1
|
Shrivastava K, Athreya V, Lu Y, Luis-Islas J, Han A, Kowalski TF, Rossi MA. Energy state guides reward seeking via an extended amygdala to lateral hypothalamus pathway. Nat Commun 2025; 16:4474. [PMID: 40368884 PMCID: PMC12078644 DOI: 10.1038/s41467-025-59686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
Impaired regulation of food intake underlies numerous health problems, including obesity and type 2 diabetes, yet how brain systems controlling reward seeking become dysregulated to promote overeating is unknown. Glutamatergic neurons of the lateral hypothalamic area (LHA) are thought to act as a brake on feeding, which is dysregulated during diet-induced obesity. These neurons receive input from the extended amygdala, including the bed nucleus of the stria terminalis (BNST). However, the circuit mechanisms underlying the ability of this pathway to control feeding behavior and how they contribute to dysregulated eating are unclear. Here, we discover that BNST projections to LHA (BNST→LHA) promote reward seeking in an energy state-dependent manner by combining optogenetics, in vivo multiphoton calcium imaging, and electrophysiology in mice. Synaptic strength and neuronal function within the BNST→LHA pathway are dynamically regulated according to energy state to guide reward seeking. These findings suggest that hormonal factors modulate the function of the BNST→LHA pathway to align food seeking with current energy needs.
Collapse
Affiliation(s)
- Kuldeep Shrivastava
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Vikshar Athreya
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Yi Lu
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Jorge Luis-Islas
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ashley Han
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Tess F Kowalski
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Mark A Rossi
- Center for NeuroMetabolism, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Brain Health Institute, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Cheon DH, Park S, Park J, Koo M, Kim HH, Han S, Choi HJ. Lateral hypothalamus and eating: cell types, molecular identity, anatomy, temporal dynamics and functional roles. Exp Mol Med 2025:10.1038/s12276-025-01451-y. [PMID: 40307571 DOI: 10.1038/s12276-025-01451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
The lateral hypothalamus (LH) is a central hub orchestrating eating behavior through its complex cellular, anatomical and temporal organization. The LH is characterized by high heterogeneity and functional complexity, with many aspects still unexplored. Here we synthesize recent advances in understanding the role of the LH in eating regulation across multiple dimensions. At the cellular level, the LH contains diverse neuronal populations that contribute to distinct roles in behavior. Anatomically, we divided the LH into four regions-anteromedial, anterolateral, posteromedial and posterolateral-each with unique cellular compositions, circuit organizations and projection patterns. By integrating the temporal dynamics of each LH cell type during eating behavior, we identified how various LH cell types are involved in regulating the appetitive and consummatory phases of eating behavior. The LH also plays vital roles in associative learning and different types of eating behavior, including homeostatic, pleasure-induced and stress-induced eating. These insights into LH organization and function provide promising directions for therapeutic interventions in eating disorders and obesity, including drugs, deep brain stimulation and gene therapy.
Collapse
Affiliation(s)
- Deok-Hyeon Cheon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sheejune Park
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jihyun Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - MinSeo Koo
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Hyung Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seol Han
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Gangwon-do, Republic of Korea.
| |
Collapse
|
3
|
Ariyani W, Yoshikawa C, Tsuneoka H, Amano I, Imayoshi I, Ichinose H, Sumi-Ichinose C, Koibuchi N, Kitamura T, Kohno D. Dopaminergic neurons in the paraventricular hypothalamus extend the food consumption phase. Proc Natl Acad Sci U S A 2025; 122:e2411069122. [PMID: 40153459 PMCID: PMC12002271 DOI: 10.1073/pnas.2411069122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025] Open
Abstract
Feeding behavior is controlled by various neural networks in the brain that are involved in different feeding phases: Food procurement, consumption, and termination. However, the specific neural circuits controlling the food consumption phase remain poorly understood. Here, we investigated the roles of dopaminergic neurons in the paraventricular nucleus of the hypothalamus (PVH) in the feeding behavior in mice. Our results indicated that the PVH dopaminergic neurons were critical for extending the food consumption phase and involved in the development of obesity through epigenetic mechanisms. These neurons synchronized with proopiomelanocortin neurons during consumption, were stimulated by proopiomelanocortin activation, and projected to the lateral habenula (LHb), where dopamine receptor D2 was involved in the increase in food consumption. In addition, upregulated tyrosine hydroxylase (TH) expression in PVH was associated with obesity and indispensable for obesity induction in mice lacking Dnmt3a. Taken together, our results highlight the roles of PVH dopaminergic neurons in promoting food consumption and obesity induction.
Collapse
Affiliation(s)
- Winda Ariyani
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma371-8512, Japan
| | - Chiharu Yoshikawa
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma371-8512, Japan
| | - Haruka Tsuneoka
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma371-8512, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma371-8511, Japan
| | - Itaru Imayoshi
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
- Department of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
- Laboratory of Deconstruction of Stem Cells, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto606-8501, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Kanagawa226-8501, Japan
| | - Chiho Sumi-Ichinose
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi470-1192, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma371-8511, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma371-8512, Japan
| | - Daisuke Kohno
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma371-8512, Japan
| |
Collapse
|
4
|
Qi M, Won J, Rodriguez C, Storace DA. Glutamatergic heterogeneity in the neuropeptide projections from the lateral hypothalamus to the mouse olfactory bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638511. [PMID: 39990441 PMCID: PMC11844501 DOI: 10.1101/2025.02.16.638511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The direct pathway from the lateral hypothalamus to the mouse olfactory bulb (OB) includes neurons that express the neuropeptide orexin-A, and others that do not. The OB-projecting neurons that do not express orexin-A are present in an area of the lateral hypothalamus known to contain neurons that express the neuropeptide melanin-concentrating hormone (MCH). We used virally mediated anterograde tract tracing and immunohistochemistry for orexin-A and MCH to demonstrate that the OB is broadly innervated by axon projections from both populations of neurons. Orexin-A and MCH were expressed in each OB layer across its anterior to posterior axis. Both orexin-A and MCH neurons are genetically heterogeneous, with subsets that co-express an isoform of vesicular glutamate transporter (VGLUT). We used high-resolution confocal imaging to test whether the projections from orexin-A and MCH neurons to the OB reflect this glutamatergic heterogeneity. The majority (~57%) of putative orexin-A axon terminals overlapped with VGLUT2, with smaller proportions that co-expressed VGLUT1, or that did not overlap with either VGLUT1 or VGLUT2. In contrast, only ~26% of putative MCH axon terminals overlapped with VGLUT2, with the majority not overlapping with either VGLUT. Therefore, the projections from the lateral hypothalamus to the OB are genetically heterogeneous and include neurons that can release two different neuropeptides. The projections from both populations are themselves genetically heterogeneous with distinct ratios of glutamatergic and non-glutamatergic axon terminals.
Collapse
Affiliation(s)
- Meizhu Qi
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Julia Won
- Department of Biological Science, Florida State University, Tallahassee, FL
| | | | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
| |
Collapse
|
5
|
Nakajima K. Recent advances in the characterization of genetically defined neurons that regulate internal-state-dependent taste modification in mice. Physiol Rep 2024; 12:e70106. [PMID: 39523492 PMCID: PMC11551065 DOI: 10.14814/phy2.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The gustatory system plays an important role in evaluating food quality in animals and humans. While some tastes are intrinsically appetitive, such as sweet, which is elicited from high-calorie nutrients, the other tastes, such as sour and bitter, are aversive and elicited by toxic substances. In mice, taste signals are relayed by multiple regions of the brain, including the nucleus of the solitary tract, and the parabrachial nucleus (PBN) of the pons, before reaching the gustatory cortex via the gustatory thalamus. Recent advances in taste research using mice expressing Cre recombinase in specific neuronal populations, together with chemogenetic/optogenetic tools, have enabled us to identify genetically defined neurons involved in taste transduction pathways across several areas of the brain. While gustatory pathways play a fundamental role in taste transduction, taste preferences are not always stable, but rather vary depending on internal states. This review summarizes recent progress in research on neural circuits that modify the taste information depending on internal states in mice.
Collapse
Affiliation(s)
- Ken‐ichiro Nakajima
- Laboratory of Alimentary Neuroscience, Graduate School of Bioagricultural SciencesNagoya UniversityChikusaJapan
| |
Collapse
|
6
|
Aitken TJ, Liu Z, Ly T, Shehata S, Sivakumar N, La Santa Medina N, Gray LA, Zhang J, Dundar N, Barnes C, Knight ZA. Negative feedback control of hypothalamic feeding circuits by the taste of food. Neuron 2024; 112:3354-3370.e5. [PMID: 39153476 PMCID: PMC11591316 DOI: 10.1016/j.neuron.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/12/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
The rewarding taste of food is critical for motivating animals to eat, but whether taste has a parallel function in promoting meal termination is not well understood. Here, we show that hunger-promoting agouti-related peptide (AgRP) neurons are rapidly inhibited during each bout of ingestion by a signal linked to the taste of food. Blocking these transient dips in activity via closed-loop optogenetic stimulation increases food intake by selectively delaying the onset of satiety. We show that upstream leptin-receptor-expressing neurons in the dorsomedial hypothalamus (DMHLepR) are tuned to respond to sweet or fatty tastes and exhibit time-locked activation during feeding that is the mirror image of downstream AgRP cells. These findings reveal an unexpected role for taste in the negative feedback control of ingestion. They also reveal a mechanism by which AgRP neurons, which are the primary cells that drive hunger, are able to influence the moment-by-moment dynamics of food consumption.
Collapse
Affiliation(s)
- Tara J Aitken
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhengya Liu
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Truong Ly
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sarah Shehata
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nilla Sivakumar
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Naymalis La Santa Medina
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lindsay A Gray
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jingkun Zhang
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Naz Dundar
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chris Barnes
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Liu H, Bean JC, Li Y, Yu M, Ginnard OZ, Conde KM, Wang M, Fang X, Liu H, Tu L, Yin N, Han J, Yang Y, Tong Q, Arenkiel BR, Wang C, He Y, Xu Y. Distinct basal forebrain-originated neural circuits promote homoeostatic feeding and suppress hedonic feeding in male mice. Nat Metab 2024; 6:1775-1790. [PMID: 39112722 PMCID: PMC11881791 DOI: 10.1038/s42255-024-01099-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 09/26/2024]
Abstract
Feeding behaviour is influenced by two primary factors: homoeostatic needs driven by hunger and hedonic desires for pleasure even in the absence of hunger. While efficient homoeostatic feeding is vital for survival, excessive hedonic feeding can lead to adverse consequences such as obesity and metabolic dysregulations. However, the neurobiological mechanisms that orchestrate homoeostatic versus hedonic food consumption remain largely unknown. Here we show that GABAergic proenkephalin (Penk) neurons in the diagonal band of Broca (DBB) of male mice respond to food presentation. We further demonstrate that a subset of DBBPenk neurons that project to the paraventricular nucleus of the hypothalamus are preferentially activated upon food presentation during fasting periods and transmit a positive valence to facilitate feeding. On the other hand, a separate subset of DBBPenk neurons that project to the lateral hypothalamus are preferentially activated when detecting a high-fat high-sugar (HFHS) diet and transmit a negative valence to inhibit food consumption. Notably, when given free choice of chow and HFHS diets, mice with the whole DBBPenk population ablated exhibit reduced consumption of chow but increased intake of the HFHS diet, resulting in accelerated development of obesity and metabolic disturbances. Together, we identify a molecularly defined neural population in male mice that is crucial for the maintenance of energy balance by facilitating homoeostatic feeding while suppressing hedonic overeating.
Collapse
Affiliation(s)
- Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan C Bean
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongxiang Li
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Olivia Z Ginnard
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kristine M Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xing Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Na Yin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Narukawa M, Saito Y, Kasahara Y, Asakura T, Misaka T. Changes in gene expression due to aging in the hypothalamus of mice. Neuroreport 2024:00001756-990000000-00282. [PMID: 39166393 PMCID: PMC11389885 DOI: 10.1097/wnr.0000000000002092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Aging generally affects food consumption and energy metabolism. Since the feeding center is located in the hypothalamus, it is a major target for understanding the mechanism of age-related changes in eating behavior and metabolism. To obtain insight into the age-related changes in gene expression in the hypothalamus, we investigated genes whose expression changes with age in the hypothalamus. A DNA microanalysis was performed using hypothalamus samples obtained from young (aged 24 weeks) and old male mice (aged 138 weeks). Gene Ontology (GO) analysis was performed using the identified differentially expressed genes. We observed that the expression of 377 probe sets was significantly altered with aging (177 were upregulated and 200 were downregulated in old mice). As a result of the GO analysis of these probe sets, 16 GO terms, including the neuropeptide signaling pathway, were obtained. Intriguingly, although the food intake in old mice was lower than that in young mice, we found that several neuropeptide genes, such as agouti-related neuropeptide (Agrp), neuropeptide Y (Npy), and pro-melanin-concentrating hormone (Pmch), all of which promote food intake, were upregulated in old mice. In conclusion, this suggests that the gene expression pattern in the hypothalamus is regulated to promote food intake.
Collapse
Affiliation(s)
- Masataka Narukawa
- Department of Food and Nutrition, Kyoto Women's University, Kyoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshikazu Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Research Department, Toyo Institute of Food Technology, Kawanishi, Hyogo
| | - Yoichi Kasahara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Liberal Arts, The Open University of Japan, Chiba, Chiba, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
Chang J, Liu A, Zhang J, Chu L, Hou X, Huang X, Xing Q, Bao Z. Transcriptomic analysis reveals PC4's participation in thermotolerance of scallop Argopecten irradians irradians by regulating myocardial bioelectric activity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101295. [PMID: 39053238 DOI: 10.1016/j.cbd.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Rising ocean temperatures due to global warming pose a significant threat to the bay scallop aquaculture industry. Understanding the mechanisms of thermotolerance in bay scallops is crucial for developing thermotolerant breeds. Our prior research identified Arg0230340.1, part of the positive cofactor 4 (PC4) family, as a key gene associated with the thermotolerance index Arrhenius break temperature (ABT) in bay scallops. Further validation through RNA interference (RNAi) reinforced PC4's role in thermotolerance, offering a solid basis for investigating thermal response mechanisms in these scallops. In this study, we performed a comparative transcriptomic analysis on the temperature-sensitive hearts of bay scallops after siRNA-mediated RNAi targeting Arg0230340.1, to delve into the detailed molecular mechanism of PC4's participation in thermotolerance regulation. The analysis revealed that silencing Arg0230340.1 significantly reduced the expression of mitochondrial tRNA and rRNA, potentially affecting mitochondrial function and the heart's blood supply capacity. Conversely, the up-regulation of genes involved in energy metabolism, RNA polymerase II (RNAPII)-mediated basal transcription, and aminoacyl-tRNA synthesis pathways points to an intrinsic protective response, providing energy and substrates for damage repair and maintenance of essential functions under stress. GO and KEGG enrichment analyses indicated that the up-regulated genes were primarily associated with energy metabolism and spliceosome pathways, likely contributing to myocardial remodeling post-Arg0230340.1 knockdown. Down-regulated genes were enriched in ion channel pathways, particularly those for Na+, K+, and Ca2+ channels, whose dysfunction could disrupt normal myocardial bioelectric activity. The impaired cardiac performance resulting from RNAi targeting Arg0230340.1 reduced the cardiac workload in scallop hearts, thus affecting myocardial oxygen consumption and thermotolerance. We propose a hypothetical mechanism where PC4 down-regulation impairs cardiac bioelectric activity, leading to decreased thermotolerance in bay scallops, providing theoretical guidance for breeding thermotolerant scallop varieties and developing strategies for sustainable aquaculture in the face of long-term environmental changes.
Collapse
Affiliation(s)
- Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
10
|
Yoshida R, Ninomiya Y. Mechanisms and Functions of Sweet Reception in Oral and Extraoral Organs. Int J Mol Sci 2024; 25:7398. [PMID: 39000505 PMCID: PMC11242429 DOI: 10.3390/ijms25137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yuzo Ninomiya
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Ki SY, Jeong YT. Neural circuits for taste sensation. Mol Cells 2024; 47:100078. [PMID: 38825187 PMCID: PMC11255361 DOI: 10.1016/j.mocell.2024.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024] Open
Abstract
The sense of taste arises from the detection of chemicals in food by taste buds, the peripheral cellular detectors for taste. Although numerous studies have extensively investigated taste buds, research on neural circuits from primary taste neurons innervating taste buds to the central nervous system has only recently begun owing to recent advancements in neuroscience research tools. This minireview focuses primarily on recent reports utilizing advanced neurogenetic tools across relevant brain regions.
Collapse
Affiliation(s)
- Su Young Ki
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yong Taek Jeong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Reichenbach A, Dempsey H, Andrews ZB. Metabolic sensing in AgRP regulates sucrose preference and dopamine release in the nucleus accumbens. J Neuroendocrinol 2024; 36:e13389. [PMID: 38599683 DOI: 10.1111/jne.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Hunger increases the motivation for calorie consumption, often at the expense of low-taste appeal. However, the neural mechanisms integrating calorie-sensing with increased motivation for calorie consumption remain unknown. Agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus sense hunger, and the ingestion of caloric solutions promotes dopamine release in the absence of sweet taste perception. Therefore, we hypothesised that metabolic-sensing of hunger by AgRP neurons would be essential to promote dopamine release in the nucleus accumbens in response to caloric, but not non-caloric solutions. Moreover, we examined whether metabolic sensing in AgRP neurons affected taste preference for bitter solutions under conditions of energy need. Here we show that impaired metabolic sensing in AgRP neurons attenuated nucleus accumbens dopamine release in response to sucrose, but not saccharin, consumption. Furthermore, metabolic sensing in AgRP neurons was essential to distinguish nucleus accumbens dopamine response to sucrose consumption when compared with saccharin. Under conditions of hunger, metabolic sensing in AgRP neurons increased the preference for sucrose solutions laced with the bitter tastant, quinine, to ensure calorie consumption, whereas mice with impaired metabolic sensing in AgRP neurons maintained a strong aversion to sucrose/quinine solutions despite ongoing hunger. In conclusion, we demonstrate normal metabolic sensing in AgRP neurons drives the preference for calorie consumption, primarily when needed, by engaging dopamine release in the nucleus accumbens.
Collapse
Affiliation(s)
- Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Harry Dempsey
- Florey Institute of Neuroscience & Mental Health, Parkville, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Groos D, Helmchen F. The lateral habenula: A hub for value-guided behavior. Cell Rep 2024; 43:113968. [PMID: 38522071 DOI: 10.1016/j.celrep.2024.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
The habenula is an evolutionarily highly conserved diencephalic brain region divided into two major parts, medial and lateral. Over the past two decades, studies of the lateral habenula (LHb), in particular, have identified key functions in value-guided behavior in health and disease. In this review, we focus on recent insights into LHb connectivity and its functional relevance for different types of aversive and appetitive value-guided behavior. First, we give an overview of the anatomical organization of the LHb and its main cellular composition. Next, we elaborate on how distinct LHb neuronal subpopulations encode aversive and appetitive stimuli and on their involvement in more complex decision-making processes. Finally, we scrutinize the afferent and efferent connections of the LHb and discuss their functional implications for LHb-dependent behavior. A deepened understanding of distinct LHb circuit components will substantially contribute to our knowledge of value-guided behavior.
Collapse
Affiliation(s)
- Dominik Groos
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Stone BT, Rahamim OM, Katz DB, Lin JY. Changes in taste palatability across the estrous cycle are modulated by hypothalamic estradiol signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587593. [PMID: 38617267 PMCID: PMC11014520 DOI: 10.1101/2024.04.01.587593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Food intake varies across the stages of a rat's estrous cycle. It is reasonable to hypothesize that this cyclic fluctuation in consumption reflects an impact of hormones on taste palatability/preference, but evidence for this hypothesis has been mixed, and critical within-subject experiments in which rats sample multiple tastes during each of the four main estrous phases (metestrus, diestrus, proestrus, and estrus) have been scarce. Here, we assayed licking for pleasant (sucrose, NaCl, saccharin) and aversive (quinine-HCl, citric acid) tastes each day for 5-10 days while tracking rats' estrous cycles through vaginal cytology. Initial analyses confirmed the previously-described increased consumption of pleasant stimuli 24-48 hours following the time of high estradiol. A closer look, however, revealed this effect to reflect a general magnification of palatability-higher than normal preferences for pleasant tastes and lower than normal preferences for aversive tastes-during metestrus. We hypothesized that this phenomenon might be related to estradiol processing in the lateral hypothalamus (LH), and tested this hypothesis by inhibiting LH estrogen receptor activity with ICI 182,780 during tasting. Control infusions replicated the metestrus magnification of palatability pattern; ICI infusions blocked this effect as predicted, but failed to render preferences "cycle free," instead delaying the palatability magnification until diestrus. Clearly, estrous phase mediates details of taste palatability in a manner involving hypothalamic actions of estradiol; further work will be needed to explain the lack of a flat response across the cycle with hypothalamic estradiol binding inhibited, a result which perhaps suggests dynamic interplay between brain regions or hormones. Significance Statement Consummatory behaviors are impacted by many variables, including naturally circulating hormones. While it is clear that consumption is particularly high during the stages following the high-estradiol stage of the rodent's estrous (and human menstrual) cycle, it is as of yet unclear whether this phenomenon reflects cycle stage-specific palatability (i.e., whether pleasant tastes are particularly delicious, and aversive tastes particularly disgusting, at particular phases). Here we show that palatability is indeed modulated by estrous phase, and that this effect is governed, at least in part, by the action of estradiol within the lateral hypothalamus. These findings shed light on the mechanisms underlying the adverse impact on human welfare due to irregularities observed across the otherwise cyclic menstrual process.
Collapse
|
15
|
Zhang Y, Pool AH, Wang T, Liu L, Kang E, Zhang B, Ding L, Frieda K, Palmiter R, Oka Y. Parallel neural pathways control sodium consumption and taste valence. Cell 2023; 186:5751-5765.e16. [PMID: 37989313 PMCID: PMC10761003 DOI: 10.1016/j.cell.2023.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
The hedonic value of salt fundamentally changes depending on the internal state. High concentrations of salt induce innate aversion under sated states, whereas such aversive stimuli transform into appetitive ones under sodium depletion. Neural mechanisms underlying this state-dependent salt valence switch are poorly understood. Using transcriptomics state-to-cell-type mapping and neural manipulations, we show that positive and negative valences of salt are controlled by anatomically distinct neural circuits in the mammalian brain. The hindbrain interoceptive circuit regulates sodium-specific appetitive drive , whereas behavioral tolerance of aversive salts is encoded by a dedicated class of neurons in the forebrain lamina terminalis (LT) expressing prostaglandin E2 (PGE2) receptor, Ptger3. We show that these LT neurons regulate salt tolerance by selectively modulating aversive taste sensitivity, partly through a PGE2-Ptger3 axis. These results reveal the bimodal regulation of appetitive and tolerance signals toward salt, which together dictate the amount of sodium consumption under different internal states.
Collapse
Affiliation(s)
- Yameng Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Allan-Hermann Pool
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Departments of Neuroscience and Anesthesia and Pain Management and Peter O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lu Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Elin Kang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bei Zhang
- Spatial Genomics, Inc., Pasadena, CA, USA
| | - Liang Ding
- Spatial Genomics, Inc., Pasadena, CA, USA
| | | | - Richard Palmiter
- Departments of Biochemistry and Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
16
|
Aitken TJ, Ly T, Shehata S, Sivakumar N, Medina NLS, Gray LA, Dundar N, Barnes C, Knight ZA. Negative feedback control of hunger circuits by the taste of food. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569492. [PMID: 38077047 PMCID: PMC10705440 DOI: 10.1101/2023.11.30.569492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The rewarding taste of food is critical for motivating animals to eat, but whether taste has a parallel function in promoting meal termination is not well understood. Here we show that hunger-promoting AgRP neurons are rapidly inhibited during each bout of ingestion by a signal linked to the taste of food. Blocking these transient dips in activity via closed-loop optogenetic stimulation increases food intake by selectively delaying the onset of satiety. We show that upstream leptin receptor-expressing neurons in the dorsomedial hypothalamus (DMHLepR) are tuned to respond to sweet or fatty tastes and exhibit time-locked activation during feeding that is the mirror image of downstream AgRP cells. These findings reveal an unexpected role for taste in the negative feedback control of ingestion. They also reveal a mechanism by which AgRP neurons, which are the primary cells that drive hunger, are able to influence the moment-by-moment dynamics of food consumption.
Collapse
Affiliation(s)
- Tara J Aitken
- Neuroscience Graduate Program, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Truong Ly
- Neuroscience Graduate Program, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Sarah Shehata
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Nilla Sivakumar
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Naymalis La Santa Medina
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Lindsay A Gray
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Naz Dundar
- Neuroscience Graduate Program, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Chris Barnes
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco; San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Neuroscience Graduate Program, University of California, San Francisco; San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Takahashi J, Yamada D, Nagano W, Sano Y, Furuichi T, Saitoh A. Oxytocinergic projection from the hypothalamus to supramammillary nucleus drives recognition memory in mice. PLoS One 2023; 18:e0294113. [PMID: 37971993 PMCID: PMC10653413 DOI: 10.1371/journal.pone.0294113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
Oxytocin (OXT) neurons project to various brain regions and its receptor expression is widely distributed. Although it has been reported that OXT administration affects cognitive function, it is unclear how endogenous OXT plays roles in cognitive function. The present study examined the role of endogenous OXT in mice cognitive function. OXT neurons were specifically activated by OXT neuron-specific excitatory Designer Receptors Exclusively Activated by Designer Drug expression system and following administration of clozapine-N-oxide (CNO). Object recognition memory was assessed with the novel object recognition task (NORT). Moreover, we observed the expression of c-Fos via immunohistochemical staining to confirm neuronal activity. In NORT, the novel object exploration time percentage significantly increased in CNO-treated mice. CNO-treated mice showed a significant increase in the number of c-Fos-positive cells in the supramammillary nucleus (SuM). In addition, we found that the OXT-positive fibers from paraventricular hypothalamic nucleus (PVN) were identified in the SuM. Furthermore, mice injected locally with CNO into the SuM to activate OXTergic axons projecting from the PVN to the SuM showed significantly increased percentage time of novel object exploration. Taken together, we proposed that object recognition memory in mice could be modulated by OXT neurons in the PVN projecting to the SuM.
Collapse
Affiliation(s)
- Junpei Takahashi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Wakana Nagano
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
18
|
Rossi MA. Control of energy homeostasis by the lateral hypothalamic area. Trends Neurosci 2023; 46:738-749. [PMID: 37353461 PMCID: PMC10524917 DOI: 10.1016/j.tins.2023.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023]
Abstract
The lateral hypothalamic area (LHA) is a subcortical brain region that exerts control over motivated behavior, feeding, and energy balance across species. Recent single-cell sequencing studies have defined at least 30 distinct LHA neuron types. Some of these influence specific aspects of energy homeostasis; however, the functions of many LHA cell types remain unclear. This review addresses the rapidly emerging evidence from cell-type-specific investigations that the LHA leverages distinct neuron populations to regulate energy balance through complex connections with other brain regions. It will highlight recent findings demonstrating that LHA control of energy balance extends beyond mere food intake and propose outstanding questions to be addressed by future research.
Collapse
Affiliation(s)
- Mark A Rossi
- Child Health Institute of New Jersey, New Brunswick, NJ, USA; Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
19
|
Xu Y, Jiang Z, Li H, Cai J, Jiang Y, Otiz-Guzman J, Xu Y, Arenkiel BR, Tong Q. Lateral septum as a melanocortin downstream site in obesity development. Cell Rep 2023; 42:112502. [PMID: 37171957 DOI: 10.1016/j.celrep.2023.112502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 05/14/2023] Open
Abstract
The melanocortin pathway is well established to be critical for body-weight regulation in both rodents and humans. Despite extensive studies focusing on this pathway, the downstream brain sites that mediate its action are not clear. Here, we found that, among the known paraventricular hypothalamic (PVH) neuron groups, those expressing melanocortin receptors 4 (PVHMc4R) preferably project to the ventral part of the lateral septum (LSv), a brain region known to be involved in emotional behaviors. Photostimulation of PVHMc4R neuron terminals in the LSv reduces feeding and causes aversion, whereas deletion of Mc4Rs or disruption of glutamate release from LSv-projecting PVH neurons causes obesity. In addition, disruption of AMPA receptor function in PVH-projected LSv neurons causes obesity. Importantly, chronic inhibition of PVH- or PVHMc4R-projected LSv neurons causes obesity associated with reduced energy expenditure. Thus, the LSv functions as an important node in mediating melanocortin action on body-weight regulation.
Collapse
Affiliation(s)
- Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongli Li
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joshua Otiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Lee YH, Kim YB, Kim KS, Jang M, Song HY, Jung SH, Ha DS, Park JS, Lee J, Kim KM, Cheon DH, Baek I, Shin MG, Lee EJ, Kim SJ, Choi HJ. Lateral hypothalamic leptin receptor neurons drive hunger-gated food-seeking and consummatory behaviours in male mice. Nat Commun 2023; 14:1486. [PMID: 36932069 PMCID: PMC10023672 DOI: 10.1038/s41467-023-37044-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
For survival, it is crucial for eating behaviours to be sequenced through two distinct seeking and consummatory phases. Heterogeneous lateral hypothalamus (LH) neurons are known to regulate motivated behaviours, yet which subpopulation drives food seeking and consummatory behaviours have not been fully addressed. Here, in male mice, fibre photometry recordings demonstrated that LH leptin receptor (LepR) neurons are correlated explicitly in both voluntary seeking and consummatory behaviours. Further, micro-endoscope recording of the LHLepR neurons demonstrated that one subpopulation is time-locked to seeking behaviours and the other subpopulation time-locked to consummatory behaviours. Seeking or consummatory phase specific paradigm revealed that activation of LHLepR neurons promotes seeking or consummatory behaviours and inhibition of LHLepR neurons reduces consummatory behaviours. The activity of LHLepR neurons was increased via Neuropeptide Y (NPY) which acted as a tonic permissive gate signal. Our results identify neural populations that mediate seeking and consummatory behaviours and may lead to therapeutic targets for maladaptive food seeking and consummatory behaviours.
Collapse
Affiliation(s)
- Young Hee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yu-Been Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Mirae Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ha Young Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sang-Ho Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong-Soo Ha
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Joon Seok Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jaegeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyung Min Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Deok-Hyeon Cheon
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Inhyeok Baek
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Min-Gi Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Sang Jeong Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do, 25159, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do, 25159, Republic of Korea.
| |
Collapse
|
21
|
Liu Q, Yang X, Luo M, Su J, Zhong J, Li X, Chan RHM, Wang L. An iterative neural processing sequence orchestrates feeding. Neuron 2023; 111:1651-1665.e5. [PMID: 36924773 DOI: 10.1016/j.neuron.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
Feeding requires sophisticated orchestration of neural processes to satiate appetite in natural, capricious settings. However, the complementary roles of discrete neural populations in orchestrating distinct behaviors and motivations throughout the feeding process are largely unknown. Here, we delineate the behavioral repertoire of mice by developing a machine-learning-assisted behavior tracking system and show that feeding is fragmented and divergent motivations for food consumption or environment exploration compete throughout the feeding process. An iterative activation sequence of agouti-related peptide (AgRP)-expressing neurons in arcuate (ARC) nucleus, GABAergic neurons in the lateral hypothalamus (LH), and in dorsal raphe (DR) orchestrate the preparation, initiation, and maintenance of feeding segments, respectively, via the resolution of motivational conflicts. The iterative neural processing sequence underlying the competition of divergent motivations further suggests a general rule for optimizing goal-directed behaviors.
Collapse
Affiliation(s)
- Qingqing Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xing Yang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Moxuan Luo
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China; University of Science and Technology of China, Hefei 230026, China
| | - Junying Su
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinling Zhong
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofen Li
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rosa H M Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Science and Technology of China, Hefei 230026, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Petzold A, van den Munkhof HE, Figge-Schlensok R, Korotkova T. Complementary lateral hypothalamic populations resist hunger pressure to balance nutritional and social needs. Cell Metab 2023; 35:456-471.e6. [PMID: 36827985 PMCID: PMC10028225 DOI: 10.1016/j.cmet.2023.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/03/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Animals continuously weigh hunger and thirst against competing needs, such as social contact and mating, according to state and opportunity. Yet neuronal mechanisms of sensing and ranking nutritional needs remain poorly understood. Here, combining calcium imaging in freely behaving mice, optogenetics, and chemogenetics, we show that two neuronal populations of the lateral hypothalamus (LH) guide increasingly hungry animals through behavioral choices between nutritional and social rewards. While increased food consumption was marked by increasing inhibition of a leptin receptor-expressing (LepRLH) subpopulation at a fast timescale, LepRLH neurons limited feeding or drinking and promoted social interaction despite hunger or thirst. Conversely, neurotensin-expressing LH neurons preferentially encoded water despite hunger pressure and promoted water seeking, while relegating social needs. Thus, hunger and thirst gate both LH populations in a complementary manner to enable the flexible fulfillment of multiple essential needs.
Collapse
Affiliation(s)
- Anne Petzold
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Hanna Elin van den Munkhof
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Rebecca Figge-Schlensok
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Tatiana Korotkova
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
23
|
Xing Y, Zan C, Liu L. Recent advances in understanding neuronal diversity and neural circuit complexity across different brain regions using single-cell sequencing. Front Neural Circuits 2023; 17:1007755. [PMID: 37063385 PMCID: PMC10097998 DOI: 10.3389/fncir.2023.1007755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 02/16/2023] [Indexed: 04/18/2023] Open
Abstract
Neural circuits are characterized as interconnecting neuron networks connected by synapses. Some kinds of gene expression and/or functional changes of neurons and synaptic connections may result in aberrant neural circuits, which has been recognized as one crucial pathological mechanism for the onset of many neurological diseases. Gradual advances in single-cell sequencing approaches with strong technological advantages, as exemplified by high throughput and increased resolution for live cells, have enabled it to assist us in understanding neuronal diversity across diverse brain regions and further transformed our knowledge of cellular building blocks of neural circuits through revealing numerous molecular signatures. Currently published transcriptomic studies have elucidated various neuronal subpopulations as well as their distribution across prefrontal cortex, hippocampus, hypothalamus, and dorsal root ganglion, etc. Better characterization of brain region-specific circuits may shed light on new pathological mechanisms involved and assist in selecting potential targets for the prevention and treatment of specific neurological disorders based on their established roles. Given diverse neuronal populations across different brain regions, we aim to give a brief sketch of current progress in understanding neuronal diversity and neural circuit complexity according to their locations. With the special focus on the application of single-cell sequencing, we thereby summarize relevant region-specific findings. Considering the importance of spatial context and connectivity in neural circuits, we also discuss a few published results obtained by spatial transcriptomics. Taken together, these single-cell sequencing data may lay a mechanistic basis for functional identification of brain circuit components, which links their molecular signatures to anatomical regions, connectivity, morphology, and physiology. Furthermore, the comprehensive characterization of neuron subtypes, their distributions, and connectivity patterns via single-cell sequencing is critical for understanding neural circuit properties and how they generate region-dependent interactions in different context.
Collapse
Affiliation(s)
- Yu Xing
- Department of Neurology, Beidahuang Industry Group General Hospital, Harbin, China
| | - Chunfang Zan
- Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Lu Liu
- Munich Medical Research School (MMRS), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
- *Correspondence: Lu Liu, ,
| |
Collapse
|
24
|
Taste perceptual circuit for the generation of autonomous responses in virtual creatures. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Nakajima KI. Neural insights into sweet taste transduction and hunger-induced taste modification in mice. Biosci Biotechnol Biochem 2022; 86:1485-1489. [PMID: 35998309 DOI: 10.1093/bbb/zbac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/14/2022] [Indexed: 11/14/2022]
Abstract
Feeding is one of the most fundamental activities in the survival and reproduction of animals. During feeding, the gustatory system functions as a gate keeper to evaluate food quality. Accumulated evidence in the field of taste research has shown that five basic tastes (sweet, umami, sour, bitter, and salty) are sensed by the corresponding taste receptors expressed in taste receptor cells on the tongue. In contrast, brain mechanisms that transduce or modify taste information have been less studied. In this review, I introduce our recent findings on the sweet taste transduction in the brainstem of mice and explain the hypothalamic neuronal network regulating hunger-induced taste modification. Finally, future perspectives are discussed.
Collapse
Affiliation(s)
- Ken-Ichiro Nakajima
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
26
|
Alcantara IC, Tapia APM, Aponte Y, Krashes MJ. Acts of appetite: neural circuits governing the appetitive, consummatory, and terminating phases of feeding. Nat Metab 2022; 4:836-847. [PMID: 35879462 PMCID: PMC10852214 DOI: 10.1038/s42255-022-00611-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/16/2022] [Indexed: 12/11/2022]
Abstract
The overconsumption of highly caloric and palatable foods has caused a surge in obesity rates in the past half century, thereby posing a healthcare challenge due to the array of comorbidities linked to heightened body fat accrual. Developing treatments to manage body weight requires a grasp of the neurobiological basis of appetite. In this Review, we discuss advances in neuroscience that have identified brain regions and neural circuits that coordinate distinct phases of eating: food procurement, food consumption, and meal termination. While pioneering work identified several hypothalamic nuclei to be involved in feeding, more recent studies have explored how neuronal populations beyond the hypothalamus, such as the mesolimbic pathway and nodes in the hindbrain, interconnect to modulate appetite. We also examine how long-term exposure to a calorically dense diet rewires feeding circuits and alters the response of motivational systems to food. Understanding how the nervous system regulates eating behaviour will bolster the development of medical strategies that will help individuals to maintain a healthy body weight.
Collapse
Affiliation(s)
- Ivan C Alcantara
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | | - Yeka Aponte
- National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
- National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
27
|
Cui X, Gruzdeva A, Kim H, Yapici N. Of flies, mice and neural control of food intake: lessons to learn from both models. Curr Opin Neurobiol 2022; 73:102531. [PMID: 35390643 PMCID: PMC9167741 DOI: 10.1016/j.conb.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
In her book, A Room of One's Own, the famous author Virginia Woolf writes "One cannot think well, love well, sleep well if one has not dined well". This is true. All animals need to forage for food and consume specific nutrients to maintain their physiological homeostasis, maximize their fitness and their reproduction. After decades of research in humans and many model organisms, we now know that our brain is one of the key players that control what, when, and how much we eat. In this review, we discuss the recent literature on neural control of food intake behaviors in mice and flies with the view that these two model organisms complement one another in efforts to uncover conserved principles brains use to regulate energy metabolism and food ingestion.
Collapse
Affiliation(s)
- Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Anna Gruzdeva
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
28
|
Wu CT, Chaffin AT, Ryan KK. Fibroblast Growth Factor 21 Facilitates the Homeostatic Control of Feeding Behavior. J Clin Med 2022; 11:580. [PMID: 35160033 PMCID: PMC8836936 DOI: 10.3390/jcm11030580] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a stress hormone that is released from the liver in response to nutritional and metabolic challenges. In addition to its well-described effects on systemic metabolism, a growing body of literature now supports the notion that FGF21 also acts via the central nervous system to control feeding behavior. Here we review the current understanding of FGF21 as a hormone regulating feeding behavior in rodents, non-human primates, and humans. First, we examine the nutritional contexts that induce FGF21 secretion. Initial reports describing FGF21 as a 'starvation hormone' have now been further refined. FGF21 is now better understood as an endocrine mediator of the intracellular stress response to various nutritional manipulations, including excess sugars and alcohol, caloric deficits, a ketogenic diet, and amino acid restriction. We discuss FGF21's effects on energy intake and macronutrient choice, together with our current understanding of the underlying neural mechanisms. We argue that the behavioral effects of FGF21 function primarily to maintain systemic macronutrient homeostasis, and in particular to maintain an adequate supply of protein and amino acids for use by the cells.
Collapse
Affiliation(s)
| | | | - Karen K. Ryan
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA; (C.-T.W.); (A.T.C.)
| |
Collapse
|
29
|
Reichenbach A, Clarke RE, Stark R, Lockie SH, Mequinion M, Dempsey H, Rawlinson S, Reed F, Sepehrizadeh T, DeVeer M, Munder AC, Nunez-Iglesias J, Spanswick D, Mynatt R, Kravitz AV, Dayas CV, Brown R, Andrews ZB. Metabolic sensing in AgRP neurons integrates homeostatic state with dopamine signalling in the striatum. eLife 2022; 11:72668. [PMID: 35018884 PMCID: PMC8803314 DOI: 10.7554/elife.72668] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Agouti-related peptide (AgRP) neurons increase motivation for food, however, whether metabolic sensing of homeostatic state in AgRP neurons potentiates motivation by interacting with dopamine reward systems is unexplored. As a model of impaired metabolic-sensing, we used the AgRP-specific deletion of carnitine acetyltransferase (Crat) in mice. We hypothesised that metabolic sensing in AgRP neurons is required to increase motivation for food reward by modulating accumbal or striatal dopamine release. Studies confirmed that Crat deletion in AgRP neurons (KO) impaired ex vivo glucose-sensing, as well as in vivo responses to peripheral glucose injection or repeated palatable food presentation and consumption. Impaired metabolic-sensing in AgRP neurons reduced acute dopamine release (seconds) to palatable food consumption and during operant responding, as assessed by GRAB-DA photometry in the nucleus accumbens, but not the dorsal striatum. Impaired metabolic-sensing in AgRP neurons suppressed radiolabelled 18F-fDOPA accumulation after ~30 min in the dorsal striatum but not the nucleus accumbens. Impaired metabolic sensing in AgRP neurons suppressed motivated operant responding for sucrose rewards during fasting. Thus, metabolic-sensing in AgRP neurons is required for the appropriate temporal integration and transmission of homeostatic hunger-sensing to dopamine signalling in the striatum.
Collapse
Affiliation(s)
| | - Rachel E Clarke
- Department of Physiology, Monash University, Clayton, Australia
| | - Romana Stark
- Department of Physiology, Monash University, Clayton, Australia
| | - Sarah H Lockie
- Department of Physiology, Monash University, Clayton, Australia
| | | | - Harry Dempsey
- Department of Physiology, Monash University, Clayton, Australia
| | - Sasha Rawlinson
- Department of Physiology, Monash University, Clayton, Australia
| | - Felicia Reed
- Department of Physiology, Monash University, Clayton, Australia
| | - Tara Sepehrizadeh
- Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Michael DeVeer
- Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Astrid C Munder
- Department of Physiology, Monash University, Clayton, Australia
| | - Juan Nunez-Iglesias
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - David Spanswick
- Department of Physiology, Monash University, Clayton, Australia
| | - Randall Mynatt
- Gene Nutrient Interactions Laboratory, Pennington Biomedical Research Center, Baton Rouge, United States
| | - Alexxai V Kravitz
- Departments of Psychiatry, Washington University in St. Louis, Saint Louis, United States
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Robyn Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Zane B Andrews
- Department of Physiology, Monash University, Clayton, Australia
| |
Collapse
|
30
|
Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021; 109:3576-3593. [PMID: 34582784 PMCID: PMC8602715 DOI: 10.1016/j.neuron.2021.08.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 02/09/2023]
Abstract
Our wellness relies on continuous interactions between our brain and body: different organs relay their current state to the brain and are regulated, in turn, by descending visceromotor commands from our brain and by actions such as eating, drinking, thermotaxis, and predator escape. Human neuroimaging and theoretical studies suggest a key role for predictive processing by insular cortex in guiding these efforts to maintain bodily homeostasis. Here, we review recent studies recording and manipulating cellular activity in rodent insular cortex at timescales from seconds to hours. We argue that consideration of these findings in the context of predictive processing of future bodily states may reconcile several apparent discrepancies and offer a unifying, heuristic model for guiding future work.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
31
|
Putting Together Pieces of the Lateral Septum: Multifaceted Functions and Its Neural Pathways. eNeuro 2021; 8:ENEURO.0315-21.2021. [PMID: 34764187 PMCID: PMC8647703 DOI: 10.1523/eneuro.0315-21.2021] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 01/01/2023] Open
Abstract
The lateral septum (LS) is implicated as a hub that regulates a variety of affects, such as reward, feeding, anxiety, fear, sociability, and memory. However, it remains unclear how the LS, previously treated as a structure of homogeneity, exhibits such multifaceted functions. Emerging evidence suggests that different functions of the LS are mediated largely by its diverse input and output connections. It has also become clear that the LS is a heterogeneous region, where its dorsal and ventral poles play dissociable and often opposing roles. This functional heterogeneity can often be explained by distinct dorsal and ventral hippocampal inputs along the LS dorsoventral axis, as well as antagonizing connections between LS subregions. Similarly, outputs from LS subregions to respective downstream targets, such as hypothalamic, preoptic, and tegmental areas, also account for this functional heterogeneity. In this review, we provide an updated perspective on LS subregion classification, connectivity, and functions. We also identify key questions that have yet to be addressed in the field.
Collapse
|
32
|
Deem JD, Faber CL, Morton GJ. AgRP neurons: Regulators of feeding, energy expenditure, and behavior. FEBS J 2021; 289:2362-2381. [PMID: 34469623 DOI: 10.1111/febs.16176] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
Neurons in the hypothalamic arcuate nucleus (ARC) that express agouti-related peptide (AgRP) govern a critical aspect of survival: the drive to eat. Equally important to survival is the timing at which food is consumed-seeking or eating food to alleviate hunger in the face of a more pressing threat, like the risk of predation, is clearly maladaptive. To ensure optimal prioritization of behaviors within a given environment, therefore, AgRP neurons must integrate signals of internal need states with contextual environmental cues. In this state-of-the-art review, we highlight recent advances that extend our understanding of AgRP neurons, including the neural circuits they engage to regulate feeding, energy expenditure, and behavior. We also discuss key findings that illustrate how both classical feedback and anticipatory feedforward signals regulate this neuronal population and how the integration of these signals may be disrupted in states of energy excess. Finally, we examine both technical and conceptual challenges facing the field moving forward.
Collapse
Affiliation(s)
- Jennifer D Deem
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Chelsea L Faber
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA.,Department of Neurosurgery, Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Gregory J Morton
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Koekkoek LL, Slomp M, Castel J, Mutersbaugh M, Linville I, Serlie MJ, Luquet SH, la Fleur SE. Disruption of lateral hypothalamic calorie detection by a free choice high fat diet. FASEB J 2021; 35:e21804. [PMID: 34383974 DOI: 10.1096/fj.202100762r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 11/11/2022]
Abstract
During the last few decades, the consumption of low-calorie sweeteners, as a substitute for caloric sweeteners, has sharply increased. Although research shows that caloric versus low-calorie sweeteners can have differential effects on the brain, it is unknown which neuronal populations are responsible for detecting the difference between the two types of sweeteners. Using in vivo two-photon calcium imaging, we investigated how drinking sucrose or sucralose (a low-calorie sweetener) affects the activity of glutamatergic neurons in the lateral hypothalamus. Furthermore, we explored the consequences of consuming a free-choice high fat diet on the calorie detection abilities of these glutamatergic neurons. We found that glutamatergic neurons indeed can discriminate sucrose from water and sucralose, and that consumption of a free-choice high fat diet shifts the glutamatergic neuronal response from sucrose-specific to sucralose-specific, thereby disrupting calorie detection. These results highlight the disruptive effects of a diet high in saturated fat on calorie detection in the lateral hypothalamus.
Collapse
Affiliation(s)
- Laura L Koekkoek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Margo Slomp
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Julien Castel
- BFA, UMR 8251, CNRS, Université de Paris, Paris, France
| | - Michael Mutersbaugh
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Ian Linville
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Susanne E la Fleur
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Hypothalamic control of interoceptive hunger. Curr Biol 2021; 31:3797-3809.e5. [PMID: 34273280 DOI: 10.1016/j.cub.2021.06.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023]
Abstract
While energy balance is critical to survival, many factors influence food intake beyond caloric need or "hunger." Despite this, some neurons that drive feeding in mice are routinely referred to as "hunger neurons," whereas others are not. To understand how specific hypothalamic circuits control interoceptive hunger, we trained mice to discriminate fasted from sated periods. We then manipulated three hypothalamic neuronal populations with well-known effects on feeding while mice performed this task. While activation of ARCAGRP neurons in sated mice caused mice to report being food-restricted, LHVGAT neuron activation or LHVGLUT2 neuron inhibition did not. In contrast, LHVGAT neuron inhibition or LHVGLUT2 neuron activation in fasted mice attenuated natural hunger, whereas ARCAGRP neuron inhibition did not. Each neuronal population evoked distinct effects on food consumption and reward. After satiety- or sickness-induced devaluation, ARCAGRP neurons drove calorie-specific feeding, while LHVGAT neurons drove calorie-indiscriminate food intake. Our data support a role for ARCAGRP neurons in homeostatic feeding and implicate them in driving a hunger-like internal state that directs behavior toward caloric food sources. Moreover, manipulations of LH circuits did not evoke hunger-like effects in sated mice, suggesting that they may govern feeding more related to reward, compulsion, or generalized consumption than to energy balance, but also that these LH circuits can be powerful negative appetite modulators in fasted mice. This study highlights the complexity of hypothalamic feeding regulation and can be used as a framework to characterize how other neuronal circuits affect hunger and identify potential therapeutic targets for eating disorders.
Collapse
|
35
|
Wu B, Eldeghaidy S, Ayed C, Fisk ID, Hewson L, Liu Y. Mechanisms of umami taste perception: From molecular level to brain imaging. Crit Rev Food Sci Nutr 2021; 62:7015-7024. [PMID: 33998842 DOI: 10.1080/10408398.2021.1909532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Due to unique characteristics, umami substances have gained much attention in the food industry during the past decade as potential replacers to sodium or fat to increase food palatability. Umami is not only known to increase appetite, but also to increase satiety, and hence could be used to control food intake. Therefore, it is important to understand the mechanism(s) involved in umami taste perception. This review discusses current knowledge of the mechanism(s) of umami perception from receptor level to human brain imaging. New findings regarding the molecular mechanisms for detecting umami tastes and their pathway(s), and the peripheral and central coding to umami taste are reviewed. The representation of umami in the human brain and the individual variation in detecting umami taste and associations with genotype are discussed. The presence of umami taste receptors in the gastrointestinal tract, and the interactions between the brain and gut are highlighted. The review concludes that more research is required into umami taste perception to include not only oral umami taste perception, but also the wider "whole body" signaling mechanisms, to explore the interaction between the brain and gut in response to umami perception and ingestion.
Collapse
Affiliation(s)
- Ben Wu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sally Eldeghaidy
- Division of Food, Nutrition and Dietetics, and Future Food Beacon, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK.,Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University Park Campus, University of Nottingham, UK
| | - Charfedinne Ayed
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Ian D Fisk
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK.,The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Louise Hewson
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Yuan Liu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Zhao S, Li R, Li H, Wang S, Zhang X, Wang D, Guo J, Li H, Li A, Tong T, Zhong H, Yang Q, Dong H. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Modulate the Anesthetic Potency of Isoflurane in Mice. Neurosci Bull 2021; 37:934-946. [PMID: 33847915 PMCID: PMC8275739 DOI: 10.1007/s12264-021-00674-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/26/2020] [Indexed: 01/19/2023] Open
Abstract
The lateral hypothalamic area (LHA) plays a pivotal role in regulating consciousness transition, in which orexinergic neurons, GABAergic neurons, and melanin-concentrating hormone neurons are involved. Glutamatergic neurons have a large population in the LHA, but their anesthesia-related effect has not been explored. Here, we found that genetic ablation of LHA glutamatergic neurons shortened the induction time and prolonged the recovery time of isoflurane anesthesia in mice. In contrast, chemogenetic activation of LHA glutamatergic neurons increased the time to anesthesia and decreased the time to recovery. Optogenetic activation of LHA glutamatergic neurons during the maintenance of anesthesia reduced the burst suppression pattern of the electroencephalogram (EEG) and shifted EEG features to an arousal pattern. Photostimulation of LHA glutamatergic projections to the lateral habenula (LHb) also facilitated the emergence from anesthesia and the transition of anesthesia depth to a lighter level. Collectively, LHA glutamatergic neurons and their projections to the LHb regulate anesthetic potency and EEG features.
Collapse
Affiliation(s)
- Shiyi Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juan Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huihui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tingting Tong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Haixing Zhong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
37
|
Calder AN, Yu T, Dahir NS, Sun Y, Gilbertson TA. Ghrelin Receptors Enhance Fat Taste Responsiveness in Female Mice. Nutrients 2021; 13:nu13041045. [PMID: 33804920 PMCID: PMC8063820 DOI: 10.3390/nu13041045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ghrelin is a major appetite-stimulating neuropeptide found in circulation. While its role in increasing food intake is well known, its role in affecting taste perception, if any, remains unclear. In this study, we investigated the role of the growth hormone secretagogue receptor's (GHS-R; a ghrelin receptor) activity in the peripheral taste system using feeding studies and conditioned taste aversion assays by comparing wild-type and GHS-R-knockout models. Using transgenic mice expressing enhanced green fluorescent protein (GFP), we demonstrated GHS-R expression in the taste system in relation phospholipase C ß2 isotype (PLCβ2; type II taste cell marker)- and glutamate decarboxylase type 67 (GAD67; type III taste cell marker)-expressing cells using immunohistochemistry. We observed high levels of co-localization between PLCβ2 and GHS-R within the taste system, while GHS-R rarely co-localized in GAD67-expressing cells. Additionally, following 6 weeks of 60% high-fat diet, female Ghsr-/- mice exhibited reduced responsiveness to linoleic acid (LA) compared to their wild-type (WT) counterparts, while no such differences were observed in male Ghsr-/- and WT mice. Overall, our results are consistent with the interpretation that ghrelin in the taste system is involved in the complex sensing and recognition of fat compounds. Ghrelin-GHS-R signaling may play a critical role in the recognition of fatty acids in female mice, and this differential regulation may contribute to their distinct ingestive behaviors.
Collapse
Affiliation(s)
- Ashley N. Calder
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (A.N.C.); (N.S.D.)
| | - Tian Yu
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Naima S. Dahir
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (A.N.C.); (N.S.D.)
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Timothy A. Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Correspondence: ; Tel.: +1-321-266-7245
| |
Collapse
|
38
|
Fu O, Minokoshi Y, Nakajima KI. Recent Advances in Neural Circuits for Taste Perception in Hunger. Front Neural Circuits 2021; 15:609824. [PMID: 33603648 PMCID: PMC7884326 DOI: 10.3389/fncir.2021.609824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Feeding is essential for survival and taste greatly influences our feeding behaviors. Palatable tastes such as sweet trigger feeding as a symbol of a calorie-rich diet containing sugar or proteins, while unpalatable tastes such as bitter terminate further consumption as a warning against ingestion of harmful substances. Therefore, taste is considered a criterion to distinguish whether food is edible. However, perception of taste is also modulated by physiological changes associated with internal states such as hunger or satiety. Empirically, during hunger state, humans find ordinary food more attractive and feel less aversion to food they usually dislike. Although functional magnetic resonance imaging studies performed in primates and in humans have indicated that some brain areas show state-dependent response to tastes, the mechanisms of how the brain senses tastes during different internal states are poorly understood. Recently, using newly developed molecular and genetic tools as well as in vivo imaging, researchers have identified many specific neuronal populations or neural circuits regulating feeding behaviors and taste perception process in the central nervous system. These studies could help us understand the interplay between homeostatic regulation of energy and taste perception to guide proper feeding behaviors.
Collapse
Affiliation(s)
- Ou Fu
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Aichi, Japan
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Ken-Ichiro Nakajima
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
39
|
Dodd GT, Kim SJ, Méquinion M, Xirouchaki CE, Brüning JC, Andrews ZB, Tiganis T. Insulin signaling in AgRP neurons regulates meal size to limit glucose excursions and insulin resistance. SCIENCE ADVANCES 2021; 7:7/9/eabf4100. [PMID: 33637536 PMCID: PMC7909880 DOI: 10.1126/sciadv.abf4100] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/14/2021] [Indexed: 05/17/2023]
Abstract
The importance of hypothalamic insulin signaling on feeding and glucose metabolism remains unclear. We report that insulin acts on AgRP neurons to acutely decrease meal size and thereby limit postprandial glucose and insulin excursions. The promotion of insulin signaling in AgRP neurons decreased meal size without altering total caloric intake, whereas the genetic ablation of the insulin receptor had the opposite effect. The promotion of insulin signaling also decreased the intake of sucrose-sweetened water or high-fat food over standard chow, without influencing food-seeking and hedonic behaviors. The ability of heightened insulin signaling to override the hedonistic consumption of highly palatable high-fat food attenuated the development of systemic insulin resistance, without affecting body weight. Our findings define an unprecedented mechanism by which insulin acutely influences glucose metabolism. Approaches that enhance insulin signaling in AgRP neurons may provide a means for altering feeding behavior in a nutrient-dense environment to combat the metabolic syndrome.
Collapse
Affiliation(s)
- Garron T Dodd
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Seung Jae Kim
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Mathieu Méquinion
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, VIC 3800, Australia
| | - Chrysovalantou E Xirouchaki
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany
- Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- National Center for Diabetes Research (DZD), Ingolstädter Land Str. 1, 85764 Neuherberg, Germany
| | - Zane B Andrews
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, VIC 3800, Australia
| | - Tony Tiganis
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Monash Metabolic Phenotyping Facility, Monash University, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
40
|
Garcia A, Coss A, Luis-Islas J, Puron-Sierra L, Luna M, Villavicencio M, Gutierrez R. Lateral Hypothalamic GABAergic Neurons Encode and Potentiate Sucrose's Palatability. Front Neurosci 2021; 14:608047. [PMID: 33551725 PMCID: PMC7859279 DOI: 10.3389/fnins.2020.608047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Sucrose is attractive to most species in the animal kingdom, not only because it induces a sweet taste sensation but also for its positive palatability (i.e., oromotor responses elicited by increasing sucrose concentrations). Although palatability is such an important sensory attribute, it is currently unknown which cell types encode and modulate sucrose's palatability. Studies in mice have shown that activation of GABAergic LHAVgat+ neurons evokes voracious eating; however, it is not known whether these neurons would be driving consumption by increasing palatability. Using optrode recordings, we measured sucrose's palatability while VGAT-ChR2 transgenic mice performed a brief access sucrose test. We found that a subpopulation of LHAVgat+ neurons encodes palatability by increasing (or decreasing) their activity as a function of the increment in licking responses evoked by sucrose concentrations. Optogenetic gain of function experiments, where mice were able to choose among available water, 3% and 18% sucrose solutions, uncovered that opto-stimulation of LHAVgat+ neurons consistently promoted higher intake of the most palatable stimulus (18% sucrose). In contrast, if they self-stimulated near the less palatable stimulus, some VGAT-ChR2 mice preferred water over 18% sucrose. Unexpectedly, activation of LHAVgat+ neurons increased quinine intake but only during water deprivation, since in sated animals, they failed to promote quinine intake or tolerate an aversive stimulus. Conversely, these neurons promoted overconsumption of sucrose when it was the nearest stimulus. Also, experiments with solid foods further confirmed that these neurons increased food interaction time with the most palatable food available. We conclude that LHAVgat+ neurons increase the drive to consume, but it is potentiated by the palatability and proximity of the tastant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico
| |
Collapse
|
41
|
Gupta A, Osadchiy V, Mayer EA. Brain-gut-microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol 2020; 17:655-672. [PMID: 32855515 PMCID: PMC7841622 DOI: 10.1038/s41575-020-0341-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Normal eating behaviour is coordinated by the tightly regulated balance between intestinal and extra-intestinal homeostatic and hedonic mechanisms. By contrast, food addiction is a complex, maladaptive eating behaviour that reflects alterations in brain-gut-microbiome (BGM) interactions and a shift of this balance towards hedonic mechanisms. Each component of the BGM axis has been implicated in the development of food addiction, with both brain to gut and gut to brain signalling playing a role. Early-life influences can prime the infant gut microbiome and brain for food addiction, which might be further reinforced by increased antibiotic usage and dietary patterns throughout adulthood. The ubiquitous availability and marketing of inexpensive, highly palatable and calorie-dense food can further shift this balance towards hedonic eating through both central (disruptions in dopaminergic signalling) and intestinal (vagal afferent function, metabolic endotoxaemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. In this Review, we propose a systems biology model of BGM interactions, which incorporates published reports on food addiction, and provides novel insights into treatment targets aimed at each level of the BGM axis.
Collapse
Affiliation(s)
- Arpana Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles, Los Angeles, CA, USA.
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA.
- Ahmanson-Lovelace Brain Mapping Center at University of California Los Angeles, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Zhang N, Wei X, Fan Y, Zhou X, Liu Y. Recent advances in development of biosensors for taste-related analyses. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Minokoshi Y, Nakajima KI, Okamoto S. Homeostatic versus hedonic control of carbohydrate selection. J Physiol 2020; 598:3831-3844. [PMID: 32643799 DOI: 10.1113/jp280066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 11/08/2022] Open
Abstract
Macronutrient intake is associated with cardiometabolic health, ageing and longevity, but the mechanisms underlying its regulation have remained unclear. Most rodents increase carbohydrate selection under certain physiological and pathological conditions such as fasting. When presented with a choice between a basally preferable high-fat diet (HFD) and a high-carbohydrate diet (HCD) such as a high-sucrose diet, fasted mice first eat the HFD and then switch to the HCD during the first few hours of refeeding and continue to eat the HCD up to 24 h in the two-diet choice approach. Such consumption of an HCD after fasting reverses the fasting-induced increase in the plasma concentration of ketone bodies more rapidly than does refeeding with an HFD alone. 5'-AMP-activated protein kinase (AMPK)-regulated neurons in the paraventricular nucleus of the hypothalamus (PVH) that express corticotropin-releasing hormone (CRH) are necessary and sufficient for the fasting-induced selection of carbohydrate over an HFD in mice. These neurons appear to contribute to a fasting-induced increase in the positive valence of carbohydrate without affecting the preference for more palatable and energy-dense diets such as an HFD. Identification of the neural circuits in which AMPK-regulated CRH neurons in the PVH of mice are embedded should shed new light on the physiological and molecular mechanisms responsible for macronutrient selection.
Collapse
Affiliation(s)
- Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,School of Life Science, The Graduate University for Advanced Studies SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Ken-Ichiro Nakajima
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,School of Life Science, The Graduate University for Advanced Studies SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shiki Okamoto
- Second Department of Internal Medicine (Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology), Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan
| |
Collapse
|
44
|
|
45
|
Narukawa M, Kamiyoshihara A, Izu H, Fujii T, Matsubara K, Misaka T. Efficacy of Long-Term Feeding of α-Glycerophosphocholine for Aging-Related Phenomena in Old Mice. Gerontology 2020; 66:275-285. [PMID: 31968334 DOI: 10.1159/000504962] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
α-Glycerophosphocholine (GPC) is a natural source of choline. It reportedly prevents aging-related decline in cognitive function, but the underlying mechanism remains unclear. Although it is understood that aging influences taste sensitivity and energy regulation, whether GPC exerts antiaging effects on such phenomena requires further elucidation. Here, we used old C57BL/6J mice that were fed a GPC-containing diet, to investigate the molecular mechanisms underlying the prevention of a decline in cognitive function associated with aging and examine the beneficial effects of GPC intake on aging-related phenomena, such as taste sensitivity and energy regulation. We confirmed that GPC intake reduces the aging-related decline in the expression levels of genes related to long-term potentiation. Although we did not observe an improvement in aging-related decline in taste sensitivity, there was a notable improvement in the expression levels of β-oxidation-associated genes in old mice. Our results suggest that the prevention of aging-related decline in cognitive function by GPC intake may be associated with the improvement of gene expression levels of long-term potentiation. Furthermore, GPC intake may positively influence lipid metabolism.
Collapse
Affiliation(s)
- Masataka Narukawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aya Kamiyoshihara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hanae Izu
- Quality and Evaluation Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Tsutomu Fujii
- Quality and Evaluation Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan.,Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,
| |
Collapse
|
46
|
Abstract
It remains unclear how hormonally mediated internal states affect specific brain circuits to modify behaviour. A new study reveals that a hypothalamic projection pathway critical for female sexual receptivity is extensively remodelled during the estrous cycle.
Collapse
Affiliation(s)
| | - Johannes Kohl
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|