1
|
Wang ZC, Stegall H, Miyazawa T, Keatinge-Clay AT. A CRISPR-Cas9 system for knock-out and knock-in of high molecular weight DNA enables module-swapping of the pikromycin synthase in its native host. Microb Cell Fact 2025; 24:125. [PMID: 40426207 PMCID: PMC12117839 DOI: 10.1186/s12934-025-02741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Engineers seeking to generate natural product analogs through altering modular polyketide synthases (PKSs) face significant challenges when genomically editing large stretches of DNA. RESULTS We describe a CRISPR-Cas9 system that was employed to reprogram the PKS in Streptomyces venezuelae ATCC 15439 that helps biosynthesize the macrolide antibiotic pikromycin. We first demonstrate its precise editing ability by generating strains that lack megasynthase genes pikAI-pikAIV or the entire pikromycin biosynthetic gene cluster but produce pikromycin upon complementation. We then employ it to replace 4.4-kb modules in the pikromycin synthase with those of other synthases to yield two new macrolide antibiotics with activities similar to pikromycin. CONCLUSION Our gene-editing tool has enabled the efficient replacement of extensive and repetitive DNA regions within streptomycetes.
Collapse
Affiliation(s)
- Zhe-Chong Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hayden Stegall
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Huang Z, Xie S, Liu RZ, Xiang C, Yao S, Zhang L. Plug-and-play engineering of modular polyketide synthases. Nat Chem Biol 2025:10.1038/s41589-025-01878-4. [PMID: 40251436 DOI: 10.1038/s41589-025-01878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/10/2025] [Indexed: 04/20/2025]
Abstract
Modular polyketide synthases (PKSs) are multidomain, assembly line enzymes that biosynthesize complex antibiotics such as erythromycin and rapamycin. The modular characteristic of PKSs makes them an ideal platform for the custom production of designer polyketides by combinatorial biosynthesis. However, engineered hybrid PKS pathways often exhibit severe loss of enzyme activity, and a general principle for PKS reprogramming has not been established. Here we present a widely applicable strategy for designing hybrid PKSs. We reveal that two conserved motifs are robust cut sites to connect modules from different PKS pathways and demonstrate the custom production of polyketides with different starter units, extender units and variable reducing states. Furthermore, we expand the applicability of these cut sites to construct hybrid pathways involving cis-AT PKS, trans-AT PKS and even nonribosomal peptide synthetase. Collectively, our findings enable plug-and-play reprogramming of modular PKSs and facilitate the application of assembly line enzymes toward the bioproduction of designer molecules.
Collapse
Affiliation(s)
- Zilei Huang
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Shengling Xie
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Run-Zhou Liu
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Changjun Xiang
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Shunyu Yao
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Lihan Zhang
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
3
|
Ishida K, Sun Q, Teikari J, Hertweck C, Dittmann E, Murakami M, Baunach M. Mixing and Matching of Hybrid Megasynthases is a Hub for the Evolution of Metabolic Diversity in Cyanobacteria. Angew Chem Int Ed Engl 2025:e202502461. [PMID: 40246690 DOI: 10.1002/anie.202502461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
Modular megasynthases, such as polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs), are molecular assembly lines that biosynthesize many pharmaceutically and ecologically important natural products. Understanding how these compounds evolve could inspire the artificial evolution of compound diversity by metabolic engineering. Over the past two decades, a number of seminal studies have significantly contributed to our understanding of natural product evolution. However, the evolution of NRPS and PKS assembly lines remains poorly understood, especially for NRPS/PKS hybrids. Here, we provide substantial evidence for a remarkable cluster-mixing event involving three cyanobacterial biosynthetic gene clusters (BGCs), resulting in the emergence of novel peptide-polyketide hybrids that were named minutumamides. By combining retro-evolutionary analysis with structure-guided genome mining, we could discover a potential evolutionary ancestor that links nostopeptolide and minutumamide biosynthesis. In addition, we were able to trace nostopeptolide-related module and domain blocks in various other biosynthetic pathways, indicating a surprisingly vivid mixing and matching of biosynthesis genes in the evolution of NRPS and cis-acyltransferase PKS/NRPS pathways, which was previously regarded as a unique feature of trans-acyltransferase (trans-AT) PKS. These remarkable insights into the evolutionary plasticity of NRPS-PKS assembly lines provide valuable guidance for pathway engineers looking for productive combinations that yield "nonnatural" hybrid natural products.
Collapse
Affiliation(s)
- Keishi Ishida
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Qi Sun
- Department of Marine Biochemistry, Graduate School of Agricultural Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jonna Teikari
- Institute for Atmospheric and Earth System Research, University of Helsinki, P.O. Box 56 (Viikinkaari 9), Helsinki, FI-00014, Finland
| | - Christian Hertweck
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam-Golm, Germany
| | - Masahiro Murakami
- Department of Marine Biochemistry, Graduate School of Agricultural Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Martin Baunach
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| |
Collapse
|
4
|
Wang ZC, Stegall H, Miyazawa T, Keatinge-Clay AT. A CRISPR-Cas9 System for Knock-out and Knock-in of High Molecular Weight DNA Enables Module-Swapping of the Pikromycin Synthase in its Native Host. RESEARCH SQUARE 2025:rs.3.rs-6229288. [PMID: 40195982 PMCID: PMC11975015 DOI: 10.21203/rs.3.rs-6229288/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Engineers seeking to generate natural product analogs through altering modular polyketide synthases (PKSs) face significant challenges when genomically editing large stretches of DNA. Results We describe a CRISPR-Cas9 system that was employed to reprogram the PKS in Streptomyces venezuelae ATCC 15439 that helps biosynthesize the macrolide antibiotic pikromycin. We first demonstrate its precise editing ability by generating strains that lack megasynthase genes pikAI-pikAIV or the entire pikromycin biosynthetic gene cluster but produce pikromycin upon complementation. We then employ it to replace 4.4-kb modules in the pikromycin synthase with those of other synthases to yield two new macrolide antibiotics with activities similar to pikromycin. Conclusion Our gene-editing tool has enabled the efficient replacement of extensive and repetitive DNA regions within streptomycetes.
Collapse
|
5
|
Keatinge-Clay A, Miyazawa T. Refactoring the pikromycin synthase for the modular biosynthesis of macrolide antibiotics in E. coli. RESEARCH SQUARE 2025:rs.3.rs-5640596. [PMID: 39866879 PMCID: PMC11760250 DOI: 10.21203/rs.3.rs-5640596/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
While engineering modular polyketide synthases (PKSs) using the recently updated module boundary has yielded libraries of triketide-pentaketides, this strategy has not yet been applied to the combinatorial biosynthesis of macrolactones or macrolide antibiotics. We developed a 2-plasmid system for the construction and expression of PKSs and employed it to obtain a refactored pikromycin synthase in E. coli that produces 85 mg of narbonolide per liter of culture. The replacement, insertion, deletion, and mutagenesis of modules enabled access to hexaketide, heptaketide, and octaketide derivatives. Supplying enzymes for desosamine biosynthesis and transfer enabled production of narbomycin, pikromycin, YC-17, methymycin, and 6 derivatives thereof. Knocking out pathways competing with desosamine biosynthesis and supplying the editing thioesterase PikAV boosted the titer of narbomycin 55-fold to 37 mgL-1. The replacement of the 3rd pikromycin module with its 5th yielded a new macrolide antibiotic and demonstrates how libraries of macrolide antibiotics can be readily accessed.
Collapse
|
6
|
Hirsch M, Desai RR, Annaswamy S, Keatinge-Clay AT. Mutagenesis Supports AlphaFold Prediction of How Modular Polyketide Synthase Acyl Carrier Proteins Dock With Downstream Ketosynthases. Proteins 2024; 92:1375-1384. [PMID: 39078105 PMCID: PMC11543512 DOI: 10.1002/prot.26733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
The docking of an acyl carrier protein (ACP) domain with a downstream ketosynthase (KS) domain in each module of a polyketide synthase (PKS) helps ensure accurate biosynthesis. If the polyketide chain bound to the ACP has been properly modified by upstream processing enzymes and is compatible with gatekeeping residues in the KS tunnel, a transacylation reaction can transfer it from the 18.1-Å phosphopantetheinyl arm of the ACP to the reactive cysteine of the KS. AlphaFold-Multimer predicts a general interface for these transacylation checkpoints. Half of the solutions obtained for 50 ACP/KS pairs show the KS motif TxLGDP forming the first turn of an α-helix, as in reported structures, while half show it forming a type I β-turn not previously observed. Solutions with the latter conformation may represent how these domains are relatively positioned during the transacylation reaction, as the entrance to the KS active site is relatively open and the phosphopantetheinylated ACP serine and the reactive KS cysteine are relatively closer-17.2 versus 20.9 Å, on average. To probe the predicted interface, 20 mutations were made to KS surface residues within the model triketide lactone synthase P1-P6-P7. The activities of these mutants are consistent with the proposed interface.
Collapse
Affiliation(s)
- Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, 100 E. 24 St., Austin, TX 78712
| | - Ronak R. Desai
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24 St., Austin, TX 78712
| | - Shreyas Annaswamy
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24 St., Austin, TX 78712
| | - Adrian T. Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24 St., Austin, TX 78712
| |
Collapse
|
7
|
Cao L, Liu Y, Sun L, Zhu Z, Yang D, Xia Z, Jin D, Dai Z, Rang J, Xia L. Enhanced triacylglycerol metabolism contributes to the efficient biosynthesis of spinosad in Saccharopolyspora spinosa. Synth Syst Biotechnol 2024; 9:809-819. [PMID: 39072147 PMCID: PMC11277812 DOI: 10.1016/j.synbio.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024] Open
Abstract
Triacylglycerol (TAG) is crucial for antibiotic biosynthesis derived from Streptomyces, as it serves as an important carbon source. In this study, the supplementation of exogenous TAG led to a 3.92-fold augmentation in spinosad production. The impact of exogenous TAG on the metabolic network of Saccharopolyspora spinosa were deeply analyzed through comparative proteomics. To optimize TAG metabolism and enhance spinosad biosynthesis, the lipase-encoding genes lip886 and lip385 were overexpressed or co-expressed. The results shown that the yield of spinosad was increased by 0.8-fold and 0.4-fold when lip886 and lip385 genes were overexpressed, respectively. Synergistic co-expression of these genes resulted in a 2.29-fold increase in the yield of spinosad. Remarkably, the combined overexpression of lip886 and lip385 in the presence of exogenous TAG elevated spinosad yields by 5.5-fold, led to a drastic increase in spinosad production from 0.036 g/L to 0.234 g/L. This study underscores the modification of intracellular concentrations of free fatty acids (FFAs), short-chain acyl-CoAs, ATP, and NADPH as mechanisms by which exogenous TAG modulates spinosad biosynthesis. Overall, the findings validate the enhancement of TAG catabolism as a beneficial strategy for optimizing spinosad production and provide foundational insights for engineering secondary metabolite biosynthesis pathways in another Streptomyces.
Collapse
Affiliation(s)
- Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yangchun Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Lin Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Danlu Yang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Duo Jin
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zirui Dai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
8
|
Ray KA, Saif N, Keatinge-Clay AT. Modular polyketide synthase ketosynthases collaborate with upstream dehydratases to install double bonds. Chem Commun (Camb) 2024; 60:8712-8715. [PMID: 39056119 PMCID: PMC11321453 DOI: 10.1039/d4cc03034f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
A VMYH motif was determined to help ketosynthases in polyketide assembly lines select α,β-unsaturated intermediates from an equilibrium mediated by an upstream dehydratase. Alterations of this motif decreased ketosynthase selectivity within a model tetraketide synthase, most significantly when replaced by the TNGQ motif of ketosynthases that accept D-β-hydroxy intermediates.
Collapse
Affiliation(s)
- Katherine A Ray
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| | - Nisha Saif
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 100 E. 24th St., Austin, TX 78712, USA.
| |
Collapse
|
9
|
Ray KA, Lutgens JD, Bista R, Zhang J, Desai RR, Hirsch M, Miyazawa T, Cordova A, Keatinge-Clay AT. Assessing and harnessing updated polyketide synthase modules through combinatorial engineering. Nat Commun 2024; 15:6485. [PMID: 39090122 PMCID: PMC11294587 DOI: 10.1038/s41467-024-50844-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The modular nature of polyketide assembly lines and the significance of their products make them prime targets for combinatorial engineering. The recently updated module boundary has been successful for engineering short synthases, yet larger synthases constructed using the updated boundary have not been investigated. Here we describe our design and implementation of a BioBricks-like platform to rapidly construct 5 triketide, 25 tetraketide, and 125 pentaketide synthases to test every module combination of the pikromycin synthase. Anticipated products are detected from 60% of the triketide synthases, 32% of the tetraketide synthases, and 6.4% of the pentaketide synthases. We determine ketosynthase gatekeeping and module-skipping are the principal impediments to obtaining functional synthases. The platform is also employed to construct active hybrid synthases by incorporating modules from the erythromycin, spinosyn, and rapamycin assembly lines. The relaxed gatekeeping of a ketosynthase in the rapamycin synthase is especially encouraging in the quest to produce designer polyketides.
Collapse
Affiliation(s)
- Katherine A Ray
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Joshua D Lutgens
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ramesh Bista
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ronak R Desai
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Antonio Cordova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Wu Z, Wang W, Li J, Ma C, Chen L, Che Q, Zhang G, Zhu T, Li D. Evolution-Based Discovery of Polyketide Acylated Valine from a Cytochalasin-Like Gene Cluster in Simplicillium lamelliciola HDN13430. JOURNAL OF NATURAL PRODUCTS 2024; 87:1222-1229. [PMID: 38447096 DOI: 10.1021/acs.jnatprod.3c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Utilizing a gene evolution-oriented approach for gene cluster mining, a cryptic cytochalasin-like gene cluster (sla) in Antarctic-derived Simplicillium lamelliciola HDN13430 was identified. Compared with the canonical cytochalasin biosynthetic gene clusters (BGCs), the sla gene cluster lacks the key α,β-hydrolase gene. Heterologous expression of the sla gene cluster led to the discovery of a new compound, slamysin (1), characterized by an N-acylated amino acid structure and demonstrating weak anti-Bacillus cereus activity. These findings underscore the potential of genetic evolution in uncovering novel compounds and indicating specific adaptive evolution within specialized habitats.
Collapse
Affiliation(s)
- Zuodong Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Jilong Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Liangzhen Chen
- Qingdao Vland Biotech Group Co., Ltd. Qingdao, Shandong 266102, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong 266237, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Sanya, Hainan 572025, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
11
|
Mabesoone MF, Leopold-Messer S, Minas HA, Chepkirui C, Chawengrum P, Reiter S, Meoded RA, Wolf S, Genz F, Magnus N, Piechulla B, Walker AS, Piel J. Evolution-guided engineering of trans-acyltransferase polyketide synthases. Science 2024; 383:1312-1317. [PMID: 38513027 PMCID: PMC11260071 DOI: 10.1126/science.adj7621] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.
Collapse
Affiliation(s)
- Mathijs F.J. Mabesoone
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Stefan Leopold-Messer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Hannah A. Minas
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Pornsuda Chawengrum
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Silke Reiter
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Roy A. Meoded
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Sarah Wolf
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Ferdinand Genz
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Nancy Magnus
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Allison S. Walker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue S, Nashville, Tennesee 37232, United States
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
- Lead contact
| |
Collapse
|
12
|
Nava A, Roberts J, Haushalter RW, Wang Z, Keasling JD. Module-Based Polyketide Synthase Engineering for de Novo Polyketide Biosynthesis. ACS Synth Biol 2023; 12:3148-3155. [PMID: 37871264 PMCID: PMC10661043 DOI: 10.1021/acssynbio.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 10/25/2023]
Abstract
Polyketide retrobiosynthesis, where the biosynthetic pathway of a given polyketide can be reversibly engineered due to the colinearity of the polyketide synthase (PKS) structure and function, has the potential to produce millions of organic molecules. Mixing and matching modules from natural PKSs is one of the routes to produce many of these molecules. Evolutionary analysis of PKSs suggests that traditionally used module boundaries may not lead to the most productive hybrid PKSs and that new boundaries around and within the ketosynthase domain may be more active when constructing hybrid PKSs. As this is still a nascent area of research, the generality of these design principles based on existing engineering efforts remains inconclusive. Recent advances in structural modeling and synthetic biology present an opportunity to accelerate PKS engineering by re-evaluating insights gained from previous engineering efforts with cutting edge tools.
Collapse
Affiliation(s)
- Alberto
A. Nava
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jacob Roberts
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Robert W. Haushalter
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zilong Wang
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
- Center
for Synthetic Biochemistry, Shenzhen Institutes
for Advanced Technologies, Shenzhen 518055, P.R. China
- The
Novo
Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens Lyngby 2800, Denmark
| |
Collapse
|
13
|
Herisse M, Ishida K, Staiger-Creed J, Judd L, Williams SJ, Howden BP, Stinear TP, Dahse HM, Voigt K, Hertweck C, Pidot SJ. Discovery and Biosynthesis of the Cytotoxic Polyene Terpenomycin in Human Pathogenic Nocardia. ACS Chem Biol 2023; 18:1872-1879. [PMID: 37498707 DOI: 10.1021/acschembio.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nocardia are opportunistic human pathogens that can cause a range of debilitating and difficult to treat infections of the lungs, brain, skin, and soft tissues. Despite their close relationship to the well-known secondary metabolite-producing genus, Streptomyces, comparatively few natural products are known from the Nocardia, and even less is known about their involvement in the pathogenesis. Here, we combine chemistry, genomics, and molecular microbiology to reveal the production of terpenomycin, a new cytotoxic and antifungal polyene from a human pathogenic Nocardia terpenica isolate. We unveil the polyketide synthase (PKS) responsible for terpenomycin biosynthesis and show that it combines several unusual features, including "split", skipped, and iteratively used modules, and the use of the unusual extender unit methoxymalonate as a starter unit. To link genes to molecules, we constructed a transposon mutant library in N. terpenica, identifying a terpenomycin-null mutant with an inactivated terpenomycin PKS. Our findings show that the neglected actinomycetes have an unappreciated capacity for the production of bioactive molecules with unique biosynthetic pathways waiting to be uncovered and highlights these organisms as producers of diverse natural products.
Collapse
Affiliation(s)
- Marion Herisse
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, Jena 07745, Germany
| | - Jordan Staiger-Creed
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Louise Judd
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Spencer J Williams
- School of Chemistry, University of Melbourne, Melbourne, Victoria 3000, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria3000, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, Jena 07745, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, Jena 07745, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, Jena 07745, Germany
- Natural Product Chemistry, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
14
|
Ray KA, Lutgens JD, Bista R, Zhang J, Desai RR, Hirsch M, Miyazawa T, Cordova A, Keatinge-Clay AT. Assessing and harnessing updated polyketide synthase modules through combinatorial engineering. RESEARCH SQUARE 2023:rs.3.rs-3157617. [PMID: 37546965 PMCID: PMC10402262 DOI: 10.21203/rs.3.rs-3157617/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The modular nature of polyketide assembly lines and the significance of their products make them prime targets for combinatorial engineering. While short synthases constructed using the recently updated module boundary have been shown to outperform those using the traditional boundary, larger synthases constructed using the updated boundary have not been investigated. Here we describe our design and implementation of a BioBricks-like platform to rapidly construct 5 triketide, 25 tetraketide, and 125 pentaketide synthases from the updated modules of the Pikromycin synthase. Every combinatorial possibility of modules 2-6 inserted between the first and last modules of the native synthase was constructed and assayed. Anticipated products were observed from 60% of the triketide synthases, 32% of the tetraketide synthases, and 6.4% of the pentaketide synthases. Ketosynthase gatekeeping and module-skipping were determined to be the principal impediments to obtaining functional synthases. The platform was also used to create functional hybrid synthases through the incorporation of modules from the Erythromycin, Spinosyn, and Rapamycin assembly lines. The relaxed gatekeeping observed from a ketosynthase in the Rapamycin synthase is especially encouraging in the quest to produce designer polyketides.
Collapse
Affiliation(s)
- Katherine A. Ray
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Joshua D. Lutgens
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Ramesh Bista
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Jie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Ronak R. Desai
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, Austin, TX
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Antonio Cordova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | | |
Collapse
|
15
|
Enzymology of assembly line synthesis by modular polyketide synthases. Nat Chem Biol 2023; 19:401-415. [PMID: 36914860 DOI: 10.1038/s41589-023-01277-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023]
Abstract
Modular polyketide synthases (PKSs) run catalytic reactions over dozens of steps in a highly orchestrated manner. To accomplish this synthetic feat, they form megadalton multienzyme complexes that are among the most intricate proteins on earth. Polyketide products are of elaborate chemistry with molecular weights of usually several hundred daltons and include clinically important drugs such as erythromycin (antibiotic), rapamycin (immunosuppressant) and epothilone (anticancer drug). The term 'modular' refers to a hierarchical structuring of modules and domains within an overall assembly line arrangement, in which PKS organization is colinearly translated into the polyketide structure. New structural information obtained during the past few years provides substantial direct insight into the orchestration of catalytic events within a PKS module and leads to plausible models for synthetic progress along assembly lines. In light of these structural insights, the PKS engineering field is poised to enter a new era of engineering.
Collapse
|
16
|
Zhai G, Zhu Y, Sun G, Zhou F, Sun Y, Hong Z, Dong C, Leadlay PF, Hong K, Deng Z, Zhou F, Sun Y. Insights into azalomycin F assembly-line contribute to evolution-guided polyketide synthase engineering and identification of intermodular recognition. Nat Commun 2023; 14:612. [PMID: 36739290 PMCID: PMC9899208 DOI: 10.1038/s41467-023-36213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
Modular polyketide synthase (PKS) is an ingenious core machine that catalyzes abundant polyketides in nature. Exploring interactions among modules in PKS is very important for understanding the overall biosynthetic process and for engineering PKS assembly-lines. Here, we show that intermodular recognition between the enoylreductase domain ER1/2 inside module 1/2 and the ketosynthase domain KS3 inside module 3 is required for the cross-module enoylreduction in azalomycin F (AZL) biosynthesis. We also show that KS4 of module 4 acts as a gatekeeper facilitating cross-module enoylreduction. Additionally, evidence is provided that module 3 and module 6 in the AZL PKS are evolutionarily homologous, which makes evolution-oriented PKS engineering possible. These results reveal intermodular recognition, furthering understanding of the mechanism of the PKS assembly-line, thus providing different insights into PKS engineering. This also reveals that gene duplication/conversion and subsequent combinations may be a neofunctionalization process in modular PKS assembly-lines, hence providing a different case for supporting the investigation of modular PKS evolution.
Collapse
Affiliation(s)
- Guifa Zhai
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Yan Zhu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Guo Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Fan Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Yangning Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Zhou Hong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Chuan Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Kui Hong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Zixin Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China
| | - Yuhui Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, People's Republic of China. .,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, 430071, Wuhan, People's Republic of China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, 430071, Wuhan, People's Republic of China.
| |
Collapse
|
17
|
Yi JS, Kim JM, Ban YH, Yoon YJ. Modular polyketide synthase-derived insecticidal agents: from biosynthesis and metabolic engineering to combinatorial biosynthesis for their production. Nat Prod Rep 2023; 40:972-987. [PMID: 36691749 DOI: 10.1039/d2np00078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Covering: up to 2022Polyketides derived from actinomycetes are a valuable source of eco-friendly biochemical insecticides. The development of new insecticides is urgently required, as the number of insects resistant to more than one drug is rapidly increasing. Moreover, significant enhancement of the production of such biochemical insecticides is required for economical production. There has been considerable improvement in polyketide insecticidal agent production and development of new insecticides. However, most commercially important biochemical insecticides are synthesized by modular type I polyketide synthases (PKSs), and their structural complexities make chemical modification challenging. A detailed understanding of the biosynthetic mechanisms of potent polyketide insecticides and the structure-activity relationships of their analogs will provide insight into the comprehensive design of new insecticides with improved efficacies. Further metabolic engineering and combinatorial biosynthesis efforts, reinvigorated by synthetic biology, can eventually produce designed analogs in large quantities. This highlight reviews the biosynthesis of representative insecticides produced by modular type I PKSs, such as avermectin, spinosyn, and spectinabilin, and their insecticidal properties. Metabolic engineering and combinatorial biosynthetic strategies for the development of high-yield strains and analogs with insecticidal activities are emphasized, proposing a way to develop a next-generation insecticide.
Collapse
Affiliation(s)
- Jeong Sang Yi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Min Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yeon Hee Ban
- College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Metabolic pathway assembly using docking domains from type I cis-AT polyketide synthases. Nat Commun 2022; 13:5541. [PMID: 36130947 PMCID: PMC9492657 DOI: 10.1038/s41467-022-33272-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Engineered metabolic pathways in microbial cell factories often have no natural organization and have challenging flux imbalances, leading to low biocatalytic efficiency. Modular polyketide synthases (PKSs) are multienzyme complexes that synthesize polyketide products via an assembly line thiotemplate mechanism. Here, we develop a strategy named mimic PKS enzyme assembly line (mPKSeal) that assembles key cascade enzymes to enhance biocatalytic efficiency and increase target production by recruiting cascade enzymes tagged with docking domains from type I cis-AT PKS. We apply this strategy to the astaxanthin biosynthetic pathway in engineered Escherichia coli for multienzyme assembly to increase astaxanthin production by 2.4-fold. The docking pairs, from the same PKSs or those from different cis-AT PKSs evidently belonging to distinct classes, are effective enzyme assembly tools for increasing astaxanthin production. This study addresses the challenge of cascade catalytic efficiency and highlights the potential for engineering enzyme assembly. Assembly artificial pathway in design connecting media can increase biosynthetic efficiency, but the choice of connecting media is limited. Here, the authors develop a new protein assembly strategy using a pool of docking peptides from polyketide synthase and show its application in astaxanthin biosynthesis in E. coli.
Collapse
|
19
|
Engineering the stambomycin modular polyketide synthase yields 37-membered mini-stambomycins. Nat Commun 2022; 13:515. [PMID: 35082289 PMCID: PMC8792006 DOI: 10.1038/s41467-022-27955-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
The modular organization of the type I polyketide synthases (PKSs) would seem propitious for rational engineering of desirable analogous. However, despite decades of efforts, such experiments remain largely inefficient. Here, we combine multiple, state-of-the-art approaches to reprogram the stambomycin PKS by deleting seven internal modules. One system produces the target 37-membered mini-stambomycin metabolites − a reduction in chain length of 14 carbons relative to the 51-membered parental compounds − but also substantial quantities of shunt metabolites. Our data also support an unprecedented off-loading mechanism of such stalled intermediates involving the C-terminal thioesterase domain of the PKS. The mini-stambomycin yields are reduced relative to wild type, likely reflecting the poor tolerance of the modules downstream of the modified interfaces to the non-native substrates. Overall, we identify factors contributing to the productivity of engineered whole assembly lines, but our findings also highlight the need for further research to increase production titers. Genetic engineering of the type I polyketide synthases (PKSs) to produce desirable analogous remains largely inefficient. Here, the authors leverage multiple approaches to delete seven internal modules from the stambomycin PKS and generate 37-membered mini-stambomycin macrolactones.
Collapse
|
20
|
Hirsch M, Fitzgerald BJ, Keatinge-Clay AT. How cis-Acyltransferase Assembly-Line Ketosynthases Gatekeep for Processed Polyketide Intermediates. ACS Chem Biol 2021; 16:2515-2526. [PMID: 34590822 PMCID: PMC9879353 DOI: 10.1021/acschembio.1c00598] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
With the redefinition of polyketide synthase (PKS) modules, a new appreciation of their most downstream domain, the ketosynthase (KS), is emerging. In addition to performing its well-established role of generating a carbon-carbon bond between an acyl-CoA building block and a growing polyketide, it may gatekeep against incompletely processed intermediates. Here, we investigate 739 KSs from 92 primarily actinomycete, cis-acyltransferase assembly lines. When KSs were separated into 16 families based on the chemistries at the α- and β-carbons of their polyketide substrates, a comparison of 32 substrate tunnel residues revealed unique sequence fingerprints. Surprisingly, additional fingerprints were detected when the chemistry at the γ-carbon was considered. Representative KSs were modeled bound to their natural polyketide substrates to better understand observed patterns, such as the substitution of a tryptophan by a smaller residue to accommodate an l-α-methyl group or the substitution of four smaller residues by larger ones to make better contact with a primer unit or diketide. Mutagenesis of a conserved glutamine in a KS within a model triketide synthase indicates that the substrate tunnel is sensitive to alteration and that engineering this KS to accept unnatural substrates may require several mutations.
Collapse
Affiliation(s)
- Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brendan J. Fitzgerald
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrian T. Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Hwang GJ, Jang M, Son S, Lee B, Jang JP, Lee JS, Ko SK, Hong YS, Ahn JS, Jang JH. Ulleunganilines A-C, Trichostatin Analogues Bearing a Modified Side Chain from Streptomyces sp. 13F051. JOURNAL OF NATURAL PRODUCTS 2021; 84:2420-2426. [PMID: 34455777 DOI: 10.1021/acs.jnatprod.1c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three new trichostatin analogues, ulleunganilines A-C (1-3), and seven known trichostatins (4-10) were isolated from cultures of Streptomyces sp. 13F051. NMR, UV, and MS data indicated that the planar structures of 1-3 consisted of modified side chains in the trichostatic acid moiety. The absolute configuration of the 2,4-dimethyl-branched carbon chains in 1 and 2 was determined by the PGME method, while the amino acid group in 3 was identified by advanced Marfey's method. Based on the structure of the modified side chains, the origin of 1-3 is proposed. Further experiments indicated that 1 and 3 displayed moderate histone deacetylase inhibitory activity, suggesting that not only the hydroxamate group but also the N,N-dimethyl group were essential for the inhibitory activity.
Collapse
Affiliation(s)
- Gwi Ja Hwang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, South Korea
| | - Mina Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
| | - Sangkeun Son
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
| | - Byeongsan Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
| | - Jun-Pil Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, South Korea
| | - Sung-Kyun Ko
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, South Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, South Korea
| | - Jae-Hyuk Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, South Korea
| |
Collapse
|
22
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
23
|
Kudo K, Nishimura T, Kozone I, Hashimoto J, Kagaya N, Suenaga H, Ikeda H, Shin-Ya K. Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase. Sci Rep 2021; 11:9944. [PMID: 33976244 PMCID: PMC8113240 DOI: 10.1038/s41598-021-88583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/14/2021] [Indexed: 11/09/2022] Open
Abstract
Engineering polyketide synthases is one of the most promising ways of producing a variety of polyketide derivatives. Exploring the undiscovered chemical space of this medicinally important class of middle molecular weight natural products will aid in the development of improved drugs in the future. In previous work, we established methodology designated 'module editing' to precisely manipulate polyketide synthase genes cloned in a bacterial artificial chromosome. Here, in the course of investigating the engineering capacity of the rapamycin PKS, novel rapamycin derivatives 1-4, which lack the hemiacetal moiety, were produced through the heterologous expression of engineered variants of the rapamycin PKS. Three kinds of module deletions in the polyketide synthase RapC were designed, and the genetically engineered vectors were prepared by the in vitro module editing technique. Streptomyces avermitilis SUKA34 transformed with these edited PKSs produced new rapamycin derivatives. The planar structures of 1-4 established based on 1D and 2D NMR, ESI-TOF-MS and UV spectra revealed that 2 and 3 had skeletons well-matched to the designs, but 1 and 4 did not. The observations provide important insights into the mechanisms of the later steps of rapamycin skeletal formation as well as the ketone-forming oxygenase RapJ.
Collapse
Affiliation(s)
- Kei Kudo
- National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, Japan
| | - Takehiro Nishimura
- Technology Research Association for Next Generation Natural Products Chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium (JBIC), 2-4-32 Aomi, Koto-ku, Tokyo, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), 2-4-32 Aomi, Koto-ku, Tokyo, Japan
| | - Noritaka Kagaya
- Japan Biological Informatics Consortium (JBIC), 2-4-32 Aomi, Koto-ku, Tokyo, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, Japan. .,Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
24
|
Miller WB, Enguita FJ, Leitão AL. Non-Random Genome Editing and Natural Cellular Engineering in Cognition-Based Evolution. Cells 2021; 10:1125. [PMID: 34066959 PMCID: PMC8148535 DOI: 10.3390/cells10051125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Neo-Darwinism presumes that biological variation is a product of random genetic replication errors and natural selection. Cognition-Based Evolution (CBE) asserts a comprehensive alternative approach to phenotypic variation and the generation of biological novelty. In CBE, evolutionary variation is the product of natural cellular engineering that permits purposive genetic adjustments as cellular problem-solving. CBE upholds that the cornerstone of biology is the intelligent measuring cell. Since all biological information that is available to cells is ambiguous, multicellularity arises from the cellular requirement to maximize the validity of available environmental information. This is best accomplished through collective measurement purposed towards maintaining and optimizing individual cellular states of homeorhesis as dynamic flux that sustains cellular equipoise. The collective action of the multicellular measurement and assessment of information and its collaborative communication is natural cellular engineering. Its yield is linked cellular ecologies and mutualized niche constructions that comprise biofilms and holobionts. In this context, biological variation is the product of collective differential assessment of ambiguous environmental cues by networking intelligent cells. Such concerted action is enabled by non-random natural genomic editing in response to epigenetic impacts and environmental stresses. Random genetic activity can be either constrained or deployed as a 'harnessing of stochasticity'. Therefore, genes are cellular tools. Selection filters cellular solutions to environmental stresses to assure continuous cellular-organismal-environmental complementarity. Since all multicellular eukaryotes are holobionts as vast assemblages of participants of each of the three cellular domains (Prokaryota, Archaea, Eukaryota) and the virome, multicellular variation is necessarily a product of co-engineering among them.
Collapse
Affiliation(s)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
25
|
Baunach M, Chowdhury S, Stallforth P, Dittmann E. The Landscape of Recombination Events That Create Nonribosomal Peptide Diversity. Mol Biol Evol 2021; 38:2116-2130. [PMID: 33480992 PMCID: PMC8097286 DOI: 10.1093/molbev/msab015] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonribosomal peptides (NRP) are crucial molecular mediators in microbial ecology and provide indispensable drugs. Nevertheless, the evolution of the flexible biosynthetic machineries that correlates with the stunning structural diversity of NRPs is poorly understood. Here, we show that recombination is a key driver in the evolution of bacterial NRP synthetase (NRPS) genes across distant bacterial phyla, which has guided structural diversification in a plethora of NRP families by extensive mixing and matching of biosynthesis genes. The systematic dissection of a large number of individual recombination events did not only unveil a striking plurality in the nature and origin of the exchange units but allowed the deduction of overarching principles that enable the efficient exchange of adenylation (A) domain substrates while keeping the functionality of the dynamic multienzyme complexes. In the majority of cases, recombination events have targeted variable portions of the Acore domains, yet domain interfaces and the flexible Asub domain remained untapped. Our results strongly contradict the widespread assumption that adenylation and condensation (C) domains coevolve and significantly challenge the attributed role of C domains as stringent selectivity filter during NRP synthesis. Moreover, they teach valuable lessons on the choice of natural exchange units in the evolution of NRPS diversity, which may guide future engineering approaches.
Collapse
Affiliation(s)
- Martin Baunach
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Elke Dittmann
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
26
|
Hirsch M, Kumru K, Desai RR, Fitzgerald BJ, Miyazawa T, Ray KA, Saif N, Spears S, Keatinge-Clay AT. Insights into modular polyketide synthase loops aided by repetitive sequences. Proteins 2021; 89:1099-1110. [PMID: 33843112 DOI: 10.1002/prot.26083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/05/2021] [Accepted: 04/02/2021] [Indexed: 11/08/2022]
Abstract
The loops of modular polyketide synthases (PKSs) serve diverse functions but are largely uncharacterized. They frequently contain amino acid repeats resulting from genetic events such as slipped-strand mispairing. Determining the tolerance of loops to amino acid changes would aid in understanding and engineering these multidomain molecule factories. Here, tandem repeats in the DNA encoding 949 modules within 129 cis-acyltransferase PKSs were cataloged, and the locations of the corresponding amino acids within the module were identified. The most frequently inserted interdomain loop corresponds with the updated module boundary immediately downstream of the ketosynthase (KS), while the loops bordering the dehydratase are nearly intolerant to such insertions. From the 949 modules, no repetitive sequence loop insertions are located within ACP, and only 2 reside within KS, indicating the sensitivity of these domains to alteration.
Collapse
Affiliation(s)
- Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Kaan Kumru
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Ronak R Desai
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Brendan J Fitzgerald
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Katherine A Ray
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Nisha Saif
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Samantha Spears
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
27
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucy A. Harwood
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Luet L. Wong
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| | - Jeremy Robertson
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| |
Collapse
|
28
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021; 60:4434-4447. [PMID: 33037837 PMCID: PMC7986699 DOI: 10.1002/anie.202011468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Kinetic resolution using biocatalysis has proven to be an excellent complementary technique to traditional asymmetric catalysis for the production of enantioenriched compounds. Resolution using oxidative enzymes produces valuable oxygenated structures for use in synthetic route development. This Minireview focuses on enzymes which catalyse the insertion of an oxygen atom into the substrate and, in so doing, can achieve oxidative kinetic resolution. The Baeyer-Villiger rearrangement, epoxidation, and hydroxylation are included, and biological advancements in enzyme development, and applications of these key enantioenriched intermediates in natural product synthesis are discussed.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Luet L. Wong
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RoadOxfordOX1 3QRUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| | - Jeremy Robertson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| |
Collapse
|
29
|
Pham VTT, Nguyen HT, Nguyen CT, Choi YS, Dhakal D, Kim TS, Jung HJ, Yamaguchi T, Sohng JK. Identification and enhancing production of a novel macrolide compound in engineered Streptomyces peucetius. RSC Adv 2021; 11:3168-3173. [PMID: 35424263 PMCID: PMC8693821 DOI: 10.1039/d0ra06099b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Streptomyces peucetius produces doxorubicin and daunorubicin, which are important anticancer drugs. In this study, we activate peucemycin, a new antibacterial compound, using an OSMAC strategy. In general, bioactive compounds are produced in a higher amount at room temperature; however, in this study, we have demonstrated that a bioactive novel compound was successfully activated at a low temperature (18 °C) in S. peucetius DM07. Through LC-MS/MS, IR spectroscopy, and NMR analysis, we identified the structure of this compound as a γ-pyrone macrolide. This compound was found to be novel, thus named peucemycin. It is an unusual 14-membered macrocyclic γ-pyrone ring with cyclization. Also, peucemycin exhibits potential antibacterial activity and a suppressive effect on the viability of various cancer cell lines. Activation of peucemycin in S. peucetius DM07 by the OSMAC strategy.![]()
Collapse
Affiliation(s)
- Van Thuy Thi Pham
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Chung Thanh Nguyen
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Ye Seul Choi
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Tae-Su Kim
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea .,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Tokutaro Yamaguchi
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea .,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| |
Collapse
|
30
|
Klaus M, Buyachuihan L, Grininger M. Ketosynthase Domain Constrains the Design of Polyketide Synthases. ACS Chem Biol 2020; 15:2422-2432. [PMID: 32786257 DOI: 10.1021/acschembio.0c00405] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Modular polyketide synthases (PKSs) produce complex, bioactive secondary metabolites in assembly line-like multistep reactions. Longstanding efforts to produce novel, biologically active compounds by recombining intact modules to new modular PKSs have mostly resulted in poorly active chimeras and decreased product yields. Recent findings demonstrate that the low efficiencies of modular chimeric PKSs also result from rate limitations in the transfer of the growing polyketide chain across the noncognate module:module interface and further processing of the non-native polyketide substrate by the ketosynthase (KS) domain. In this study, we aim at disclosing and understanding the low efficiency of chimeric modular PKSs and at establishing guidelines for modular PKSs engineering. To do so, we work with a bimodular PKS testbed and systematically vary substrate specificity, substrate identity, and domain:domain interfaces of the KS involved reactions. We observe that KS domains employed in our chimeric bimodular PKSs are bottlenecks with regards to both substrate specificity as well as interaction with the acyl carrier protein (ACP). Overall, our systematic study can explain in quantitative terms why early oversimplified engineering strategies based on the plain shuffling of modules mostly failed and why more recent approaches show improved success rates. We moreover identify two mutations of the KS domain that significantly increased turnover rates in chimeric systems and interpret this finding in mechanistic detail.
Collapse
Affiliation(s)
- Maja Klaus
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| |
Collapse
|
31
|
Malico AA, Nichols L, Williams GJ. Synthetic biology enabling access to designer polyketides. Curr Opin Chem Biol 2020; 58:45-53. [PMID: 32758909 DOI: 10.1016/j.cbpa.2020.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
The full potential of polyketide discovery has yet to be reached owing to a lack of suitable technologies and knowledge required to advance engineering of polyketide biosynthesis. Recent investigations on the discovery, enhancement, and non-natural use of these biosynthetic gene clusters via computational biology, metabolic engineering, structural biology, and enzymology-guided approaches have facilitated improved access to designer polyketides. Here, we discuss recent successes in gene cluster discovery, host strain engineering, precursor-directed biosynthesis, combinatorial biosynthesis, polyketide tailoring, and high-throughput synthetic biology, as well as challenges and outlooks for rapidly generating useful target polyketides.
Collapse
Affiliation(s)
- Alexandra A Malico
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Lindsay Nichols
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, United States.
| |
Collapse
|
32
|
Zargar A, Lal R, Valencia L, Wang J, Backman TWH, Cruz-Morales P, Kothari A, Werts M, Wong AR, Bailey CB, Loubat A, Liu Y, Chen Y, Chang S, Benites VT, Hernández AC, Barajas JF, Thompson MG, Barcelos C, Anayah R, Martin HG, Mukhopadhyay A, Petzold CJ, Baidoo EEK, Katz L, Keasling JD. Chemoinformatic-Guided Engineering of Polyketide Synthases. J Am Chem Soc 2020; 142:9896-9901. [DOI: 10.1021/jacs.0c02549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amin Zargar
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- QB3 Institute, University of California−Berkeley, 5885 Hollis Street, Fourth Floor, Emeryville, California 94608, United States
| | - Ravi Lal
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Luis Valencia
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Jessica Wang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Tyler William H. Backman
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Pablo Cruz-Morales
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Ankita Kothari
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Miranda Werts
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Andrew R. Wong
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Constance B. Bailey
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- QB3 Institute, University of California−Berkeley, 5885 Hollis Street, Fourth Floor, Emeryville, California 94608, United States
| | - Arthur Loubat
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Yuzhong Liu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Samantha Chang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Veronica T. Benites
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- Department of Energy, Agile BioFoundry, Emeryville, California 94608, United States
| | - Amanda C. Hernández
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Jesus F. Barajas
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- Department of Energy, Agile BioFoundry, Emeryville, California 94608, United States
| | - Mitchell G. Thompson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Carolina Barcelos
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Rasha Anayah
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Hector Garcia Martin
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- Department of Energy, Agile BioFoundry, Emeryville, California 94608, United States
- BCAM, Basque Center for Applied Mathematics, 48009 Bilbao, Spain
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- Department of Energy, Agile BioFoundry, Emeryville, California 94608, United States
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- Department of Energy, Agile BioFoundry, Emeryville, California 94608, United States
| | - Leonard Katz
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- QB3 Institute, University of California−Berkeley, 5885 Hollis Street, Fourth Floor, Emeryville, California 94608, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- QB3 Institute, University of California−Berkeley, 5885 Hollis Street, Fourth Floor, Emeryville, California 94608, United States
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
33
|
The role of the iterative modules in polyketide synthase evolution. Proc Natl Acad Sci U S A 2020; 117:8680-8682. [PMID: 32291336 DOI: 10.1073/pnas.2004190117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
34
|
Massicard JM, Soligot C, Weissman KJ, Jacob C. Manipulating polyketide stereochemistry by exchange of polyketide synthase modules. Chem Commun (Camb) 2020; 56:12749-12752. [DOI: 10.1039/d0cc05068g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exchange of polyketide synthase (PKS) modules by genetic engineering leads to efficient modification of polyketide stereochemistry.
Collapse
Affiliation(s)
| | - Claire Soligot
- Université de Lorraine
- UR AFPA
- USC 340 INRAE
- F-54000 Nancy
- France
| | | | | |
Collapse
|
35
|
Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and Diversity of Assembly-Line Polyketide Synthases. Chem Rev 2019; 119:12524-12547. [PMID: 31838842 PMCID: PMC6935866 DOI: 10.1021/acs.chemrev.9b00525] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 12/11/2022]
Abstract
Assembly-line polyketide synthases (PKSs) are among the most complex protein machineries known in nature, responsible for the biosynthesis of numerous compounds used in the clinic. Their present-day diversity is the result of an evolutionary path that has involved the emergence of a multimodular architecture and further diversification of assembly-line PKSs. In this review, we provide an overview of previous studies that investigated PKS evolution and propose a model that challenges the currently prevailing view that gene duplication has played a major role in the emergence of multimodularity. We also analyze the ensemble of orphan PKS clusters sequenced so far to evaluate how large the entire diversity of assembly-line PKS clusters and their chemical products could be. Finally, we examine the existing techniques to access the natural PKS diversity in natural and heterologous hosts and describe approaches to further expand this diversity through engineering.
Collapse
Affiliation(s)
- Aleksandra Nivina
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Kai P. Yuet
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Jake Hsu
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department
of Chemistry, Stanford ChEM-H, Department of Chemical Engineering Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
36
|
Peng H, Ishida K, Hertweck C. Loss of Single-Domain Function in a Modular Assembly Line Alters the Size and Shape of a Complex Polyketide. Angew Chem Int Ed Engl 2019; 58:18252-18256. [PMID: 31595618 PMCID: PMC6916388 DOI: 10.1002/anie.201911315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The structural wealth of complex polyketide metabolites produced by bacteria results from intricate, highly evolved biosynthetic programs of modular assembly lines, in which the number of modules defines the size of the backbone, and the domain composition controls the degree of functionalization. We report a remarkable case where polyketide chain length and scaffold depend on the function of a single β-keto processing domain: A ketoreductase domain represents a switch between diverging biosynthetic pathways leading either to the antifungal aureothin or to the nematicidal luteoreticulin. By a combination of heterologous expression, mutagenesis, metabolite analyses, and in vitro biotransformation we elucidate the factors governing non-colinear polyketide assembly involving module skipping and demonstrate that a simple point mutation in type I polyketide synthase (PKS) can have a dramatic effect on the metabolic profile. This finding sheds new light on possible evolutionary scenarios and may inspire future synthetic biology approaches.
Collapse
Affiliation(s)
- Huiyun Peng
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
- Faculty of Biological SciencesChair for Natural Product ChemistryFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
37
|
Fewer DP, Metsä‐Ketelä M. A pharmaceutical model for the molecular evolution of microbial natural products. FEBS J 2019; 287:1429-1449. [DOI: 10.1111/febs.15129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Fewer
- Department of Microbiology University of Helsinki Finland
| | | |
Collapse
|
38
|
Peng H, Ishida K, Hertweck C. Loss of Single‐Domain Function in a Modular Assembly Line Alters the Size and Shape of a Complex Polyketide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Huiyun Peng
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
- Faculty of Biological SciencesChair for Natural Product ChemistryFriedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|