1
|
Huang R, Kravchik V, Zaatry R, Habib M, Geva-Zatorsky N, Daniel R. Engineering coupled consortia-based biosensors for diagnostic. Nat Commun 2025; 16:3761. [PMID: 40263365 PMCID: PMC12015303 DOI: 10.1038/s41467-025-58996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Synthetic multicellular systems have great potential for performing complex tasks, including multi-signal detection and computation through cell-to-cell communication. However, engineering these systems is challenging, requiring precise control over the cell concentrations of distinct members and coordination of their activity. Here, we develop a bacterial consortia-based biosensor for Heme and Lactate, wherein members are coupled through a global shared quorum-sensing signal that simultaneously controls the activity of the diverse biosensing strains. The multicellular system incorporates a gene circuit that computes the minimum between each biosensor's activity and the shared signal. We evaluate three consortia configurations: one where the shared signal is externally supplied, another directly produced via an inducible gene circuit, and a third generated through an incoherent feedforward loop (IFFL) gene circuit. Among these configurations, the IFFL system, which maintains the shared signal at low and stable levels over an extended period, demonstrates improved performance and robustness against perturbations in cell populations. Finally, we examine these coupled consortia to monitor Lactate and Heme in humanized fecal samples for diagnostics.
Collapse
Affiliation(s)
- Rongying Huang
- Department of Biotechnology Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Valeriia Kravchik
- Department of Biomedical Engineering Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Rawan Zaatry
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Mouna Habib
- Department of Biomedical Engineering Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
- CIFAR, MaRS Centre, West Tower 661 University Avenue, Suite 505, Toronto, ON, M5G 1M1, Canada
| | - Ramez Daniel
- Department of Biomedical Engineering Technion-Israel Institute of Technology, Technion City, Haifa, Israel.
| |
Collapse
|
2
|
Nevot G, Santos-Moreno J, Campamà-Sanz N, Toloza L, Parra-Cid C, Jansen PAM, Barbier I, Ledesma-Amaro R, van den Bogaard EH, Güell M. Synthetically programmed antioxidant delivery by a domesticated skin commensal. Cell Syst 2025; 16:101169. [PMID: 39919749 DOI: 10.1016/j.cels.2025.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
Bacteria represent a promising dynamic delivery system for the treatment of disease. In the skin, the relevant location of Cutibacterium acnes within the hair follicle makes this bacterium an attractive chassis for dermal biotechnological applications. Here, we provide a genetic toolbox for the engineering of this traditionally intractable bacterium, including basic gene expression tools, biocontainment strategies, markerless genetic engineering, and dynamic transcriptional regulation. As a proof of concept, we develop an antioxidant-secreting strain capable of reducing oxidative stress in a UV stress model.
Collapse
Affiliation(s)
- Guillermo Nevot
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain
| | - Javier Santos-Moreno
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain.
| | - Nil Campamà-Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, Södermanland and Uppland, 17165 Stockholm, Sweden
| | - Lorena Toloza
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain
| | - Cristóbal Parra-Cid
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain
| | - Patrick A M Jansen
- Department of Dermatology, Radboud University Medical Center, Nijmegen 6525GA, Güeldres, the Netherlands
| | - Içvara Barbier
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, Greater London, London SW72AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, Greater London, London SW72AZ, UK
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Nijmegen 6525GA, Güeldres, the Netherlands
| | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, 08003 Barcelona, Cataluña, Spain.
| |
Collapse
|
3
|
Chan DC, Winter L, Bjerg J, Krsmanovic S, Baldwin GS, Bernstein HC. Fine-Tuning Genetic Circuits via Host Context and RBS Modulation. ACS Synth Biol 2025; 14:193-205. [PMID: 39754601 PMCID: PMC11744933 DOI: 10.1021/acssynbio.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants. Characterization of performance metrics in terms of toggle switch output and host growth dynamics unveils a spectrum of performance profiles from our circuit library. We find that changes in host context cause large shifts in overall performance, while modulating ribosome binding sites leads to more incremental changes. We find that a combined ribosome binding site and host context modulation approach can be used to fine-tune the properties of a toggle switch according to user-defined specifications, such as toward greater signaling strength, inducer sensitivity, or both. Other auxiliary properties, such as inducer tolerance, are also exclusively accessed through changes in the host context. We demonstrate here that exploration of the chassis-design space can offer significant value, reconceptualizing the chassis organism as an important part in the synthetic biologist's toolbox with important implications for the field of synthetic biology.
Collapse
Affiliation(s)
- Dennis
Tin Chat Chan
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Lena Winter
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Johan Bjerg
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Stina Krsmanovic
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Geoff S. Baldwin
- Department
of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K.
- Imperial
College Centre for Synthetic Biology, Imperial
College London, South
Kensington, London SW7
2AZ, U.K.
| | - Hans C. Bernstein
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
- The
Arctic Centre for Sustainable Energy, UiT—The
Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
4
|
Lee H, Xie T, Kang B, Yu X, Schaffter SW, Schulman R. Plug-and-play protein biosensors using aptamer-regulated in vitro transcription. Nat Commun 2024; 15:7973. [PMID: 39266511 PMCID: PMC11393120 DOI: 10.1038/s41467-024-51907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024] Open
Abstract
Molecular biosensors that accurately measure protein concentrations without external equipment are critical for solving numerous problems in diagnostics and therapeutics. Modularly transducing the binding of protein antibodies, protein switches or aptamers into a useful output remains challenging. Here, we develop a biosensing platform based on aptamer-regulated transcription in which aptamers integrated into transcription templates serve as inputs to molecular circuits that can be programmed to a produce a variety of responses. We modularly design molecular biosensors using this platform by swapping aptamer domains for specific proteins and downstream domains that encode different RNA transcripts. By coupling aptamer-regulated transcription with diverse transduction circuits, we rapidly construct analog protein biosensors and digital protein biosensors with detection ranges that can be tuned over two orders of magnitude and can exceed the binding affinity of the aptamer. Aptamer-regulated transcription is a straightforward and inexpensive approach for constructing programmable protein biosensors that could have diverse applications in research and biotechnology.
Collapse
Affiliation(s)
- Heonjoon Lee
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tian Xie
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Byunghwa Kang
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Xinjie Yu
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Rebecca Schulman
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Luthfi M, Pandey RB, Su YC, Sompornpisut P. Deciphering molecular basis of pesticide-induced recurrent pregnancy loss: insights from transcriptomics analysis. Toxicol Mech Methods 2024; 34:527-544. [PMID: 38294000 DOI: 10.1080/15376516.2024.2307975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Recent studies have revealed a notable connection between pesticide exposure and Recurrent Pregnancy Loss (RPL), yet the precise molecular underpinning of this toxicity remains elusive. Through the alignment of Differentially Expressed Genes (DEGs) of healthy and RPL patients with the target genes of 9 pesticide components, we identified a set of 12 genes responsible for RPL etiology. Interestingly, biological process showed that besides RPL, those 12 genes also associated with preeclampsia and cardiovascular disease. Enrichment analysis showed the engagement of these genes associated with essential roles in the molecular transport of small molecules, as well as the aldosterone-regulated sodium reabsorption, endocrine and other factor-regulated calcium reabsorption, mineral absorption, ion homeostasis, and ion transport by P-type ATPases. Notably, the crosstalk targets between pesticide components played crucial roles in influencing RPL results, suggesting a role in attenuating pesticide agents that contribute to RPL. It is important to note that non-significant concentration of the pesticide components observed in both control and RPL samples should not prematurely undermine the potential for pesticides to induce RPL in humans. This study emphasizes the complexity of pesticide induced RPL and highlights avenues for further research and precautionary measures.
Collapse
Affiliation(s)
- Muhammad Luthfi
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Computational Chemistry, Department of Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - R B Pandey
- School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Yong-Chao Su
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pornthep Sompornpisut
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Computational Chemistry, Department of Chemistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
7
|
Bragdon MDJ, Patel N, Chuang J, Levien E, Bashor CJ, Khalil AS. Cooperative assembly confers regulatory specificity and long-term genetic circuit stability. Cell 2023; 186:3810-3825.e18. [PMID: 37552983 PMCID: PMC10528910 DOI: 10.1016/j.cell.2023.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
A ubiquitous feature of eukaryotic transcriptional regulation is cooperative self-assembly between transcription factors (TFs) and DNA cis-regulatory motifs. It is thought that this strategy enables specific regulatory connections to be formed in gene networks between otherwise weakly interacting, low-specificity molecular components. Here, using synthetic gene circuits constructed in yeast, we find that high regulatory specificity can emerge from cooperative, multivalent interactions among artificial zinc-finger-based TFs. We show that circuits "wired" using the strategy of cooperative TF assembly are effectively insulated from aberrant misregulation of the host cell genome. As we demonstrate in experiments and mathematical models, this mechanism is sufficient to rescue circuit-driven fitness defects, resulting in genetic and functional stability of circuits in long-term continuous culture. Our naturally inspired approach offers a simple, generalizable means for building high-fidelity, evolutionarily robust gene circuits that can be scaled to a wide range of host organisms and applications.
Collapse
Affiliation(s)
- Meghan D J Bragdon
- Biological Design Center, Boston University, Boston, MA 02215, USA; Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Nikit Patel
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - James Chuang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ethan Levien
- Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77030, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Lee H, Xie T, Yu X, Schaffter SW, Schulman R. Plug-and-play protein biosensors using aptamer-regulated in vitro transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552680. [PMID: 37645783 PMCID: PMC10461910 DOI: 10.1101/2023.08.10.552680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Molecular biosensors that accurately measure protein concentrations without external equipment are critical for solving numerous problems in diagnostics and therapeutics. Modularly transducing the binding of protein antibodies, protein switches or aptamers into a useful output remains challenging. Here, we develop a biosensing platform based on aptamer-regulated transcription in which aptamers integrated into transcription templates serve as inputs to molecular circuits that can be programmed to a produce a variety of responses. We modularly design molecular biosensors using this platform by swapping aptamer domains for specific proteins and downstream domains that encode different RNA transcripts. By coupling aptamer-regulated transcription with diverse transduction circuits, we rapidly construct analog protein biosensors or digital protein biosensors with detection ranges that can be tuned over two orders of magnitude. Aptamer-regulated transcription is a straightforward and inexpensive approach for constructing programmable protein biosensors suitable for diverse research and diagnostic applications.
Collapse
Affiliation(s)
- Heonjoon Lee
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218
| | - Tian Xie
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Xinjie Yu
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | | | - Rebecca Schulman
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Computer Science, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
9
|
O'Connell RW, Rai K, Piepergerdes TC, Wang Y, Samra KD, Wilson JA, Lin S, Zhang TH, Ramos E, Sun A, Kille B, Curry KD, Rocks JW, Treangen TJ, Mehta P, Bashor CJ. Ultra-high throughput mapping of genetic design space. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532704. [PMID: 36993481 PMCID: PMC10055055 DOI: 10.1101/2023.03.16.532704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Massively parallel genetic screens have been used to map sequence-to-function relationships for a variety of genetic elements. However, because these approaches only interrogate short sequences, it remains challenging to perform high throughput (HT) assays on constructs containing combinations of sequence elements arranged across multi-kb length scales. Overcoming this barrier could accelerate synthetic biology; by screening diverse gene circuit designs, "composition-to-function" mappings could be created that reveal genetic part composability rules and enable rapid identification of behavior-optimized variants. Here, we introduce CLASSIC, a generalizable genetic screening platform that combines long- and short-read next-generation sequencing (NGS) modalities to quantitatively assess pooled libraries of DNA constructs of arbitrary length. We show that CLASSIC can measure expression profiles of >10 5 drug-inducible gene circuit designs (ranging from 6-9 kb) in a single experiment in human cells. Using statistical inference and machine learning (ML) approaches, we demonstrate that data obtained with CLASSIC enables predictive modeling of an entire circuit design landscape, offering critical insight into underlying design principles. Our work shows that by expanding the throughput and understanding gained with each design-build-test-learn (DBTL) cycle, CLASSIC dramatically augments the pace and scale of synthetic biology and establishes an experimental basis for data-driven design of complex genetic systems.
Collapse
|
10
|
Yarra SS, Ashok G, Mohan U. "Toehold Switches; a foothold for Synthetic Biology". Biotechnol Bioeng 2023; 120:932-952. [PMID: 36527224 DOI: 10.1002/bit.28309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Toehold switches are de novo designed riboregulators that contain two RNA components interacting through linear-linear RNA interactions, regulating the gene expression. These are highly versatile, exhibit excellent orthogonality, wide dynamic range, and are highly programmable, so can be used for various applications in synthetic biology. In this review, we summarized and discussed the design characteristics and benefits of toehold switch riboregulators over conventional riboregulators. We also discussed applications and recent advancements of toehold switch riboregulators in various fields like gene editing, DNA nanotechnology, translational repression, and diagnostics (detection of microRNAs and some pathogens). Toehold switches, therefore, furnished advancement in synthetic biology applications in various fields with their prominent features.
Collapse
Affiliation(s)
- Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Anastassov S, Filo M, Chang CH, Khammash M. A cybergenetic framework for engineering intein-mediated integral feedback control systems. Nat Commun 2023; 14:1337. [PMID: 36906662 PMCID: PMC10008564 DOI: 10.1038/s41467-023-36863-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
The ability of biological systems to tightly regulate targeted variables, despite external and internal disturbances, is known as Robust Perfect Adaptation (RPA). Achieved frequently through biomolecular integral feedback controllers at the cellular level, RPA has important implications for biotechnology and its various applications. In this study, we identify inteins as a versatile class of genetic components suitable for implementing these controllers and present a systematic approach for their design. We develop a theoretical foundation for screening intein-based RPA-achieving controllers and a simplified approach for modeling them. We then genetically engineer and test intein-based controllers using commonly used transcription factors in mammalian cells and demonstrate their exceptional adaptation properties over a wide dynamic range. The small size, flexibility, and applicability of inteins across life forms allow us to create a diversity of genetic RPA-achieving integral feedback control systems that can be used in various applications, including metabolic engineering and cell-based therapy.
Collapse
Affiliation(s)
- Stanislav Anastassov
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Maurice Filo
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Ching-Hsiang Chang
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.
| |
Collapse
|
12
|
Davoodi P, Ghaderi-Zefrehei M, Dolatabady MM, Razmkabir M, Kianpour S, Esfahani EN, Smith J. In silico investigation of uncoupling protein function in avian genomes. Front Vet Sci 2023; 9:1085112. [PMID: 36744229 PMCID: PMC9893418 DOI: 10.3389/fvets.2022.1085112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction The uncoupling proteins (UCPs) are involved in lipid metabolism and belong to a family of mitochondrial anionic transporters. In poultry, only one UCP homologue has been identified and experimentally shown to be associated with growth, feed conversion ratio, and abdominal fat according to its predominant expression in bird muscles. In endotherm birds, cell metabolic efficiency can be tuned by the rate of mitochondrial coupling. Thus, avUCP may be a key contributor to controlling metabolic rate during particular environmental changes. Methods This study aimed to perform a set of in-silico investigations primarily focused on the structural, biological, and biomimetic functions of avUCP. Thereby, using in silico genome analyses among 8 avian species (chicken, turkey, swallow, manakin, sparrow, wagtail, pigeon, and mallard) and a series of bioinformatic approaches, we provide phylogenetic inference and comparative genomics of avUCPs and investigate whether sequence variation can alter coding sequence characteristics, the protein structure, and its biological features. Complementarily, a combination of literature mining and prediction approaches was also applied to predict the gene networks of avUCP to identify genes, pathways, and biological crosstalk associated with avUCP function. Results The results showed the evolutionary alteration of UCP proteins in different avian species. Uncoupling proteins in avian species are highly conserved trans membrane proteins as seen by sequence alignment, physio-chemical parameters, and predicted protein structures. Taken together, avUCP has the potential to be considered a functional marker for the identification of cell metabolic state, thermogenesis, and oxidative stress caused by cold, heat, fasting, transfer, and other chemical stimuli stresses in birds. It can also be deduced that avUCP, in migrant or domestic birds, may increase heat stress resistance by reducing fatty acid transport/b-oxidation and thermoregulation alongside antioxidant defense mechanisms. The predicted gene network for avUCP highlighted a cluster of 21 genes involved in response to stress and 28 genes related to lipid metabolism and the proton buffering system. Finally, among 11 enriched pathways, crosstalk of 5 signaling pathways including MAPK, adipocytokine, mTOR, insulin, ErbB, and GnRH was predicted, indicating a possible combination of positive or negative feedback among pathways to regulate avUCP functions. Discussion Genetic selection for fast-growing commercial poultry has unintentionally increased susceptibility to many kinds of oxidative stress, and so avUCP could be considered as a potential candidate gene for balancing energy expenditure and reactive oxygen species production, especially in breeding programs. In conclusion, avUCP can be introduced as a pleiotropic gene that requires the contribution of regulatory genes, hormones, pathways, and genetic crosstalk to allow its finely-tuned function.
Collapse
Affiliation(s)
- Peymaneh Davoodi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mostafa Ghaderi-Zefrehei
- Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran,*Correspondence: Mostafa Ghaderi-Zefrehei ✉ ; ✉
| | | | - Mohammad Razmkabir
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Somayeh Kianpour
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom,Jacqueline Smith ✉
| |
Collapse
|
13
|
Oliver Huidobro M, Tica J, Wachter GKA, Isalan M. Synthetic spatial patterning in bacteria: advances based on novel diffusible signals. Microb Biotechnol 2022; 15:1685-1694. [PMID: 34843638 PMCID: PMC9151330 DOI: 10.1111/1751-7915.13979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/22/2022] Open
Abstract
Engineering multicellular patterning may help in the understanding of some fundamental laws of pattern formation and thus may contribute to the field of developmental biology. Furthermore, advanced spatial control over gene expression may revolutionize fields such as medicine, through organoid or tissue engineering. To date, foundational advances in spatial synthetic biology have often been made in prokaryotes, using artificial gene circuits. In this review, engineered patterns are classified into four levels of increasing complexity, ranging from spatial systems with no diffusible signals to systems with complex multi-diffusor interactions. This classification highlights how the field was held back by a lack of diffusible components. Consequently, we provide a summary of both previously characterized and some new potential candidate small-molecule signals that can regulate gene expression in Escherichia coli. These diffusive signals will help synthetic biologists to successfully engineer increasingly intricate, robust and tuneable spatial structures.
Collapse
Affiliation(s)
| | - Jure Tica
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | | | - Mark Isalan
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
14
|
Zhao N, Song J, Zhang H, Lin Y, Han S, Huang Y, Zheng S. Development of a Transcription Factor-Based Diamine Biosensor in Corynebacterium glutamicum. ACS Synth Biol 2021; 10:3074-3083. [PMID: 34662101 DOI: 10.1021/acssynbio.1c00363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diamines serve as major platform chemicals that can be employed to a variety of industrial scenarios, particularly as monomers for polymer synthesis. High-throughput sensors for diamine biosynthesis can greatly improve the biological production of diamines. Here, we identified and characterized a transcription factor-driven biosensor for putrescine and cadaverine in Corynebacterium glutamicum. The transcriptional TetR-family regulatory protein CgmR (CGL2612) is used for the specific detection of diamine compounds. This study also improved the dynamic range and the sensitivity to putrescine by systematically optimizing genetic components of pSenPut. By a single cell-based screening strategy for a library of CgmR with random mutations, this study obtained the most sensitive variant CgmRI152T, which possessed an experimentally determined limit of detection (LoD) of ≤0.2 mM, a K of 11.4 mM, and a utility of 720. Using this highly sensitive putrescine biosensor pSenPutI152T, we demonstrated that CgmRI152T can be used as a sensor to detect putrescine produced biologically in a C. glutamicum system. This high sensitivity and the range of CgmR will be an influential tool for rewiring metabolic circuits and facilitating the directed evolution of recombinant strains toward the biological synthesis of diamine compounds.
Collapse
Affiliation(s)
- Nannan Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jie Song
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Hao Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, P. R. China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Duncker KE, Holmes ZA, You L. Engineered microbial consortia: strategies and applications. Microb Cell Fact 2021; 20:211. [PMID: 34784924 PMCID: PMC8597270 DOI: 10.1186/s12934-021-01699-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/23/2021] [Indexed: 11/10/2022] Open
Abstract
Many applications of microbial synthetic biology, such as metabolic engineering and biocomputing, are increasing in design complexity. Implementing complex tasks in single populations can be a challenge because large genetic circuits can be burdensome and difficult to optimize. To overcome these limitations, microbial consortia can be engineered to distribute complex tasks among multiple populations. Recent studies have made substantial progress in programming microbial consortia for both basic understanding and potential applications. Microbial consortia have been designed through diverse strategies, including programming mutualistic interactions, using programmed population control to prevent overgrowth of individual populations, and spatial segregation to reduce competition. Here, we highlight the role of microbial consortia in the advances of metabolic engineering, biofilm production for engineered living materials, biocomputing, and biosensing. Additionally, we discuss the challenges for future research in microbial consortia.
Collapse
Affiliation(s)
- Katherine E Duncker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Zachary A Holmes
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA.
| |
Collapse
|
16
|
|
17
|
Shakiba N, Jones RD, Weiss R, Del Vecchio D. Context-aware synthetic biology by controller design: Engineering the mammalian cell. Cell Syst 2021; 12:561-592. [PMID: 34139166 PMCID: PMC8261833 DOI: 10.1016/j.cels.2021.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
The rise of systems biology has ushered a new paradigm: the view of the cell as a system that processes environmental inputs to drive phenotypic outputs. Synthetic biology provides a complementary approach, allowing us to program cell behavior through the addition of synthetic genetic devices into the cellular processor. These devices, and the complex genetic circuits they compose, are engineered using a design-prototype-test cycle, allowing for predictable device performance to be achieved in a context-dependent manner. Within mammalian cells, context effects impact device performance at multiple scales, including the genetic, cellular, and extracellular levels. In order for synthetic genetic devices to achieve predictable behaviors, approaches to overcome context dependence are necessary. Here, we describe control systems approaches for achieving context-aware devices that are robust to context effects. We then consider cell fate programing as a case study to explore the potential impact of context-aware devices for regenerative medicine applications.
Collapse
Affiliation(s)
- Nika Shakiba
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ross D Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Domitilla Del Vecchio
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Costello A, Badran AH. Synthetic Biological Circuits within an Orthogonal Central Dogma. Trends Biotechnol 2021; 39:59-71. [PMID: 32586633 PMCID: PMC7746572 DOI: 10.1016/j.tibtech.2020.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Synthetic biology strives to reliably control cellular behavior, typically in the form of user-designed interactions of biological components to produce a predetermined output. Engineered circuit components are frequently derived from natural sources and are therefore often hampered by inadvertent interactions with host machinery, most notably within the host central dogma. Reliable and predictable gene circuits require the targeted reduction or elimination of these undesirable interactions to mitigate negative consequences on host fitness and develop context-independent bioactivities. Here, we review recent advances in biological orthogonalization, namely the insulation of researcher-dictated bioactivities from host processes, with a focus on systematic developments that may culminate in the creation of an orthogonal central dogma and novel cellular functions.
Collapse
Affiliation(s)
- Alan Costello
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ahmed H Badran
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
19
|
Jones RD, Qian Y, Siciliano V, DiAndreth B, Huh J, Weiss R, Del Vecchio D. An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells. Nat Commun 2020; 11:5690. [PMID: 33173034 PMCID: PMC7656454 DOI: 10.1038/s41467-020-19126-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Synthetic biology has the potential to bring forth advanced genetic devices for applications in healthcare and biotechnology. However, accurately predicting the behavior of engineered genetic devices remains difficult due to lack of modularity, wherein a device's output does not depend only on its intended inputs but also on its context. One contributor to lack of modularity is loading of transcriptional and translational resources, which can induce coupling among otherwise independently-regulated genes. Here, we quantify the effects of resource loading in engineered mammalian genetic systems and develop an endoribonuclease-based feedforward controller that can adapt the expression level of a gene of interest to significant resource loading in mammalian cells. Near-perfect adaptation to resource loads is facilitated by high production and catalytic rates of the endoribonuclease. Our design is portable across cell lines and enables predictable tuning of controller function. Ultimately, our controller is a general-purpose device for predictable, robust, and context-independent control of gene expression.
Collapse
Affiliation(s)
- Ross D Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yili Qian
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Velia Siciliano
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Instituto Italiano di Tecnologia, Napoli, 80125, Italy
| | - Breanna DiAndreth
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jin Huh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Domitilla Del Vecchio
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
20
|
Hongdusit A, Liechty ET, Fox JM. Optogenetic interrogation and control of cell signaling. Curr Opin Biotechnol 2020; 66:195-206. [PMID: 33053496 DOI: 10.1016/j.copbio.2020.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023]
Abstract
Signaling networks control the flow of information through biological systems and coordinate the chemical processes that constitute cellular life. Optogenetic actuators - genetically encoded proteins that undergo light-induced changes in activity or conformation - are useful tools for probing signaling networks over time and space. They have permitted detailed dissections of cellular proliferation, differentiation, motility, and death, and enabled the assembly of synthetic systems with applications in areas as diverse as photography, chemical synthesis, and medicine. In this review, we provide a brief introduction to optogenetic systems and describe their application to molecular-level analyses of cell signaling. Our discussion highlights important research achievements and speculates on future opportunities to exploit optogenetic systems in the study and assembly of complex biochemical networks.
Collapse
Affiliation(s)
- Akarawin Hongdusit
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Evan T Liechty
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80303, USA.
| |
Collapse
|
21
|
Kugler P, Fröhlich D, Wendisch VF. Development of a Biosensor for Crotonobetaine-CoA Ligase Screening Based on the Elucidation of Escherichia coli Carnitine Metabolism. ACS Synth Biol 2020; 9:2460-2471. [PMID: 32794733 DOI: 10.1021/acssynbio.0c00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
l-Carnitine is essential in the intermediary metabolism of eukaryotes and is involved in the β-oxidation of medium- and long-chain fatty acids; thus, it has applications for medicinal purposes and as a dietary supplement. In addition, l-carnitine plays roles in bacterial physiology and metabolism, which have been exploited by the industry to develop biotechnological carnitine production processes. Here, on the basis of studies of l-carnitine metabolism in Escherichia coli and its activation by the transcriptional activator CaiF, a biosensor was developed. It expresses a fluorescent reporter gene that responds in a dose-dependent manner to crotonobetainyl-CoA, which is an intermediate of l-carnitine metabolism in E. coli and is proposed to be a coactivator of CaiF. Moreover, a dual-input biosensor for l-carnitine and crotonobetaine was developed. As an application of the biosensor, potential homologues of the betaine:CoA ligase CaiC from Citrobacter freundii, Proteus mirabilis, and Arcobacter marinus were screened and shown to be functionally active CaiC variants. These variants and the developed biosensor may be valuable for improving l-carnitine production processes.
Collapse
Affiliation(s)
- Pierre Kugler
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Deborah Fröhlich
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
22
|
Abstract
The ability to detect disease early and deliver precision therapy would be transformative for the treatment of human illnesses. To achieve these goals, biosensors that can pinpoint when and where diseases emerge are needed. Rapid advances in synthetic biology are enabling us to exploit the information-processing abilities of living cells to diagnose disease and then treat it in a controlled fashion. For example, living sensors could be designed to precisely sense disease biomarkers, such as by-products of inflammation, and to respond by delivering targeted therapeutics in situ. Here, we provide an overview of ongoing efforts in microbial biosensor design, highlight translational opportunities, and discuss challenges for enabling sense-and-respond precision medicines.
Collapse
Affiliation(s)
- Maria Eugenia Inda
- MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Timothy K. Lu
- MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
23
|
Zhang S, He Y, Sen B, Wang G. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. BIORESOURCE TECHNOLOGY 2020; 307:123234. [PMID: 32245673 DOI: 10.1016/j.biortech.2020.123234] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Oleaginous microorganisms are among the most promising alternative sources of lipids for oleochemicals and biofuels. However, in the course of lipid production, reactive oxygen species (ROS) are generated inevitably as byproducts of aerobic metabolisms. Although excessive accumulation of ROS leads to lipid peroxidation, DNA damage, and protein denaturation, ROS accumulation has been suggested to enhance lipid synthesis in these microorganisms. There are many unresolved questions concerning this dichotomous view of ROS influence on lipid accumulation. These include what level of ROS triggers lipid overproduction, what mechanisms and targets are vital and whether ROS act as toxic byproducts or cellular messengers in these microorganisms? Here we review the current state of knowledge on ROS generation, antioxidative defense system, the dual effects of ROS on microbial lipid production, and ROS-induced lipid peroxidation and accumulation mechanisms. Toward the end, the review summarizes strategies that enhance lipid production based on ROS manipulation.
Collapse
Affiliation(s)
- Sai Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
24
|
Integrating CRISPR-Enabled Trackable Genome Engineering and Transcriptomic Analysis of Global Regulators for Antibiotic Resistance Selection and Identification in Escherichia coli. mSystems 2020; 5:5/2/e00232-20. [PMID: 32317390 PMCID: PMC7174635 DOI: 10.1128/msystems.00232-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growing threat of antimicrobial resistance poses a serious threat to public health care and motivates efforts to understand the means by which resistance acquisition occurs and how this can be combatted. To address these challenges, we expedited the identification of novel mutations that enable complex phenotypic changes that result in improved tolerance to antibiotics by integrating CREATE and transcriptomic analysis of global regulators. The results give us a better understanding of the mechanisms of resistance to tetracycline antibiotics and aminoglycoside antibiotics and also indicate that the method may be used for quickly identifying resistance-related mutations. It is important to expedite our understanding of antibiotic resistance to address the increasing numbers of fatalities and environmental pollution due to the emergence of antibiotic resistance and multidrug-resistant strains. Here, we combined the CRISPR-enabled trackable genome engineering (CREATE) technology and transcriptomic analysis to investigate antibiotic tolerance in Escherichia coli. We developed rationally designed site saturation mutagenesis libraries targeting 23 global regulators to identify fitness-conferring mutations in response to diverse antibiotic stresses. We identified seven novel mutations that confer resistance to the ribosome-targeting antibiotics doxycycline, thiamphenicol, and gentamicin in E. coli. To the best of our knowledge, these mutations that we identified have not been reported previously during treatment with the indicated antibiotics. Transcriptome sequencing-based transcriptome analysis was further employed to evaluate the genome-wide changes in gene expression in E. coli for SoxR G121P and cAMP receptor protein (CRP) V140W reconstructions, and improved fitness in response to doxycycline and gentamicin was seen. In the case of doxycycline, we speculated that SoxR G121P significantly increased the expression of genes involved in carbohydrate metabolism and energy metabolism to promote cell growth for improved adaptation. In the CRP V140W mutant with improved gentamicin tolerance, the expression of several amino acid biosynthesis genes and fatty acid degradation genes was significantly changed, and these changes probably altered the cellular energy state to improve adaptation. These findings have important significance for understanding such nonspecific mechanisms of antibiotic resistance and developing new antibacterial drugs. IMPORTANCE The growing threat of antimicrobial resistance poses a serious threat to public health care and motivates efforts to understand the means by which resistance acquisition occurs and how this can be combatted. To address these challenges, we expedited the identification of novel mutations that enable complex phenotypic changes that result in improved tolerance to antibiotics by integrating CREATE and transcriptomic analysis of global regulators. The results give us a better understanding of the mechanisms of resistance to tetracycline antibiotics and aminoglycoside antibiotics and also indicate that the method may be used for quickly identifying resistance-related mutations.
Collapse
|
25
|
Bonnerjee D, Mukhopadhyay S, Bagh S. Design, Fabrication, and Device Chemistry of a 3-Input-3-Output Synthetic Genetic Combinatorial Logic Circuit with a 3-Input AND Gate in a Single Bacterial Cell. Bioconjug Chem 2019; 30:3013-3020. [PMID: 31596072 DOI: 10.1021/acs.bioconjchem.9b00517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advancement of in-cell molecular computation requires multi-input-multi-output genetic logic devices. However, increased physical size, a higher number of molecular interactions, cross-talk, and complex systems level device chemistry limited the realization of such multi-input-multi-output devices in a single bacterial cell. Here, by adapting a circuit minimization and conjugated promoter engineering approach, we created the first 3-input-3-output logic function in a single bacterial cell. The circuit integrated three extracellular chemical signals as inputs and produced three different fluorescent proteins as outputs following the truth table of the circuit. First, we created a noncascaded 1-gate-3-input synthetic genetic AND gate in bacteria. We showed that the 3-input AND gate was digital in nature and mathematically predictable, two important characteristics, which were not reported for previous 3-input AND gates in bacteria. Our design consists of a 128 bp DNA scaffold, which conjugated various protein-binding sites in a single piece of DNA and worked as a hybrid promoter. The scaffold was a few times smaller than the similar 3-input synthetic genetic AND gate promoter reported. Integrating this AND gate with a new 2-input-2-output integrated circuit, which was also digital-like and predictive, we created a 3-input-3-output combinatorial logic circuit. This work demonstrated the integration of a 3-input AND gate in a larger circuit and a 3-input-3-output synthetic genetic circuit, both for the first time. The work has significance in molecular computation, biorobotics, DNA nanotechnology, and synthetic biology.
Collapse
Affiliation(s)
- Deepro Bonnerjee
- Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI) , Block A/F, Sector-I, Bidhannagar, Kolkata 700064 , India
| | - Sayak Mukhopadhyay
- Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI) , Block A/F, Sector-I, Bidhannagar, Kolkata 700064 , India
| | - Sangram Bagh
- Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI) , Block A/F, Sector-I, Bidhannagar, Kolkata 700064 , India
| |
Collapse
|