1
|
Wang H, Li A, An C, Che S, Huang R, Liu S, Zhuang Z. Transcriptome profiling and alternative splicing analysis of skeletal muscle in Pseudocaranx dentex: insights into slow-twitch and fast-twitch muscle specialization. Int J Biol Macromol 2025; 312:144156. [PMID: 40360119 DOI: 10.1016/j.ijbiomac.2025.144156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/23/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
Alternative splicing (AS) plays a crucial role in regulating muscle type specialization characteristics in mammals but has been rarely explored in teleost. In this study, we combined Iso-Seq and RNA-Seq technologies to profile the transcriptome and AS landscape of slow-twitch muscle (SM) and fast-twitch muscle (FM) in a migratory teleost, Pseudocaranx dentex. We identified 24,096 full-length transcripts and 14,346 isoforms in SM, and 18,483 full-length transcripts and 10,541 isoforms in FM, revealing extensive transcript and isoform diversity. The 3086 differentially expressed transcripts (DETs) were found to contribute to metabolic and contractile differences between SM and FM. Additionally, we detected 5761 AS events in SM and 4543 in FM, with skipped exons (SE) and intron retention (IR) being the predominant AS types. Furthermore, 325 differentially AS genes (DASGs) were found to regulate differences in metabolic processes, organelles organization, cellular component organization, and microtubule-based processes. Importantly, transcripts of tnni2, capzb, neb, and pdlim5 produced by AS with significant expression differences between SM and FM were determined to associate with sarcomere assembly. This study provides the first comprehensive view of transcriptome complexity and splice variants in teleost skeletal muscle and sheds light on the molecular mechanisms underlying muscle type specialization through post-transcriptional regulation.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Changting An
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shuai Che
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Rong Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Zhimeng Zhuang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
2
|
Yang J, Jin N, Zhang S, Tan Y, Chen Z, Huang X, Li G, Yu B, Shi J, Gu X, Cui Z, Xu L. Genome-wide profiling and functional characterization of circular RNAs in neural development and injury: insights from a rat model research. Cell Mol Life Sci 2025; 82:135. [PMID: 40169448 PMCID: PMC11961807 DOI: 10.1007/s00018-025-05665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/12/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
Circular RNAs (circRNAs) have re-emerged as promising gene regulators in various physiological and pathological conditions. However, the expression patterns of circRNAs in the developing spinal cord of mammals and the comprehensive distribution of circRNAs across different tissues remain poorly understood. In this study, rats were used as the model organism. We conducted a comprehensive analysis of 15 RNA-Seq datasets comprising 217 rat samples and developed a web-based resource, CiRNat, to facilitate access to these data. We identified 15,251 credible circRNAs and validated them through experimental approaches. Notably, we observed two significant time points for circRNA increase during spinal cord development, approximately at embryonic day 14 (E14d) and postnatal week 4 (P4w). Analysis of circRNA expression in various rat tissues revealed higher expression levels in central nervous system tissues compared to peripheral nervous system tissues and other tissues. Furthermore, some highly abundant circRNAs exhibited tissue- and species-specific expression patterns and differed from their cognate linear RNAs, such as those derived from Gigyf2. Integrating polysome profiling and bioinformatic predictions suggested potential functions of certain circRNAs as miRNA sponges and translational templates. Collectively, this study provides the first comprehensive landscape of circRNAs in the developing spinal cord, offering an important resource and new insights for future exploration of functional circRNAs in central nervous system development and related diseases.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang, Sichuan, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Shuqiang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Ya Tan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xiaoli Huang
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jianhua Shi
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China.
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
3
|
Chen Y, Davidson NM, Wan YK, Yao F, Su Y, Gamaarachchi H, Sim A, Patel H, Low HM, Hendra C, Wratten L, Hakkaart C, Sawyer C, Iakovleva V, Lee PL, Xin L, Ng HEV, Loo JM, Ong X, Ng HQA, Wang J, Koh WQC, Poon SYP, Stanojevic D, Tran HD, Lim KHE, Toh SY, Ewels PA, Ng HH, Iyer NG, Thiery A, Chng WJ, Chen L, DasGupta R, Sikic M, Chan YS, Tan BOP, Wan Y, Tam WL, Yu Q, Khor CC, Wüstefeld T, Lezhava A, Pratanwanich PN, Love MI, Goh WSS, Ng SB, Oshlack A, Göke J. A systematic benchmark of Nanopore long-read RNA sequencing for transcript-level analysis in human cell lines. Nat Methods 2025; 22:801-812. [PMID: 40082608 PMCID: PMC11978509 DOI: 10.1038/s41592-025-02623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/04/2025] [Indexed: 03/16/2025]
Abstract
The human genome contains instructions to transcribe more than 200,000 RNAs. However, many RNA transcripts are generated from the same gene, resulting in alternative isoforms that are highly similar and that remain difficult to quantify. To evaluate the ability to study RNA transcript expression, we profiled seven human cell lines with five different RNA-sequencing protocols, including short-read cDNA, Nanopore long-read direct RNA, amplification-free direct cDNA and PCR-amplified cDNA sequencing, and PacBio IsoSeq, with multiple spike-in controls, and additional transcriptome-wide N6-methyladenosine profiling data. We describe differences in read length, coverage, throughput and transcript expression, reporting that long-read RNA sequencing more robustly identifies major isoforms. We illustrate the value of the SG-NEx data to identify alternative isoforms, novel transcripts, fusion transcripts and N6-methyladenosine RNA modifications. Together, the SG-NEx data provide a comprehensive resource enabling the development and benchmarking of computational methods for profiling complex transcriptional events at isoform-level resolution.
Collapse
Affiliation(s)
- Ying Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Nadia M Davidson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yuk Kei Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Fei Yao
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yan Su
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Hasindu Gamaarachchi
- School of Computer Science and Engineering, UNSW Sydney, Sydney, New South Wales, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Andre Sim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | | | - Hwee Meng Low
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Christopher Hendra
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Institute of Data Science, National University of Singapore, Singapore, Singapore
| | - Laura Wratten
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | | | - Chelsea Sawyer
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Viktoriia Iakovleva
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Puay Leng Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Lixia Xin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Hui En Vanessa Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jia Min Loo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Hui Qi Amanda Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jiaxu Wang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wei Qian Casslynn Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Suk Yeah Polly Poon
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Dominik Stanojevic
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Hoang-Dai Tran
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Kok Hao Edwin Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Shen Yon Toh
- National Cancer Centre Singapore, Singapore, Singapore
| | | | - Huck-Hui Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Alexandre Thiery
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ramanuj DasGupta
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Mile Sikic
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Yun-Shen Chan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Boon Ooi Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Yue Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiang Yu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Chiea Chuan Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Torsten Wüstefeld
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- National Cancer Centre Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Lezhava
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ploy N Pratanwanich
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Chula Intelligent and Complex Systems Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wee Siong Sho Goh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Sarah B Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Alicia Oshlack
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Jonathan Göke
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Su H, Katz SG, Slavoff SA. Alternative transcripts recode human genes to express overlapping, frameshifted microproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619581. [PMID: 39484585 PMCID: PMC11526972 DOI: 10.1101/2024.10.22.619581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Overlapping genes were thought to be essentially absent from the human genome until the discovery of abundant, frameshifted internal open reading frames (iORFs) nested within annotated protein coding sequences. However, it is currently unclear how many functional human iORFs exist and how they are expressed. We demonstrate that, in hundreds of cases, alternative transcript variants that bypass the start codon of annotated coding sequences (CDSs) can recode a human gene to express the iORF-encoded microprotein. While many human genes generate such non-coding alternative transcripts, they are poorly annotated. Here we develope a new analysis pipeline enabling the assignment of translated human iORFs to alternative transcripts, and provide long-read sequencing and molecular validation of their expression in dozens of cases. Finally, we demonstrate that a conserved DEDD2 iORF switches the function of this gene from pro- to anti-apoptotic. This work thus demonstrates that alternative transcript variants can broadly reprogram human genes to express frameshifted iORFs, revealing new levels of complexity in the human transcriptome and proteome.
Collapse
Affiliation(s)
- Haomiao Su
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| |
Collapse
|
5
|
Schettini GP, Morozyuk M, Biase FH. Identification of novel cattle (Bos taurus) genes and biological insights of their function in pre-implantation embryo development. BMC Genomics 2024; 25:775. [PMID: 39118001 PMCID: PMC11313146 DOI: 10.1186/s12864-024-10685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Appropriate regulation of genes expressed in oocytes and embryos is essential for acquisition of developmental competence in mammals. Here, we hypothesized that several genes expressed in oocytes and pre-implantation embryos remain unknown. Our goal was to reconstruct the transcriptome of oocytes (germinal vesicle and metaphase II) and pre-implantation cattle embryos (blastocysts) using short-read and long-read sequences to identify putative new genes. RESULTS We identified 274,342 transcript sequences and 3,033 of those loci do not match a gene present in official annotations and thus are potential new genes. Notably, 63.67% (1,931/3,033) of potential novel genes exhibited coding potential. Also noteworthy, 97.92% of the putative novel genes overlapped annotation with transposable elements. Comparative analysis of transcript abundance identified that 1,840 novel genes (recently added to the annotation) or potential new genes were differentially expressed between developmental stages (FDR < 0.01). We also determined that 522 novel or potential new genes (448 and 34, respectively) were upregulated at eight-cell embryos compared to oocytes (FDR < 0.01). In eight-cell embryos, 102 novel or putative new genes were co-expressed (|r|> 0.85, P < 1 × 10-8) with several genes annotated with gene ontology biological processes related to pluripotency maintenance and embryo development. CRISPR-Cas9 genome editing confirmed that the disruption of one of the novel genes highly expressed in eight-cell embryos reduced blastocyst development (ENSBTAG00000068261, P = 1.55 × 10-7). CONCLUSIONS Our results revealed several putative new genes that need careful annotation. Many of the putative new genes have dynamic regulation during pre-implantation development and are important components of gene regulatory networks involved in pluripotency and blastocyst formation.
Collapse
Affiliation(s)
- Gustavo P Schettini
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michael Morozyuk
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
6
|
Haltenhof T, Preußner M, Heyd F. Thermoregulated transcriptomics: the molecular basis and biological significance of temperature-dependent alternative splicing. Biochem J 2024; 481:999-1013. [PMID: 39083035 PMCID: PMC11346455 DOI: 10.1042/bcj20230410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024]
Abstract
Temperature-dependent alternative splicing (AS) is a crucial mechanism for organisms to adapt to varying environmental temperatures. In mammals, even slight fluctuations in body temperature are sufficient to drive significant AS changes in a concerted manner. This dynamic regulation allows organisms to finely tune gene expression and protein isoform diversity in response to temperature cues, ensuring proper cellular function and physiological adaptation. Understanding the molecular mechanisms underlying temperature-dependent AS thus provides valuable insights into the intricate interplay between environmental stimuli and gene expression regulation. In this review, we provide an overview of recent advances in understanding temperature-regulated AS across various biological processes and systems. We will discuss the machinery sensing and translating temperature cues into changed AS patterns, the adaptation of the splicing regulatory machinery to extreme temperatures, the role of temperature-dependent AS in shaping the transcriptome, functional implications and the development of potential therapeutics targeting temperature-sensitive AS pathways.
Collapse
Affiliation(s)
- Tom Haltenhof
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
7
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Liu H, Liu H, Wang L, Song L, Jiang G, Lu Q, Yang T, Peng H, Cai R, Zhao X, Zhao T, Wu H. Cochlear transcript diversity and its role in auditory functions implied by an otoferlin short isoform. Nat Commun 2023; 14:3085. [PMID: 37248244 DOI: 10.1038/s41467-023-38621-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Isoforms of a gene may contribute to diverse biological functions. In the cochlea, the repertoire of alternative isoforms remains unexplored. We integrated single-cell short-read and long-read RNA sequencing techniques and identified 236,012 transcripts, 126,612 of which were unannotated in the GENCODE database. Then we analyzed and verified the unannotated transcripts using RNA-seq, RT-PCR, Sanger sequencing, and MS-based proteomics approaches. To illustrate the importance of identifying spliced isoforms, we investigated otoferlin, a key protein involved in synaptic transmission in inner hair cells (IHCs). Upon deletion of the canonical otoferlin isoform, the identified short isoform is able to support normal hearing thresholds but with reduced sustained exocytosis of IHCs, and further revealed otoferlin functions in endocytic membrane retrieval that was not well-addressed previously. Furthermore, we found that otoferlin isoforms are associated with IHC functions and auditory phenotypes. This work expands our mechanistic understanding of auditory functions at the level of isoform resolution.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China
| | - Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China
| | - Longhao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China
| | - Guixian Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China
| | - Qing Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China
| | - Hu Peng
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ruijie Cai
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China
| | - Xingle Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China
| | - Ting Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, China.
| |
Collapse
|
9
|
Hao K, Yang M, Cui Y, Jiao Z, Gao X, Du Z, Wang Z, An M, Xia Z, Wu Y. Transcriptomic and Functional Analyses Reveal the Different Roles of Vitamins C, E, and K in Regulating Viral Infections in Maize. Int J Mol Sci 2023; 24:ijms24098012. [PMID: 37175719 PMCID: PMC10178231 DOI: 10.3390/ijms24098012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Maize lethal necrosis (MLN), one of the most important maize viral diseases, is caused by maize chlorotic mottle virus (MCMV) infection in combination with a potyvirid, such as sugarcane mosaic virus (SCMV). However, the resistance mechanism of maize to MLN remains largely unknown. In this study, we obtained isoform expression profiles of maize after SCMV and MCMV single and synergistic infection (S + M) via comparative analysis of SMRT- and Illumina-based RNA sequencing. A total of 15,508, 7567, and 2378 differentially expressed isoforms (DEIs) were identified in S + M, MCMV, and SCMV libraries, which were primarily involved in photosynthesis, reactive oxygen species (ROS) scavenging, and some pathways related to disease resistance. The results of virus-induced gene silencing (VIGS) assays revealed that silencing of a vitamin C biosynthesis-related gene, ZmGalDH or ZmAPX1, promoted viral infections, while silencing ZmTAT or ZmNQO1, the gene involved in vitamin E or K biosynthesis, inhibited MCMV and S + M infections, likely by regulating the expressions of pathogenesis-related (PR) genes. Moreover, the relationship between viral infections and expression of the above four genes in ten maize inbred lines was determined. We further demonstrated that the exogenous application of vitamin C could effectively suppress viral infections, while vitamins E and K promoted MCMV infection. These findings provide novel insights into the gene regulatory networks of maize in response to MLN, and the roles of vitamins C, E, and K in conditioning viral infections in maize.
Collapse
Affiliation(s)
- Kaiqiang Hao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Miaoren Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yakun Cui
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyuan Jiao
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xinran Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhichao Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
10
|
Sun C, Schuman E. A multi-omics view of neuronal subcellular protein synthesis. Curr Opin Neurobiol 2023; 80:102705. [PMID: 36913750 DOI: 10.1016/j.conb.2023.102705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023]
Abstract
While it has long been known that protein synthesis is necessary for long-term memory in the brain, the logistics of neuronal protein synthesis is complicated by the extensive subcellular compartmentalization of the neuron. Local protein synthesis solves many of the logistic problems posed by the extreme complexity of dendritic and axonal arbors and the huge number of synapses. Here we review recent multi-omic and quantitative studies that elaborate a systems view of decentralized neuronal protein synthesis. We highlight recent insights from the transcriptomic, translatomic, and proteomic levels, discuss the nuanced logic of local protein synthesis for different protein features, and list the missing information needed to build a comprehensive logistic model for neuronal protein supply.
Collapse
Affiliation(s)
- Chao Sun
- Max Planck Institute for Brain Research, Frankfurt, Germany; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Denmark; Aarhus University, Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark. https://twitter.com/LukeChaoSun
| | - Erin Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
11
|
Manuel JM, Guilloy N, Khatir I, Roucou X, Laurent B. Re-evaluating the impact of alternative RNA splicing on proteomic diversity. Front Genet 2023; 14:1089053. [PMID: 36845399 PMCID: PMC9947481 DOI: 10.3389/fgene.2023.1089053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Alternative splicing (AS) constitutes a mechanism by which protein-coding genes and long non-coding RNA (lncRNA) genes produce more than a single mature transcript. From plants to humans, AS is a powerful process that increases transcriptome complexity. Importantly, splice variants produced from AS can potentially encode for distinct protein isoforms which can lose or gain specific domains and, hence, differ in their functional properties. Advances in proteomics have shown that the proteome is indeed diverse due to the presence of numerous protein isoforms. For the past decades, with the help of advanced high-throughput technologies, numerous alternatively spliced transcripts have been identified. However, the low detection rate of protein isoforms in proteomic studies raised debatable questions on whether AS contributes to proteomic diversity and on how many AS events are really functional. We propose here to assess and discuss the impact of AS on proteomic complexity in the light of the technological progress, updated genome annotation, and current scientific knowledge.
Collapse
Affiliation(s)
- Jeru Manoj Manuel
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Noé Guilloy
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Inès Khatir
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada,Quebec Network for Research on Protein Function Structure and Engineering, PROTEO, Québec, QC, Canada
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada,*Correspondence: Benoit Laurent,
| |
Collapse
|
12
|
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, et alSmith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, Zhou H. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet Genome Res 2023; 162:405-528. [PMID: 36716736 PMCID: PMC11835228 DOI: 10.1159/000529376] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - James M. Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Philippe Bardou
- Université de Toulouse, INRAE, ENVT, GenPhySE, Sigenae, Castanet Tolosan, France
| | | | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, Nouzilly, France
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pavel M. Borodin
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rachel Carroll
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Mathieu Charles
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Hans Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | - Lyndon M. Coghill
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Richard Crooijmans
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Sean Davey
- University of Arizona, Tucson, Arizona, USA
| | - Asya Davidian
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Fabien Degalez
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Jack M. Dekkers
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Martijn Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Abigail B. Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Appolinaire Djikeng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Alexander Dyomin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Laurent A.F. Frantz
- Queen Mary University of London, Bethnal Green, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Janet E. Fulton
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Elena Gaginskaya
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Rodrigo A. Gallardo
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Almas A. Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Cyrill John P. Godinez
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | | | - Jennifer A.M. Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Lindsay J. Henderson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Evans Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | | | | | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Steve Kemp
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Colin Kern
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, California, USA
| | | | - Christophe Klopp
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Sandrine Lagarrigue
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Susan J. Lamont
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Margaret Lange
- Centre for Tropical Livestock Genetics and Health (CTLGH) − The Roslin Institute, Edinburgh, UK
| | - Anika Lanke
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - John King N. Layos
- College of Agriculture and Forestry, Capiz State University, Mambusao, Philippines
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lyubov P. Malinovskaya
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Rebecca J. Martin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Michael J. McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Christine Kamidi Muhonja
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kévin Muret
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, Arkansas, USA
| | - Ochieng Ouko
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Hardip R. Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Francesco Perini
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - María Ines Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Peter D. Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christian Reimer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Edward S. Rice
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nicolas Rocos
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Thea F. Rogers
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, California, USA
- Veterinary Pest Genetics Research Unit, USDA, Kerrville, Texas, USA
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Robert D. Schnabel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Henner Simianer
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Kyle Stiers
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Anna A. Torgasheva
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alan Tracey
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Clive A. Tregaskes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA
| | - Wesley C. Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Anna Wolc
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Alison E. Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhong-Tao Yin
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
13
|
Wen H, Chen W, Chen Y, Wei G, Ni T. Integrative analysis of Iso-Seq and RNA-seq reveals dynamic changes of alternative promoter, alternative splicing and alternative polyadenylation during Angiotensin II-induced senescence in rat primary aortic endothelial cells. Front Genet 2023; 14:1064624. [PMID: 36741323 PMCID: PMC9892061 DOI: 10.3389/fgene.2023.1064624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
In eukaryotes, alternative promoter (AP), alternative splicing (AS), and alternative polyadenylation (APA) are three crucial regulatory mechanisms that modulate message RNA (mRNA) diversity. Although AP, AS and APA are involved in diverse biological processess, whether they have dynamic changes in Angiotensin II (Ang II) induced senescence in rat primary aortic endothelial cells (RAECs), an important cellular model for studying cardiovascular disease, remains unclear. Here we integrated both PacBio single-molecule long-read isoform sequencing (Iso-Seq) and Illumina short-read RNA sequencing (RNA-seq) to analyze the changes of AP, AS and APA in Ang II-induced senescent RAECs. Iso-Seq generated 36,278 isoforms from 10,145 gene loci and 65.81% of these isoforms are novel, which were further cross-validated by public data obtained by other techonologies such as CAGE, PolyA-Seq and 3'READS. APA contributed most to novel isoforms, followed by AS and AP. Further investigation showed that AP, AS and APA could all contribute to the regulation of isoform, but AS has more dynamic changes compared to AP and APA upon Ang II stimulation. Genes undergoing AP, AS and APA in Ang II-treated cells are enriched in various pathways related to aging or senescence, suggesting that these molecular changes are involved in functional alterations during Ang II-induced senescence. Together, the present study largely improved the annotation of rat genome and revealed gene expression changes at isoform level, extending the understanding of the complexity of gene regulation in Ang II-treated RAECs, and also provided novel clues for discovering the regulatory mechanism undelying Ang II caused vascular senescence and diseases.
Collapse
Affiliation(s)
- Haimei Wen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Chen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yu Chen
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Gang Wei
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Ni
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Papa Y, Wellenreuther M, Morrison MA, Ritchie PA. Genome assembly and isoform analysis of a highly heterozygous New Zealand fisheries species, the tarakihi (Nemadactylus macropterus). G3 (BETHESDA, MD.) 2022; 13:6883520. [PMID: 36477875 PMCID: PMC9911067 DOI: 10.1093/g3journal/jkac315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Although being some of the most valuable and heavily exploited wild organisms, few fisheries species have been studied at the whole-genome level. This is especially the case in New Zealand, where genomics resources are urgently needed to assist fisheries management. Here, we generated 55 Gb of short Illumina reads (92× coverage) and 73 Gb of long Nanopore reads (122×) to produce the first genome assembly of the marine teleost tarakihi [Nemadactylus macropterus (Forster, 1801)], a highly valuable fisheries species in New Zealand. An additional 300 Mb of Iso-Seq reads were obtained to assist in gene annotation. The final genome assembly was 568 Mb long with an N50 of 3.37 Mb. The genome completeness was high, with 97.8% of complete Actinopterygii Benchmarking Universal Single-Copy Orthologs. Heterozygosity values estimated through k-mer counting (1.00%) and bi-allelic SNPs (0.64%) were high compared with the same values reported for other fishes. Iso-Seq analysis recovered 91,313 unique transcripts from 15,515 genes (mean ratio of 5.89 transcripts per gene), and the most common alternative splicing event was intron retention. This highly contiguous genome assembly and the isoform-resolved transcriptome will provide a useful resource to assist the study of population genomics and comparative eco-evolutionary studies in teleosts and related organisms.
Collapse
Affiliation(s)
- Yvan Papa
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Maren Wellenreuther
- Seafood Production Group, The New Zealand Institute for Plant and Food Research Limited, Nelson 7010, New Zealand,School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Mark A Morrison
- National Institute of Water and Atmospheric Research, Auckland 1010, New Zealand
| | - Peter A Ritchie
- Corresponding author: Te Toki A Rata, Gate 7, Kelburn Parade, Wellington 6012, New Zealand.
| |
Collapse
|
15
|
Mitschka S, Mayr C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol 2022; 23:779-796. [PMID: 35798852 PMCID: PMC9261900 DOI: 10.1038/s41580-022-00507-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
Alternative cleavage and polyadenylation (APA) is a widespread mechanism to generate mRNA isoforms with alternative 3' untranslated regions (UTRs). The expression of alternative 3' UTR isoforms is highly cell type specific and is further controlled in a gene-specific manner by environmental cues. In this Review, we discuss how the dynamic, fine-grained regulation of APA is accomplished by several mechanisms, including cis-regulatory elements in RNA and DNA and factors that control transcription, pre-mRNA cleavage and post-transcriptional processes. Furthermore, signalling pathways modulate the activity of these factors and integrate APA into gene regulatory programmes. Dysregulation of APA can reprogramme the outcome of signalling pathways and thus can control cellular responses to environmental changes. In addition to the regulation of protein abundance, APA has emerged as a major regulator of mRNA localization and the spatial organization of protein synthesis. This role enables the regulation of protein function through the addition of post-translational modifications or the formation of protein-protein interactions. We further discuss recent transformative advances in single-cell RNA sequencing and CRISPR-Cas technologies, which enable the mapping and functional characterization of alternative 3' UTRs in any biological context. Finally, we discuss new APA-based RNA therapeutics, including compounds that target APA in cancer and therapeutic genome editing of degenerative diseases.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Shen Y, Zeng X, Chen G, Wu X. Comparative transcriptome analysis reveals regional specialization of gene expression in larval silkworm (Bombyx mori) midgut. INSECT SCIENCE 2022; 29:1329-1345. [PMID: 34997945 DOI: 10.1111/1744-7917.13001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Insect midgut plays a central role in food digestion and nutrition absorption. Larval silkworm midgut could be divided into 3 distinct regions based on their morphological colors. However, it remains rudimentary of regional gene expression and physiological function in larval silkworm midgut. Through transcriptome sequencing of 3 midgut compartments, a comprehensive analysis of gene expression atlas along the anterior-posterior axis was conducted. Posterior midgut was found transcriptionally divergent from anterior and middle midgut. Differentially expressed gene analysis revealed the regional specialization of digestive enzyme production, transmembrane transport, chitin metabolism, and hormone regulation in different midgut regions. In addition, gene subsets of pan-midgut and region-specific transcription factors (TFs) along the length of midgut were also identified. The results suggested that homeobox TFs might play an essential role in transcriptional variations across the midgut. Altogether, our study provided the first fundamental resource to investigate physiological function and regulation mechanism in larval midgut compartmentalization.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaoqun Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
17
|
Reixachs‐Solé M, Eyras E. Uncovering the impacts of alternative splicing on the proteome with current omics techniques. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1707. [PMID: 34979593 PMCID: PMC9542554 DOI: 10.1002/wrna.1707] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The high-throughput sequencing of cellular RNAs has underscored a broad effect of isoform diversification through alternative splicing on the transcriptome. Moreover, the differential production of transcript isoforms from gene loci has been recognized as a critical mechanism in cell differentiation, organismal development, and disease. Yet, the extent of the impact of alternative splicing on protein production and cellular function remains a matter of debate. Multiple experimental and computational approaches have been developed in recent years to address this question. These studies have unveiled how molecular changes at different steps in the RNA processing pathway can lead to differences in protein production and have functional effects. New and emerging experimental technologies open exciting new opportunities to develop new methods to fully establish the connection between messenger RNA expression and protein production and to further investigate how RNA variation impacts the proteome and cell function. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing Translation > Regulation RNA Evolution and Genomics > Computational Analyses of RNA.
Collapse
Affiliation(s)
- Marina Reixachs‐Solé
- The John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network and the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Eduardo Eyras
- The John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network and the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Catalan Institution for Research and Advanced StudiesBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| |
Collapse
|
18
|
Hauser D, Behr K, Konno K, Schreiner D, Schmidt A, Watanabe M, Bischofberger J, Scheiffele P. Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition. Neuron 2022; 110:2094-2109.e10. [PMID: 35550065 PMCID: PMC9275415 DOI: 10.1016/j.neuron.2022.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/05/2022] [Accepted: 04/15/2022] [Indexed: 12/21/2022]
Abstract
The diversification of cell adhesion molecules by alternative splicing is proposed to underlie molecular codes for neuronal wiring. Transcriptomic approaches mapped detailed cell-type-specific mRNA splicing programs. However, it has been hard to probe the synapse-specific localization and function of the resulting protein splice isoforms, or “proteoforms,” in vivo. We here apply a proteoform-centric workflow in mice to test the synapse-specific functions of the splice isoforms of the synaptic adhesion molecule Neurexin-3 (NRXN3). We uncover a major proteoform, NRXN3 AS5, that is highly expressed in GABAergic interneurons and at dendrite-targeting GABAergic terminals. NRXN3 AS5 abundance significantly diverges from Nrxn3 mRNA distribution and is gated by translation-repressive elements. Nrxn3 AS5 isoform deletion results in a selective impairment of dendrite-targeting interneuron synapses in the dentate gyrus without affecting somatic inhibition or glutamatergic perforant-path synapses. This work establishes cell- and synapse-specific functions of a specific neurexin proteoform and highlights the importance of alternative splicing regulation for synapse specification. Translational regulation guides alternative Neurexin proteoform expression NRXN3 AS5 proteoforms are concentrated at dendrite-targeting interneuron synapses A proteome-centric workflow uncovers NRXN3 AS5 interactors in vivo Loss of NRXN3 AS5 leads to selective impairments in dendritic inhibition
Collapse
Affiliation(s)
- David Hauser
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Katharina Behr
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Dietmar Schreiner
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Josef Bischofberger
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland
| | - Peter Scheiffele
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
19
|
Summers KM, Bush SJ, Wu C, Hume DA. Generation and network analysis of an RNA-seq transcriptional atlas for the rat. NAR Genom Bioinform 2022; 4:lqac017. [PMID: 35265836 PMCID: PMC8900154 DOI: 10.1093/nargab/lqac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
Abstract
The laboratory rat is an important model for biomedical research. To generate a comprehensive rat transcriptomic atlas, we curated and downloaded 7700 rat RNA-seq datasets from public repositories, downsampled them to a common depth and quantified expression. Data from 585 rat tissues and cells, averaged from each BioProject, can be visualized and queried at http://biogps.org/ratatlas. Gene co-expression network (GCN) analysis revealed clusters of transcripts that were tissue or cell type restricted and contained transcription factors implicated in lineage determination. Other clusters were enriched for transcripts associated with biological processes. Many of these clusters overlap with previous data from analysis of other species, while some (e.g. expressed specifically in immune cells, retina/pineal gland, pituitary and germ cells) are unique to these data. GCN analysis on large subsets of the data related specifically to liver, nervous system, kidney, musculoskeletal system and cardiovascular system enabled deconvolution of cell type-specific signatures. The approach is extensible and the dataset can be used as a point of reference from which to analyse the transcriptomes of cell types and tissues that have not yet been sampled. Sets of strictly co-expressed transcripts provide a resource for critical interpretation of single-cell RNA-seq data.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute—University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Chunlei Wu
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David A Hume
- Mater Research Institute—University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
20
|
Wright DJ, Hall NAL, Irish N, Man AL, Glynn W, Mould A, Angeles ADL, Angiolini E, Swarbreck D, Gharbi K, Tunbridge EM, Haerty W. Long read sequencing reveals novel isoforms and insights into splicing regulation during cell state changes. BMC Genomics 2022; 23:42. [PMID: 35012468 PMCID: PMC8744310 DOI: 10.1186/s12864-021-08261-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alternative splicing is a key mechanism underlying cellular differentiation and a driver of complexity in mammalian neuronal tissues. However, understanding of which isoforms are differentially used or expressed and how this affects cellular differentiation remains unclear. Long read sequencing allows full-length transcript recovery and quantification, enabling transcript-level analysis of alternative splicing processes and how these change with cell state. Here, we utilise Oxford Nanopore Technologies sequencing to produce a custom annotation of a well-studied human neuroblastoma cell line SH-SY5Y, and to characterise isoform expression and usage across differentiation. RESULTS We identify many previously unannotated features, including a novel transcript of the voltage-gated calcium channel subunit gene, CACNA2D2. We show differential expression and usage of transcripts during differentiation identifying candidates for future research into state change regulation. CONCLUSIONS Our work highlights the potential of long read sequencing to uncover previously unknown transcript diversity and mechanisms influencing alternative splicing.
Collapse
Affiliation(s)
- David J Wright
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Nicola A L Hall
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxfordshire, OX3 3JX, UK
- Oxford Health, NHS Foundation Trust, Oxford, Oxfordshire, OX3 7JX, UK
| | - Naomi Irish
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Angela L Man
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Will Glynn
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Arne Mould
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxfordshire, OX3 3JX, UK
- Oxford Health, NHS Foundation Trust, Oxford, Oxfordshire, OX3 7JX, UK
| | - Alejandro De Los Angeles
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxfordshire, OX3 3JX, UK
- Oxford Health, NHS Foundation Trust, Oxford, Oxfordshire, OX3 7JX, UK
| | - Emily Angiolini
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK
| | - Elizabeth M Tunbridge
- Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxfordshire, OX3 3JX, UK
- Oxford Health, NHS Foundation Trust, Oxford, Oxfordshire, OX3 7JX, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK.
| |
Collapse
|
21
|
Emerging tools for understanding the human microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:29-51. [DOI: 10.1016/bs.pmbts.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Zhang Z, Guo J, Cai X, Li Y, Xi X, Lin R, Liang J, Wang X, Wu J. Improved Reference Genome Annotation of Brassica rapa by Pacific Biosciences RNA Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:841618. [PMID: 35371168 PMCID: PMC8968949 DOI: 10.3389/fpls.2022.841618] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 05/05/2023]
Abstract
The species Brassica rapa includes several important vegetable crops. The draft reference genome of B. rapa ssp. pekinensis was completed in 2011, and it has since been updated twice. The pangenome with structural variations of 18 B. rapa accessions was published in 2021. Although extensive genomic analysis has been conducted on B. rapa, a comprehensive genome annotation including gene structure, alternative splicing (AS) events, and non-coding genes is still lacking. Therefore, we used the Pacific Biosciences (PacBio) single-molecular long-read technology to improve gene models and produced the annotated genome version 3.5. In total, we obtained 753,041 full-length non-chimeric (FLNC) reads and collapsed these into 92,810 non-redundant consensus isoforms, capturing 48% of the genes annotated in the B. rapa reference genome annotation v3.1. Based on the isoform data, we identified 830 novel protein-coding genes that were missed in previous genome annotations, defined the untranslated regions (UTRs) of 20,340 annotated genes and corrected 886 wrongly spliced genes. We also identified 28,564 AS events and 1,480 long non-coding RNAs (lncRNAs). We produced a relatively complete and high-quality reference transcriptome for B. rapa that can facilitate further functional genomic research.
Collapse
|
23
|
Al Kadi M, Jung N, Okuzaki D. UNAGI: Yeast Transcriptome Reconstruction and Gene Discovery Using Nanopore Sequencing. Methods Mol Biol 2022; 2477:79-89. [PMID: 35524113 DOI: 10.1007/978-1-0716-2257-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Computational approaches are the main approaches used in genome annotation. However, accuracy is low. Untranslated regions are not identified, complex isoforms are not predicted correctly and discovery rate of noncoding RNA is low. RNA-seq has revolutionized transcriptome reconstruction over the last decade. However, fragmentation included in cDNA sequencing leads to information loss, requiring transcripts to be assembled and reconstructed, thus affecting the accuracy of reconstructed transcriptome. Recently, long-read sequencing has been introduced with technologies such as Oxford Nanopore sequencing. cDNA is sequenced directly without fragmentation producing long reads that don't need to be assembled keeping the transcript structure intact and increasing the accuracy of transcriptome reconstruction.Here we present a protocol and a pipeline to reconstruct the transcriptome of compact genomes including yeasts. It involves generating full-length cDNA and using Oxford Nanopore ligation-based sequencing kit to sequence multiple samples in the same run. The pipeline (1) strands the generated long reads, (2) corrects the reads by mapping them to the reference genome, (3) identifies transcripts including 5'UTR and 3'UTR, (4) profiles the isoforms, filtering out artifacts resulting from low accuracy in sequencing, and (5) improves accuracy of provided annotations. Using long reads improves the accuracy of transcriptome reconstruction and helps in discovering a significant number of novel RNAs.
Collapse
Affiliation(s)
- Mohamad Al Kadi
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nicolas Jung
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
24
|
Li J, Singh U, Bhandary P, Campbell J, Arendsee Z, Seetharam AS, Wurtele ES. Foster thy young: enhanced prediction of orphan genes in assembled genomes. Nucleic Acids Res 2021; 50:e37. [PMID: 34928390 PMCID: PMC9023268 DOI: 10.1093/nar/gkab1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Proteins encoded by newly-emerged genes ('orphan genes') share no sequence similarity with proteins in any other species. They provide organisms with a reservoir of genetic elements to quickly respond to changing selection pressures. Here, we systematically assess the ability of five gene prediction pipelines to accurately predict genes in genomes according to phylostratal origin. BRAKER and MAKER are existing, popular ab initio tools that infer gene structures by machine learning. Direct Inference is an evidence-based pipeline we developed to predict gene structures from alignments of RNA-Seq data. The BIND pipeline integrates ab initio predictions of BRAKER and Direct inference; MIND combines Direct Inference and MAKER predictions. We use highly-curated Arabidopsis and yeast annotations as gold-standard benchmarks, and cross-validate in rice. Each pipeline under-predicts orphan genes (as few as 11 percent, under one prediction scenario). Increasing RNA-Seq diversity greatly improves prediction efficacy. The combined methods (BIND and MIND) yield best predictions overall, BIND identifying 68% of annotated orphan genes, 99% of ancient genes, and give the highest sensitivity score regardless dataset in Arabidopsis. We provide a light weight, flexible, reproducible, and well-documented solution to improve gene prediction.
Collapse
Affiliation(s)
- Jing Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50014, USA
| | - Urminder Singh
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Priyanka Bhandary
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Jacqueline Campbell
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture Agriculture Research Service, Ames, IA 50014, USA
| | - Zebulun Arendsee
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Arun S Seetharam
- Genome Informatics Facility, Iowa State University, Ames, IA 50014, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| |
Collapse
|
25
|
Liang X, Bai Z, Wang F, Han Y, Sun H, Xiaokereti J, Zhang L, Zhou X, Lu Y, Tang B. Full-Length Transcriptome Sequencing: An Insight Into the Dog Model of Heart Failure. Front Cardiovasc Med 2021; 8:712797. [PMID: 34977163 PMCID: PMC8716442 DOI: 10.3389/fcvm.2021.712797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Heart failure (HF) leads to a progressive increase in morbidity and mortality rates. This study aimed to explore the transcriptional landscape during HF and identify differentially expressed transcripts (DETs) and alternative splicing events associated with HF. We generated a dog model of HF (n = 3) using right ventricular pacemaker implantation. We performed full-length transcriptome sequencing (based on nanopore platform) on the myocardial tissues and analyzed the transcripts using differential expression analysis and functional annotation methods [Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses]. Additionally, we estimated the expression of the selected genes by quantitative real-time PCR (qRT-PCR) and detected the proportion of immune cells using flow cytometry. We found that increased B-type natriuretic peptide reduced ejection fraction, and apparent clinical signs were observed in the dog model of HF. We identified 67,458 transcripts using full-length transcriptome sequencing. A total of 785 DETs were obtained from the HF and control groups. These DETs were mainly enriched in the immune responses, especially Th1, Th2, and Th17 cell differentiation processes. Furthermore, flow cytometry results revealed that the proportion of Th1 and Th17 cells increased in patients with HF compared to controls, while the proportion of Th2 cells decreased. Differentially expressed genes in the HF and control groups associated with Th1, Th2, and Th17 cell differentiation were quantified using qRT-PCR. We also identified variable splicing events of sarcomere genes (e.g., MYBPC3, TNNT2, TTN, FLNC, and TTNI3). In addition, we detected 4,892 transcription factors and 406 lncRNAs associated with HF. Our analysis based on full-length transcript sequencing provided an analysis perspective in a dog model of HF, which is valuable for molecular research in an increasingly relevant large animal model of HF.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Zechen Bai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Feifei Wang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang First Aid Center, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Yafan Han
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Huaxin Sun
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jiasuoer Xiaokereti
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Xianhui Zhou
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Yanmei Lu
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- *Correspondence: Baopeng Tang
| | - Baopeng Tang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
- Yanmei Lu
| |
Collapse
|
26
|
Karakulak T, Moch H, von Mering C, Kahraman A. Probing Isoform Switching Events in Various Cancer Types: Lessons From Pan-Cancer Studies. Front Mol Biosci 2021; 8:726902. [PMID: 34888349 PMCID: PMC8650491 DOI: 10.3389/fmolb.2021.726902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Alternative splicing is an essential regulatory mechanism for gene expression in mammalian cells contributing to protein, cellular, and species diversity. In cancer, alternative splicing is frequently disturbed, leading to changes in the expression of alternatively spliced protein isoforms. Advances in sequencing technologies and analysis methods led to new insights into the extent and functional impact of disturbed alternative splicing events. In this review, we give a brief overview of the molecular mechanisms driving alternative splicing, highlight the function of alternative splicing in healthy tissues and describe how alternative splicing is disrupted in cancer. We summarize current available computational tools for analyzing differential transcript usage, isoform switching events, and the pathogenic impact of cancer-specific splicing events. Finally, the strategies of three recent pan-cancer studies on isoform switching events are compared. Their methodological similarities and discrepancies are highlighted and lessons learned from the comparison are listed. We hope that our assessment will lead to new and more robust methods for cancer-specific transcript detection and help to produce more accurate functional impact predictions of isoform switching events.
Collapse
Affiliation(s)
- Tülay Karakulak
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Swiss Informatics Institute, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Informatics Institute, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Abdullah Kahraman
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Swiss Informatics Institute, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
27
|
He Y, Chen Q, Zhang J, Yu J, Xia M, Wang X. Pervasive 3'-UTR Isoform Switches During Mouse Oocyte Maturation. Front Mol Biosci 2021; 8:727614. [PMID: 34733887 PMCID: PMC8558312 DOI: 10.3389/fmolb.2021.727614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Oocyte maturation is the foundation for developing healthy individuals of mammals. Upon germinal vesicle breakdown, oocyte meiosis resumes and the synthesis of new transcripts ceases. To quantitatively profile the transcriptomic dynamics after meiotic resumption throughout the oocyte maturation, we generated transcriptome sequencing data with individual mouse oocytes at three main developmental stages: germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). When clustering the sequenced oocytes, results showed that isoform-level expression analysis outperformed gene-level analysis, indicating isoform expression provided extra information that was useful in distinguishing oocyte stages. Comparing transcriptomes of the oocytes at the GV stage and the MII stage, in addition to identification of differentially expressed genes (DEGs), we detected many differentially expressed transcripts (DETs), some of which came from genes that were not identified as DEGs. When breaking down the isoform-level changes into alternative RNA processing events, we found the main source of isoform composition changes was the alternative usage of polyadenylation sites. With detailed analysis focusing on the alternative usage of 3′-UTR isoforms, we identified, out of 3,810 tested genes, 512 (13.7%) exhibiting significant switches of 3′-UTR isoforms during the process of moues oocyte maturation. Altogether, our data and analyses suggest the importance of examining isoform abundance changes during oocyte maturation, and further investigation of the pervasive 3′-UTR isoform switches in the transition may deepen our understanding on the molecular mechanisms underlying mammalian early development.
Collapse
Affiliation(s)
- Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuzhen Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Xia
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Hybrid Sequencing in Different Types of Goat Skeletal Muscles Reveals Genes Regulating Muscle Development and Meat Quality. Animals (Basel) 2021; 11:ani11102906. [PMID: 34679927 PMCID: PMC8532877 DOI: 10.3390/ani11102906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Domestic goats are commonly reared for meat and milk production in several regions of the world. However, the genetic mechanism underlying muscle development and meat quality of goats is limited. Therefore, the aim of this study was to identify known and novel genes regulating muscle development and meat quality of goats using second- and third-generation sequencing technologies. To achieve this, the meat quality and transcriptomes of longissimus dorsi (LD) and biceps femoris (BF) muscle tissues of Lingqiu Greyback goats were examined and compared. Differentially expressed genes (DEGs) and isoforms (DEIs) were functionally annotated. Results showed that 45,574 full-length transcripts covering 18,491 loci were characterized, and 12,566 genes were co-expressed in all samples. Differential expression analysis identified 231 DEGs, including 45 novel genes in the LD and BF muscles of the goats. Additionally, 1173 DEIs were found, in which 642 novel isoforms were identified in this study. Functional annotation and pathway analysis of the DEGs and DEIs revealed that some of them were associated with muscle growth and lipid metabolism. Overall, the findings of this study contribute to the understanding of the transcriptomic diversity underlying meat quality and muscle development of goat.
Collapse
|
29
|
Müntjes K, Devan SK, Reichert AS, Feldbrügge M. Linking transport and translation of mRNAs with endosomes and mitochondria. EMBO Rep 2021; 22:e52445. [PMID: 34402186 PMCID: PMC8490996 DOI: 10.15252/embr.202152445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023] Open
Abstract
In eukaryotic cells, proteins are targeted to their final subcellular locations with precise timing. A key underlying mechanism is the active transport of cognate mRNAs, which in many systems can be linked intimately to membrane trafficking. A prominent example is the long-distance endosomal transport of mRNAs and their local translation. Here, we describe current highlights of fundamental mechanisms of the underlying transport process as well as of biological functions ranging from endosperm development in plants to fungal pathogenicity and neuronal processes. Translation of endosome-associated mRNAs often occurs at the cytoplasmic surface of endosomes, a process that is needed for membrane-assisted formation of heteromeric protein complexes and for accurate subcellular targeting of proteins. Importantly, endosome-coupled translation of mRNAs encoding mitochondrial proteins, for example, seems to be particularly important for efficient organelle import and for regulating subcellular mitochondrial activity. In essence, these findings reveal a new mechanism of loading newly synthesised proteins onto endocytic membranes enabling intimate crosstalk between organelles. The novel link between endosomes and mitochondria adds an inspiring new level of complexity to trafficking and organelle biology.
Collapse
Affiliation(s)
- Kira Müntjes
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Senthil Kumar Devan
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology IMedical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Michael Feldbrügge
- Institute of MicrobiologyCluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
30
|
Perez JD, Fusco CM, Schuman EM. A Functional Dissection of the mRNA and Locally Synthesized Protein Population in Neuronal Dendrites and Axons. Annu Rev Genet 2021; 55:183-207. [PMID: 34460296 DOI: 10.1146/annurev-genet-030321-054851] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurons are characterized by a complex morphology that enables the generation of subcellular compartments with unique biochemical and biophysical properties, such as dendrites, axons, and synapses. To sustain these different compartments and carry a wide array of elaborate operations, neurons express a diverse repertoire of gene products. Extensive regulation at both the messenger RNA (mRNA) and protein levels allows for the differentiation of subcellular compartments as well as numerous forms of plasticity in response to variable stimuli. Among the multiple mechanisms that control cellular functions, mRNA translation is manipulated by neurons to regulate where and when a protein emerges. Interestingly, transcriptomic and translatomic profiles of both dendrites and axons have revealed that the mRNA population only partially predicts the local protein population and that this relation significantly varies between different gene groups. Here, we describe the space that local translation occupies within the large molecular and regulatory complexity of neurons, in contrast to other modes of regulation. We then discuss the specialized organization of mRNAs within different neuronal compartments, as revealed by profiles of the local transcriptome. Finally, we discuss the features and functional implications of both locally correlated-and anticorrelated-mRNA-protein relations both under baseline conditions and during synaptic plasticity. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio D Perez
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany;
| | - Claudia M Fusco
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany;
| | - Erin M Schuman
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany;
| |
Collapse
|
31
|
Babarinde IA, Ma G, Li Y, Deng B, Luo Z, Liu H, Abdul MM, Ward C, Chen M, Fu X, Shi L, Duttlinger M, He J, Sun L, Li W, Zhuang Q, Tong G, Frampton J, Cazier JB, Chen J, Jauch R, Esteban MA, Hutchins AP. Transposable element sequence fragments incorporated into coding and noncoding transcripts modulate the transcriptome of human pluripotent stem cells. Nucleic Acids Res 2021; 49:9132-9153. [PMID: 34390351 PMCID: PMC8450112 DOI: 10.1093/nar/gkab710] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) occupy nearly 40% of mammalian genomes and, whilst most are fragmentary and no longer capable of transposition, they can nevertheless contribute to cell function. TEs within genes transcribed by RNA polymerase II can be copied as parts of primary transcripts; however, their full contribution to mature transcript sequences remains unresolved. Here, using long and short read (LR and SR) RNA sequencing data, we show that 26% of coding and 65% of noncoding transcripts in human pluripotent stem cells (hPSCs) contain TE-derived sequences. Different TE families are incorporated into RNAs in unique patterns, with consequences to transcript structure and function. The presence of TE sequences within a transcript is correlated with TE-type specific changes in its subcellular distribution, alterations in steady-state levels and half-life, and differential association with RNA Binding Proteins (RBPs). We identify hPSC-specific incorporation of endogenous retroviruses (ERVs) and LINE:L1 into protein-coding mRNAs, which generate TE sequence-derived peptides. Finally, single cell RNA-seq reveals that hPSCs express ERV-containing transcripts, whilst differentiating subpopulations lack ERVs and express SINE and LINE-containing transcripts. Overall, our comprehensive analysis demonstrates that the incorporation of TE sequences into the RNAs of hPSCs is more widespread and has a greater impact than previously appreciated.
Collapse
Affiliation(s)
- Isaac A Babarinde
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang Ma
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuhao Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Boping Deng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zhiwei Luo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mazid Md Abdul
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Carl Ward
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Minchun Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiuling Fu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liyang Shi
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Martha Duttlinger
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiangping He
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Li Sun
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qiang Zhuang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guoqing Tong
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Jon Frampton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Jiekai Chen
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.,Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Andrew P Hutchins
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
32
|
Park J, Farris S. Spatiotemporal Regulation of Transcript Isoform Expression in the Hippocampus. Front Mol Neurosci 2021; 14:694234. [PMID: 34305526 PMCID: PMC8295539 DOI: 10.3389/fnmol.2021.694234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Proper development and plasticity of hippocampal neurons require specific RNA isoforms to be expressed in the right place at the right time. Precise spatiotemporal transcript regulation requires the incorporation of essential regulatory RNA sequences into expressed isoforms. In this review, we describe several RNA processing strategies utilized by hippocampal neurons to regulate the spatiotemporal expression of genes critical to development and plasticity. The works described here demonstrate how the hippocampus is an ideal investigative model for uncovering alternate isoform-specific mechanisms that restrict the expression of transcripts in space and time.
Collapse
Affiliation(s)
- Joun Park
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States
| | - Shannon Farris
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
33
|
Pozo F, Martinez-Gomez L, Walsh TA, Rodriguez JM, Di Domenico T, Abascal F, Vazquez J, Tress ML. Assessing the functional relevance of splice isoforms. NAR Genom Bioinform 2021; 3:lqab044. [PMID: 34046593 PMCID: PMC8140736 DOI: 10.1093/nargab/lqab044] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of messenger RNA can generate an array of mature transcripts, but it is not clear how many go on to produce functionally relevant protein isoforms. There is only limited evidence for alternative proteins in proteomics analyses and data from population genetic variation studies indicate that most alternative exons are evolving neutrally. Determining which transcripts produce biologically important isoforms is key to understanding isoform function and to interpreting the real impact of somatic mutations and germline variations. Here we have developed a method, TRIFID, to classify the functional importance of splice isoforms. TRIFID was trained on isoforms detected in large-scale proteomics analyses and distinguishes these biologically important splice isoforms with high confidence. Isoforms predicted as functionally important by the algorithm had measurable cross species conservation and significantly fewer broken functional domains. Additionally, exons that code for these functionally important protein isoforms are under purifying selection, while exons from low scoring transcripts largely appear to be evolving neutrally. TRIFID has been developed for the human genome, but it could in principle be applied to other well-annotated species. We believe that this method will generate valuable insights into the cellular importance of alternative splicing.
Collapse
Affiliation(s)
- Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Martinez-Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Thomas A Walsh
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - José Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Tomas Di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Jesús Vazquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
34
|
Phenotypic Differences between the Alzheimer's Disease-Related hAPP-J20 Model and Heterozygous Zbtb20 Knock-Out Mice. eNeuro 2021; 8:ENEURO.0089-21.2021. [PMID: 33833046 PMCID: PMC8121260 DOI: 10.1523/eneuro.0089-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Diverse gene products contribute to the pathogenesis of Alzheimer’s disease (AD). Experimental models have helped elucidate their mechanisms and impact on brain functions. Human amyloid precursor protein (hAPP) transgenic mice from line J20 (hAPP-J20 mice) are widely used to simulate key aspects of AD. However, they also carry an insertional mutation in noncoding sequence of one Zbtb20 allele, a gene involved in neural development. We demonstrate that heterozygous hAPP-J20 mice have reduced Zbtb20 expression in some AD-relevant brain regions, but not others, and that Zbtb20 levels are higher in hAPP-J20 mice than heterozygous Zbtb20 knock-out (Zbtb20+/–) mice. Whereas hAPP-J20 mice have premature mortality, severe deficits in learning and memory, other behavioral alterations, and prominent nonconvulsive epileptiform activity, Zbtb20+/– mice do not. Thus, the insertional mutation in hAPP-J20 mice does not ablate the affected Zbtb20 allele and is unlikely to account for the AD-like phenotype of this model.
Collapse
|
35
|
Choi BS, Kim DH, Kim MS, Park JC, Lee YH, Kim HJ, Jeong CB, Hagiwara A, Souissi S, Lee JS. The genome of the European estuarine calanoid copepod Eurytemora affinis: Potential use in molecular ecotoxicology. MARINE POLLUTION BULLETIN 2021; 166:112190. [PMID: 33711609 DOI: 10.1016/j.marpolbul.2021.112190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, we sequenced and assembled the genome of a European estuarine calanoid copepod using Oxford Nanopore PromethION and Illumina HiSeq 2500 platforms. The length of the assembled genome was 776.1 Mb with N50 = 474.9 kb (BUSCO 85.9%), and the genome consisted of 2473 contigs. A total of 18,014 genes were annotated and orthologous gene clusters were analyzed in comparison to other copepods. In addition, genome-wide identification of cytochrome P450s, glutathione S-transferases, and ATP-binding cassette transporters in E. affinis was performed to determine gene repertoire of these detoxification-related gene families. Results revealed the presence of species-specific gene inventories, indicating that these gene families have evolved through species-specific gene loss/expansion processes, possibly due to adaptation to different environmental stressors. Our study provides a new inventory of the European estuarine calanoid copepod E. affinis genome with emphasis on phase I, II, and III detoxification systems.
Collapse
Affiliation(s)
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Chang-Bum Jeong
- Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Sami Souissi
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, UMR 8187 LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
36
|
A Novel, Universally Active C-terminal Protein Degradation Signal Generated by Alternative Splicing. J Mol Biol 2021; 433:166890. [PMID: 33636164 DOI: 10.1016/j.jmb.2021.166890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022]
Abstract
Proteome integrity is crucial for cellular homeostasis and adaptation to stress conditions such as hypoxia. One mechanism for rapid adaptation of the proteome in response to changing environmental signals is alternative splicing. In addition to generating different protein isoforms, alternative splicing is also capable of controlling total protein levels by the regulated synthesis of non-productive mRNA isoforms. The hypoxia-induced isoform E of the tumor suppressor MAX is produced by retention and translation of the last intron. This leads to an alternative C-terminus that harbors a potent C-degron, the isoE degron. Strikingly, the isoE degron represents a universal protein degradation signal that is not only functional in mammalian cells, but also in yeast and even in bacteria. Essential for efficient protein decay is a conserved (F/W)xxW motif. Degradation of isoE tagged proteins is mediated by the proteasome in eukaryotes and Lon protease in bacteria. Thus, the isoE degron is a broadly applicable and highly efficient tool in protein analyses.
Collapse
|
37
|
Zhang S, Chen Y, Wang Y, Zhang P, Chen G, Zhou Y. Insights Into Translatomics in the Nervous System. Front Genet 2021; 11:599548. [PMID: 33408739 PMCID: PMC7779767 DOI: 10.3389/fgene.2020.599548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Perez JD, Dieck ST, Alvarez-Castelao B, Tushev G, Chan IC, Schuman EM. Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons. eLife 2021; 10:63092. [PMID: 33404500 PMCID: PMC7819707 DOI: 10.7554/elife.63092] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
Although mRNAs are localized in the processes of excitatory neurons, it is still unclear whether interneurons also localize a large population of mRNAs. In addition, the variability in the localized mRNA population within and between cell types is unknown. Here we describe the unbiased transcriptomic characterization of the subcellular compartments of hundreds of single neurons. We separately profiled the dendritic and somatic transcriptomes of individual rat hippocampal neurons and investigated mRNA abundances in the soma and dendrites of single glutamatergic and GABAergic neurons. We found that, like their excitatory counterparts, interneurons contain a rich repertoire of ~4000 mRNAs. We observed more cell type-specific features among somatic transcriptomes than their associated dendritic transcriptomes. Finally, using celltype-specific metabolic labeling of isolated neurites, we demonstrated that the processes of glutamatergic and, notably, GABAergic neurons were capable of local translation, suggesting mRNA localization and local translation are general properties of neurons.
Collapse
Affiliation(s)
- Julio D Perez
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | - Beatriz Alvarez-Castelao
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Georgi Tushev
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Ivy Cw Chan
- Department of Behavior and Brain Organization, Center of Advanced European Studies and Research, Bonn, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
39
|
Minehart JA, Speer CM. A Picture Worth a Thousand Molecules-Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Front Synaptic Neurosci 2021; 12:615059. [PMID: 33469427 PMCID: PMC7813761 DOI: 10.3389/fnsyn.2020.615059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.
Collapse
Affiliation(s)
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
40
|
Hong F, Mo SH, Lin XY, Niu J, Yin J, Wei D. The PacBio Full-Length Transcriptome of the Tea Aphid as a Reference Resource. Front Genet 2020; 11:558394. [PMID: 33304379 PMCID: PMC7693467 DOI: 10.3389/fgene.2020.558394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
The tea aphid, Aphis aurantii, has become one of the destructive pests in tea plantations in the tropics and subtropics. Very few functional studies have so far focused on the developmental and reproductive biology at a molecular level, because of the lack of comprehensive genetic information. Full-length transcriptomes represent a very highly efficient approach to obtain reference gene sequences in non-model insects. In the present study, the transcriptome of A. aurantii was comprehensively sequenced using PacBio Iso-Seq technology. A total of 46.8 Gb nucleotides and 15,938 non-redundant full-length transcripts were obtained, 13,498 (84.69%) of which were annotated into seven databases. Of these transcripts, 2,029 alternative splicing events and 15,223 simple sequence repeats were detected. Among these transcripts, 4,571 (28.68%) and 11,367 (71.32%) were long non-coding RNAs (lncRNAs) and protein-coding genes, respectively. Five hundred and ninety transcription factors were detected. The first full-length transcriptome represents a significant increase in the known genetic information of A. aurantii. It will assist the future functional study of genes involved in its development and reproduction.
Collapse
Affiliation(s)
- Feng Hong
- College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Si-Hua Mo
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xing-Yu Lin
- College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Jinzhi Niu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jian Yin
- College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
41
|
Hu Y, Shu XS, Yu J, Sun MA, Chen Z, Liu X, Fang Q, Zhang W, Hui X, Ying Y, Fu L, Lu D, Kumar R, Wang Y. Improving the diversity of captured full-length isoforms using a normalized single-molecule RNA-sequencing method. Commun Biol 2020; 3:403. [PMID: 32732980 PMCID: PMC7393167 DOI: 10.1038/s42003-020-01125-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Human genes form a large variety of isoforms after transcription, encoding distinct transcripts to exert different functions. Single-molecule RNA sequencing facilitates accurate identification of the isoforms by extending nucleotide read length significantly. However, the gene or isoform diversity is lowly represented by the mRNA molecules captured by single-molecule RNA sequencing. Here, we show that a cDNA normalization procedure before the library preparation for PacBio RS II sequencing captures 3.2–6.0 fold more full-length high-quality isoform species for different human samples, as compared to the non-normalized capture procedure. Many lowly expressed, functionally important isoforms can be detected. In addition, normalized PacBio RNA sequencing also resolves more allele-specific haplotype transcripts. Finally, we apply the cDNA normalization based long-read RNA sequencing method to profile the transcriptome of human gastric signet-ring cell carcinomas, identify new cancer-specific transcriptome signatures, and thus, bring out the utility of the improved protocols in gene expression studies. Hu et al. combine cDNA normalization before library preparation with a software tool to increase the capture of RNA isoform species in single-molecule RNA sequencing. They demonstrate that this approach can detect previously unknown transcripts in gastric signet-ring cell carcinomas that are not present in non-malignant tissue.
Collapse
Affiliation(s)
- Yueming Hu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xing-Sheng Shu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiaxian Yu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Ming-An Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zewei Chen
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xianming Liu
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Qiongfang Fang
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Shenzhen GenRead Tech. Co. LTD., Shenzhen, 518132, China
| | - Xinjie Hui
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Ying Ying
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Li Fu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Desheng Lu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Rakesh Kumar
- Rajiv Gandhi Centre for Biotechnology, Trivendrum, 695014, Kerala, India.,Virginia Commonwealth University School of Medicine, Richmond, 23298, USA.,Rutgers New Jersey Medical School, Newark, 07103, USA
| | - Yejun Wang
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
42
|
Preussner M, Gao Q, Morrison E, Herdt O, Finkernagel F, Schumann M, Krause E, Freund C, Chen W, Heyd F. Splicing-accessible coding 3'UTRs control protein stability and interaction networks. Genome Biol 2020; 21:186. [PMID: 32727563 PMCID: PMC7392665 DOI: 10.1186/s13059-020-02102-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 3'-Untranslated regions (3'UTRs) play crucial roles in mRNA metabolism, such as by controlling mRNA stability, translation efficiency, and localization. Intriguingly, in some genes the 3'UTR is longer than their coding regions, pointing to additional, unknown functions. Here, we describe a protein-coding function of 3'UTRs upon frameshift-inducing alternative splicing in more than 10% of human and mouse protein-coding genes. RESULTS 3'UTR-encoded amino acid sequences show an enrichment of PxxP motifs and lead to interactome rewiring. Furthermore, an elevated proline content increases protein disorder and reduces protein stability, thus allowing splicing-controlled regulation of protein half-life. This could also act as a surveillance mechanism for erroneous skipping of penultimate exons resulting in transcripts that escape nonsense mediated decay. The impact of frameshift-inducing alternative splicing on disease development is emphasized by a retinitis pigmentosa-causing mutation leading to translation of a 3'UTR-encoded, proline-rich, destabilized frameshift-protein with altered protein-protein interactions. CONCLUSIONS We describe a widespread, evolutionarily conserved mechanism that enriches the mammalian proteome, controls protein expression and protein-protein interactions, and has important implications for the discovery of novel, potentially disease-relevant protein variants.
Collapse
Affiliation(s)
- Marco Preussner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Qingsong Gao
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Laboratory for Systems Biology and Functional Genomics, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Eliot Morrison
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Olga Herdt
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology (ZTI), Philipps-University Marburg, Hans-Meerwein-Straße 3, 35043, Marburg, Germany
| | - Michael Schumann
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Wei Chen
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China.
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany.
| |
Collapse
|