Proteins
Collapse
Affiliation(s)
- Aleksandra E Kamizela
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | | | - Xin Wang
- Wellcome Sanger Institute, Hinxton, UK
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kudzai Nyamondo
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | - Michael Spencer Chapman
- Wellcome Sanger Institute, Hinxton, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jing Guo
- Wellcome Sanger Institute, Hinxton, UK
| | - Joe Lee
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Karim Mane
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kate Milne
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Anthony R Green
- Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Timothy Chevassut
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Brian J P Huntly
- Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Trust, Cambridge, UK.
| |
Collapse
|
4
|
Tauziède-Espariat A, Appay R, Bouvier C, Testud B, Girard N, Métais A, Servant E, Scavarda D, Meurgey A, Pissaloux D, Hasty L, Varlet P. A novel TEAD1::NCOA2 fusion that potentially expands the concept of supratentorial ependymoma, YAP1 fusion-positive. Acta Neuropathol 2025; 149:14. [PMID: 39928140 PMCID: PMC11811449 DOI: 10.1007/s00401-025-02852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/11/2025]
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France.
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France.
| | - Romain Appay
- Department of Pathology, APHM La Timone, Marseille, France
| | | | - Benoît Testud
- Department of Neuroradiology, AP-HM La Timone, Marseille, France
| | - Nadine Girard
- Department of Neuroradiology, AP-HM La Timone, Marseille, France
| | - Alice Métais
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France
| | - Euphrasie Servant
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France
| | - Didier Scavarda
- Department of Pediatric Neurosurgery, AP-HM La Timone, Marseille, France
| | | | - Daniel Pissaloux
- Department of Biopathology, Léon Bérard Cancer Center, Lyon, France
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France
| |
Collapse
|
5
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
6
|
Arora S, Nuechterlein N, Jensen M, Glatzer G, Sievers P, Varadharajan S, Korshunov A, Sahm F, Mack SC, Taylor MD, Holland EC. Transcriptomic landscape identifies two unrecognized ependymoma subtypes and novel pathways in medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619495. [PMID: 39484476 PMCID: PMC11527013 DOI: 10.1101/2024.10.21.619495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Medulloblastoma and ependymoma are prevalent pediatric central nervous system tumors with significant molecular and clinical heterogeneity. We collected bulk RNA sequencing data from 888 medulloblastoma and 370 ependymoma tumors to establish a comprehensive reference landscape. Following rigorous batch effect correction, normalization, and dimensionality reduction, we constructed a unified landscape to explore gene expression, signaling pathways, gene fusions, and copy number variations. Our analysis revealed distinct clustering patterns, including two primary ependymoma compartments, EPN-E1 and EPN-E2, each with specific gene fusions and molecular signatures. In medulloblastoma, we achieved precise stratification of Group 3/4 tumors by subtype and in SHH tumors by patient age. Our landscape serves as a vital resource for identifying biomarkers, refining diagnoses, and enables the mapping of new patients' bulk RNA-seq data onto the reference framework to facilitate accurate disease subtype identification. The landscape is accessible via Oncoscape, an interactive platform, empowering global exploration and application.
Collapse
Affiliation(s)
- Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. 2
| | - Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Matt Jensen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. 2
| | - Gregory Glatzer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. 2
| | - Philipp Sievers
- Dept. of Neuropathology, University Hospital Heidelberg, and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Srinidhi Varadharajan
- Developmental Neurobiology Department, Neurobiology and Brain Tumor Program, St Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Andrey Korshunov
- Dept. of Neuropathology, University Hospital Heidelberg, and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Dept. of Neuropathology, University Hospital Heidelberg, and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephen C. Mack
- Developmental Neurobiology Department, Neurobiology and Brain Tumor Program, St Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Michael D. Taylor
- Neuro-oncology Research Program, Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. 2
| |
Collapse
|
7
|
Wang L, Cheng L, Fu Y, Dong H, Xiong Y, Lu D, Piao Y, Teng L. Non-supratentorial YAP1- fused ependymomas: report of two cases. Acta Neuropathol Commun 2024; 12:158. [PMID: 39369248 PMCID: PMC11452944 DOI: 10.1186/s40478-024-01862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024] Open
Affiliation(s)
- Leiming Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lei Cheng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Hua Dong
- Zhejiang Key Laboratory of Digital Technology in Medical Diagnostics, Hangzhou, Zhejiang Province, 310013, China
| | - Yanlei Xiong
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Dehong Lu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lianghong Teng
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
8
|
Liu I, Alencastro Veiga Cruzeiro G, Bjerke L, Rogers RF, Grabovska Y, Beck A, Mackay A, Barron T, Hack OA, Quezada MA, Molinari V, Shaw ML, Perez-Somarriba M, Temelso S, Raynaud F, Ruddle R, Panditharatna E, Englinger B, Mire HM, Jiang L, Nascimento A, LaBelle J, Haase R, Rozowsky J, Neyazi S, Baumgartner AC, Castellani S, Hoffman SE, Cameron A, Morrow M, Nguyen QD, Pericoli G, Madlener S, Mayr L, Dorfer C, Geyeregger R, Rota C, Ricken G, Ligon KL, Alexandrescu S, Cartaxo RT, Lau B, Uphadhyaya S, Koschmann C, Braun E, Danan-Gotthold M, Hu L, Siletti K, Sundström E, Hodge R, Lein E, Agnihotri S, Eisenstat DD, Stapleton S, King A, Bleil C, Mastronuzzi A, Cole KA, Waanders AJ, Montero Carcaboso A, Schüller U, Hargrave D, Vinci M, Carceller F, Haberler C, Slavc I, Linnarsson S, Gojo J, Monje M, Jones C, Filbin MG. GABAergic neuronal lineage development determines clinically actionable targets in diffuse hemispheric glioma, H3G34-mutant. Cancer Cell 2024; 42:S1535-6108(24)00305-2. [PMID: 39232581 PMCID: PMC11865364 DOI: 10.1016/j.ccell.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/24/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Diffuse hemispheric gliomas, H3G34R/V-mutant (DHG-H3G34), are lethal brain tumors lacking targeted therapies. They originate from interneuronal precursors; however, leveraging this origin for therapeutic insights remains unexplored. Here, we delineate a cellular hierarchy along the interneuron lineage development continuum, revealing that DHG-H3G34 mirror spatial patterns of progenitor streams surrounding interneuron nests, as seen during human brain development. Integrating these findings with genome-wide CRISPR-Cas9 screens identifies genes upregulated in interneuron lineage progenitors as major dependencies. Among these, CDK6 emerges as a targetable vulnerability: DHG-H3G34 tumor cells show enhanced sensitivity to CDK4/6 inhibitors and a CDK6-specific degrader, promoting a shift toward more mature interneuron-like states, reducing tumor growth, and prolonging xenograft survival. Notably, a patient with progressive DHG-H3G34 treated with a CDK4/6 inhibitor achieved 17 months of stable disease. This study underscores interneuronal progenitor-like states, organized in characteristic niches, as a distinct vulnerability in DHG-H3G34, highlighting CDK6 as a promising clinically actionable target.
Collapse
Affiliation(s)
- Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, 10117 Berlin, Germany
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lynn Bjerke
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Rebecca F Rogers
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Yura Grabovska
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Alexander Beck
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Alan Mackay
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivia A Hack
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael A Quezada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Valeria Molinari
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - McKenzie L Shaw
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marta Perez-Somarriba
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, Surrey SM2 5 NG, UK
| | - Sara Temelso
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Florence Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RK, UK
| | - Ruth Ruddle
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RK, UK
| | - Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Hafsa M Mire
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrezza Nascimento
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jenna LaBelle
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rebecca Haase
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jacob Rozowsky
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sina Neyazi
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alicia-Christina Baumgartner
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sophia Castellani
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samantha E Hoffman
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Amy Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Murry Morrow
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Giulia Pericoli
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Rene Geyeregger
- Clinical Cell Biology, Children's Cancer Research Institute (CCRI), Vienna 1090, Austria
| | - Christopher Rota
- Department of Neurobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Keith L Ligon
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rodrigo T Cartaxo
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benison Lau
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Miri Danan-Gotthold
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Kimberly Siletti
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17177 Stockholm, Sweden
| | - Rebecca Hodge
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Sameer Agnihotri
- Departments of Neurosurgery and Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - David D Eisenstat
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Simon Stapleton
- Department of Neurosurgery, St George's Hospital NHS Trust, London SW17 0QT, UK
| | - Andrew King
- Department of Neuropathology, King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Cristina Bleil
- Department of Neurosurgery, King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Angela Mastronuzzi
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Kristina A Cole
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Angela J Waanders
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | | | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Darren Hargrave
- University College London Great Ormond Street Institute for Child Health, London WC1N 1EH, UK
| | - Maria Vinci
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Fernando Carceller
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, Surrey SM2 5 NG, UK; Division of Clinical Studies, The Institute of Cancer Research, London SW7 3RK, UK
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Johannes Gojo
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA, USA
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK.
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
Kiang KM, Ahad L, Zhong X, Lu QR. Biomolecular condensates: hubs of Hippo-YAP/TAZ signaling in cancer. Trends Cell Biol 2024; 34:566-577. [PMID: 38806345 DOI: 10.1016/j.tcb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Biomolecular condensates, the membraneless cellular compartments formed by liquid-liquid phase separation (LLPS), represent an important mechanism for physiological and tumorigenic processes. Recent studies have advanced our understanding of how these condensates formed in the cytoplasm or nucleus regulate Hippo signaling, a central player in organogenesis and tumorigenesis. Here, we review recent findings on the dynamic formation and function of biomolecular condensates in regulating the Hippo-yes-associated protein (YAP)/transcription coactivator with PDZ-binding motif (TAZ) signaling pathway under physiological and pathological processes. We further discuss how the nuclear condensates of YAP- or TAZ-fusion oncoproteins compartmentalize crucial transcriptional co-activators and alter chromatin architecture to promote oncogenic programs. Finally, we highlight key questions regarding how these findings may pave the way for novel therapeutics to target cancer.
Collapse
Affiliation(s)
- Karrie M Kiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Leena Ahad
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Loreto Palacio P, Pan X, Jones D, Otero JJ. Exploring a distinct FGFR2::DLG5 rearrangement in a low-grade neuroepithelial tumor: A case report and mini-review of protein fusions in brain tumors. J Neuropathol Exp Neurol 2024; 83:567-578. [PMID: 38833313 DOI: 10.1093/jnen/nlae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
We report the novel clinical presentation of a primary brain neoplasm in a 30-year-old man with a mass-like area in the anteromedial temporal lobe. Histopathological analysis revealed a low-grade neuroepithelial tumor with cytologically abnormal neurons and atypical glial cells within the cerebral cortex. Molecular analysis showed a previously undescribed FGFR2::DLG5 rearrangement. We discuss the clinical significance and molecular implications of this fusion event, shedding light on its potential impact on tumor development and patient prognosis. Additionally, an extensive review places the finding in this case in the context of protein fusions in brain tumors in general and highlights their diverse manifestations, underlying molecular mechanisms, and therapeutic implications.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Abigail Wexner Center Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaokang Pan
- James Molecular Laboratory, James Cancer Hospital, Columbus, Ohio, USA
| | - Dan Jones
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - José Javier Otero
- Neuropathology Division, Pathology Department, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
11
|
Kardian AS, Mack S. The Intersection of Epigenetic Alterations and Developmental State in Pediatric Ependymomas. Dev Neurosci 2024; 46:365-372. [PMID: 38527429 PMCID: PMC11614414 DOI: 10.1159/000537694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/03/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Ependymomas are the third most common brain cancer in children and have no targeted therapies. They are divided into at least 9 major subtypes based on molecular characteristics and major drivers and have few genetic mutations compared to the adult form of this disease, leading to investigation of other mechanisms. SUMMARY Epigenetic alterations such as transcriptional programs activated by oncofusion proteins and alterations in histone modifications play an important role in development of this disease. Evidence suggests these alterations interact with the developmental epigenetic programs in the cell of origin to initiate neoplastic transformation and later disease progression, perhaps by keeping a portion of tumor cells in a developmental, proliferative state. KEY MESSAGES To better understand this disease, research on its developmental origins and associated epigenetic states needs to be further pursued. This could lead to better treatments, which are currently lacking due to the difficult-to-drug nature of known drivers such as fusion proteins. Epigenetic and developmental states characteristic of these tumors may not just be potential therapeutic targets but used as a tool to find new avenues of treatment.
Collapse
Affiliation(s)
- Alisha Simone Kardian
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stephen Mack
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
12
|
d’Amati A, Bargiacchi L, Rossi S, Carai A, Bertero L, Barresi V, Errico ME, Buccoliero AM, Asioli S, Marucci G, Del Baldo G, Mastronuzzi A, Miele E, D’Antonio F, Schiavello E, Biassoni V, Massimino M, Gessi M, Antonelli M, Gianno F. Pediatric CNS tumors and 2021 WHO classification: what do oncologists need from pathologists? Front Mol Neurosci 2024; 17:1268038. [PMID: 38544524 PMCID: PMC10966132 DOI: 10.3389/fnmol.2024.1268038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/23/2024] [Indexed: 05/14/2024] Open
Abstract
The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, established new approaches to both CNS tumor nomenclature and grading, emphasizing the importance of integrated diagnoses and layered reports. This edition increased the role of molecular diagnostics in CNS tumor classification while still relying on other established approaches such as histology and immunohistochemistry. Moreover, it introduced new tumor types and subtypes based on novel diagnostic technologies such as DNA methylome profiling. Over the past decade, molecular techniques identified numerous key genetic alterations in CSN tumors, with important implications regarding the understanding of pathogenesis but also for prognosis and the development and application of effective molecularly targeted therapies. This review summarizes the major changes in the 2021 fifth edition classification of pediatric CNS tumors, highlighting for each entity the molecular alterations and other information that are relevant for diagnostic, prognostic, or therapeutic purposes and that patients' and oncologists' need from a pathology report.
Collapse
Affiliation(s)
- Antonio d’Amati
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Lavinia Bargiacchi
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Elena Errico
- Department of Pathology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| | | | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giada Del Baldo
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica D’Antonio
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Manila Antonelli
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Francesca Gianno
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
13
|
Hatanaka EA, Breunig JJ. In vitro and in vivo modeling systems of supratentorial ependymomas. Front Oncol 2024; 14:1360358. [PMID: 38469231 PMCID: PMC10925685 DOI: 10.3389/fonc.2024.1360358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Ependymomas are rare brain tumors that can occur in both children and adults. Subdivided by the tumors' initial location, ependymomas develop in the central nervous system in the supratentorial or infratentorial/posterior fossa region, or the spinal cord. Supratentorial ependymomas (ST-EPNs) are predominantly characterized by common driver gene fusions such as ZFTA and YAP1 fusions. Some variants of ST-EPNs carry a high overall survival rate. In poorly responding ST-EPN variants, high levels of inter- and intratumoral heterogeneity, limited therapeutic strategies, and tumor recurrence are among the reasons for poor patient outcomes with other ST-EPN subtypes. Thus, modeling these molecular profiles is key in further studying tumorigenesis. Due to the scarcity of patient samples, the development of preclinical in vitro and in vivo models that recapitulate patient tumors is imperative when testing therapeutic approaches for this rare cancer. In this review, we will survey ST-EPN modeling systems, addressing the strengths and limitations, application for therapeutic targeting, and current literature findings.
Collapse
Affiliation(s)
- Emily A. Hatanaka
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Chung CI, Yang J, Yang X, Liu H, Ma Z, Szulzewsky F, Holland EC, Shen Y, Shu X. Phase separation of YAP-MAML2 differentially regulates the transcriptome. Proc Natl Acad Sci U S A 2024; 121:e2310430121. [PMID: 38315854 PMCID: PMC10873646 DOI: 10.1073/pnas.2310430121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024] Open
Abstract
Phase separation (PS) drives the formation of biomolecular condensates that are emerging biological structures involved in diverse cellular processes. Recent studies have unveiled PS-induced formation of several transcriptional factor (TF) condensates that are transcriptionally active, but how strongly PS promotes gene activation remains unclear. Here, we show that the oncogenic TF fusion Yes-associated protein 1-Mastermind like transcriptional coactivator 2 (YAP-MAML2) undergoes PS and forms liquid-like condensates that bear the hallmarks of transcriptional activity. Furthermore, we examined the contribution of PS to YAP-MAML2-mediated gene expression by developing a chemogenetic tool that dissolves TF condensates, allowing us to compare phase-separated and non-phase-separated conditions at identical YAP-MAML2 protein levels. We found that a small fraction of YAP-MAML2-regulated genes is further affected by PS, which include the canonical YAP target genes CTGF and CYR61, and other oncogenes. On the other hand, majority of YAP-MAML2-regulated genes are not affected by PS, highlighting that transcription can be activated effectively by diffuse complexes of TFs with the transcriptional machinery. Our work opens new directions in understanding the role of PS in selective modulation of gene expression, suggesting differential roles of PS in biological processes.
Collapse
Affiliation(s)
- Chan-I. Chung
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA94158
- Cardiovascular Research Institute, University of California–San Francisco, San Francisco, CA94158
| | - Junjiao Yang
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA94158
- Cardiovascular Research Institute, University of California–San Francisco, San Francisco, CA94158
| | - Xiaoyu Yang
- Department of Neurology, Institute for Human Genetics, Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Hongjiang Liu
- Department of Neurology, Institute for Human Genetics, Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Zhimin Ma
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA94158
- Cardiovascular Research Institute, University of California–San Francisco, San Francisco, CA94158
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Yin Shen
- Department of Neurology, Institute for Human Genetics, Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA94158
- Cardiovascular Research Institute, University of California–San Francisco, San Francisco, CA94158
| |
Collapse
|
15
|
Bertero L, Mangherini L, Ricci AA, Cassoni P, Sahm F. Molecular neuropathology: an essential and evolving toolbox for the diagnosis and clinical management of central nervous system tumors. Virchows Arch 2024; 484:181-194. [PMID: 37658995 PMCID: PMC10948579 DOI: 10.1007/s00428-023-03632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Molecular profiling has transformed the diagnostic workflow of CNS tumors during the last years. The latest WHO classification of CNS tumors (5th edition), published in 2021, pushed forward the integration between histopathological features and molecular hallmarks to achieve reproducible and clinically relevant diagnoses. To address these demands, pathologists have to appropriately deal with multiple molecular assays mainly including DNA methylation profiling and DNA/RNA next generation sequencing. Tumor classification by DNA methylation profiling is now a critical tool for many diagnostic tasks in neuropathology including the assessment of complex cases, to evaluate novel tumor types and to perform tumor subgrouping in hetereogenous entities like medulloblastoma or ependymoma. DNA/RNA NGS allow the detection of multiple molecular alterations including single nucleotide variations, small insertions/deletions (InDel), and gene fusions. These molecular markers can provide key insights for diagnosis, for example, if a tumor-specific mutation is detected, but also for treatment since targeted therapies are progressively entering the clinical practice. In the present review, a brief, but comprehensive overview of these tools will be provided, discussing their technical specifications, diagnostic value, and potential limitations. Moreover, the importance of molecular profiling will be shown in a representative series of CNS neoplasms including both the most frequent tumor types and other selected entities for which molecular characterization plays a critical role.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
16
|
Zhao Y, Sheldon M, Sun Y, Ma L. New Insights into YAP/TAZ-TEAD-Mediated Gene Regulation and Biological Processes in Cancer. Cancers (Basel) 2023; 15:5497. [PMID: 38067201 PMCID: PMC10705714 DOI: 10.3390/cancers15235497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
The Hippo pathway is conserved across species. Key mammalian Hippo pathway kinases, including MST1/2 and LATS1/2, inhibit cellular growth by inactivating the TEAD coactivators, YAP, and TAZ. Extensive research has illuminated the roles of Hippo signaling in cancer, development, and regeneration. Notably, dysregulation of Hippo pathway components not only contributes to tumor growth and metastasis, but also renders tumors resistant to therapies. This review delves into recent research on YAP/TAZ-TEAD-mediated gene regulation and biological processes in cancer. We focus on several key areas: newly identified molecular patterns of YAP/TAZ activation, emerging mechanisms that contribute to metastasis and cancer therapy resistance, unexpected roles in tumor suppression, and advances in therapeutic strategies targeting this pathway. Moreover, we provide an updated view of YAP/TAZ's biological functions, discuss ongoing controversies, and offer perspectives on specific debated topics in this rapidly evolving field.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
17
|
Yamaguchi J, Ohka F, Motomura K, Saito R. Latest classification of ependymoma in the molecular era and advances in its treatment: a review. Jpn J Clin Oncol 2023; 53:653-663. [PMID: 37288489 DOI: 10.1093/jjco/hyad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Ependymoma is a rare central nervous system (CNS) tumour occurring in all age groups and is one of the most common paediatric malignant brain tumours. Unlike other malignant brain tumours, ependymomas have few identified point mutations and genetic and epigenetic features. With advances in molecular understanding, the latest 2021 World Health Organization (WHO) classification of CNS tumours divided ependymomas into 10 diagnostic categories based on the histology, molecular information and location; this accurately reflected the prognosis and biology of this tumour. Although maximal surgical resection followed by radiotherapy is considered the standard treatment method, and chemotherapy is considered ineffective, the validation of the role of these treatment modalities continues. Although the rarity and long-term clinical course of ependymoma make designing and conducting prospective clinical trials challenging, knowledge is steadily accumulating and progress is being made. Much of the clinical knowledge obtained from clinical trials to date was based on the previous histology-based WHO classifications, and the addition of new molecular information may lead to more complex treatment strategies. Therefore, this review presents the latest findings on the molecular classification of ependymomas and advances in its treatment.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Lin WH, Feathers RW, Cooper LM, Lewis-Tuffin LJ, Chen J, Sarkaria JN, Anastasiadis PZ. A Syx-RhoA-Dia1 signaling axis regulates cell cycle progression, DNA damage, and therapy resistance in glioblastoma. JCI Insight 2023; 8:e157491. [PMID: 37427593 PMCID: PMC10371349 DOI: 10.1172/jci.insight.157491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastomas (GBM) are aggressive tumors that lack effective treatments. Here, we show that the Rho family guanine nucleotide exchange factor Syx promotes GBM cell growth both in vitro and in orthotopic xenografts derived from patients with GBM. Growth defects upon Syx depletion are attributed to prolonged mitosis, increased DNA damage, G2/M cell cycle arrest, and cell apoptosis, mediated by altered mRNA and protein expression of various cell cycle regulators. These effects are phenocopied by depletion of the Rho downstream effector Dia1 and are due, at least in part, to increased phosphorylation, cytoplasmic retention, and reduced activity of the YAP/TAZ transcriptional coactivators. Furthermore, targeting Syx signaling cooperates with radiation treatment and temozolomide (TMZ) to decrease viability in GBM cells, irrespective of their inherent response to TMZ. The data indicate that a Syx-RhoA-Dia1-YAP/TAZ signaling axis regulates cell cycle progression, DNA damage, and therapy resistance in GBM and argue for its targeting for cancer treatment.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ryan W. Feathers
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Lisa M. Cooper
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
19
|
Neil E, Kouskoff V. Current Model Systems for Investigating Epithelioid Haemangioendothelioma. Cancers (Basel) 2023; 15:3005. [PMID: 37296967 PMCID: PMC10251951 DOI: 10.3390/cancers15113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Epithelioid haemangioendothelioma (EHE) is a rare sarcoma of the vascular endothelium with an unpredictable disease course. EHE tumours can remain indolent for long period of time but may suddenly evolve into an aggressive disease with widespread metastases and a poor prognosis. Two mutually exclusive chromosomal translocations define EHE tumours, each involving one of the transcription co-factors TAZ and YAP. The TAZ-CAMTA1 fusion protein results from a t(1;3) translocation and is present in 90% of EHE tumours. The remaining 10% of EHE cases harbour a t(X;11) translocation, resulting in the YAP1-TFE3 (YT) fusion protein. Until recently, the lack of representative EHE models made it challenging to study the mechanisms by which these fusion proteins promote tumorigenesis. Here, we describe and compare the recently developed experimental approaches that are currently available for studying this cancer. After summarising the key findings obtained with each experimental approach, we discuss the advantages and limitations of these different model systems. Our survey of the current literature shows how each experimental approach can be utilised in different ways to improve our understanding of EHE initiation and progression. Ultimately, this should lead to better treatment options for patients.
Collapse
Affiliation(s)
- Emily Neil
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Valerie Kouskoff
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
20
|
Bertrand KC, Klimo P. Recent Advancements in Ependymoma: Challenges and Therapeutic Opportunities. Pediatr Neurosurg 2023; 58:307-312. [PMID: 37231859 DOI: 10.1159/000530868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Ependymoma is one of the most common malignant pediatric brain tumors and can be difficult to treat. Over the last decade, much progress has been made in the understanding of the underlying molecular drivers within this group of tumors, but clinical outcomes remain unchanged. SUMMARY Here, we review the most recent molecular advances in pediatric ependymoma, evaluate results of recent clinical trials and discuss the ongoing challenges in the field and questions that remain. KEY MESSAGES The field of ependymoma has vastly changed over the last several decades with ten distinct molecular subgroups now described, but much progress needs to be made in developing new therapeutic strategies and targets.
Collapse
Affiliation(s)
- Kelsey C Bertrand
- Division of Neuro-oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA,
| | - Paul Klimo
- Department of Surgery, St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Neurosurgery, University of Tennessee Health and Science Center, Memphis, Tennessee, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| |
Collapse
|
21
|
Okonechnikov K, Camgöz A, Chapman O, Wani S, Park DE, Hübner JM, Chakraborty A, Pagadala M, Bump R, Chandran S, Kraft K, Acuna-Hidalgo R, Reid D, Sikkink K, Mauermann M, Juarez EF, Jenseit A, Robinson JT, Pajtler KW, Milde T, Jäger N, Fiesel P, Morgan L, Sridhar S, Coufal NG, Levy M, Malicki D, Hobbs C, Kingsmore S, Nahas S, Snuderl M, Crawford J, Wechsler-Reya RJ, Davidson TB, Cotter J, Michaiel G, Fleischhack G, Mundlos S, Schmitt A, Carter H, Michealraj KA, Kumar SA, Taylor MD, Rich J, Buchholz F, Mesirov JP, Pfister SM, Ay F, Dixon JR, Kool M, Chavez L. 3D genome mapping identifies subgroup-specific chromosome conformations and tumor-dependency genes in ependymoma. Nat Commun 2023; 14:2300. [PMID: 37085539 PMCID: PMC10121654 DOI: 10.1038/s41467-023-38044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Ependymoma is a tumor of the brain or spinal cord. The two most common and aggressive molecular groups of ependymoma are the supratentorial ZFTA-fusion associated and the posterior fossa ependymoma group A. In both groups, tumors occur mainly in young children and frequently recur after treatment. Although molecular mechanisms underlying these diseases have recently been uncovered, they remain difficult to target and innovative therapeutic approaches are urgently needed. Here, we use genome-wide chromosome conformation capture (Hi-C), complemented with CTCF and H3K27ac ChIP-seq, as well as gene expression and DNA methylation analysis in primary and relapsed ependymoma tumors, to identify chromosomal conformations and regulatory mechanisms associated with aberrant gene expression. In particular, we observe the formation of new topologically associating domains ('neo-TADs') caused by structural variants, group-specific 3D chromatin loops, and the replacement of CTCF insulators by DNA hyper-methylation. Through inhibition experiments, we validate that genes implicated by these 3D genome conformations are essential for the survival of patient-derived ependymoma models in a group-specific manner. Thus, this study extends our ability to reveal tumor-dependency genes by 3D genome conformations even in tumors that lack targetable genetic alterations.
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aylin Camgöz
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Owen Chapman
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Sameena Wani
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Donglim Esther Park
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Jens-Martin Hübner
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Abhijit Chakraborty
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Meghana Pagadala
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Rosalind Bump
- Peptide Biology Labs, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sahaana Chandran
- Peptide Biology Labs, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Katerina Kraft
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Rocio Acuna-Hidalgo
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Derek Reid
- Arima Genomics, Inc, San Diego, CA, 92121, USA
| | | | - Monika Mauermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Edwin F Juarez
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Anne Jenseit
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - James T Robinson
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Kristian W Pajtler
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Petra Fiesel
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- CCU Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ling Morgan
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Sunita Sridhar
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Pediatrics, University of California, San Diego, San Diego, CA, 92093, USA
| | - Michael Levy
- Neurosurgery, University of California San Diego - Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Denise Malicki
- Pathology, University of California San Diego - Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Charlotte Hobbs
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Stephen Kingsmore
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Shareef Nahas
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health, NYU Grossman School of Medicine, 550 First Ave, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - John Crawford
- Department of Neurosciences, University of California San Diego - Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Robert J Wechsler-Reya
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Pediatrics, University of California, San Diego, San Diego, CA, 92093, USA
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tom Belle Davidson
- Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Jennifer Cotter
- Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - George Michaiel
- Division of Hematology-Oncology, Cancer and Blood Disease Institute and Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Gudrun Fleischhack
- German Cancer Consortium (DKTK), West German Cancer Center, Pediatrics III, University Hospital Essen, Essen, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Hannah Carter
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
| | - Kulandaimanuvel Antony Michealraj
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, ONT, Canada
| | - Sachin A Kumar
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, ONT, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, ONT, Canada
| | - Jeremy Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Frank Buchholz
- National Center for Tumor Diseases (NCT): German Cancer Research Center (DKFZ) Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site Dresden, Dresden, Germany
| | - Jill P Mesirov
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ferhat Ay
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, San Diego, CA, 92093, USA
| | - Jesse R Dixon
- Peptide Biology Labs, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Lukas Chavez
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego (UCSD), San Diego, USA.
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92123, USA.
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
22
|
Owen N, Toms M, Tian Y, Toualbi L, Richardson R, Young R, Tracey‐White D, Dhami P, Beck S, Moosajee M. Loss of the crumbs cell polarity complex disrupts epigenetic transcriptional control and cell cycle progression in the developing retina. J Pathol 2023; 259:441-454. [PMID: 36656098 PMCID: PMC10601974 DOI: 10.1002/path.6056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
The crumbs cell polarity complex plays a crucial role in apical-basal epithelial polarity, cellular adhesion, and morphogenesis. Homozygous variants in human CRB1 result in autosomal recessive Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP), with no established genotype-phenotype correlation. The associated protein complexes have key functions in developmental pathways; however, the underlying disease mechanism remains unclear. Using the oko meduzym289/m289 (crb2a-/- ) zebrafish, we performed integrative transcriptomic (RNA-seq data) and methylomic [reduced representation bisulphite sequencing (RRBS)] analysis of whole retina to identify dysregulated genes and pathways. Delayed retinal cell specification was identified in both the crb2a-/- zebrafish and CRB1 patient-derived retinal organoids, highlighting the dysfunction of cell cycle modulation and epigenetic transcriptional control. Differential DNA methylation analysis revealed novel hypermethylated pathways involving biological adhesion, Hippo, and transforming growth factor β (TGFβ) signalling. By integrating gene expression with DNA methylation using functional epigenetic modules (FEM), we identified six key modules involving cell cycle control and disturbance of TGFβ, bone morphogenetic protein (BMP), Hippo, and SMAD protein signal transduction pathways, revealing significant interactome hotspots relevant to crb2a function and confirming the epigenetic control of gene regulation in early retinal development, which points to a novel mechanism underlying CRB1-retinopathies. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nicholas Owen
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Maria Toms
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Yuan Tian
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Lyes Toualbi
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Rose Richardson
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
| | - Rodrigo Young
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
| | | | - Pawan Dhami
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Stephan Beck
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Mariya Moosajee
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
- Department of OphthalmologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Department of GeneticsMoorfields Eye Hospital NHS Foundation TrustLondonUK
| |
Collapse
|
23
|
Hwang EI, Hanson D, Filbin MG, Mack SC. Why haven't we solved intracranial pediatric ependymoma? Current questions and barriers to treatment advances. Neoplasia 2023; 39:100895. [PMID: 36944298 PMCID: PMC10036929 DOI: 10.1016/j.neo.2023.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/22/2023]
Abstract
Pediatric intracranial ependymoma has seen a recent exponential expansion of biological findings, rapidly dividing the diagnosis into several subgroups, each with specific molecular and clinical characteristics. While such subdivision may complicate clinical conclusions from historical trials, this knowledge also provides an opportunity for interrogating the major clinical and biological questions preventing near-term translation into effective therapy for children with ependymoma. In this article, we briefly review some of the most critical clinical questions facing both patient management and the construct of future trials in childhood ependymoma, as well as explore some of the current barriers to efficient translation of preclinical discovery to the clinic.
Collapse
|
24
|
Lehman NL. Early ependymal tumor with MN1-BEND2 fusion: a mostly cerebral tumor of female children with a good prognosis that is distinct from classical astroblastoma. J Neurooncol 2023; 161:425-439. [PMID: 36604386 PMCID: PMC9992034 DOI: 10.1007/s11060-022-04222-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Review of the clinicopathologic and genetic features of early ependymal tumor with MN1-BEND2 fusion (EET MN1-BEND2), classical astroblastomas, and recently described related pediatric CNS tumors. I also briefly review general mechanisms of gene expression silencing by DNA methylation and chromatin remodeling, and genomic DNA methylation profiling as a powerful new tool for CNS tumor classification. METHODS Literature review and illustration of tumor histopathologic features and prenatal gene expression timelines. RESULTS Astroblastoma, originally descried by Bailey and Cushing in 1926, has been an enigmatic tumor. Whether they are of ependymal or astrocytic derivation was argued for decades. Recent genetic evidence supports existence of both ependymal and astrocytic astroblastoma-like tumors. Studies have shown that tumors exhibiting astroblastoma-like histology can be classified into discrete entities based on their genomic DNA methylation profiles, gene expression, and in some cases, the presence of unique gene fusions. One such tumor, EET MN1-BEND2 occurs mostly in female children, and has an overall very good prognosis with surgical management. It contains a gene fusion comprised of portions of the MN1 gene at chromosomal location 22q12.1 and the BEND2 gene at Xp22.13. Other emerging pediatric CNS tumor entities demonstrating ependymal or astroblastoma-like histological features also harbor gene fusions involving chromosome X, 11q22 and 22q12 breakpoint regions. CONCLUSIONS Genomic DNA profiling has facilitated discovery of several new CNS tumor entities, however, traditional methods, such as immunohistochemistry, DNA or RNA sequencing, and cytogenetic studies, including fluorescence in situ hybridization, remain necessary for their accurate biological classification and diagnosis.
Collapse
Affiliation(s)
- Norman L Lehman
- Departments of Pathology and Laboratory Medicine, Biochemistry and Molecular Genetics, and the Brown Cancer Center, University of Louisville, 505 S Hancock St, Louisville, KY, 40202, USA.
| |
Collapse
|
25
|
Nuclear condensates in YAP1-driven ependymoma. Nat Cell Biol 2023; 25:211-213. [PMID: 36732630 DOI: 10.1038/s41556-022-01081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nat Cell Biol 2023; 25:323-336. [PMID: 36732631 DOI: 10.1038/s41556-022-01069-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2022] [Indexed: 02/04/2023]
Abstract
Nuclear localization of HIPPO-YAP fusion proteins has been implicated in supratentorial ependymoma development. Here, unexpectedly, we find that liquid-liquid phase separation, rather than nuclear localization, of recurrent patient-derived YAP fusions, YAP-MAMLD1 and C11ORF95-YAP, underlies ependymoma tumourigenesis from neural progenitor cells. Mutagenesis and chimaera assays demonstrate that an intrinsically disordered region promotes oligomerization of the YAP fusions into nuclear, puncta-like, membrane-less condensates. Oligomerization and nuclear condensates induced by YAP fusion with a coiled-coil domain of transcriptional activator GCN4 also promote ependymoma formation. YAP-MAMLD1 concentrates transcription factors and co-activators, including BRD4, MED1 and TEAD, in condensates while excluding transcriptional repressive PRC2, and induces long-range enhancer-promoter interactions that promote transcription and oncogenic programmes. Blocking condensate-mediated transcriptional co-activator activity inhibits tumourigenesis, indicating a critical role of liquid phase separation for YAP fusion oncogenic activity in ependymoma. YAP fusions containing the intrinsically disordered region features are common in human tumours, suggesting that nuclear condensates could be targeted to treat YAP-fusion-induced cancers.
Collapse
|
27
|
Garcia K, Gingras AC, Harvey KF, Tanas MR. TAZ/YAP fusion proteins: mechanistic insights and therapeutic opportunities. Trends Cancer 2022; 8:1033-1045. [PMID: 36096997 PMCID: PMC9671862 DOI: 10.1016/j.trecan.2022.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
The Hippo pathway is dysregulated in many different cancers, but point mutations in the pathway are rare. Transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) fusion proteins have emerged in almost all major cancer types and represent the most common genetic mechanism by which the two transcriptional co-activators are activated. Given that the N termini of TAZ or YAP are fused to the C terminus of another transcriptional regulator, the resultant fusion proteins hyperactivate a TEAD transcription factor-based transcriptome. Recent advances show that the C-terminal fusion partners confer oncogenic properties to TAZ/YAP fusion proteins by recruiting epigenetic modifiers that promote a hybrid TEAD-based transcriptome. Elucidating these cooperating epigenetic complexes represents a strategy to identify new therapeutic approaches for a pathway that has been recalcitrant to medical therapy.
Collapse
Affiliation(s)
- Keith Garcia
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA; Pathology and Laboratory Medicine, Veterans Affairs Medical Center, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
28
|
Koinis F, Chantzara E, Samarinas M, Xagara A, Kratiras Z, Leontopoulou V, Kotsakis A. Emerging Role of YAP and the Hippo Pathway in Prostate Cancer. Biomedicines 2022; 10:2834. [PMID: 36359354 PMCID: PMC9687800 DOI: 10.3390/biomedicines10112834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/05/2023] Open
Abstract
The Hippo pathway regulates and contributes to several hallmarks of prostate cancer (PCa). Although the elucidation of YAP function in PCa is in its infancy, emerging studies have shed light on the role of aberrant Hippo pathway signaling in PCa development and progression. YAP overexpression and nuclear localization has been linked to poor prognosis and resistance to treatment, highlighting a therapeutic potential that may suggest innovative strategies to treat cancer. This review aimed to summarize available data on the biological function of the dysregulated Hippo pathway in PCa and identify knowledge gaps that need to be addressed for optimizing the development of YAP-targeted treatment strategies in patients likely to benefit.
Collapse
Affiliation(s)
- Filippos Koinis
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Greece
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Evangelia Chantzara
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Greece
| | - Michael Samarinas
- Department of Urology, General Hospital “Koutlibanio”, 41221 Larissa, Greece
| | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Zisis Kratiras
- 3rd Urology Department University of Athens, “Attikon” University General Hospital, 12462 Chaidari, Greece
| | - Vasiliki Leontopoulou
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Greece
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
29
|
Chen S, Zuo M, Li T, Zhang S, Yang W, Chen N, Mao Q, Chen M, Liu Y. Extraventricular site indicates higher grade but better prognosis in adult supratentorial ependymomas: a 14-year single-center retrospective cohort. Neurosurg Rev 2022; 45:3771-3778. [DOI: 10.1007/s10143-022-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022]
|
30
|
A novel YAP1-MAML2 fusion in an adult supra-tentorial ependymoma, YAP1-fused. Brain Tumor Pathol 2022; 39:240-242. [PMID: 35598201 DOI: 10.1007/s10014-022-00439-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
|
31
|
Szulzewsky F, Arora S, Arakaki AKS, Sievers P, Almiron Bonnin DA, Paddison PJ, Sahm F, Cimino PJ, Gujral TS, Holland EC. Both YAP1-MAML2 and constitutively active YAP1 drive the formation of tumors that resemble NF2 mutant meningiomas in mice. Genes Dev 2022; 36:gad.349876.122. [PMID: 36008139 PMCID: PMC9480855 DOI: 10.1101/gad.349876.122] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
YAP1 is a transcriptional coactivator regulated by the Hippo signaling pathway, including NF2. Meningiomas are the most common primary brain tumors; a large percentage exhibit heterozygous loss of chromosome 22 (harboring the NF2 gene) and functional inactivation of the remaining NF2 copy, implicating oncogenic YAP activity in these tumors. Recently, fusions between YAP1 and MAML2 have been identified in a subset of pediatric NF2 wild-type meningiomas. Here, we show that human YAP1-MAML2-positive meningiomas resemble NF2 mutant meningiomas by global and YAP-related gene expression signatures. We then show that expression of YAP1-MAML2 in mice induces tumors that resemble human YAP1 fusion-positive and NF2 mutant meningiomas by gene expression. We demonstrate that YAP1-MAML2 primarily functions by exerting TEAD-dependent YAP activity that is resistant to Hippo signaling. Treatment with YAP-TEAD inhibitors is sufficient to inhibit the viability of YAP1-MAML2-driven mouse tumors ex vivo. Finally, we show that expression of constitutively active YAP1 (S127/397A-YAP1) is sufficient to induce similar tumors, suggesting that the YAP component of the gene fusion is the critical driver of these tumors. In summary, our results implicate YAP1-MAML2 as a causal oncogenic driver and highlight TEAD-dependent YAP activity as an oncogenic driver in YAP1-MAML2 fusion meningioma as well as NF2 mutant meningioma in general.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Aleena K S Arakaki
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Patrick J Cimino
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| |
Collapse
|
32
|
Park JH, Feroze AH, Emerson SN, Mihalas AB, Keene CD, Cimino PJ, de Lomana ALG, Kannan K, Wu WJ, Turkarslan S, Baliga NS, Patel AP. A single-cell based precision medicine approach using glioblastoma patient-specific models. NPJ Precis Oncol 2022; 6:55. [PMID: 35941215 PMCID: PMC9360428 DOI: 10.1038/s41698-022-00294-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/22/2022] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) is a heterogeneous tumor made up of cell states that evolve over time. Here, we modeled tumor evolutionary trajectories during standard-of-care treatment using multi-omic single-cell analysis of a primary tumor sample, corresponding mouse xenografts subjected to standard of care therapy, and recurrent tumor at autopsy. We mined the multi-omic data with single-cell SYstems Genetics Network AnaLysis (scSYGNAL) to identify a network of 52 regulators that mediate treatment-induced shifts in xenograft tumor-cell states that were also reflected in recurrence. By integrating scSYGNAL-derived regulatory network information with transcription factor accessibility deviations derived from single-cell ATAC-seq data, we developed consensus networks that modulate cell state transitions across subpopulations of primary and recurrent tumor cells. Finally, by matching targeted therapies to active regulatory networks underlying tumor evolutionary trajectories, we provide a framework for applying single-cell-based precision medicine approaches to an individual patient in a concurrent, adjuvant, or recurrent setting.
Collapse
Affiliation(s)
| | - Abdullah H Feroze
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Samuel N Emerson
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Anca B Mihalas
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Patrick J Cimino
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA.
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA, USA.
| | - Anoop P Patel
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Brotman-Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA.
| |
Collapse
|
33
|
Antonica F, Aiello G, Soldano A, Abballe L, Miele E, Tiberi L. Modeling Brain Tumors: A Perspective Overview of in vivo and Organoid Models. Front Mol Neurosci 2022; 15:818696. [PMID: 35706426 PMCID: PMC9190727 DOI: 10.3389/fnmol.2022.818696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brain tumors are a large and heterogeneous group of neoplasms that affect the central nervous system and include some of the deadliest cancers. Almost all the conventional and new treatments fail to hinder tumoral growth of the most malignant brain tumors. This is due to multiple factors, such as intra-tumor heterogeneity, the microenvironmental properties of the human brain, and the lack of reliable models to test new therapies. Therefore, creating faithful models for each tumor and discovering tailored treatments pose great challenges in the fight against brain cancer. Over the years, different types of models have been generated, and, in this review, we investigated the advantages and disadvantages of the models currently used.
Collapse
Affiliation(s)
- Francesco Antonica
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Luca Tiberi,
| |
Collapse
|
34
|
Cheng Y, Mao M, Lu Y. The biology of YAP in programmed cell death. Biomark Res 2022; 10:34. [PMID: 35606801 PMCID: PMC9128211 DOI: 10.1186/s40364-022-00365-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
In the last few decades, YAP has been shown to be critical in regulating tumor progression. YAP activity can be regulated by many kinase cascade pathways and proteins through phosphorylation and promotion of cytoplasmic localization. Other factors can also affect YAP activity by modulating its binding to different transcription factors (TFs). Programmed cell death (PCD) is a genetically controlled suicide process present with the scope of eliminating cells unnecessary or detrimental for the proper development of the organism. In some specific states, PCD is activated and facilitates the selective elimination of certain types of tumor cells. As a candidate oncogene correlates with many regulatory factors, YAP can inhibit or induce different forms of PCD, including apoptosis, autophagy, ferroptosis and pyroptosis. Furthermore, YAP may act as a bridge between different forms of PCD, eventually leading to different outcomes regarding tumor development. Researches on YAP and PCD may benefit the future development of novel treatment strategies for some diseases. Therefore, in this review, we provide a general overview of the cellular functions of YAP and the relationship between YAP and PCD.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong Lu
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China.
| |
Collapse
|
35
|
Roosen M, Odé Z, Bunt J, Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol 2022; 143:427-451. [PMID: 35169893 PMCID: PMC8960661 DOI: 10.1007/s00401-022-02405-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023]
Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.
Collapse
Affiliation(s)
- Mieke Roosen
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Zelda Odé
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Jens Bunt
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands.
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Saleh AH, Samuel N, Juraschka K, Saleh MH, Taylor MD, Fehlings MG. The biology of ependymomas and emerging novel therapies. Nat Rev Cancer 2022; 22:208-222. [PMID: 35031778 DOI: 10.1038/s41568-021-00433-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
Ependymomas are rare central nervous system tumours that can arise in the brain's supratentorial region or posterior fossa, or in the spinal cord. In 1924, Percival Bailey published the first comprehensive study of ependymomas. Since then, and especially over the past 10 years, our understanding of ependymomas has grown exponentially. In this Review, we discuss the evolution in knowledge regarding ependymoma subgroups and the resultant clinical implications. We also discuss key oncogenic and tumour suppressor signalling pathways that regulate tumour growth, the role of epigenetic dysregulation in the biology of ependymomas, and the various biological features of ependymoma tumorigenesis, including cell immortalization, stem cell-like properties, the tumour microenvironment and metastasis. We further review the limitations of current therapies such as relapse, radiation-induced cognitive deficits and chemotherapy resistance. Finally, we highlight next-generation therapies that are actively being explored, including tyrosine kinase inhibitors, telomerase inhibitors, anti-angiogenesis agents and immunotherapy.
Collapse
Affiliation(s)
- Amr H Saleh
- MD Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Kyle Juraschka
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammad H Saleh
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, University Health Network, Toronto Western Hospital, Toronto, ON, Canada.
- Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
37
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
38
|
Hwang EI, Sayour EJ, Flores CT, Grant G, Wechsler-Reya R, Hoang-Minh LB, Kieran MW, Salcido J, Prins RM, Figg JW, Platten M, Candelario KM, Hale PG, Blatt JE, Governale LS, Okada H, Mitchell DA, Pollack IF. The current landscape of immunotherapy for pediatric brain tumors. NATURE CANCER 2022; 3:11-24. [PMID: 35121998 DOI: 10.1038/s43018-021-00319-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Pediatric central nervous system tumors are the most common solid malignancies in childhood, and aggressive therapy often leads to long-term sequelae in survivors, making these tumors challenging to treat. Immunotherapy has revolutionized prospects for many cancer types in adults, but the intrinsic complexity of treating pediatric patients and the scarcity of clinical studies of children to inform effective approaches have hampered the development of effective immunotherapies in pediatric settings. Here, we review recent advances and ongoing challenges in pediatric brain cancer immunotherapy, as well as considerations for efficient clinical translation of efficacious immunotherapies into pediatric settings.
Collapse
Affiliation(s)
- Eugene I Hwang
- Division of Oncology, Brain Tumor Institute, Children's National Hospital, Washington, DC, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Catherine T Flores
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Gerald Grant
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Robert Wechsler-Reya
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lan B Hoang-Minh
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | | | | | - Robert M Prins
- Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John W Figg
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University and CCU Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Kate M Candelario
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Paul G Hale
- Children's Brain Trust, Coral Springs, FL, USA
| | - Jason E Blatt
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Lance S Governale
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Duane A Mitchell
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Larrew T, Saway BF, Lowe SR, Olar A. Molecular Classification and Therapeutic Targets in Ependymoma. Cancers (Basel) 2021; 13:cancers13246218. [PMID: 34944845 PMCID: PMC8699461 DOI: 10.3390/cancers13246218] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Ependymoma is a biologically diverse tumor wherein molecular classification has superseded traditional histological grading based on its superior ability to characterize behavior, prognosis, and possible targeted therapies. The current, updated molecular classification of ependymoma consists of ten distinct subgroups spread evenly among the spinal, infratentorial, and supratentorial compartments, each with its own distinct clinical and molecular characteristics. In this review, the history, histopathology, standard of care, prognosis, oncogenic drivers, and hypothesized molecular targets for all subgroups of ependymoma are explored. This review emphasizes that despite the varied behavior of the ependymoma subgroups, it remains clear that research must be performed to further elucidate molecular targets for these tumors. Although not all ependymoma subgroups are oncologically aggressive, development of targeted therapies is essential, particularly for cases where surgical resection is not an option without causing significant morbidity. The development of molecular therapies must rely on building upon our current understanding of ependymoma oncogenesis, as well as cultivating transfer of knowledge based on malignancies with similar genomic alterations.
Collapse
Affiliation(s)
- Thomas Larrew
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (T.L.); (B.F.S.)
| | - Brian Fabian Saway
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (T.L.); (B.F.S.)
| | | | - Adriana Olar
- NOMIX Laboratories, Denver, CO 80218, USA
- Correspondence: or
| |
Collapse
|
40
|
Servidei T, Lucchetti D, Navarra P, Sgambato A, Riccardi R, Ruggiero A. Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers (Basel) 2021; 13:6100. [PMID: 34885210 PMCID: PMC8657076 DOI: 10.3390/cancers13236100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.
Collapse
Affiliation(s)
- Tiziana Servidei
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Donatella Lucchetti
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Alessandro Sgambato
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Riccardo Riccardi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| |
Collapse
|
41
|
Arakaki AKS, Szulzewsky F, Gilbert MR, Gujral TS, Holland EC. Utilizing preclinical models to develop targeted therapies for rare central nervous system cancers. Neuro Oncol 2021; 23:S4-S15. [PMID: 34725698 PMCID: PMC8561121 DOI: 10.1093/neuonc/noab183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patients with rare central nervous system (CNS) tumors typically have a poor prognosis and limited therapeutic options. Historically, these cancers have been difficult to study due to small number of patients. Recent technological advances have identified molecular drivers of some of these rare cancers which we can now use to generate representative preclinical models of these diseases. In this review, we outline the advantages and disadvantages of different models, emphasizing the utility of various in vitro and ex vivo models for target discovery and mechanistic inquiry and multiple in vivo models for therapeutic validation. We also highlight recent literature on preclinical model generation and screening approaches for ependymomas, histone mutated high-grade gliomas, and atypical teratoid rhabdoid tumors, all of which are rare CNS cancers that have recently established genetic or epigenetic drivers. These preclinical models are critical to advancing targeted therapeutics for these rare CNS cancers that currently rely on conventional treatments.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
42
|
Zaytseva M, Papusha L, Novichkova G, Druy A. Molecular Stratification of Childhood Ependymomas as a Basis for Personalized Diagnostics and Treatment. Cancers (Basel) 2021; 13:cancers13194954. [PMID: 34638438 PMCID: PMC8507860 DOI: 10.3390/cancers13194954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
Ependymomas are among the most enigmatic tumors of the central nervous system, posing enormous challenges for pathologists and clinicians. Despite the efforts made, the treatment options are still limited to surgical resection and radiation therapy, while none of conventional chemotherapies is beneficial. While being histologically similar, ependymomas show considerable clinical and molecular diversity. Their histopathological evaluation alone is not sufficient for reliable diagnostics, prognosis, and choice of treatment strategy. The importance of integrated diagnosis for ependymomas is underscored in the recommendations of Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy. These updated recommendations were adopted and implemented by WHO experts. This minireview highlights recent advances in comprehensive molecular-genetic characterization of ependymomas. Strong emphasis is made on the use of molecular approaches for verification and specification of histological diagnoses, as well as identification of prognostic markers for ependymomas in children.
Collapse
Affiliation(s)
- Margarita Zaytseva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
- Correspondence:
| | - Ludmila Papusha
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
| | - Alexander Druy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
- Research Institute of Medical Cell Technologies, 620026 Yekaterinburg, Russia
| |
Collapse
|
43
|
MicroRNA-375: potential cancer suppressor and therapeutic drug. Biosci Rep 2021; 41:229736. [PMID: 34494089 PMCID: PMC8458691 DOI: 10.1042/bsr20211494] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
MiR-375 is a conserved noncoding RNA that is known to be involved in tumor cell proliferation, migration, and drug resistance. Previous studies have shown that miR-375 affects the epithelial-mesenchymal transition (EMT) of human tumor cells via some key transcription factors, such as Yes-associated protein 1 (YAP1), Specificity protein 1 (SP1) and signaling pathways (Wnt signaling pathway, nuclear factor κB (NF-κB) pathway and transforming growth factor β (TGF-β) signaling pathway) and is vital for the development of cancer. Additionally, recent studies have identified microRNA (miRNA) delivery system carriers for improved in vivo transportation of miR-375 to specific sites. Here, we discussed the role of miR-375 in different types of cancers, as well as molecular mechanisms, and analyzed the potential of miR-375 as a molecular biomarker and therapeutic target to improve the efficiency of clinical diagnosis of cancer.
Collapse
|
44
|
Cabral de Carvalho Corrêa D, Tesser-Gamba F, Dias Oliveira I, Saba da Silva N, Capellano AM, de Seixas Alves MT, Benevides Silva FA, Dastoli PA, Cavalheiro S, Caminada de Toledo SR. Molecular profiling of pediatric and adolescent ependymomas: identification of genetic variants using a next-generation sequencing panel. J Neurooncol 2021; 155:13-23. [PMID: 34570300 DOI: 10.1007/s11060-021-03848-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Ependymoma (EPN) accounts for approximately 10% of all primary central nervous system (CNS) tumors in children and in most cases, chemotherapy is ineffective and treatment remains challenging. We investigated molecular alterations, with a potential prognostic marker and therapeutic target in EPNs of childhood and adolescence, using a next-generation sequencing (NGS) panel specific for pediatric neoplasms. METHODS We selected 61 samples with initial diagnosis of EPN from patients treated at Pediatric Oncology Institute-GRAACC/UNIFESP. All samples were divided according to the anatomical compartment of the CNS - 42 posterior fossa (PF), 14 supratentorial (ST), and five spinal (SP). NGS was performed to identify somatic genetic variants in tumor samples using the Oncomine Childhood Cancer Research Assay® (OCCRA®) panel, from Thermo Fisher Scientific®. RESULTS Genetic variants were identified in 24 of 61 (39.3%) tumors and over 90% of all variants were pathogenic or likely pathogenic. The most commonly variants detected were in CIC, ASXL1, and JAK2 genes and have not been reported in EPN yet. MN1-BEND2 fusion, alteration recently described in a new CNS tumor type, was identified in one ST sample that was reclassified as astroblastoma. Additionally, YAP1-MAMLD1 fusion, a rare event associated with good outcome in ST-EPN, was observed in two patients diagnosed under 2 years old. CONCLUSIONS Molecular profiling by the OCCRA® panel showed novel alterations in pediatric and adolescent EPNs, which highlights the clinical importance in identifying genetic variants for patients' prognosis and therapeutic orientation.
Collapse
Affiliation(s)
- Débora Cabral de Carvalho Corrêa
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Francine Tesser-Gamba
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Indhira Dias Oliveira
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Nasjla Saba da Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrea Maria Capellano
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Teresa de Seixas Alves
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Pathology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Frederico Adolfo Benevides Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Imaging Diagnosis, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Patrícia Alessandra Dastoli
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Sergio Cavalheiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil. .,Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, SP, Brazil. .,Pediatric Oncology Institute-Grupo de Apoio ao Adolescente e à Criança com Câncer/Federal University of Sao Paulo (IOP-GRAACC/UNIFESP), 743 Botucatu Street, 8th Floor - Genetics Laboratory, Vila Clementino, Sao Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
45
|
Gokey JJ, Snowball J, Sridharan A, Sudha P, Kitzmiller JA, Xu Y, Whitsett JA. YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1. iScience 2021; 24:102967. [PMID: 34466790 PMCID: PMC8383002 DOI: 10.1016/j.isci.2021.102967] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/26/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Ventilation is dependent upon pulmonary alveoli lined by two major epithelial cell types, alveolar type-1 (AT1) and 2 (AT2) cells. AT1 cells mediate gas exchange while AT2 cells synthesize and secrete pulmonary surfactants and serve as progenitor cells which repair the alveoli. We developed transgenic mice in which YAP was activated or deleted to determine its roles in alveolar epithelial cell differentiation. Postnatal YAP activation increased epithelial cell proliferation, increased AT1 cell numbers, and caused indeterminate differentiation of subsets of alveolar cells expressing atypical genes normally restricted to airway epithelial cells. YAP deletion increased expression of genes associated with mature AT2 cells. YAP activation enhanced DNA accessibility in promoters of transcription factors and motif enrichment analysis predicted target genes associated with alveolar cell differentiation. YAP participated with KLF5, NFIB, and NKX2-1 to regulate AGER. YAP plays a central role in a transcriptional network that regulates alveolar epithelial differentiation.
Collapse
Affiliation(s)
- Jason J. Gokey
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John Snowball
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Anusha Sridharan
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Parvathi Sudha
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph A. Kitzmiller
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jeffrey A. Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, Cincinnati, OH 45229, USA
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
46
|
Zheng T, Ghasemi DR, Okonechnikov K, Korshunov A, Sill M, Maass KK, Benites Goncalves da Silva P, Ryzhova M, Gojo J, Stichel D, Arabzade A, Kupp R, Benzel J, Taya S, Adachi T, Shiraishi R, Gerber NU, Sturm D, Ecker J, Sievers P, Selt F, Chapman R, Haberler C, Figarella-Branger D, Reifenberger G, Fleischhack G, Rutkowski S, Donson AM, Ramaswamy V, Capper D, Ellison DW, Herold-Mende CC, Schüller U, Brandner S, Driever PH, Kros JM, Snuderl M, Milde T, Grundy RG, Hoshino M, Mack SC, Gilbertson RJ, Jones DTW, Kool M, von Deimling A, Pfister SM, Sahm F, Kawauchi D, Pajtler KW. Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion-Positive Supratentorial Ependymomas. Cancer Discov 2021; 11:2230-2247. [PMID: 33879448 DOI: 10.1158/2159-8290.cd-20-0963] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/16/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Molecular groups of supratentorial ependymomas comprise tumors with ZFTA-RELA or YAP1-involving fusions and fusion-negative subependymoma. However, occasionally supratentorial ependymomas cannot be readily assigned to any of these groups due to lack of detection of a typical fusion and/or ambiguous DNA methylation-based classification. An unbiased approach with a cohort of unprecedented size revealed distinct methylation clusters composed of tumors with ependymal but also various other histologic features containing alternative translocations that shared ZFTA as a partner gene. Somatic overexpression of ZFTA-associated fusion genes in the developing cerebral cortex is capable of inducing tumor formation in vivo, and cross-species comparative analyses identified GLI2 as a key downstream regulator of tumorigenesis in all tumors. Targeting GLI2 with arsenic trioxide caused extended survival of tumor-bearing animals, indicating a potential therapeutic vulnerability in ZFTA fusion-positive tumors. SIGNIFICANCE: ZFTA-RELA fusions are a hallmark feature of supratentorial ependymoma. We find that ZFTA acts as a partner for alternative transcriptional activators in oncogenic fusions of supratentorial tumors with various histologic characteristics. Establishing representative mouse models, we identify potential therapeutic targets shared by ZFTA fusion-positive tumors, such as GLI2.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Tuyu Zheng
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - David R Ghasemi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kendra K Maass
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricia Benites Goncalves da Silva
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Johannes Gojo
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Arabzade
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Robert Kupp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Julia Benzel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Toma Adachi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Nicolas U Gerber
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Philipp Sievers
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Rebecca Chapman
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Germany
| | - Gudrun Fleischhack
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Stefan Rutkowski
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrew M Donson
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vijay Ramaswamy
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Capper
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Ulrich Schüller
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Brandner
- Division of Neuropathology, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Pablo Hernáiz Driever
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johan M Kros
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Matija Snuderl
- Division of Neuropathology, Department of Pathology, NYU Langone Health, New York, New York
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Stephen C Mack
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Centre for Paediatric Oncology, Utrecht, the Netherlands
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daisuke Kawauchi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
47
|
Arabzade A, Zhao Y, Varadharajan S, Chen HC, Jessa S, Rivas B, Stuckert AJ, Solis M, Kardian A, Tlais D, Golbourn BJ, Stanton ACJ, Chan YS, Olson C, Karlin KL, Kong K, Kupp R, Hu B, Injac SG, Ngo M, Wang PR, De León LA, Sahm F, Kawauchi D, Pfister SM, Lin CY, Hodges HC, Singh I, Westbrook TF, Chintagumpala MM, Blaney SM, Parsons DW, Pajtler KW, Agnihotri S, Gilbertson RJ, Yi J, Jabado N, Kleinman CL, Bertrand KC, Deneen B, Mack SC. ZFTA-RELA Dictates Oncogenic Transcriptional Programs to Drive Aggressive Supratentorial Ependymoma. Cancer Discov 2021; 11:2200-2215. [PMID: 33741710 PMCID: PMC8418998 DOI: 10.1158/2159-8290.cd-20-1066] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/05/2021] [Accepted: 03/16/2021] [Indexed: 01/10/2023]
Abstract
More than 60% of supratentorial ependymomas harbor a ZFTA-RELA (ZRfus) gene fusion (formerly C11orf95-RELA). To study the biology of ZRfus, we developed an autochthonous mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain. Integrative epigenomic and transcriptomic mapping was performed on IUE-driven ZRfus tumors by CUT&RUN, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and RNA sequencing and compared with human ZRfus-driven ependymoma. In addition to direct canonical NFκB pathway activation, ZRfus dictates a neoplastic transcriptional program and binds to thousands of unique sites across the genome that are enriched with PLAGL family transcription factor (TF) motifs. ZRfus activates gene expression programs through recruitment of transcriptional coactivators (Brd4, Ep300, Cbp, Pol2) that are amenable to pharmacologic inhibition. Downstream ZRfus target genes converge on developmental programs marked by PLAGL TF proteins, and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks. SIGNIFICANCE: Ependymomas are aggressive brain tumors. Although drivers of supratentorial ependymoma (ZFTA- and YAP1-associated gene fusions) have been discovered, their functions remain unclear. Our study investigates the biology of ZFTA-RELA-driven ependymoma, specifically mechanisms of transcriptional deregulation and direct downstream gene networks that may be leveraged for potential therapeutic testing.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Amir Arabzade
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Yanhua Zhao
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Srinidhi Varadharajan
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Hsiao-Chi Chen
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas
| | - Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
| | - Bryan Rivas
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Austin J Stuckert
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Minerva Solis
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas
| | - Alisha Kardian
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas
| | - Dana Tlais
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Brian J Golbourn
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ann-Catherine J Stanton
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuen San Chan
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Calla Olson
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Houston, Texas
| | - Kristen L Karlin
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Houston, Texas
| | - Kathleen Kong
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Robert Kupp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, England
| | - Baoli Hu
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sarah G Injac
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Madeline Ngo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Peter R Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Luz A De León
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
| | - Felix Sahm
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daisuke Kawauchi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Charles Y Lin
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - H Courtney Hodges
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Irtisha Singh
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Thomas F Westbrook
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Houston, Texas
| | - Murali M Chintagumpala
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
| | - Susan M Blaney
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
| | - Donald W Parsons
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
| | - Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sameer Agnihotri
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, England
| | - Joanna Yi
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Nada Jabado
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Claudia L Kleinman
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Research Institute, Jewish General Hospital, Quebec, Canada
| | - Kelsey C Bertrand
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas.
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
| | - Benjamin Deneen
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas.
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Stephen C Mack
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Texas Children's Cancer and Hematology Centers, Dan L. Duncan Cancer Center, Houston, Texas.
- Therapeutic Innovation Center at Baylor College of Medicine, Houston, Texas
- Cancer and Cell Biology Program, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, Texas
| |
Collapse
|
48
|
Lavado A, Gangwar R, Paré J, Wan S, Fan Y, Cao X. YAP/TAZ maintain the proliferative capacity and structural organization of radial glial cells during brain development. Dev Biol 2021; 480:39-49. [PMID: 34419458 DOI: 10.1016/j.ydbio.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
The Hippo pathway regulates the development and homeostasis of many tissues and in many species. It controls the activity of two paralogous transcriptional coactivators, YAP and TAZ (YAP/TAZ). Although previous studies have established that aberrant YAP/TAZ activation is detrimental to mammalian brain development, whether and how endogenous levels of YAP/TAZ activity regulate brain development remain unclear. Here, we show that during mammalian cortical development, YAP/TAZ are specifically expressed in apical neural progenitor cells known as radial glial cells (RGCs). The subcellular localization of YAP/TAZ undergoes dynamic changes as corticogenesis proceeds. YAP/TAZ are required for maintaining the proliferative potential and structural organization of RGCs, and their ablation during cortical development reduces the numbers of cortical projection neurons and causes the loss of ependymal cells, resulting in hydrocephaly. Transcriptomic analysis using sorted RGCs reveals gene expression changes in YAP/TAZ-depleted cells that correlate with mutant phenotypes. Thus, our study has uncovered essential functions of YAP/TAZ during mammalian brain development and revealed the transcriptional mechanism of their action.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ruchika Gangwar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Joshua Paré
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
49
|
Strepkos D, Markouli M, Papavassiliou KA, Papavassiliou AG, Piperi C. Emerging roles for the YAP/TAZ transcriptional regulators in brain tumour pathology and targeting options. Neuropathol Appl Neurobiol 2021; 48:e12762. [PMID: 34409639 DOI: 10.1111/nan.12762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
The transcriptional co-activators Yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ) have emerged as significant regulators of a wide variety of cellular and organ functions with impact in early embryonic development, especially during the expansion of the neural progenitor cell pool. YAP/TAZ signalling regulates organ size development, tissue homeostasis, wound healing and angiogenesis by participating in a complex network of various pathways. However, recent evidence suggests an association of these physiologic regulatory effects of YAP/TAZ with pro-oncogenic activities. Herein, we discuss the physiological functions of YAP/TAZ as well as the extensive network of signalling pathways that control their expression and activity, leading to brain tumour development and progression. Furthermore, we describe current targeting approaches and drug options including direct YAP/TAZ and YAP-TEA domain transcription factor (TEAD) interaction inhibitors, G-protein coupled receptors (GPCR) signalling modulators and kinase inhibitors, which may be used to successfully attack YAP/TAZ-dependent tumours.
Collapse
Affiliation(s)
- Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
50
|
Tabasaran J, Schuhmann M, Ebinger M, Honegger J, Renovanz M, Schittenhelm J. PAX6 is frequently expressed in ependymal tumours and associated with prognostic relevant subgroups. J Clin Pathol 2021; 75:759-765. [PMID: 34183436 DOI: 10.1136/jclinpath-2021-207526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023]
Abstract
AIMS An ependymoma shows divergent morphological and molecular features depending on their location. The paired box 6 (PAX6) transcription factor is a putative tumour suppressor and drives cancer cells towards a stem cell-like state. A transcriptome study reported high PAX6 expression in ependymal tumours, but data on protein expression are lacking. METHODS We, therefore, analysed PAX6 expression by immunohistochemistry in 172 ependymoma samples and correlated its expression to histology, WHO grade, anatomical location and molecular subgroups. RESULTS Mean PAX6 nuclear expression in ependymoma was 27.5% (95% CI 23.3 to 31.7). PAX6 expression in subependymoma (mean: 5%) was significantly lower compared with myxopapillary (30%), WHO grade II (26%) and anaplastic ependymoma (35%). Supratentorial ependymomas also displayed significant lower PAX6 levels (15%) compared with spinal cord tumours (30%). Expression levels in YAP1-fused ependymoma (41%) were higher compared with REL-associated protein (RELA)-fusion positive tumours (17%), while PAX6 expression was similar in posterior fossa group A (33%) and B (29%) ependymomas. Kaplan-Meier analysis in RELA-fusion positive ependymomas and posterior fossa group B showed a significant better outcome for PAX6 at or above the cut-off of 19.45% compared with tumours with PAX6 below the cut-off. CONCLUSIONS We demonstrate that PAX6 is frequently expressed in human ependymal tumours and immunohistochemistry may be helpful in determining prognostic relevant subgroups.
Collapse
Affiliation(s)
- Julian Tabasaran
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Martin Schuhmann
- Department of Neurosurgery, Eberhard Karls University of Tuebingen, Baden-Württemberg, Germany.,Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany.,Division of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Martin Ebinger
- Department Pediatric Hematology/Oncology, Children's University Hospital, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Jürgen Honegger
- Department of Neurosurgery, Eberhard Karls University of Tuebingen, Baden-Württemberg, Germany.,Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Mirjam Renovanz
- Department of Neurosurgery, Eberhard Karls University of Tuebingen, Baden-Württemberg, Germany.,Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany .,Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| |
Collapse
|