1
|
Deng K, Wang L, Nguyen SM, Shrubsole MJ, Cai Q, Lipworth L, Gupta DK, Zheng W, Shu XO, Yu D. A dietary pattern promoting gut sulfur metabolism is associated with increased mortality and altered circulating metabolites in low-income American adults. EBioMedicine 2025; 115:105690. [PMID: 40188743 PMCID: PMC12001102 DOI: 10.1016/j.ebiom.2025.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Excessive hydrogen sulfide in the gut, generated by sulfur-metabolising bacteria from foods, has been linked to intestinal inflammation and human diseases. We aim to investigate the interplay between diet and sulphur-metabolising bacteria in relation to mortality and circulating metabolites in understudied populations. METHODS In the Southern Community Cohort Study (SCCS), a prospective cohort of primarily low-income American adults, habitual diets were assessed using a food frequency questionnaire at baseline (2002-2009). A sulfur microbial diet score (SMDS) was developed among 514 Black/African American participants by linking habitual dietary intakes with the abundance of sulfur-metabolising bacteria profiled by faecal shotgun metagenomics. The SMDS was then constructed among all eligible SCCS participants (50,114 Black/African American and 23,923 non-Hispanic White adults), and its associations with mortality outcomes were examined by Cox proportional hazards model and Fine-Grey subdistribution hazard model. The association between SMDS and 1110 circulating metabolites was examined by linear regression among 1688 SCCS participants with untargeted metabolomic profiling of baseline plasma samples. FINDINGS Over an average 13.9-year follow-up, SMDS was associated with increased all-cause mortality (HR [95% CI] for the highest vs. lowest quartiles: 1.21 [1.15-1.27]) and cardiovascular disease (1.18 [1.08-1.29]), cancer (1.13 [1.02-1.25]), and gastrointestinal cancer-specific (1.22 [1.00-1.49]) mortality among Black/African American participants (all P-trend<0.05). The associations were largely consistent across participant subgroups. Similar results were observed among non-Hispanic White participants. The SMDS was associated with 112 circulating metabolites, which mediated 36.15% of the SMDS-mortality association (P = 0.002). INTERPRETATION A dietary pattern promoting sulfur-metabolising gut bacteria may contribute to increased total and disease mortality in low-income American adults. FUNDING This study was funded by the National Institutes of Health, United States, to Vanderbilt University Medical Center, United States, and Anne Potter Wilson Chair endowment to Vanderbilt University, United States.
Collapse
Affiliation(s)
- Kui Deng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Lei Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Sang Minh Nguyen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA; International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Loren Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Deepak K Gupta
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Centre, Vanderbilt University Medical Centre, Nashville, TN, USA.
| |
Collapse
|
2
|
Tao Z, Luo Z, Zou Z, Ye W, Hao Y, Li X, Zheng K, Wu J, Xia J, Zhao Y, Wang Y, Zhang X. Novel insights and an updated review of metabolic syndrome in immune-mediated organ transplant rejection. Front Immunol 2025; 16:1580369. [PMID: 40330480 PMCID: PMC12052740 DOI: 10.3389/fimmu.2025.1580369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Metabolic syndrome (MetS) is a group of symptoms that are characterized by abnormal changes in metabolic substances such as glucose, lipids, proteins, and bile acids. MetS is a common complication after organ transplantation and can further affect the survival and physiological function of the graft by reprograming the patient's immune environment. Additionally, MetS can influence the occurrence of post-transplant complications, such as infections. In recent years, research into the epidemiology and mechanisms of MetS has grown significantly. In this review, we summarize the mechanisms of MetS after transplantation and the mechanisms of hyperglycemia, insulin resistance, hyperlipidemia, abnormal bile acids, and abnormal amino acids on the body's immune cells as related to the effect of metabolic disorders on immune rejection after liver, kidney, heart, skin and other organ transplantation. Finally, we provide an overview of current treatment strategies and offer insights into potential future therapies for managing MetS in transplant recipients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yang Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Yu X, Chen Y, Lei L, Li P, Lin D, Shen Y, Hou C, Chen J, Fan Y, Jin Y, Lu H, Wu D, Xu Y. Mendelian randomization analysis of blood metabolites and immune cell mediators in relation to GVHD and relapse. BMC Med 2025; 23:201. [PMID: 40189523 PMCID: PMC11974087 DOI: 10.1186/s12916-025-04026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Graft-versus-host disease (GVHD) and relapse are major complications following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Metabolites play crucial roles in immune regulation, but their causal relationships with GVHD and relapse remain unclear. METHODS We utilized genetic variants from genome-wide association studies (GWAS) of 309 known metabolites as instrumental variables to evaluate their causal effects on acute GVHD (aGVHD), gut GVHD, chronic GVHD (cGVHD), and relapse in different populations. Multiple causal inference methods, heterogeneity assessments, and pleiotropy tests were conducted to ensure result robustness. Multivariable MR analysis was performed to adjust for potential confounders, and validation MR analysis further confirmed key findings. Mediation MR analysis was employed to explore indirect causal pathways. RESULTS After correction for multiple testing, we identified elevated pyridoxate and proline levels as protective factors against grade 3-4 aGVHD (aGVHD3) and relapse, respectively. Conversely, glycochenodeoxycholate increased the risk of aGVHD3, whereas 1-stearoylglycerophosphoethanolamine had a protective effect. The robustness and stability of these findings were confirmed by multiple causal inference approaches, heterogeneity, and horizontal pleiotropy analyses. Multivariable MR analysis further excluded potential confounding pleiotropic effects. Validation MR analyses supported the causal roles of pyridoxate and 1-stearoylglycerophosphoethanolamine, while mediation MR revealed that pyridoxate influences GVHD directly and indirectly via CD39 + Tregs. Pathway analyses highlighted critical biochemical alterations, including disruptions in bile acid metabolism and the regulatory roles of vitamin B6 derivatives. Finally, clinical metabolic analyses, including direct fecal metabolite measurements, confirmed the protective role of pyridoxate against aGVHD. CONCLUSIONS Our findings provide novel insights into the metabolic mechanisms underlying GVHD and relapse after allo-HSCT. Identified metabolites, particularly pyridoxate, may serve as potential therapeutic targets for GVHD prevention and management.
Collapse
Affiliation(s)
- Xinghao Yu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yiyin Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Lei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Pengfei Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dandan Lin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ying Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chang Hou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Fan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Jin
- Department of Pharmacy, Wujin Hospital Affiliated with Jiangsu University, Changzhou, 213000, China
| | - Huimin Lu
- Department of Outpatient and Emergency, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Reikvam H, Hatfield K, Sandnes M, Bruserud Ø. Future biomarkers for acute graft-versus-host disease: potential roles of nucleic acids, metabolites, and immune cell markers. Expert Rev Clin Immunol 2025; 21:305-321. [PMID: 39670445 DOI: 10.1080/1744666x.2024.2441246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Acute graft versus host disease (aGVHD) is a potentially lethal complication after allogeneic stem cell transplantation. Biomarkers are used to estimate the risk of aGVHD and evaluate response to treatment. The most widely used biomarkers are systemic levels of various protein mediators involved in immunoregulation or reflecting tissue damage. However, systemic levels of other molecular markers such as nucleic acids or metabolites, levels of immunocompetent cells or endothelial cell markers may also be useful biomarkers in aGVHD. AREAS COVERED This review is based on selected articles from the PubMed database. We review and discuss the scientific basis for further studies to evaluate nucleic acids, metabolites, circulating immunocompetent cell subsets or endothelial markers as biomarkers in aGVHD. EXPERT OPINION A wide range of interacting and communicating cells are involved in the complex pathogenesis of aGVHD. Both nucleic acids and metabolites function as soluble mediators involved in communication between various subsets of immunocompetent cells and between immunocompetent cells and other neighboring cells. Clinical and experimental studies suggest that both neutrophils, monocytes, and endothelial cells are involved in the early stages of aGVHD pathogenesis. In our opinion, the possible clinical use of these molecular and cellular biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kimberley Hatfield
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Miriam Sandnes
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Li H, Wang H, Gao Y, Zhao X, Liang J, Pei L, Yao Y, Tang D. Bacterial community structure and metabolomic profiles of yak milk and cattle-yak milk during refrigeration in Gannan region: Analysis of interspecific differences in milk spoilage. Food Chem 2025; 463:141022. [PMID: 39243606 DOI: 10.1016/j.foodchem.2024.141022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
The bacterial community dynamics and metabolomic profiles in raw yak (Y) milk and cattle-yak (CY) milk during refrigeration at 4 °C were investigated, followed by the elucidation of interspecific differences in milk storage. Bacterial communities and succession patterns were significantly different between the two milk types during refrigeration, with Lactococcus and Pseudomonas being the key distinguishing genera. Moreover, higher network complexity and tighter interactions were observed for the microbial community in CY milk than in Y milk. Furthermore, 7 proteases and 1 lipase potentially contributed to milk spoilage. The metabolomic profiles significantly differed between the milk types during refrigeration. Extended storage time decreased the relative abundances of organic nitrogen compounds and lipids and lipid-like molecules, with a concomitant increase in organic acids and derivatives, particularly in Y milk. Moreover, 9 metabolites, whose levels gradually increased with storage time, were strongly correlated with psychrophiles and thus considered potential markers of deterioration in plateau-characteristic milk. These findings offer a theoretical foundation for augmenting the quality and safety of plateau-characteristic milk and its derivatives, while also helping us understand the microbial and metabolic dynamics in raw milk under extreme environments.
Collapse
Affiliation(s)
- Hongqiang Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongbo Wang
- Laboratory of Quality & Safety Risk Assessment for Livestock Products of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yaqin Gao
- Laboratory of Quality & Safety Risk Assessment for Livestock Products of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiangmin Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jing Liang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longying Pei
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu 843100, China
| | - Yali Yao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
6
|
Artacho A, González-Torres C, Gómez-Cebrián N, Moles-Poveda P, Pons J, Jiménez N, Casanova MJ, Montoro J, Balaguer A, Villalba M, Chorão P, Puchades-Carrasco L, Sanz J, Ubeda C. Multimodal analysis identifies microbiome changes linked to stem cell transplantation-associated diseases. MICROBIOME 2024; 12:229. [PMID: 39511587 PMCID: PMC11542268 DOI: 10.1186/s40168-024-01948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most efficient therapeutic options available to cure many hematological malignancies. However, severe complications derived from this procedure, including graft-versus-host disease (GVHD) and infections, can limit its success and negatively impact survival. Previous studies have shown that alterations in the microbiome are associated with the development of allo-HSCT-derived complications. However, most studies relied on single techniques that can only analyze a unique aspect of the microbiome, which hinders our ability to understand how microbiome alterations drive allo-HSCT-associated diseases. RESULTS Here, we have applied multiple "omic" techniques (16S rRNA and shotgun sequencing, targeted and un-targeted metabolomics) in combination with machine learning approaches to define the most significant microbiome changes following allo-HSCT at multiple modalities (bacterial taxa, encoded functions, and derived metabolites). In addition, multivariate approaches were applied to study interactions among the various microbiome modalities (the interactome). Our results show that the microbiome of transplanted patients exhibits substantial changes in all studied modalities. These include depletion of beneficial microbes, mainly from the Clostridiales order, loss of their bacterial encoded functions required for the synthesis of key metabolites, and a reduction in metabolic end products such as short chain fatty acids (SCFAs). These changes were followed by an expansion of bacteria that frequently cause infections after allo-HSCT, including several Staphylococcus species, which benefit from the reduction of bacteriostatic SCFAs. Additionally, we found specific alterations in all microbiome modalities that distinguished those patients who subsequently developed GVHD, including depletion of anti-inflammatory commensals, protective reactive oxygen detoxifying enzymes, and immunoregulatory metabolites such as acetate or malonate. Moreover, extensive shifts in the homeostatic relationship between bacteria and their metabolic products (e.g., Faecalibacterium and butyrate) were detected mainly in patients who later developed GVHD. CONCLUSIONS We have identified specific microbiome changes at different modalities (microbial taxa, their encoded genes, and synthetized metabolites) and at the interface between them (the interactome) that precede the development of complications associated with allo-HSCT. These identified microbial features provide novel targets for the design of microbiome-based strategies to prevent diseases associated with stem cell transplantation. Video Abstract.
Collapse
Affiliation(s)
- Alejandro Artacho
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Cintya González-Torres
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Paula Moles-Poveda
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Javier Pons
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Nuria Jiménez
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | | | - Juan Montoro
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Aitana Balaguer
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Marta Villalba
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Pedro Chorão
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | | | - Jaime Sanz
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.
- Departament de Medicina, Universitat de Valencia, Valencia, Spain.
- CIBERONC, Instituto Carlos III, Madrid, Spain.
| | - Carles Ubeda
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain.
- Centers of Biomedical Research Network (CIBER) in Epidemiology and Public Health, Madrid, Spain.
| |
Collapse
|
7
|
Xie J, Smith M. The intestinal microbiota and cellular therapy: implications for impact and mechanisms. Blood 2024; 144:1557-1569. [PMID: 39141827 PMCID: PMC11830981 DOI: 10.1182/blood.2024024219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
ABSTRACT The microbiota, comprising bacteria, fungi, and viruses residing within our bodies, functions as a key modulator in host health and states, including immune responses. Studies have linked microbiota and microbiota-derived metabolites to immune cell functions. In this review, we probe the complex relationship between the human microbiota and clinical outcomes of cellular therapies that leverage immune cells to fight various cancers. With a particular emphasis on hematopoietic cell transplantation and chimeric antigen receptor T-cell therapy, we explore the potential mechanisms underpinning this interaction. We also highlight the interventional applications of the microbiota in cellular therapy while outlining future research directions in the field.
Collapse
Affiliation(s)
- Jiayi Xie
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Melody Smith
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
8
|
Mu YF, Gao ZX, Mao ZH, Pan SK, Liu DW, Liu ZS, Wu P. Perspectives on the involvement of the gut microbiota in salt-sensitive hypertension. Hypertens Res 2024; 47:2351-2362. [PMID: 38877311 DOI: 10.1038/s41440-024-01747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Salt-sensitivity hypertension (SSH) is an independent predictor of cardiovascular event-related death. Despite the extensiveness of research on hypertension, which covers areas such as the sympathetic nervous system, the renin-angiotensin system, the vascular system, and the immune system, its pathogenesis remains elusive, with sub-optimal blood pressure control in patients. The gut microbiota is an important component of nutritional support and constitutes a barrier in the host. Long-term high salt intake can lead to gut microbiota dysbiosis and cause significant changes in the expression of gut microbiota-related metabolites. Of these metabolites, short chain fatty acids (SCFAs), trimethylamine oxide, amino acids, bile acids, and lipopolysaccharide are essential mediators of microbe-host crosstalk. These metabolites may contribute to the incidence and development of SSH via inflammatory, immune, vascular, and nervous pathways, among others. In addition, recent studies, including those on the histone deacetylase inhibitory mechanism of SCFAs and the blood pressure-decreasing effects of H2S via vascular activation, suggest that several proteins and factors in the classical pathway elicit their effects through multiple non-classical pathways. This review summarizes changes in the gut microbiota and its related metabolites in high-salt environments, as well as corresponding treatment methods for SSH, such as diet management, probiotic and prebiotic use, antibiotic use, and fecal transplantation, to provide new insights and perspectives for understanding SSH pathogenesis and the development of strategies for its treatment.
Collapse
Affiliation(s)
- Ya-Fan Mu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| |
Collapse
|
9
|
Wenger V, Zeiser R. Deciphering the role of the major histocompatibility complex, the intestinal microbiome and metabolites in the pathogenesis of acute graft-versus-host disease. Best Pract Res Clin Haematol 2024; 37:101567. [PMID: 39396261 DOI: 10.1016/j.beha.2024.101567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Allogeneic hematologic stem cell transplantation is a cornerstone in modern hematological treatment, yet its efficacy is compromised by acute Graft-versus-Host Disease. In acute Graft-versus-Host Disease, conditioning regimen induced epithelial damage leads to release of damage and pathogen associated molecular patters which in turns triggers activation of alloreactive donor T cells, ultimately resulting in destruction of healthy tissue. Advances in major histocompatibility complex typing and preclinical studies using tissue specific major histocompatibility complex deletion have illuminated the contributions of both, hematopoietic and non-hematopoietic cells to acute Graft-versus-Host Disease pathophysiology. Concurrently, high-throughput sequencing techniques have enabled researchers to recognize the significant impact of the intestinal microbiome and newly discovered metabolites in the pathophysiology of acute Graft-versus-Host Disease. In this review, we discuss the implications of major histocompatibility complex expression on hematopoietic and non-hematopoietic cells, the effect on the intestinal microbiome and the metabolic alterations that contribute to acute Graft-versus-Host Disease. By combining these findings, we hope to untangle the complexity of acute Graft-versus-Host Disease, ultimately paving the way for the development of novel and more effective treatmen options in patients.
Collapse
Affiliation(s)
- Valentin Wenger
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
10
|
Hasegawa Y, Hashimoto D, Zhang Z, Miyajima T, Saito Y, Li W, Kikuchi R, Senjo H, Sekiguchi T, Tateno T, Chen X, Yokoyama E, Takahashi S, Ohigashi H, Ara T, Hayase E, Yokota I, Teshima T. GVHD targets organoid-forming bile duct stem cells in a TGF-β-dependent manner. Blood 2024; 144:904-913. [PMID: 38905638 DOI: 10.1182/blood.2023023060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Graft-versus-host disease (GVHD) is a major life-threatening complication that occurs after allogeneic hematopoietic cell transplantation (HCT). Although adult tissue stem cells have been identified as targets of GVHD in the skin and gut, their role in hepatic GVHD is yet to be clarified. In the current study, we explored the fate of bile duct stem cells (BDSCs), capable of generating liver organoids in vitro, during hepatic GVHD after allogeneic HCT. We observed a significant expansion of biliary epithelial cells (BECs) on injury early after allogeneic HCT. Organoid-forming efficiency from the bile duct was also significantly increased early after allogeneic HCT. Subsequently, the organoid-forming efficiency from bile ducts was markedly decreased in association with the reduction of BECs and the elevation of plasma concentrations of bilirubin, suggesting that GVHD targets BDSCs and impairs the resilience of BECs. The growth of liver organoids in the presence of liver-infiltrating mononuclear cells from allogeneic recipients, but not from syngeneic recipients, was significantly reduced in a transforming growth factor-β (TGF-β)-dependent manner. Administration of SB-431542, an inhibitor of TGF-β signaling, from day 14 to day 28, protected organoid-forming BDSCs against GVHD and mitigated biliary dysfunction after allogeneic HCT, suggesting that BDSCs are a promising therapeutic target for hepatic GVHD.
Collapse
Affiliation(s)
- Yuta Hasegawa
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Zixuan Zhang
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Toru Miyajima
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Yumika Saito
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Wenyu Li
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Ryo Kikuchi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Hajime Senjo
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Tomoko Sekiguchi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Takahiro Tateno
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Xuanzhong Chen
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Emi Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Shuichiro Takahashi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Hiroyuki Ohigashi
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Takahide Ara
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Eiko Hayase
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| | - Isao Yokota
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Deng K, Xu M, Sahinoz M, Cai Q, Shrubsole MJ, Lipworth L, Gupta DK, Dixon DD, Zheng W, Shah R, Yu D. Associations of neighborhood sociodemographic environment with mortality and circulating metabolites among low-income black and white adults living in the southeastern United States. BMC Med 2024; 22:249. [PMID: 38886716 PMCID: PMC11184804 DOI: 10.1186/s12916-024-03452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Residing in a disadvantaged neighborhood has been linked to increased mortality. However, the impact of residential segregation and social vulnerability on cause-specific mortality is understudied. Additionally, the circulating metabolic correlates of neighborhood sociodemographic environment remain unexplored. Therefore, we examined multiple neighborhood sociodemographic metrics, i.e., neighborhood deprivation index (NDI), residential segregation index (RSI), and social vulnerability index (SVI), with all-cause and cardiovascular disease (CVD) and cancer-specific mortality and circulating metabolites in the Southern Community Cohort Study (SCCS). METHODS The SCCS is a prospective cohort of primarily low-income adults aged 40-79, enrolled from the southeastern United States during 2002-2009. This analysis included self-reported Black/African American or non-Hispanic White participants and excluded those who died or were lost to follow-up ≤ 1 year. Untargeted metabolite profiling was performed using baseline plasma samples in a subset of SCCS participants. RESULTS Among 79,631 participants, 23,356 deaths (7214 from CVD and 5394 from cancer) were documented over a median 15-year follow-up. Higher NDI, RSI, and SVI were associated with increased all-cause, CVD, and cancer mortality, independent of standard clinical and sociodemographic risk factors and consistent between racial groups (standardized HRs among all participants were 1.07 to 1.20 in age/sex/race-adjusted model and 1.04 to 1.08 after comprehensive adjustment; all P < 0.05/3 except for cancer mortality after comprehensive adjustment). The standard risk factors explained < 40% of the variations in NDI/RSI/SVI and mediated < 70% of their associations with mortality. Among 1110 circulating metabolites measured in 1688 participants, 134 and 27 metabolites were associated with NDI and RSI (all FDR < 0.05) and mediated 61.7% and 21.2% of the NDI/RSI-mortality association, respectively. Adding those metabolites to standard risk factors increased the mediation proportion from 38.4 to 87.9% and 25.8 to 42.6% for the NDI/RSI-mortality association, respectively. CONCLUSIONS Among low-income Black/African American adults and non-Hispanic White adults living in the southeastern United States, a disadvantaged neighborhood sociodemographic environment was associated with increased all-cause and CVD and cancer-specific mortality beyond standard risk factors. Circulating metabolites may unveil biological pathways underlying the health effect of neighborhood sociodemographic environment. More public health efforts should be devoted to reducing neighborhood environment-related health disparities, especially for low-income individuals.
Collapse
Affiliation(s)
- Kui Deng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN, 37203, USA
| | - Meng Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melis Sahinoz
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN, 37203, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN, 37203, USA
- International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Loren Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN, 37203, USA
| | - Deepak K Gupta
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Debra D Dixon
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN, 37203, USA
| | - Ravi Shah
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN, 37203, USA.
| |
Collapse
|
12
|
Elgarten CW, Margolis EB, Kelly MS. The Microbiome and Pediatric Transplantation. J Pediatric Infect Dis Soc 2024; 13:S80-S89. [PMID: 38417089 PMCID: PMC10901476 DOI: 10.1093/jpids/piad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/25/2023] [Indexed: 03/01/2024]
Abstract
The microbial communities that inhabit our bodies have been increasingly linked to host physiology and pathophysiology. This microbiome, through its role in colonization resistance, influences the risk of infections after transplantation, including those caused by multidrug-resistant organisms. In addition, through both direct interactions with the host immune system and via the production of metabolites that impact local and systemic immunity, the microbiome plays an important role in the establishment of immune tolerance after transplantation, and conversely, in the development of graft-versus-host disease and graft rejection. This review offers a comprehensive overview of the evidence for the role of the microbiome in hematopoietic cell and solid organ transplant complications, drivers of microbiome shift during transplantation, and the potential of microbiome-based therapies to improve pediatric transplantation outcomes.
Collapse
Affiliation(s)
- Caitlin W Elgarten
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elisa B Margolis
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Matthew S Kelly
- Departments of Pediatrics and Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
13
|
Lu Y, Zhou X, Wu Y, Cui Q, Tian X, Yi H, Gong P, Zhang L. Metabolites 13,14-Dihydro-15-keto-PGE2 Participates in Bifidobacterium animalis F1-7 to Alleviate Opioid-Induced Constipation by 5-HT Pathway. Mol Nutr Food Res 2024; 68:e2200846. [PMID: 38054625 DOI: 10.1002/mnfr.202200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/13/2023] [Indexed: 12/07/2023]
Abstract
SCOPE People suffer from constipation caused by many factors, including constipation (Opioid-Induced Constipation, OIC) during analgesic treatment. Microorganisms may be a potent solution to this problem, but the mechanism is still unclear. METHODS AND RESULTS Based on models in vivo and in vitro, the potential mechanism involving Bifidobacterium animalis F1-7 (B. animalis F1-7), screened in the previous studies, is explored through non-targeted metabonomics, electrophysiological experiment and molecular level docking. The results showed that B. animalis F1-7 effectively alleviates OIC and promotes the expression of chromogranin A (CGA) and 5-hydroxytryptamine (5-HT). The metabolite 13,14-dihydro-15-keto-PGE2 related to B. animalis F1-7 is found, which has a potential improvement effect on OIC at 20 mg kg BW-1 in vivo. At 30 ng mL-1 it effectively stimulates secretion of CGA/5-HT (408.95 ± 1.18 ng mL-1 ) by PC-12 cells and changes the membrane potential potassium ion current without affecting the sodium ion current in vitro. It upregulates the target of free fatty acid receptor-4 protein(FFAR4/β-actin, 0.81 ± 0.02). CONCLUSION The results demonstrate that metabolite 13,14-dihydro-15-keto-PGE2 participated in B. animalis F1-7 to alleviate OIC via the 5-HT pathway.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education (Huazhong Agricultural University), China
| | | | - Yeting Wu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyu Cui
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Xiaoying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| |
Collapse
|
14
|
Yue X, Zhou H, Wang S, Chen X, Xiao H. Gut microbiota, microbiota-derived metabolites, and graft-versus-host disease. Cancer Med 2024; 13:e6799. [PMID: 38239049 PMCID: PMC10905340 DOI: 10.1002/cam4.6799] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is one of the most effective treatment strategies for leukemia, lymphoma, and other hematologic malignancies. However, graft-versus-host disease (GVHD) can significantly reduce the survival rate and quality of life of patients after transplantation, and is therefore the greatest obstacle to transplantation. The recent development of new technologies, including high-throughput sequencing, metabolomics, and others, has facilitated great progress in understanding the complex interactions between gut microbiota, microbiota-derived metabolites, and the host. Of these interactions, the relationship between gut microbiota, microbial-associated metabolites, and GVHD has been most intensively researched. Studies have shown that GVHD patients often suffer from gut microbiota dysbiosis, which mainly manifests as decreased microbial diversity and changes in microbial composition and microbiota-derived metabolites, both of which are significant predictors of poor prognosis in GVHD patients. Therefore, the purpose of this review is to summarize what is known regarding changes in gut microbiota and microbiota-derived metabolites in GVHD, their relationship to GVHD prognosis, and corresponding clinical strategies designed to prevent microbial dysregulation and facilitate treatment of GVHD.
Collapse
Affiliation(s)
- XiaoYan Yue
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongyu Zhou
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - ShuFen Wang
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xu Chen
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - HaoWen Xiao
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
15
|
Ji H, Feng S, Liu Y, Cao Y, Lou H, Li Z. Effect of GVHD on the gut and intestinal microflora. Transpl Immunol 2024; 82:101977. [PMID: 38184214 DOI: 10.1016/j.trim.2023.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Graft-versus-host disease (GVHD) is one of the most important cause of death in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). The gastrointestinal tract is one of the most common sites affected by GVHD. However, there is no gold standard clinical practice for diagnosing gastrointestinal GVHD (GI-GVHD), and it is mainly diagnosed by the patient's clinical symptoms and related histological changes. Additionally, GI-GVHD causes intestinal immune system disorders, damages intestinal epithelial tissue such as intestinal epithelial cells((IEC), goblet, Paneth, and intestinal stem cells, and disrupts the intestinal epithelium's physical and chemical mucosal barriers. The use of antibiotics and diet alterations significantly reduces intestinal microbial diversity, further reducing bacterial metabolites such as short-chain fatty acids and indole, aggravating infection, and GI-GVHD. gut microbe diversity can be restored by fecal microbiota transplantation (FMT) to treat refractory GI-GVHD. This review article focuses on the clinical diagnosis of GI-GVHD and the effect of GVHD on intestinal flora and its metabolites.
Collapse
Affiliation(s)
- Hao Ji
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Shuai Feng
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China; National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yuan Liu
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yue Cao
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - HuiQuan Lou
- Department of Oral and maxillofacial surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China; National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
16
|
Tyszka M, Maciejewska-Markiewicz D, Styburski D, Biliński J, Tomaszewska A, Stachowska E, Basak GW. Altered lipid metabolism in patients with acute graft-versus-host disease after allogeneic hematopoietic cell transplantation. Leuk Res 2024; 137:107435. [PMID: 38241896 DOI: 10.1016/j.leukres.2024.107435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) remains the sole curative option for many hematological malignancies and other diseases. Nevertheless, its application is limited due to the risk of life-threatening complications, mainly graft-versus-host disease (GVHD). Currently, in clinical practice, the risk of developing GVHD is estimated for every patient based on factors related to the donor and the host. In our prospective, observational study, we analyzed serum from 38 patients undergoing allo-HCT at our institution. We compared the metabolic profiles of patients who developed acute GVHD (aGVHD) with those without such complication by identification and comparison of metabolites masses on the XCMS platform. We observed that patients diagnosed with aGVHD had different metabolic profiles compared to the remaining patients and this alteration was noticeable already 7 days before the procedure. We identified dysregulated metabolites involved in bile acid transformation and cholesterol synthesis. Our study of the untargeted metabolome in allo-HCT recipients has revealed a potential link between lipid metabolism, specifically involving bile acid transformation and cholesterol synthesis, and the development of aGVHD. This finding might be an important indication for future research focused on understanding GVHD development, discovering prediction models, and investigating possible prophylactic interventions.
Collapse
Affiliation(s)
- Martyna Tyszka
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | | | - Daniel Styburski
- Sanprobi Sp. Z O. O. Sp. K., Kurza Stopka 5/C, 70-535 Szczecin, Poland
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
17
|
Yurekten O, Payne T, Tejera N, Amaladoss FX, Martin C, Williams M, O’Donovan C. MetaboLights: open data repository for metabolomics. Nucleic Acids Res 2024; 52:D640-D646. [PMID: 37971328 PMCID: PMC10767962 DOI: 10.1093/nar/gkad1045] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
MetaboLights is a global database for metabolomics studies including the raw experimental data and the associated metadata. The database is cross-species and cross-technique and covers metabolite structures and their reference spectra as well as their biological roles and locations where available. MetaboLights is the recommended metabolomics repository for a number of leading journals and ELIXIR, the European infrastructure for life science information. In this article, we describe the continued growth and diversity of submissions and the significant developments in recent years. In particular, we highlight MetaboLights Labs, our new Galaxy Project instance with repository-scale standardized workflows, and how data public on MetaboLights are being reused by the community. Metabolomics resources and data are available under the EMBL-EBI's Terms of Use at https://www.ebi.ac.uk/metabolights and under Apache 2.0 at https://github.com/EBI-Metabolights.
Collapse
Affiliation(s)
- Ozgur Yurekten
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thomas Payne
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Noemi Tejera
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Felix Xavier Amaladoss
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Callum Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mark Williams
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Claire O’Donovan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
18
|
Immunomodulatory microbial metabolites as potential predictors of stem-cell transplantation outcomes. NATURE CANCER 2024; 5:14-15. [PMID: 38263496 DOI: 10.1038/s43018-023-00670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
|
19
|
Thiele Orberg E, Meedt E, Hiergeist A, Xue J, Heinrich P, Ru J, Ghimire S, Miltiadous O, Lindner S, Tiefgraber M, Göldel S, Eismann T, Schwarz A, Göttert S, Jarosch S, Steiger K, Schulz C, Gigl M, Fischer JC, Janssen KP, Quante M, Heidegger S, Herhaus P, Verbeek M, Ruland J, van den Brink MRM, Weber D, Edinger M, Wolff D, Busch DH, Kleigrewe K, Herr W, Bassermann F, Gessner A, Deng L, Holler E, Poeck H. Bacteria and bacteriophage consortia are associated with protective intestinal metabolites in patients receiving stem cell transplantation. NATURE CANCER 2024; 5:187-208. [PMID: 38172339 PMCID: PMC12063274 DOI: 10.1038/s43018-023-00669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
The microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear. We combined amplicon sequencing, viral metagenomics and targeted metabolomics from stool samples of patients receiving allo-SCT (n = 78) and uncovered a microbiome signature of Lachnospiraceae and Oscillospiraceae and their associated bacteriophages, correlating with the production of immunomodulatory metabolites (IMMs). Moreover, we established the IMM risk index (IMM-RI), which was associated with improved survival and reduced relapse. A high abundance of short-chain fatty acid-biosynthesis pathways, specifically butyric acid via butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT, which catalyzes EC 2.8.3.8) was detected in IMM-RI low-risk patients, and virome genome assembly identified two bacteriophages encoding BCoAT as an auxiliary metabolic gene. In conclusion, our study identifies a microbiome signature associated with protective IMMs and provides a rationale for considering metabolite-producing consortia and metabolite formulations as microbiome-based therapies.
Collapse
Affiliation(s)
- Erik Thiele Orberg
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Elisabeth Meedt
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Paul Heinrich
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jinlong Ru
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Sakhila Ghimire
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Oriana Miltiadous
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Lindner
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
| | - Melanie Tiefgraber
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Sophia Göldel
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Tina Eismann
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Alix Schwarz
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Sascha Göttert
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Schulz
- Department of Internal Medicine II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Michael Gigl
- Bavarian Center for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julius C Fischer
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar TUM, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar TUM, Munich, Germany
| | - Michael Quante
- Department of Internal Medicine II, University Medical Center, Freiburg, Germany
| | - Simon Heidegger
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Herhaus
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Mareike Verbeek
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Jürgen Ruland
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Daniela Weber
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Florian Bassermann
- Department of Internal Medicine III, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
- Chair of Prevention for Microbial Infectious Disease, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany.
- Leibniz Institute for Immunotherapy, Regensburg, Germany.
- Bavarian Cancer Research Center (BZKF), Regensburg, Germany.
| |
Collapse
|
20
|
Lakshmanan AP, Deola S, Terranegra A. The Promise of Precision Nutrition for Modulation of the Gut Microbiota as a Novel Therapeutic Approach to Acute Graft-versus-host Disease. Transplantation 2023; 107:2497-2509. [PMID: 37189240 PMCID: PMC10664798 DOI: 10.1097/tp.0000000000004629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 05/17/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe side effect of allogeneic hematopoietic stem cell transplantation (aHSCT) that has complex phenotypes and often unpredictable outcomes. The current management is not always able to prevent aGVHD. A neglected actor in the management of aGVHD is the gut microbiota. Gut microbiota dysbiosis after aHSCT is caused by many factors and may contribute to the development of aGVHD. Diet and nutritional status modify the gut microbiota and a wide range of products are now available to manipulate the gut microbiota (pro-, pre-, and postbiotics). New investigations are testing the effect of probiotics and nutritional supplements in both animal models and human studies, with encouraging results. In this review, we summarize the most recent literature about the probiotics and nutritional factors able to modulate the gut microbiota and we discuss the future perspective in developing new integrative therapeutic approaches to reducing the risk of graft-versus-host disease in patients undergoing aHSCT.
Collapse
Affiliation(s)
| | - Sara Deola
- Advanced Cell Therapy Core, Research Branch, Sidra Medicine, Qatar
| | | |
Collapse
|
21
|
Gavzy SJ, Kensiski A, Lee ZL, Mongodin EF, Ma B, Bromberg JS. Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes 2023; 15:2291164. [PMID: 38055306 PMCID: PMC10730214 DOI: 10.1080/19490976.2023.2291164] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Bifidobacterium is a widely distributed commensal bacterial genus that displays beneficial pro-homeostatic and anti-inflammatory immunomodulatory properties. Depletion or absence of Bifidobacterium in humans and model organisms is associated with autoimmune responses and impaired immune homeostasis. At the cellular level, Bifidobacterium upregulates suppressive regulatory T cells, maintains intestinal barrier function, modulates dendritic cell and macrophage activity, and dampens intestinal Th2 and Th17 programs. While there has been a large volume of literature characterizing the probiotic properties of various Bifidobacterial species, the likely multifactorial mechanisms underlying these effects remain elusive, in particular, its immune tolerogenic effect. However, recent work has shed light on Bifidobacterium surface structural polysaccharide and protein elements, as well as its metabolic products, as commensal mediators of immune homeostasis. This review aims to discuss several mechanisms Bifidobacterium utilizes for immune modulation as well as their indirect impact on the regulation of gut microbiome structure and function, from structural molecules to produced metabolites. These mechanisms are pertinent to an increasingly networked understanding of immune tolerance and homeostasis in health and disease.
Collapse
Affiliation(s)
- Samuel J Gavzy
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Riwes MM, Golob JL, Magenau J, Shan M, Dick G, Braun T, Schmidt TM, Pawarode A, Anand S, Ghosh M, Maciejewski J, King D, Choi S, Yanik G, Geer M, Hillman E, Lyssiotis CA, Tewari M, Reddy P. Feasibility of a dietary intervention to modify gut microbial metabolism in patients with hematopoietic stem cell transplantation. Nat Med 2023; 29:2805-2813. [PMID: 37857710 PMCID: PMC10667101 DOI: 10.1038/s41591-023-02587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
Evaluation of the impact of dietary intervention on gastrointestinal microbiota and metabolites after allogeneic hematopoietic stem cell transplantation (HCT) is lacking. We conducted a feasibility study as the first of a two-phase trial. Ten adults received resistant potato starch (RPS) daily from day -7 to day 100. The primary objective was to test the feasibility of RPS and its effect on intestinal microbiome and metabolites, including the short-chain fatty acid butyrate. Feasibility met the preset goal of 60% or more, adhering to 70% or more doses; fecal butyrate levels were significantly higher when participants were on RPS than when they were not (P < 0.0001). An exploratory objective was to evaluate plasma metabolites. We observed longitudinal changes in plasma metabolites compared to baseline, which were independent of RPS (P < 0.0001). However, in recipients of RPS, the dominant plasma metabolites were more stable compared to historical controls with significant difference at engraftment (P < 0.05). These results indicate that RPS in recipients of allogeneic HCT is feasible; in this study, it was associated with significant alterations in intestinal and plasma metabolites. A phase 2 trial examining the effect of RPS on graft-versus-host disease in recipients of allogeneic HCT is underway. ClinicalTrials.gov registration: NCT02763033 .
Collapse
Affiliation(s)
- Mary M Riwes
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA.
| | - Jonathan L Golob
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, MI, USA
| | - John Magenau
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Mengrou Shan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory Dick
- Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Braun
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Thomas M Schmidt
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, MI, USA
| | - Attaphol Pawarode
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sarah Anand
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Monalisa Ghosh
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - John Maciejewski
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Darren King
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sung Choi
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Gregory Yanik
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Marcus Geer
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ethan Hillman
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Lin W, Ji J, Su KJ, Qiu C, Tian Q, Zhao LJ, Luo Z, Shen H, Wu C, Deng H. omicsMIC: a Comprehensive Benchmarking Platform for Robust Comparison of Imputation Methods in Mass Spectrometry-based Omics Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557189. [PMID: 37745599 PMCID: PMC10515867 DOI: 10.1101/2023.09.12.557189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Mass spectrometry is a powerful and widely used tool for generating proteomics, lipidomics, and metabolomics profiles, which is pivotal for elucidating biological processes and identifying biomarkers. However, missing values in spectrometry-based omics data may pose a critical challenge for the comprehensive identification of biomarkers and elucidation of the biological processes underlying human complex disorders. To alleviate this issue, various imputation methods for mass spectrometry-based omics data have been developed. However, a comprehensive and systematic comparison of these imputation methods is still lacking, and researchers are frequently confronted with a multitude of options without a clear rationale for method selection. To address this pressing need, we developed omicsMIC (mass spectrometry-based omics with Missing values Imputation methods Comparison platform), an interactive platform that provides researchers with a versatile framework to simulate and evaluate the performance of 28 diverse imputation methods. omicsMIC offers a nuanced perspective, acknowledging the inherent heterogeneity in biological data and the unique attributes of each dataset. Our platform empowers researchers to make data-driven decisions in imputation method selection based on real-time visualizations of the outcomes associated with different imputation strategies. The comprehensive benchmarking and versatility of omicsMIC make it a valuable tool for the scientific community engaged in mass spectrometry-based omics research. OmicsMIC is freely available at https://github.com/WQLin8/omicsMIC.
Collapse
Affiliation(s)
- Weiqiang Lin
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jiadong Ji
- Institute for Financial Studies, Shandong University, Jinan 250100, China
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Lan-Juan Zhao
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongwen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
24
|
Buxbaum NP, Socié G, Hill GR, MacDonald KPA, Tkachev V, Teshima T, Lee SJ, Ritz J, Sarantopoulos S, Luznik L, Zeng D, Paczesny S, Martin PJ, Pavletic SZ, Schultz KR, Blazar BR. Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD. Blood Adv 2023; 7:4886-4902. [PMID: 36322878 PMCID: PMC10463203 DOI: 10.1182/bloodadvances.2022007611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.
Collapse
Affiliation(s)
- Nataliya P. Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gerard Socié
- Hematology-Transplantation, Assistance Publique-Hopitaux de Paris & University of Paris – INSERM UMR 676, Hospital Saint Louis, Paris, France
| | - Geoffrey R. Hill
- Division of Medical Oncology, The University of Washington, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kelli P. A. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Stephanie J. Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Duke Cancer Institute, Durham, NC
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, Hematologic Maligancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Cancer Immunology Program, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneappolis, MN
| |
Collapse
|
25
|
Li Q, Zhang W, Zhou E, Tao Y, Wang M, Qi S, Zhao L, Tan Y, Wu L. Integrated microbiomic and metabolomic analyses reveal the mechanisms by which bee pollen and royal jelly lipid extracts ameliorate colitis in mice. Food Res Int 2023; 171:113069. [PMID: 37330827 DOI: 10.1016/j.foodres.2023.113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Bee pollen (BP) and royal jelly (RJ) have shown therapeutic effects against colitis, but the functional components contained therein remain elusive. Here, we used an integrated microbiomic-metabolomic strategy to clarify the mechanism by which bee pollen lipid extracts (BPL) and royal jelly lipid extracts (RJL) ameliorated dextran sulfate sodium (DSS)-induced colitis in mice. Lipidomic results showed that levels of ceramide (Cer), lysophosphatidylcholine (LPC), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) were significantly higher in BPL than in RJL. The anti-inflammatory efficacy of BPL surpassed that of RJL, although both BPL and RJL could attenuate DSS-induced colitis through several mechanisms: reducing the disease activity index (DAI); decreasing histopathological damage; inhibiting the expression of genes encoding proinflammatory cytokines; improving intestinal microbial community structure, and modulating host metabolism. These findings demonstrated that BPL and RJL have great potential as functional ingredients for the production of dietary supplements to prevent early colitis.
Collapse
Affiliation(s)
- Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenwen Zhang
- College of Life and Health Sciences, Anhui Science and Technology University, Bengbu 233100, China
| | - Enning Zhou
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuxiao Tao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Miao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liuwei Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yonggang Tan
- Oncology Center, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
26
|
Vallet N, Salmona M, Malet-Villemagne J, Bredel M, Bondeelle L, Tournier S, Mercier-Delarue S, Cassonnet S, Ingram B, Peffault de Latour R, Bergeron A, Socié G, Le Goff J, Lepage P, Michonneau D. Circulating T cell profiles associate with enterotype signatures underlying hematological malignancy relapses. Cell Host Microbe 2023; 31:1386-1403.e6. [PMID: 37463582 DOI: 10.1016/j.chom.2023.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
Early administration of azithromycin after allogeneic hematopoietic stem cell transplantation was shown to increase the relapse of hematological malignancies. To determine the impact of azithromycin on the post-transplant gut ecosystem and its influence on relapse, we characterized overtime gut bacteriome, virome, and metabolome of 55 patients treated with azithromycin or a placebo. We describe four enterotypes and the network of associated bacteriophage species and metabolic pathways. One enterotype associates with sustained remission. One taxon from Bacteroides specifically associates with relapse, while two from Bacteroides and Prevotella correlate with complete remission. These taxa are associated with lipid, pentose, and branched-chain amino acid metabolic pathways and several bacteriophage species. Enterotypes and taxa associate with exhausted T cells and the functional status of circulating immune cells. These results illustrate how an antibiotic influences a complex network of gut bacteria, viruses, and metabolites and may promote cancer relapse through modifications of immune cells.
Collapse
Affiliation(s)
- Nicolas Vallet
- Université de Paris Cité, INSERM U976, 75010 Paris, France
| | - Maud Salmona
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Virology Department, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Jeanne Malet-Villemagne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Maxime Bredel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Louise Bondeelle
- Pneumology Unit, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Simon Tournier
- Core Facilities, Saint-Louis Research Institute, Université de Paris Cité, UAR 2030/US 53, 75010 Paris, France
| | | | - Stéphane Cassonnet
- Service de Biostatistique et Information Médicale, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | | | - Régis Peffault de Latour
- Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France; Cryostem Consortium, 13382 Marseille, France
| | - Anne Bergeron
- Pneumology Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Gérard Socié
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Jérome Le Goff
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Virology Department, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - David Michonneau
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France.
| |
Collapse
|
27
|
Dela Cruz M, Lin H, Han J, Adler E, Boissiere J, Khalid M, Sidebottom A, Sundararajan A, Lehmann C, Moran A, Odenwald M, Stutz M, Kim G, Pinney S, Jeevanandam V, Alegre ML, Pamer E, Nguyen AB. Reduced immunomodulatory metabolite concentrations in peri-transplant fecal samples from heart allograft recipients. FRONTIERS IN TRANSPLANTATION 2023; 2:1182534. [PMID: 38993864 PMCID: PMC11235359 DOI: 10.3389/frtra.2023.1182534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2024]
Abstract
Background Emerging evidence is revealing the impact of the gut microbiome on hematopoietic and solid organ transplantation. Prior studies postulate that this influence is mediated by bioactive metabolites produced by gut-dwelling commensal bacteria. However, gut microbial metabolite production has not previously been measured among heart transplant (HT) recipients. Methods In order to investigate the potential influence of the gut microbiome and its metabolites on HT, we analyzed the composition and metabolite production of the fecal microbiome among 48 HT recipients at the time of HT. Results Compared to 20 healthy donors, HT recipients have significantly reduced alpha, i.e. within-sample, microbiota diversity, with significantly lower abundances of key anaerobic commensal bacteria and higher abundances of potentially pathogenic taxa that have been correlated with adverse outcomes in other forms of transplantation. HT recipients have a wide range of microbiota-derived fecal metabolite concentrations, with significantly reduced levels of immune modulatory metabolites such as short chain fatty acids and secondary bile acids compared to healthy donors. These differences were likely due to disease severity and prior antibiotic exposures but were not explained by other demographic or clinical factors. Conclusions Key potentially immune modulatory gut microbial metabolites are quantifiable and significantly reduced among HT recipients compared to healthy donors. Further study is needed to understand whether this wide range of gut microbial dysbiosis and metabolite alterations impact clinical outcomes and if they can be used as predictive biomarkers or manipulated to improve transplant outcomes.
Collapse
Affiliation(s)
- Mark Dela Cruz
- Department of Medicine, Section of Cardiology, University of Chicago Medicine, Chicago, IL, United States
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Jiho Han
- Department of Medicine, Section of Cardiology, University of Chicago Medicine, Chicago, IL, United States
| | - Emerald Adler
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Jaye Boissiere
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Maryam Khalid
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Ashley Sidebottom
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Anitha Sundararajan
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Christopher Lehmann
- Department of Medicine, Section of Infectious Diseases, University of Chicago Medicine, Chicago, IL, United States
| | - Angelica Moran
- Department of Pathology, University of Chicago Medicine, Chicago, IL, United States
| | - Matthew Odenwald
- Department of Medicine, Section of Gastroenterology, University of Chicago Medicine, Chicago, IL, United States
| | - Matthew Stutz
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago Medicine, Chicago, IL, United States
| | - Gene Kim
- Department of Medicine, Section of Cardiology, University of Chicago Medicine, Chicago, IL, United States
| | - Sean Pinney
- Department of Medicine, Section of Cardiology, University of Chicago Medicine, Chicago, IL, United States
| | - Valluvan Jeevanandam
- Department of Surgery, Section of Cardiac Surgery, University of Chicago Medicine, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, United States
| | - Eric Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, United States
| | - Ann B. Nguyen
- Department of Medicine, Section of Cardiology, University of Chicago Medicine, Chicago, IL, United States
| |
Collapse
|
28
|
Yin G, Guo Y, Ding Q, Ma S, Chen F, Wang Q, Chen H, Wang H. Klebsiella quasipneumoniae in intestine damages bile acid metabolism in hematopoietic stem cell transplantation patients with bloodstream infection. J Transl Med 2023; 21:230. [PMID: 36991414 PMCID: PMC10061697 DOI: 10.1186/s12967-023-04068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Bloodstream infection (BSI) is a serious hematopoietic stem cell transplantation (HSCT) complication. The intestinal microbiome regulates host metabolism and maintains intestinal homeostasis. Thus, the impact of microbiome on HSCT patients with BSI is essential. METHODS Stool and serum specimens of HSCT patients were prospectively collected from the pretransplant conditioning period till 4 months after transplantation. Specimens of 16 patients without BSI and 21 patients before BSI onset were screened for omics study using 16S rRNA gene sequencing and untargeted metabolomics. The predictive infection model was constructed using LASSO and the logistic regression algorithm. The correlation and influence of microbiome and metabolism were examined in mouse and Caco-2 cell monolayer models. RESULTS The microbial diversity and abundance of Lactobacillaceae were remarkably reduced, but the abundance of Enterobacteriaceae (especially Klebsiella quasipneumoniae) was significantly increased in the BSI group before onset, compared with the non-BSI group. The family score of microbiome features (Enterobacteriaceae and Butyricicoccaceae) could highly predict BSI (AUC = 0.879). The serum metabolomic analysis showed that 16 differential metabolites were mainly enriched in the primary bile acid biosynthesis pathway, and the level of chenodeoxycholic acid (CDCA) was positively correlated with the abundance of K. quasipneumoniae (R = 0.406, P = 0.006). The results of mouse experiments confirmed that three serum primary bile acids levels (cholic acid, isoCDCA and ursocholic acid), the mRNA expression levels of bile acid farnesol X receptor gene and apical sodium-dependent bile acid transporter gene in K. quasipneumoniae colonized mice were significantly higher than those in non-colonized mice. The intestinal villus height, crypt depth, and the mRNA expression level of tight junction protein claudin-1 gene in K. quasipneumoniae intestinal colonized mice were significantly lower than those in non-colonized mice. In vitro, K. quasipneumoniae increased the clearance of FITC-dextran by Caco-2 cell monolayer. CONCLUSIONS This study demonstrated that the intestinal opportunistic pathogen, K. quasipneumoniae, was increased in HSCT patients before BSI onset, causing increased serum primary bile acids. The colonization of K. quasipneumoniae in mice intestines could lead to mucosal integrity damage. The intestinal microbiome features of HSCT patients were highly predictive of BSI and could be further used as potential biomarkers.
Collapse
Affiliation(s)
- Guankun Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shuai Ma
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Fengning Chen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
29
|
Reikvam H, Bruserud Ø, Hatfield KJ. Pretransplant systemic metabolic profiles in allogeneic hematopoietic stem cell transplant recipients - identification of patient subsets with increased transplant-related mortality. Transplant Cell Ther 2023:S2666-6367(23)01196-X. [PMID: 36966869 DOI: 10.1016/j.jtct.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/24/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used in the treatment of high-risk acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS); however, the treatment has high risk of severe transplantation-related mortality (TRM). In this study, we examined pretransplantation serum samples derived from 92 consecutive allotransplant recipients with AML or MDS. Using nontargeted metabolomics, we identified 1274 metabolites including 968 of known identity (named biochemicals). We further investigated metabolites that differed significantly when comparing patients with and without early extensive fluid retention, pretransplantation inflammation (both being associated with increased risk of acute graft-versus-host disease [GVHD]/nonrelapse mortality) and development of systemic steroid-requiring acute GVHD (aGVHD). All three factors are associated with TRM and were also associated with significantly altered amino acid metabolism, although there was only a minor overlap between these three factors with regard to significantly altered individual metabolites. Furthermore, steroid-requiring aGVHD was especially associated with altered taurine/hypotaurine, tryptophan, biotin, and phenylacetate metabolism together with altered malate-aspartate shuttle and urea cycle regulation. In contrast, pretransplantation inflammation was associated with a weaker modulation of many different metabolic pathways, whereas extensive fluid retention was associated with a weaker modulation of taurine/hypotaurine metabolism. An unsupervised hierarchical cluster analysis based on the 13 most significantly identified metabolites associated with aGVHD identified a patient subset with high metabolite levels and increased frequencies of MDS/MDS-AML, steroid-requiring aGVHD and early TRM. On the other hand, a clustering analysis based on metabolites that were significantly altered for aGVHD, inflammation, and fluid retention comparison groups identified a patient subset with a highly significant association with TRM. Our study suggests that the systemic pretransplantation metabolic profiles can be used to identify patient subsets with an increased frequency of TRM.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Kimberley J Hatfield
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5009, Bergen, Norway.
| |
Collapse
|
30
|
Hong T, Wang R, Yang G, Wang X, Zeng L, Yang S, Wei J, Gao Q, Zhang X. Human umbilical cord mesenchymal stem cells ameliorate acute graft versus host disease by elevating phytosphingosine. Exp Hematol 2023:S0301-472X(23)00070-X. [PMID: 36931619 DOI: 10.1016/j.exphem.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a prominent barrier to allogeneic hematopoietic stem cell transplantation (allo-HSCT) and even leads to death after HSCT. Human umbilical cord mesenchymal stem cells (HUCMSCs) are effective in aGVHD treatment and have mild side effects, but the underlying mechanisms remain unclear. Phytosphingosine (PHS) is known to prevent loss of moisture from the skin; regulate epidermal cell growth, differentiation, and apoptosis; and exert bactericidal and anti-inflammatory effects. In this study, our results revealed the efficacy of HUCMSCs in alleviating aGVHD in a murine model, with striking changes in metabolism and significantly elevated PHS levels due to sphingolipid metabolism. In vitro, PHS reduced CD4+ T cell proliferation, enhanced apoptosis and reduced T helper 1 (Th1) cell differentiation. Transcriptional analysis of donor CD4+ T cells treated with PHS revealed significant decreases in transcripts regulating proinflammatory pathways, such as NF-κB. In vivo, the administration of PHS significantly ameliorated aGVHD development. Collectively, these beneficial effects indicate proof-of-concept that sphingolipid metabolites could be a safe and effective means to prevent aGVHD in the clinic.
Collapse
Affiliation(s)
- Tao Hong
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 401329, China
| | - Guancui Yang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China; Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China
| | - Lingyu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221008, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 401329, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medicine, Army Medical University, Chongqing, 400038, China..
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 401329, China..
| |
Collapse
|
31
|
Malard F, Jenq RR. The Microbiome and Its Impact on Allogeneic Hematopoietic Cell Transplantation. Cancer J 2023; 29:75-83. [PMID: 36957977 PMCID: PMC10037670 DOI: 10.1097/ppo.0000000000000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Allogeneic hematopoietic cell transplantation (alloHCT) is a standard curative therapy for a variety of benign and malignant hematological diseases. Previously, patients who underwent alloHCT were at high risk for complications with potentially life-threatening toxicities, including a variety of opportunistic infections as well as acute and chronic manifestations of graft-versus-host disease (GVHD), where the transplanted immune system can produce inflammatory damage to the patient. With recent advances, including newer conditioning regimens, advances in viral and fungal infection prophylaxis, and novel GVHD prophylactic and treatment strategies, improvements in clinical outcomes have steadily improved. One modality with great potential that has yet to be fully realized is targeting the microbiome to further improve clinical outcomes.In recent years, the intestinal microbiota, which includes bacteria, fungi, viruses, and other microbes that reside within the intestinal tract, has become established as a potent modulator of alloHCT outcomes. The composition of intestinal bacteria, in particular, has been found in large multicenter prospective studies to be strongly associated with GVHD, treatment-related mortality, and overall survival. Murine studies have demonstrated a causal relationship between intestinal microbiota injury and aggravated GVHD, and more recently, clinical interventional studies of repleting the intestinal microbiota with fecal microbiota transplantation have emerged as effective therapies for GVHD. How the composition of the intestinal bacterial microbiota, which is often highly variable in alloHCT patients, can modulate GVHD and other outcomes is not fully understood. Recent studies, however, have begun to make substantial headway, including identifying particular bacterial subsets and/or bacterial-derived metabolites that can mediate harm or benefit. Here, the authors review recent studies that have improved our mechanistic understanding of the relationship between the microbiota and alloHCT outcomes, as well as studies that are beginning to establish strategies to modulate the microbiota with the hope of optimizing clinical outcomes.
Collapse
|
32
|
Lu L, Fang H, Gu M, Wang H, Yu Q, Chen A, Gan KF. MicroRNA Let-7i Regulates Innate TLR4 Pathways in Peripheral Blood Mononuclear Cells of Patients with Ankylosing Spondylitis. Int J Gen Med 2023; 16:1393-1401. [PMID: 37155468 PMCID: PMC10122843 DOI: 10.2147/ijgm.s397160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Purpose This study aimed to compare the changes in the expression of microRNA Let-7i in peripheral blood mononuclear cells (PBMCs) of patients with ankylosing spondylitis (AS) and the correlation between Let-7i and innate pro-inflammatory factors. It is necessary to search for a new biomarker to guide the prognosis of AS. Methods A total of 10 patients with AS and 10 healthy volunteers were selected as AS and control groups, respectively. The expression levels of Let-7i, Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), and interferon-gamma (IFN-γ) in PBMCs were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB) to explore the relationship between Let-7i and pro-inflammatory factors. Furthermore, the relationship between Let-7i and TLR4 was determined by the luciferase reporter technology. Results The expression level of Let-7i in PBMCs of patients with AS was significantly lower than that of healthy control. The expression levels of TLR4, NF-κB, and IFN-γ in PBMCs derived from patients with AS were significantly higher than those of healthy control. The results show that Let-7i manipulation can regulate lipopolysaccharide (LPS)-induced TLR4 and IFN-γ expression in CD4+ T cells of patients with AS. The overexpression of Let-7i in T cells of patients with AS can suppress TLR4 and IFN-γ LPS-induced expression levels of cellular mRNA and protein. Let-7i can directly interfere TLR4-3'untranslated region (UTR) sequence and regulate the expression of the TLR4 gene in Jurkat T cells. Conclusion Let-7i may be involved in the pathogenesis of AS, and Let-7i expression in PBMCs may be helpful for the diagnosis and treatment of AS in the future.
Collapse
Affiliation(s)
- Liangjie Lu
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, 315040, People’s Republic of China
| | - Haiming Fang
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, 315040, People’s Republic of China
| | - Mengchao Gu
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, 315040, People’s Republic of China
| | - Huihan Wang
- Department of Orthopaedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, People’s Republic of China
| | - Qiuxia Yu
- Department of Rheumatology, Li Huili Hospital Affiliated to Ningbo University, Ningbo, 315040, People’s Republic of China
| | - Aqiong Chen
- Department of Rheumatology, Li Huili Hospital Affiliated to Ningbo University, Ningbo, 315040, People’s Republic of China
| | - Kai-feng Gan
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, 315040, People’s Republic of China
- Correspondence: Kai-feng Gan, Tel +86-15724288924, Email
| |
Collapse
|
33
|
Chi M, Jiang T, He X, Peng H, Li Y, Zhang J, Wang L, Nian Q, Ma K, Liu C. Role of Gut Microbiota and Oxidative Stress in the Progression of Transplant-Related Complications following Hematopoietic Stem Cell Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3532756. [PMID: 37113743 PMCID: PMC10129428 DOI: 10.1155/2023/3532756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 11/24/2022] [Indexed: 04/29/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT), also known as bone marrow transplantation, has curative potential for various hematologic malignancies but is associated with risks such as graft-versus-host disease (GvHD), severe bloodstream infection, viral pneumonia, idiopathic pneumonia syndrome (IPS), lung fibrosis, and sinusoidal obstruction syndrome (SOS), which severely deteriorate clinical outcomes and limit the wide application of HSCT. Recent research has provided important insights into the effects of gut microbiota and oxidative stress (OS) on HSCT complications. Therefore, based on recent studies, we describe intestinal dysbiosis and OS in patients with HSCT and review recent molecular findings underlying the causal relationships of gut microbiota, OS, and transplant-related complications, focusing particularly on the involvement of gut microbiota-mediated OS in postengraftment complications. Also, we discuss the use of antioxidative and anti-inflammatory probiotics to manipulate gut microbiota and OS, which have been associated with promising effects in improving HSCT outcomes.
Collapse
Affiliation(s)
- Mingxuan Chi
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Tao Jiang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province 610072, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunlong Li
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chi Liu
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| |
Collapse
|
34
|
Azithromycin promotes relapse by disrupting immune and metabolic networks after allogeneic stem cell transplantation. Blood 2022; 140:2500-2513. [PMID: 35984904 DOI: 10.1182/blood.2022016926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 12/13/2022] Open
Abstract
Administration of azithromycin after allogeneic hematopoietic stem cell transplantation for hematologic malignancies has been associated with relapse in a randomized phase 3 controlled clinical trial. Studying 240 samples from patients randomized in this trial is a unique opportunity to better understand the mechanisms underlying relapse, the first cause of mortality after transplantation. We used multi-omics on patients' samples to decipher immune alterations associated with azithromycin intake and post-transplantation relapsed malignancies. Azithromycin was associated with a network of altered energy metabolism pathways and immune subsets, including T cells biased toward immunomodulatory and exhausted profiles. In vitro, azithromycin exposure inhibited T-cell cytotoxicity against tumor cells and impaired T-cell metabolism through glycolysis inhibition, down-regulation of mitochondrial genes, and up-regulation of immunomodulatory genes, notably SOCS1. These results highlight that azithromycin directly affects immune cells that favor relapse, which raises caution about long-term use of azithromycin treatment in patients at high risk of malignancies. The ALLOZITHRO trial was registered at www.clinicaltrials.gov as #NCT01959100.
Collapse
|
35
|
Socie G, Michonneau D. Milestones in acute GVHD pathophysiology. Front Immunol 2022; 13:1079708. [PMID: 36544776 PMCID: PMC9760667 DOI: 10.3389/fimmu.2022.1079708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
In the past 65 years, over 25 000 referenced articles have been published on graft-versus-host disease (GVHD). Although this included clinically orientated papers or publications on chronic GVHD, the conservative estimate of scientific publications still contains several thousands of documents on the pathophysiology of acute GVHD. Thus, summarizing what we believe are prominent publications that can be considered milestones in our knowledge of this disease is a challenging and inherently biased task. Here we review from a historical perspective what can be regarded as publications that have made the field move forward. We also included several references of reviews on aspects we could not cover in detail.
Collapse
Affiliation(s)
- Gerard Socie
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| | - David Michonneau
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| |
Collapse
|
36
|
Indolepropionic Acid, a Gut Bacteria-Produced Tryptophan Metabolite and the Risk of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14214695. [PMID: 36364957 PMCID: PMC9653718 DOI: 10.3390/nu14214695] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
An intricate relationship between gut microbiota, diet, and the human body has recently been extensively investigated. Gut microbiota and gut-derived metabolites, especially, tryptophan derivatives, modulate metabolic and immune functions in health and disease. One of the tryptophan derivatives, indolepropionic acid (IPA), is increasingly being studied as a marker for the onset and development of metabolic disorders, including type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). The IPA levels heavily depend on the diet, particularly dietary fiber, and show huge variations among individuals. We suggest that these variations could partially be explained using genetic variants known to be associated with specific diseases such as T2D. In this narrative review, we elaborate on the beneficial effects of IPA in the mitigation of T2D and NAFLD, and further study the putative interactions between IPA and well-known genetic variants (TCF7L2, FTO, and PPARG), known to be associated with the risk of T2D. We have investigated the long-term preventive value of IPA in the development of T2D in the Finnish prediabetic population and the correlation of IPA with phytosterols in obese individuals from an ongoing Kuopio obesity surgery study. The diversity in IPA-linked mechanisms affecting glucose metabolism and liver fibrosis makes it a unique small metabolite and a promising candidate for the reversal or management of metabolic disorders, mainly T2D and NAFLD.
Collapse
|
37
|
Muratore E, Leardini D, Baccelli F, Venturelli F, Prete A, Masetti R. Nutritional modulation of the gut microbiome in allogeneic hematopoietic stem cell transplantation recipients. Front Nutr 2022; 9:993668. [PMID: 36337625 PMCID: PMC9632163 DOI: 10.3389/fnut.2022.993668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents a potentially curative strategy for many oncological and non-oncological diseases, but it is associated with marked morbidity and mortality. The disruption of gut microbiota (GM) eubiosis has been linked to major allo-HSCT complications, including infections and acute graft vs. host disease (aGvHD), and correlates with mortality. This increasing knowledge on the role of the GM in the allo-HSCT procedure has led to fascinating ideas for modulating the intestinal ecosystem in order to improve clinical outcomes. Nutritional strategies, either by changing the route of nutritional supplementation or by administering specific molecules, are increasingly being considered as cost- and risk-effective methods of modulating the GM. Nutritional support has also emerged in the past several years as a key feature in supportive care for allo-HSCT recipients, and deterioration of nutritional status is associated with decreased overall survival and higher complication rates during treatment. Herein we provide a complete overview focused on nutritional modulation of the GM in allo-HSCT recipients. We address how pre transplant diet could affect GM composition and its ability to withstand the upsetting events occurring during transplantation. We also provide a complete overview on the influence of the route of nutritional administration on the intestinal ecosystem, with a particular focus on the comparison between enteral and parenteral nutrition (PN). Moreover, as mounting evidence are showing how specific components of post-transplant diet, such as lactose, could drastically shape the GM, we will also summarize the role of prebiotic supplementation in the modulation of the intestinal flora and in allo-HSCT outcomes.
Collapse
Affiliation(s)
- Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- *Correspondence: Francesco Baccelli,
| | - Francesco Venturelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli,” IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
38
|
Malard F, Gaugler B, Mohty M. Faecal microbiota transplantation in patients with haematological malignancies undergoing cellular therapies: from translational research to routine clinical practice. Lancet Haematol 2022; 9:e776-e785. [PMID: 36174640 DOI: 10.1016/s2352-3026(22)00223-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
The effect of the gut microbiota on patients' outcomes after allogeneic haematopoietic cell transplantation (HCT) is now well established. In particular, gut microbiota dysbiosis has been associated with acute graft-versus-host disease (GVHD). Furthermore, increasing data also suggest an effect of the gut microbiota on outcome after autologous HCT and CAR T cells. In fact, the bacterial gut microbiota interplays with the immune system and contributes to immunological complication and antitumour response to treatment. Therefore, faecal microbiota transplantation has been evaluated in patients with haematological malignancies for various indications, including Clostridioides difficile infection, eradication of multidrug-resistant bacteria, and steroid refractory acute GVHD. In addition, use of prophylactic faecal microbiota transplantation to restore the gut microbiota and improve patients' outcomes is being developed in the setting of allogeneic HCT, but also probably very soon in patients receiving autologous HCT or CAR T cells.
Collapse
Affiliation(s)
- Florent Malard
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| | - Béatrice Gaugler
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Mohamad Mohty
- Centre de Recherche Saint-Antoine INSERM UMRs938, Sorbonne Université, AP-HP, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| |
Collapse
|
39
|
Zeng C, Cheng TT, Ma X, Liu Y, Hua J, Chen X, Wang SY, Xu YJ. The absence of AhR in CD4 + T cells in patients with acute graft-versus-host disease may be related to insufficient CTCF expression. Clin Epigenetics 2022; 14:109. [PMID: 36056390 PMCID: PMC9440523 DOI: 10.1186/s13148-022-01330-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Accumulating evidence suggests that imbalanced Treg/Th17 ratio accelerates the progression of aGVHD. The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix transcription factor activated through cognate ligand binding. Current evidence supports that AhR plays a critical regulatory role in the differentiation of Treg and Th17 cells. However, the relationship between AhR and aGVHD remains unclear. RESULTS Our results showed that AhR expression was downregulated significantly in CD4+ T cells from patients with aGVHD compared with the non-aGVHD group. We also discovered that after activating AhR deficient CD4+ T cells, the expression levels of the activation markers-CD40L, CD134 and CD137 and cell proliferation activity were significantly higher than those of AhR-expressing CD4+ T cells. Restoring the expression of AhR in aGVHD CD4+ T cells resulted in significantly increased percentage of Tregs and associated gene transcripts, including Foxp3, IL-10 and CD39. In contrast, Th17 cell amounts and the transcription of related genes, including RORγt, IL-17A and IL-17F, were significantly reduced. We confirmed that CTCF recruited EP300 and TET2 to bind to the AhR promoter region and promoted AhR expression by mediating histone H3K9/K14 hyperacetylation and DNA demethylation in this region. The low expression of CTCF caused histone hypoacetylation and DNA hypermethylation of the AhR promoter, resulting in insufficient expression in aGVHD CD4+ T cells. CONCLUSIONS CTCF is an important inducer of AhR transcription. Insufficient expression of CTCF leads to excessive AhR downregulation, resulting in substantial CD4+ T cell activation and Th17/Treg ratio increase, thereby mediating the occurrence of aGVHD.
Collapse
Affiliation(s)
- Cong Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Ting-Ting Cheng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Xia Ma
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Juan Hua
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Xu Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Shi-Yu Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China.,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
| | - Ya-Jing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China. .,Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
40
|
Wolfe AE, Markey KA. The contribution of the intestinal microbiome to immune recovery after HCT. Front Immunol 2022; 13:988121. [PMID: 36059482 PMCID: PMC9434312 DOI: 10.3389/fimmu.2022.988121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Allogenic hematopoietic stem-cell transplantation (allo-HCT) is a curative-intent immunotherapy for high-risk hematological malignancies and immune deficiencies. Allo-HCT carries a high risk of treatment-related mortality (TRM), largely due to infection or graft-versus-host disease (GVHD). Robust immune recovery is essential for optimal patient outcomes, given the immunologic graft-versus-leukemia effect prevents relapse, and functional innate and adaptive immunity are both needed for the prevention and control of infection. Most simply, we measure immune recovery by enumerating donor lymphocyte subsets in circulation. In functional terms, ideal immune recovery is more difficult to define, and current lab techniques are limited to the measurement of specific vaccine-responses or mitogens ex vivo. Clinically, poor immune function manifests as problematic infection with viral, bacterial and fungal organisms. Furthermore, the ideal recovering immune system is capable of exerting graft-versus-tumor effects to prevent relapse, and does not induce graft-versus-host disease. Large clinical observational studies have linked loss of diversity within the gut microbiome with adverse transplant outcomes including decreased overall survival and increased acute and chronic GVHD. Furthermore, the correlation between intestinal microbial communities and numeric lymphocyte recovery has now been reported using a number of approaches. Large sets of clinically available white blood cell count data, clinical flow cytometry of lymphocyte subsets and bespoke flow cytometry analyses designed to capture microbiota-specific T cells (e.g. Mucosal-associated invariant T cells, subsets of the gd T cells) have all been leveraged in an attempt to understand links between the microbiota and the recovering immune system in HCT patients. Additionally, preclinical studies suggest an immunomodulatory role for bacterial metabolites (including butyrate, secondary bile acids, and indole derivatives from tryptophan metabolism) in transplant outcomes, though further studies are needed to unravel mechanisms relevant to the post-HCT setting. An understanding of mechanistic relationships between the intestinal microbiome and post-transplant outcomes is necessary for reduction of risk associated with transplant, to inform prophylactic procedures, and ensure optimal immune reconstitution without alloreactivity. Here, we summarize the current understanding of the complex relationship between bacterial communities, their individual members, and the metabolites they produce with immune function in both the allo-HCT and steady-state setting.
Collapse
Affiliation(s)
- Alex E. Wolfe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Kate A. Markey
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Division of Medical Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
41
|
Chen YF, Lu HC, Hou PC, Lin YC, Aala WJ, Onoufriadis A, McGrath JA, Chen YL, Hsu CK. Plasma metabolomic profiling reflects the malnourished and chronic inflammatory state in recessive dystrophic epidermolysis bullosa. J Dermatol Sci 2022; 107:82-88. [PMID: 35909063 DOI: 10.1016/j.jdermsci.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a hereditary blistering disorder characterized by skin fragility, chronic inflammation, malnutrition, and fibrosis. Metabolomics is an emerging investigative field that helps elucidate disease pathophysiology and identify biomarkers. However, previous metabolomic studies in RDEB are limited. OBJECTIVE To investigate the plasma metabolomic profiles in RDEB patients. METHODS We recruited 10 RDEB patients and 10 age-/gender-matched healthy controls. Peripheral blood samples were collected and plasma metabolomic profiling was performed by LC-MS/MS analysis. MS data processing and compound identification were executed by MS-DIAL. Enrichment analysis was performed by MetaboAnalyst 5.0. RESULTS Metabolomic analyses demonstrated that most amino acid levels were downregulated in RDEB patients, and the extent of insufficiency correlated with clinical severity. Several metabolites were dysregulated in RDEB, including glutamine and glutamate metabolism, tryptophan-to-kynurenine ratio, phenylalanine-to-tyrosine ratio, and succinate accumulation. LIMITATIONS The study was limited by small case numbers and the unrepresentativeness of a single time-point blood sample. CONCLUSION Our study demonstrated the altered metabolomic profiles in RDEB, reflecting the disease severity, the chronic inflammatory and malnourished status, while the fibrotic signatures were not evident.
Collapse
Affiliation(s)
- Ya-Fen Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Chin Lu
- Department of Nutritional Services, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ping-Chen Hou
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ching Lin
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Physical Medicine and Rehabilitation, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wilson Jr Aala
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
42
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
43
|
Pretransplant Systemic Lipidomic Profiles in Allogeneic Stem Cell Transplant Recipients. Cancers (Basel) 2022; 14:cancers14122910. [PMID: 35740576 PMCID: PMC9220974 DOI: 10.3390/cancers14122910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Stem cell transplantation is used in the treatment of aggressive hematological malignancies and consists of initial high-dose and potentially lethal chemotherapy, followed by rescue with the transplantation of hematopoietic stem cells. Transplantation with stem cells from a healthy donor (i.e., allogeneic stem cells) has the strongest anti-cancer effect, but also the highest risk of severe toxicity. Furthermore, the clinical status at the time of transplantation (inflammation, fluid overload) is associated with posttransplant mortality, and immune-mediated acute graft-versus-host disease (GVHD) is a potential lethal complication. Finally, lipid metabolism regulates the proliferation and survival of both malignant hematological cells and immunocompetent cells that cause GVHD. Our study shows that the pretransplant lipid profiles differ between allotransplant recipients and can be used for the subclassification of patients and possibly to identify patients with an increased risk of death due to disease relapse or treatment toxicity. The therapeutic targeting of lipid metabolism should therefore be further explored in these transplant recipients. Abstract Allogeneic stem cell transplantation is used in the treatment of high-risk hematological malignancies. However, this treatment is associated with severe treatment-related morbidity and mortality. The metabolic status of the recipient may be associated with the risk of development of transplant-associated complications such as graft-versus-host disease (GVHD). To better understand the impact of the lipidomic profile of transplant recipients on posttransplant complications, we evaluated the lipid signatures of patients with hematological disease using non-targeted lipidomics. In the present study, we studied pretransplant serum samples derived from 92 consecutive patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS). A total of 960 lipid biochemicals were identified, and the pretransplant lipidomic profiles differed significantly when comparing patients with and without the risk factors: (i) pretransplant inflammation, (ii) early fluid overload, and (iii) patients with and without later steroid-requiring acute GVHD. All three factors, but especially patients with pretransplant inflammation, were associated with decreased levels of several lipid metabolites. Based on the overall concentrations of various lipid subclasses, we identified a patient subset characterized by low lipid levels, increased frequency of MDS patients, signs of inflammation, decreased body mass index, and an increased risk of early non-relapse mortality. Metabolic targeting has been proposed as a possible therapeutic strategy in allotransplant recipients, and our present results suggest that the clinical consequences of therapeutic intervention (e.g., nutritional support) will also differ between patients and depend on the metabolic context.
Collapse
|
44
|
Aryl hydrocarbon receptor-targeted therapy for CD4+ T cell-mediated idiopathic pneumonia syndrome in mice. Blood 2022; 139:3325-3339. [PMID: 35226727 DOI: 10.1182/blood.2021013849] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
We previously demonstrated that interferon γ (IFN-γ) derived from donor T cells co-opts the indoleamine 2,3-dioxygenase 1 (IDO1) → aryl hydrocarbon receptor (AHR) axis to suppress idiopathic pneumonia syndrome (IPS). Here we report that the dysregulated expression of AP-1 family genes in Ahr-/- lung epithelial cells exacerbated IPS in allogeneic bone marrow transplantation settings. AHR repressed transcription of Jund by preventing STAT1 from binding to its promoter. As a consequence, decreased interleukin-6 impaired the differentiation of CD4+ T cells toward Th17 cells. IFN-γ- and IDO1-independent induction of Ahr expression indicated that the AHR agonist might be a better therapeutic target for IPS than the IDO1 activator. We developed a novel synthetic AHR agonist (referred to here as PB502) that potently inhibits Jund expression. PB502 was highly effective at inducing AHR activation and ameliorating IPS. Notably, PB502 was by far superior to the endogenous AHR ligand, L-kynurenine, in promoting the differentiation of both mouse and human FoxP3+ regulatory CD4+ T cells. Our results suggest that the IDO1-AHR axis in lung epithelial cells is associated with IPS repression. A specific AHR agonist may exhibit therapeutic activity against inflammatory and autoimmune diseases by promoting regulatory T-cell differentiation.
Collapse
|
45
|
Barupal DK, Mahajan P, Fakouri-Baygi S, Wright RO, Arora M, Teitelbaum SL. CCDB: A database for exploring inter-chemical correlations in metabolomics and exposomics datasets. ENVIRONMENT INTERNATIONAL 2022; 164:107240. [PMID: 35461097 PMCID: PMC9195052 DOI: 10.1016/j.envint.2022.107240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 05/18/2023]
Abstract
Inter-chemical correlations in metabolomics and exposomics datasets provide valuable information for studying relationships among chemicals reported for human specimens. With an increase in the number of compounds for these datasets, a network graph analysis and visualization of the correlation structure is difficult to interpret. We have developed the Chemical Correlation Database (CCDB), as a systematic catalogue of inter-chemical correlation in publicly available metabolomics and exposomics studies. The database has been provided via an online interface to create single compound-centric views. We have demonstrated various applications of the database to explore: 1) the chemicals from a chemical class such as Per- and Polyfluoroalkyl Substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalates and tobacco smoke related metabolites; 2) xenobiotic metabolites such as caffeine and acetaminophen; 3) endogenous metabolites (acyl-carnitines); and 4) unannotated peaks for PFAS. The database has a rich collection of 35 human studies, including the National Health and Nutrition Examination Survey (NHANES) and high-quality untargeted metabolomics datasets. CCDB is supported by a simple, interactive and user-friendly web-interface to retrieve and visualize the inter-chemical correlation data. The CCDB has the potential to be a key computational resource in metabolomics and exposomics facilitating the expansion of our understanding about biological and chemical relationships among metabolites and chemical exposures in the human body. The database is available at www.ccdb.idsl.me site.
Collapse
Affiliation(s)
- Dinesh Kumar Barupal
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA.
| | - Priyanka Mahajan
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Sadjad Fakouri-Baygi
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| | - Susan L Teitelbaum
- Department of Environmental Medicine and Public Health, Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, CAM Building, New York 10029, USA
| |
Collapse
|
46
|
Azevedo ICD, Ferreira Júnior MA, Nascimento AADA, Vitor AF, Teston EF, Frota OP, Santos VEP. Analysis of factors associated with hematopoietic stem-cell retransplantation: a case-control study. Rev Lat Am Enfermagem 2022; 30:e3569. [PMID: 35584411 DOI: 10.1590/1518-8345.5794.3569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/11/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE to analyze the factors associated with the failure of Hematopoietic Stem Cell Transplantation (HSCT) in patients undergoing Hematopoietic Stem Cell Retransplantation (HSCR). METHOD this study implemented a quantitative approach and was a case-control type which addressed patients undergoing HSCR. To do so, a paired sample of two controls was used for each case (2:1). The case group consisted of the medical records of all patients who underwent HSCR (28) and the control group (56) of those who underwent only one transplant. Three variables guided the pairing: gender, diagnosis and type of transplant. RESULTS a total of 24 (85.71%) patients in the case group were re-transplanted due to disease relapse and four (14.29%) due to graft failure. There was a statistical difference in the analysis between patients who did not use ursodeoxycholic acid, opioid analgesics and immunosuppressants. The need for HSCR among those who used these medications inappropriately was 16.12, 12.79 and 4.5 times more likely, respectively, than those who used them correctly. CONCLUSION there was a difference regarding the reasons which led to the retransplantation and the analyzed subjects, and this study concluded that the predictive reason for retransplantation in the studied sample was disease relapse.
Collapse
Affiliation(s)
- Isabelle Campos de Azevedo
- Universidade Federal do Rio Grande do Norte, Departamento de Enfermagem, Natal, RN, Brasil.,Bolsista da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil
| | | | | | - Allyne Fortes Vitor
- Universidade Federal do Rio Grande do Norte, Departamento de Enfermagem, Natal, RN, Brasil
| | - Elen Ferraz Teston
- Universidade Federal de Mato Grosso do Sul, Instituto Integrado de Saúde, Campo Grande, MS, Brasil
| | - Oleci Pereira Frota
- Universidade Federal de Mato Grosso do Sul, Instituto Integrado de Saúde, Campo Grande, MS, Brasil
| | | |
Collapse
|
47
|
Chagué C, Gautier T, Dal Zuffo L, Pais de Barros J, Wetzel A, Tarris G, Pallot G, Martin L, Valmary‐Degano S, Deckert V, Lagrost L, Daguindau E, Saas P. High-density lipoprotein infusion protects from acute graft-versus-host disease in experimental allogeneic hematopoietic cell transplantation. Am J Transplant 2022; 22:1350-1361. [PMID: 35038785 PMCID: PMC9306461 DOI: 10.1111/ajt.16960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/25/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a major limitation of the therapeutic potential of allogeneic hematopoietic cell transplantation. Lipopolysaccharides (LPS) derived from intestinal gram-negative bacteria are well-known aGVHD triggers and amplifiers. Here, we explored the LPS metabolism in aGVHD mouse models using an innovative quantification method. We demonstrated that systemic LPS accumulation after transplantation was due, at least partly, to a defect in its clearance through lipoprotein-mediated transport to the liver (i.e., the so-called reverse LPS transport). After transplantation, reduced circulating HDL concentration impaired LPS neutralization and elimination through biliary flux. Accordingly, HDL-deficient (Apoa1tm1Unc ) recipient mice developed exacerbated aGVHD. Repeated administration of HDL isolated from human plasma significantly decreased the mortality and the severity of aGVHD. While the potential role of HDL in scavenging circulating LPS was examined in this study, it appears that HDL plays a more direct immunomodulatory role by limiting or controlling aGVHD. Notably, HDL infusion mitigated liver aGVHD by diminishing immune infiltration (e.g., interferon-γ-secreting CD8+ T cells and non-resident macrophages), systemic and local inflammation (notably cholangitis). Hence, our results revealed the interest of HDL-based therapies in the prevention of aGVHD.
Collapse
Affiliation(s)
- Cécile Chagué
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| | - Thomas Gautier
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Ludivine Dal Zuffo
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| | | | - Audrey Wetzel
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| | - Georges Tarris
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance,Service d’Anatomie et Cytologie PathologiquesCHU DijonDijonFrance
| | - Gaëtan Pallot
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Laurent Martin
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance,Service d’Anatomie et Cytologie PathologiquesCHU DijonDijonFrance
| | | | - Valérie Deckert
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Laurent Lagrost
- University Bourgogne Franche‐ComtéINSERMLNC UMR1231LabEX LipSTICDijonFrance
| | - Etienne Daguindau
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance,Service d’HématologieCHU BesançonBesançonFrance
| | - Philippe Saas
- University Bourgogne Franche‐ComtéINSERM, EFS BFCUMR1098 RIGHT Interactions Greffon‐Hôte‐Tumeur/Ingénierie Cellulaire et GéniqueLabEX LipSTICFHU INCREASEBesançonFrance
| |
Collapse
|
48
|
Hu D, Wu M, Chen G, Deng B, Yu H, Huang J, Luo Y, Li M, Zhao D, Liu J. Multiple techniques collectively reveal the attenuation of kidney injury by trimethylamine
N
‐oxide (TMAO) production manipulation. Br J Pharmacol 2022; 179:4344-4359. [PMID: 35428974 DOI: 10.1111/bph.15856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 01/24/2022] [Accepted: 04/07/2022] [Indexed: 11/02/2022] Open
Affiliation(s)
- Da‐Yong Hu
- Division of Nephrology and Rheumatology Shanghai Tenth People’s Hospital
- Center for Nephrology & Metabolomics Tongji University School of Medicine
| | - Ming‐Yu Wu
- Division of Nephrology and Rheumatology Shanghai Tenth People’s Hospital
- Center for Nephrology & Metabolomics Tongji University School of Medicine
| | - Guang‐Qi Chen
- Division of Nephrology and Rheumatology Shanghai Tenth People’s Hospital
- Center for Nephrology & Metabolomics Tongji University School of Medicine
| | - Bing‐Qing Deng
- Division of Nephrology and Rheumatology Shanghai Tenth People’s Hospital
- Center for Nephrology & Metabolomics Tongji University School of Medicine
| | - Hai‐Bo Yu
- Division of Nephrology and Rheumatology Shanghai Tenth People’s Hospital
- Center for Nephrology & Metabolomics Tongji University School of Medicine
| | - Jian Huang
- Division of Nephrology and Rheumatology Shanghai Tenth People’s Hospital
- Center for Nephrology & Metabolomics Tongji University School of Medicine
| | - Ying Luo
- Division of Nephrology and Rheumatology Shanghai Tenth People’s Hospital
- Center for Nephrology & Metabolomics Tongji University School of Medicine
| | - Meng‐Yuan Li
- Division of Nephrology and Rheumatology Shanghai Tenth People’s Hospital
- Center for Nephrology & Metabolomics Tongji University School of Medicine
| | - Da‐Ke Zhao
- Division of Nephrology and Rheumatology Shanghai Tenth People’s Hospital
- Center for Nephrology & Metabolomics Tongji University School of Medicine
| | - Jun‐Yan Liu
- Division of Nephrology and Rheumatology Shanghai Tenth People’s Hospital
- Center for Nephrology & Metabolomics Tongji University School of Medicine
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences Chongqing Medical University
| |
Collapse
|
49
|
Docampo MD, da Silva MB, Lazrak A, Nichols KB, Lieberman SR, Slingerland AE, Armijo GK, Shono Y, Nguyen C, Monette S, Dwomoh E, Lee N, Geary CD, Perobelli SM, Smith M, Markey KA, Vardhana SA, Kousa AI, Zamir E, Greenfield I, Sun JC, Cross JR, Peled JU, Jenq RR, Stein-Thoeringer CK, van den Brink MRM. Alloreactive T cells deficient of the short-chain fatty acid receptor GPR109A induce less graft-versus-host disease. Blood 2022; 139:2392-2405. [PMID: 34653248 PMCID: PMC9012131 DOI: 10.1182/blood.2021010719] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/31/2021] [Indexed: 01/17/2023] Open
Abstract
The intestinal microbiota is essential for the fermentation of dietary fiber into short-chain fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to promote cellular effects in metabolism or changes in immune function. We explored the role of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic cell transplantation (allo-HCT) and graft-versus-host disease (GVHD). Deletion of GPR109A in allo-HCT recipients did not affect GVHD, but transplantation of T cells from GPR109A knockout (KO) (Gpr109a-/-) mice into allo-HCT recipient mice significantly reduced GVHD morbidity and mortality compared with recipients of wild-type (WT) T cells. Recipients of Gpr109a-/- T cells exhibited less GVHD-associated target organ pathology and decreased proliferation and homing of alloreactive T cells to target tissues. Although Gpr109a-/- T cells did not exhibit immune deficits at a steady state, following allo-activation, Gpr109a-/- T cells underwent increased apoptosis and were impaired mitochondrial oxidative phosphorylation, which was reversible through antioxidant treatment with N-acetylcysteine (NAC). In conclusion, we found that GPR109A expression by allo-activated T cells is essential for metabolic homeostasis and expansion, which are necessary features to induce GVHD after allo-HCT.
Collapse
Affiliation(s)
- Melissa D Docampo
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | - Amina Lazrak
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | | | | | - Gabriel K Armijo
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Chi Nguyen
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | - Emmanuel Dwomoh
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Nicole Lee
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Clair D Geary
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | | | - Melody Smith
- Department of Immunology, Sloan Kettering Institute, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kate A Markey
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Eli Zamir
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany; and
| | | | - Joseph C Sun
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Justin R Cross
- Department of Immunology, Sloan Kettering Institute, New York, NY
| | - Jonathan U Peled
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert R Jenq
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Marcel R M van den Brink
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY
- Department of Immunology, Sloan Kettering Institute, New York, NY
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
50
|
Zhang J, Du Y, Zhang Y, Xu Y, Fan Y, Li Y. 1H-NMR Based Metabolomics Technology Identifies Potential Serum Biomarkers of Colorectal Cancer Lung Metastasis in a Mouse Model. Cancer Manag Res 2022; 14:1457-1469. [PMID: 35444465 PMCID: PMC9015044 DOI: 10.2147/cmar.s348981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Lung metastasis is a common metastasis site of colorectal cancer which largely reduces the quality of life and survival rates of patients. The discovery of potential novel diagnostic biomarkers is very meaningful for the early diagnosis of colorectal cancer with lung metastasis. Methods In the present study, the metabonomic profiling of serum samples of lung metastasis mice was analyzed by 1H-nuclear magnetic resonance (1H-NMR). Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to elucidate the distinguishing metabolites between different groups, and all achieved excellent separations, which indicated that metastatic mice could be differentiated from control mice based on the metabolic profiles at serum levels. Furthermore, during lung metastasis of colorectal cancer, metabolic phenotypes changed significantly, and some of metabolites were identified. Results Among these metabolites, approximately 15 were closely associated with the lung metastasis process. Pathway enrichment analysis results showed deregulation of metabolic pathways participating in the process of lung metastasis, such as synthesis and degradation of ketone bodies pathway, amino acid metabolism pathway and pyruvate metabolism pathway. Conclusion The present study demonstrated the metabolic disturbances of serum samples of mice during the lung metastasis process of colorectal cancer and provides potential diagnostic biomarkers for the disease.
Collapse
Affiliation(s)
- Junfei Zhang
- Shanxi Provincial People’s Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yuanxin Du
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yongcai Zhang
- First Hospital of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yanan Xu
- Medical Imaging Department of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yanying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yan Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Correspondence: Yan Li; Yanying Fan, Department of Pharmacology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, 56#, Xin Jian South Road, Taiyuan, Shanxi Province, 030001, People’s Republic of China, Email ;
| |
Collapse
|