1
|
Zheng YS, Zhang T, Song JY, Liang M, Liu YL, Xu ZG, He C, Guo ZY. Development of a Long-Acting Myeloid-Derived Growth Factor via Site-Specific PEGylation. Bioconjug Chem 2025; 36:993-1003. [PMID: 40289344 DOI: 10.1021/acs.bioconjchem.5c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Extracellular myeloid-derived growth factor (MYDGF) can improve organ repair. However, short in vivo half-life hampers its therapeutic application. Herein, we developed a long-acting MYDGF via site-specific PEGylation at its C-terminus. Bacterially overexpressed human MYDGF carrying a C-terminal Asn-Ala-Leu tripeptide motif was first ligated with a synthetic azido-functionalized Gly-Ile-Gly-Lys(N3) tetrapeptide linker via catalysis of [G238 V]BmAEP1, an engineered bamboo-derived asparaginyl endopeptidase (AEP)-type peptide ligase. Thereafter, the azido-functionalized MYDGF was efficiently conjugated with a commercially available dibenzocyclooctyne (DBCO)-functionalized linear PEG30000 via copper-free click chemistry. The site-specifically PEGylated MYDGF (PEG-MYDGF) retained high in vitro activity and showed a much longer in vivo half-life in mice compared with unmodified MYDGF. In diabetic mice, PEG-MYDGF significantly promoted wound healing after subcutaneous injection. Thus, PEG-MYDGF represents a long-acting biologic with therapeutic potential. The present enzymatic peptide ligation and copper-free click chemistry-based approach could be applied to other proteins for site-specific conjugation with various functional moieties.
Collapse
Affiliation(s)
- Yong-Shan Zheng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, China
| | - Teng Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ji-Yang Song
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingchan Liang
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cheng He
- Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Su SY, Zheng YS, Mao H, Zhao LB, Zhu MY, Yang YF, Li LT, Wang ZR, He C. Soluble expression of hMYDGF was improved by strain engineering and optimizations of fermentation strategies in Escherichia coli. Protein Expr Purif 2024; 224:106565. [PMID: 39111350 DOI: 10.1016/j.pep.2024.106565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Myeloid-derived growth factor (MYDGF) is a cytokine that exhibits a variety of biological functions. This study focused on utilizing BL21(DE3) strain engineering and fermentation strategies to achieve high-level expression of soluble human MYDGF (hMYDGF) in Escherichia coli. Initially, the E. coli expressing strain BL21(DE3) was engineered by deleting the IpxM gene and inserting the GROEL/S and Trigger factor genes. The engineered E. coli strain BL21(TG)/pT-MYDGF accumulated 3557.3 ± 185.6 μg/g and 45.7 ± 6.7 mg/L of soluble hMYDGF in shake flask fermentation, representing a 15.6-fold increase compared to the control strain BL21(DE3)/pT-MYDGF. Furthermore, the yield of hMYDGF was significantly enhanced by optimizing the fermentation conditions. Under optimized conditions, the 5L bioreactor yielded up to 2665.8 ± 164.3 μg/g and 407.6 ± 42.9 mg/L of soluble hMYDGF. The results indicate that the implementation of these optimization strategies could enhance the ratio and yield of soluble proteins expressed by E.coli, thereby meeting the demands of industrial production. This study employed sophisticated strategies to lay a solid foundation for the industrial application of hMYDGF.
Collapse
Affiliation(s)
- Si-Yuan Su
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Yong-Shan Zheng
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China; Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hui Mao
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Li-Bing Zhao
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Man-Yi Zhu
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Yu-Feng Yang
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Ling-Ting Li
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Zi-Ru Wang
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Cheng He
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China.
| |
Collapse
|
3
|
Zhu B, Liu S, David NL, Dion W, Doshi NK, Siegel LB, Amorim T, Andrews RE, Kumar GVN, Li H, Irfan S, Pesaresi T, Sharma AX, Sun M, Fazeli PK, Steinhauser ML. Evidence for ~12-h ultradian gene programs in humans. NPJ BIOLOGICAL TIMING AND SLEEP 2024; 1:4. [PMID: 39148626 PMCID: PMC11325440 DOI: 10.1038/s44323-024-00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024]
Abstract
Mice and many marine organisms exhibit ~12-h ultradian rhythms, however, direct evidence of ~12-h ultradian rhythms in humans is lacking. Here, we performed prospective, temporal transcriptome profiling of peripheral white blood cells from three healthy humans. All three participants independently exhibited robust ~12-h transcriptional rhythms in molecular programs involved in RNA and protein metabolism, with strong homology to circatidal gene programs previously identified in Cnidarian marine species.
Collapse
Affiliation(s)
- Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Natalie L. David
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Nandini K. Doshi
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Lauren B. Siegel
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Tânia Amorim
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Rosemary E. Andrews
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - G. V. Naveen Kumar
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Hanwen Li
- Department of Statistics, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Saad Irfan
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Tristan Pesaresi
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Ankit X. Sharma
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Michelle Sun
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Pouneh K. Fazeli
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Matthew L. Steinhauser
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
4
|
Chen P, Huang X, Li W, Wen W, Cao Y, Li J, Huang Y, Hu Y. Myeloid-derived growth factor in diseases: structure, function and mechanisms. Mol Med 2024; 30:103. [PMID: 39030488 PMCID: PMC11264862 DOI: 10.1186/s10020-024-00874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Myeloid-derived growth factor (MYDGF) is a novel secreted protein with potent antiapoptotic and tissue-repairing properties that is present in nearly 140 human tissues and cell lines, with the highest abundance in the oral epithelium and skin. Initially, MYDGF was found in bone marrow-derived monocytes and macrophages for cardioprotection and repair after myocardial infarction. Subsequent studies have shown that MYDGF plays an important role in other cardiovascular diseases (e.g., atherosclerosis and heart failure), metabolic disorders, renal disease, autoimmune/inflammatory disorders, and cancers. Although the underlying mechanisms have not been fully explored, the role of MYDGF in health and disease may involve cell apoptosis and proliferation, tissue repair and regeneration, anti-inflammation, and glycolipid metabolism regulation. In this review, we summarize the current progress in understanding the role of MYDGF in health and disease, focusing on its structure, function and mechanisms. The graphical abstract shows the current role of MYDGF in different organs and diseases (Fig. 1).
Collapse
Affiliation(s)
- Peng Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Weiwen Li
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Weixing Wen
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Jiahuan Li
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW2006, Australia.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation Research, Guangzhou, 510000, China.
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
| |
Collapse
|
5
|
Zheng YS, Liu YL, Xu ZG, He C, Guo ZY. Is myeloid-derived growth factor a ligand of the sphingosine-1-phosphate receptor 2? Biochem Biophys Res Commun 2024; 706:149766. [PMID: 38484568 DOI: 10.1016/j.bbrc.2024.149766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Secretory myeloid-derived growth factor (MYDGF) exerts beneficial effects on organ repair, probably via a plasma membrane receptor; however, the identity of the expected receptor has remained elusive. In a recent study, MYDGF was reported as an agonist of the sphingosine-1-phosphate receptor 2 (S1PR2), an A-class G protein-coupled receptor that mediates the functions of the signaling lipid, sphingosine-1-phosphate (S1P). In the present study, we conducted living cell-based functional assays to test whether S1PR2 is a receptor for MYDGF. In the NanoLuc Binary Technology (NanoBiT)-based β-arrestin recruitment assay and the cAMP-response element (CRE)-controlled NanoLuc reporter assay, S1P could efficiently activate human S1PR2 overexpressed in human embryonic kidney (HEK) 293T cells; however, recombinant human MYDGF, overexpressed either from Escherichia coli or HEK293 cells, had no detectable effect. Thus, the results demonstrated that human MYDGF is not a ligand of human S1PR2. Considering the high conservation of MYDGF and S1PR2 in evolution, MYDGF is also probably not a ligand of S1PR2 in other vertebrates.
Collapse
Affiliation(s)
- Yong-Shan Zheng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China; Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cheng He
- Shanghai Institute of Biological Products Co., Ltd., Shanghai, China.
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Xu J, Song Y, Ding S, Duan W, Xiang G, Wang Z. Myeloid-derived growth factor and its effects on cardiovascular and metabolic diseases. Cytokine Growth Factor Rev 2024; 76:77-85. [PMID: 38185568 DOI: 10.1016/j.cytogfr.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Myeloid-derived growth factor (MYDGF) is a paracrine protein produced by bone marrow-derived monocytes and macrophages. Current research shows that it has protective effects on the cardiovascular system, such as repairing heart tissue after myocardial infarction, enhancing cardiomyocyte proliferation, improving cardiac regeneration after myocardial injury, regulating proliferation and survival of endothelial cells, reducing endothelial cell damage, resisting pressure overload-induced heart failure, as well as protecting against atherosclerosis. Furthermore, regarding the metabolic diseases, MYDGF has effects of improving type 2 diabetes mellitus, relieving non-alcoholic fatty liver disease, alleviating glomerular diseases, and resisting osteoporosis. Herein, we will discuss the biology of MYDGF and its effects on cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Jinling Xu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Yanzhuo Song
- Nanchang University, Nanchang, Jiangxi 330031, China
| | - Sheng Ding
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Weizhe Duan
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, Hubei 430070, China.
| | - Zhongjing Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China.
| |
Collapse
|
7
|
Große-Segerath L, Follert P, Behnke K, Ettich J, Buschmann T, Kirschner P, Hartwig S, Lehr S, Korf-Klingebiel M, Eberhard D, Lehwald-Tywuschik N, Al-Hasani H, Knoefel WT, Heinrich S, Levkau B, Wollert KC, Scheller J, Lammert E. Identification of myeloid-derived growth factor as a mechanically-induced, growth-promoting angiocrine signal for human hepatocytes. Nat Commun 2024; 15:1076. [PMID: 38316785 PMCID: PMC10844291 DOI: 10.1038/s41467-024-44760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Recently, we have shown that after partial hepatectomy (PHx), an increased hepatic blood flow initiates liver growth in mice by vasodilation and mechanically-triggered release of angiocrine signals. Here, we use mass spectrometry to identify a mechanically-induced angiocrine signal in human hepatic endothelial cells, that is, myeloid-derived growth factor (MYDGF). We show that it induces proliferation and promotes survival of primary human hepatocytes derived from different donors in two-dimensional cell culture, via activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3). MYDGF also enhances proliferation of human hepatocytes in three-dimensional organoids. In vivo, genetic deletion of MYDGF decreases hepatocyte proliferation in the regenerating mouse liver after PHx; conversely, adeno-associated viral delivery of MYDGF increases hepatocyte proliferation and MAPK signaling after PHx. We conclude that MYDGF represents a mechanically-induced angiocrine signal and that it triggers growth of, and provides protection to, primary mouse and human hepatocytes.
Collapse
Affiliation(s)
- Linda Große-Segerath
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tobias Buschmann
- Institute for Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Philip Kirschner
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225, Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225, Düsseldorf, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Daniel Eberhard
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
| | - Nadja Lehwald-Tywuschik
- Department of General, Visceral, Thorax and Pediatric Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225, Düsseldorf, Germany
| | - Wolfram Trudo Knoefel
- Department of General, Visceral, Thorax and Pediatric Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Stefan Heinrich
- Department of General, Visceral and Transplantation Surgery, University Hospital Center Mainz, 55131, Mainz, Germany
| | - Bodo Levkau
- Institute for Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany.
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| |
Collapse
|
8
|
An injectable conductive hydrogel restores electrical transmission at myocardial infarct site to preserve cardiac function and enhance repair. Bioact Mater 2023; 20:339-354. [PMID: 35784639 PMCID: PMC9210214 DOI: 10.1016/j.bioactmat.2022.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial infarction (MI) leads to massive cardiomyocyte death and deposition of collagen fibers. This fibrous tissue disrupts electrical signaling in the myocardium, leading to cardiac systolic and diastolic dysfunction, as well as arrhythmias. Conductive hydrogels are a promising therapeutic strategy for MI. Here, we prepared a highly water-soluble conductive material (GP) by grafting polypyrrole (PPy) onto non-conductive gelatin. This component was added to the gel system formed by the Schiff base reaction between oxidized xanthan gum (OXG) and gelatin to construct an injectable conductive hydrogel. The prepared self-healing OGGP3 (3 wt% GP) hydrogel had good biocompatibility, elastic modulus, and electrical conductivity that matched the natural heart. The prepared biomaterials were injected into the rat myocardial scar tissue 2 days after MI. We found that the cardiac function of the rats treated with OGGP3 was improved, making it more difficult to induce arrhythmias. The electrical resistivity of myocardial fibrous tissue was reduced, and the conduction velocity of myocardial tissue was increased. Histological analysis showed reduced infarct size, increased left ventricular wall thickness, increased vessel density, and decreased inflammatory response in the infarcted area. Our findings clearly demonstrate that the OGGP3 hydrogel attenuates ventricular remodeling and inhibits infarct dilation, thus showing its potential for the treatment of MI. An injectable self-healing conductive hydrogel was synthesized for the treatment of myocardial infarction (MI). The OGGP3 hydrogel had elastic modulus (20.77 kPa) and conductivity (5.52 × 10−4 S/cm) that matched the natural heart. The hydrogel could protect cardiac function, reduce arrhythmia susceptibility and the resistivity of cardiac scar tissue. The hydrogel could increase left ventricular wall thickness, reduce infarct size and cardiac fibrosis in the infarcted area. The hydrogel could promote the expression level of cardiac-specific markers, induce angiogenesis, and reduce inflammation.
Collapse
|
9
|
Micsonai A, Moussong É, Wien F, Boros E, Vadászi H, Murvai N, Lee YH, Molnár T, Réfrégiers M, Goto Y, Tantos Á, Kardos J. BeStSel: webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res 2022; 50:W90-W98. [PMID: 35544232 PMCID: PMC9252784 DOI: 10.1093/nar/gkac345] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Circular dichroism (CD) spectroscopy is widely used to characterize the secondary structure composition of proteins. To derive accurate and detailed structural information from the CD spectra, we have developed the Beta Structure Selection (BeStSel) method (PNAS, 112, E3095), which can handle the spectral diversity of β-structured proteins. The BeStSel webserver provides this method with useful accessories to the community with the main goal to analyze single or multiple protein CD spectra. Uniquely, BeStSel provides information on eight secondary structure components including parallel β-structure and antiparallel β-sheets with three different groups of twist. It overperforms any available method in accuracy and information content, moreover, it is capable of predicting the protein fold down to the topology/homology level of the CATH classification. A new module of the webserver helps to distinguish intrinsically disordered proteins by their CD spectrum. Secondary structure calculation for uploaded PDB files will help the experimental verification of protein MD and in silico modelling using CD spectroscopy. The server also calculates extinction coefficients from the primary sequence for CD users to determine the accurate protein concentrations which is a prerequisite for reliable secondary structure determination. The BeStSel server can be freely accessed at https://bestsel.elte.hu.
Collapse
Affiliation(s)
- András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Éva Moussong
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Frank Wien
- Synchrotron SOLEIL, Gif-sur-Yvette 91192, France
| | - Eszter Boros
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Nikoletta Murvai
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Republic of Korea.,Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.,Graduate School of Analytical Science and Technology (GRAST), Chungnam National University (CNU), Daejeon 34134, Republic of Korea
| | - Tamás Molnár
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Matthieu Réfrégiers
- Synchrotron SOLEIL, Gif-sur-Yvette 91192, France.,Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | - Ágnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| |
Collapse
|
10
|
Du P, Wang T, Wang H, Yang M, Yin H. Mucin-fused myeloid-derived growth factor (MYDGF164) exhibits a prolonged half-life and alleviates fibrosis in CKD. Br J Pharmacol 2022; 179:4136-4156. [PMID: 35393682 DOI: 10.1111/bph.15851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/19/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Currently, no effective therapy is available to completely stop or reverse CKD progression targeting its key feature, loss of peritubular capillaries (PTCs) leading to interstitial fibrosis, while Myeloid-derived growth factor (MYDGF) with tissue-repairing activities enlightened its therapeutic potential. However, the extremely short circulatory lifetime (15 minutes) restricts its applications. EXPERIMENTAL APPROACH We selected a tandem repeated (TR) region of human CD164 as a carrier to fuse with MYDGF and investigated the biophysical and pharmacokinetic changes. The MYDGF164 bioactivities were validated in HUVECs and assessed in HK-2 cells. Then, we investigated its efficacy in unilateral ureteral obstruction (UUO)-treated mice and adenine-induced CKD rats. KEY RESULTS MYDGF164 was intensively modified with sialoglycans, improving its resistance to serum proteases and increasing hydrodynamic radius. The half-life of MYDGF164 was significantly prolonged. MYDGF164 retained the original cell proliferation, anti-apoptosis, and tubulogenesis activities. It selectively stimulated the proliferation in endothelial and epithelial cells through phosphorylating MAPK1/3. MYDGF164 alleviated capillary rarefaction, hypoxia, renal fibrosis, and tubular atrophy in the UUO mice and adenine-induced CKD rats. Moreover, MYDGF164 restored renal function with normalized creatinine and urea levels in adenine-induced CKD rats. Histopathology and immunohistochemistry results revealed that the protection of MYDGF164 was related to its cell-proliferative, anti-apoptosis, and angiogenesis activities. CONCLUSIONS AND IMPLICATIONS This study is the first successful example of using a tandem repeated region of hCD164 as a cargo protein for the pharmacokinetic improvement of therapeutic proteins. Our findings also suggest the potential of MYDGF164 in alleviating renal fibrosis in CKD.
Collapse
Affiliation(s)
- Pei Du
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Meijia Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Cell Tech Medical Research Institute CO., LTD
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Osorio D, Zhong Y, Li G, Xu Q, Yang Y, Tian Y, Chapkin RS, Huang JZ, Cai JJ. scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation. PATTERNS (NEW YORK, N.Y.) 2022; 3:100434. [PMID: 35510185 PMCID: PMC9058914 DOI: 10.1016/j.patter.2022.100434] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/13/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022]
Abstract
Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However, systematic KO experiments targeting a large number of genes are usually prohibitive due to the limit of experimental and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool that enables systematic KO investigation of gene function using data from single-cell RNA sequencing (scRNA-seq). In scTenifoldKnk analysis, a gene regulatory network (GRN) is first constructed from scRNA-seq data of wild-type samples, and a target gene is then virtually deleted from the constructed GRN. Manifold alignment is used to align the resulting reduced GRN to the original GRN to identify differentially regulated genes, which are used to infer target gene functions in analyzed cells. We demonstrate that the scTenifoldKnk-based virtual KO analysis recapitulates the main findings of real-animal KO experiments and recovers the expected functions of genes in relevant cell types.
Collapse
Affiliation(s)
- Daniel Osorio
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Yan Zhong
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai 200062, China
| | - Guanxun Li
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Qian Xu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Yongjian Yang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Robert S. Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jianhua Z. Huang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Xu X, Li Y, Shi L, He K, Sun Y, Ding Y, Meng B, Zhang J, Xiang L, Dong J, Liu M, Zhang J, Xiang L, Xiang G. Myeloid-derived growth factor (MYDGF) protects bone mass through inhibiting osteoclastogenesis and promoting osteoblast differentiation. EMBO Rep 2022; 23:e53509. [PMID: 35068044 PMCID: PMC8892248 DOI: 10.15252/embr.202153509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Whether bone marrow regulates bone metabolism through endocrine and paracrine mechanism remains largely unknown. Here, we found that (i) myeloid cell-specific myeloid-derived growth factor (MYDGF) deficiency decreased bone mass and bone strength in young and aged mice; (ii) myeloid cell-specific MYDGF restoration prevented decreases in bone mass and bone strength in MYDGF knockout mice; moreover, myeloid cell-derived MYDGF improved the progress of bone defects healing, prevented ovariectomy (OVX)-induced bone loss and age-related osteoporosis; (iii) MYDGF inhibited osteoclastogenesis and promoted osteoblast differentiation in vivo and in vitro; and (iv) PKCβ-NF-κB and MAPK1/3-STAT3 pathways were involved in the regulation of MYDGF on bone metabolism. Thus, we concluded that myeloid cell-derived MYDGF is a positive regulator of bone homeostasis by inhibiting bone resorption and promoting bone formation. MYDGF may become a potential novel therapeutic drug for osteoporosis, and bone marrow may become a potential therapeutic target for bone metabolic disorders.
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Yixiang Li
- Department of Hematology and Medical OncologySchool of MedicineEmory UniversityAtlantaGAUSA
| | - Lingfeng Shi
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Kaiyue He
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Ying Sun
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Yan Ding
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Biying Meng
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Jiajia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Lin Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Jing Dong
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Min Liu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Junxia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Lingwei Xiang
- Centers for Surgery and Public HealthBrigham and Women's HospitalBostonMAUSA
| | - Guangda Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
13
|
Proteome profiling of human placenta reveals developmental stage-dependent alterations in protein signature. Clin Proteomics 2021; 18:18. [PMID: 34372761 PMCID: PMC8351416 DOI: 10.1186/s12014-021-09324-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Placenta is a complex organ that plays a significant role in the maintenance of pregnancy health. It is a dynamic organ that undergoes dramatic changes in growth and development at different stages of gestation. In the first-trimester, the conceptus develops in a low oxygen environment that favors organogenesis in the embryo and cell proliferation and angiogenesis in the placenta; later in pregnancy, higher oxygen concentration is required to support the rapid growth of the fetus. This oxygen transition, which appears unique to the human placenta, must be finely tuned through successive rounds of protein signature alterations. This study compares placental proteome in normal first-trimester (FT) and term human placentas (TP). Methods Normal human first-trimester and term placental samples were collected and differentially expressed proteins were identified using two-dimensional liquid chromatography-tandem mass spectrometry. Results Despite the overall similarities, 120 proteins were differently expressed in first and term placentas. Out of these, 72 were up-regulated and 48 were down-regulated in the first when compared with the full term placentas. Twenty out of 120 differently expressed proteins were sequenced, among them seven showed increased (GRP78, PDIA3, ENOA, ECH1, PRDX4, ERP29, ECHM), eleven decreased (TRFE, ALBU, K2C1, ACTG, CSH2, PRDX2, FABP5, HBG1, FABP4, K2C8, K1C9) expression in first-trimester compared to the full-term placentas and two proteins exclusively expressed in first-trimester placentas (MESD, MYDGF). Conclusion According to Reactome and PANTHER softwares, these proteins were mostly involved in response to chemical stimulus and stress, regulation of biological quality, programmed cell death, hemostatic and catabolic processes, protein folding, cellular oxidant detoxification, coagulation and retina homeostasis. Elucidation of alteration in protein signature during placental development would provide researchers with a better understanding of the critical biological processes of placentogenesis and delineate proteins involved in regulation of placental function during development. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09324-y.
Collapse
|
14
|
Houseright RA, Miskolci V, Mulvaney O, Bortnov V, Mosher DF, Rindy J, Bennin DA, Huttenlocher A. Myeloid-derived growth factor regulates neutrophil motility in interstitial tissue damage. J Cell Biol 2021; 220:212198. [PMID: 34047769 PMCID: PMC8167897 DOI: 10.1083/jcb.202103054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophil recruitment to tissue damage is essential for host defense but can also impede tissue repair. The cues that differentially regulate neutrophil responses to tissue damage and infection remain unclear. Here, we report that the paracrine factor myeloid-derived growth factor (MYDGF) is induced by tissue damage and regulates neutrophil motility to damaged, but not infected, tissues in zebrafish larvae. Depletion of MYDGF impairs wound healing, and this phenotype is rescued by depleting neutrophils. Live imaging and photoconversion reveal impaired neutrophil reverse migration and inflammation resolution in mydgf mutants. We found that persistent neutrophil inflammation in tissues of mydgf mutants was dependent on the HIF-1α pathway. Taken together, our data suggest that MYDGF is a damage signal that regulates neutrophil interstitial motility and inflammation through a HIF-1α pathway in response to tissue damage.
Collapse
Affiliation(s)
- Ruth A Houseright
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Veronika Miskolci
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Oscar Mulvaney
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - Valeriu Bortnov
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Julie Rindy
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - David A Bennin
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
15
|
Li S, Mao L, Zhao F, Yan J, Song G, Luo Q, Li Z. C19orf10 promotes malignant behaviors of human bladder carcinoma cells via regulating the PI3K/AKT and Wnt/β-catenin pathways. J Cancer 2021; 12:4341-4354. [PMID: 34093834 PMCID: PMC8176426 DOI: 10.7150/jca.56993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Chromosome 19 open reading frame 10 (C19orf10) is a myocardial repair mediator overexpressed in hepatocellular carcinoma. However, its function and clinical value in bladder cancer (BC) have not been reported. This study aimed to investigate the role of C19orf10 in BC progression and explore underlying mechanisms. Methods: C19orf10 expression in BC tissues and human BC cell lines was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The correlation between the C19orf10 protein levels determined by immunohistochemical staining and the clinicopathological characteristics of 192 BC patients was evaluated. BC cell lines SW780, J82 and UMUC-3 were transfected with small interfering RNA (siRNA) targeting C19orf10 or plasmids overexpressing C19orf10. Cell proliferation, migration and invasion were measured by Cell Counting Kit-8, Colony formation, EdU incorporation and Transwell assays. The effect of small hairpin RNA (shRNA)-mediated stable C19orf10 knockdown on tumor formation was assessed in a xenograft mouse model. The expressions of epithelial-mesenchymal transition (EMT) markers, PI3K/AKT and Wnt/β-catenin signaling pathways-related molecules were determined by western blot assay. Results: C19orf10 was significantly upregulated in the BC tissues and a panel of human BC cell lines. High expression of C19orf10 was positively associated with malignant behaviors in BC. C19orf10 knockdown inhibited cell proliferation, migration, and invasion in SW780 and J82 cells, while C19orf10 overexpression in UMUC-3 cells resulted in opposite effects. In addition, C19orf10 silence in SW780 cells suppressed tumor growth in xenograft mice. Moreover, C19orf10 promotes the malignant behaviors and EMT of human bladder carcinoma cells via regulating the PI3K/AKT and Wnt/β-catenin pathways. Conclusion: C19orf10 is overexpressed in BC and functions as an oncogenic driver that promotes cell proliferation and metastasis, and induces EMT of BC cells via mechanisms involving activation of the PI3K/AKT and Wnt/β-catenin pathways. This study provides valuable insight on targeting C19orf10 for BC treatment.
Collapse
Affiliation(s)
- Shi Li
- College of Bioengineering, Chongqing University, Chongqing 400030, P. R. China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Longyi Mao
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Fangrong Zhao
- College of Chemical and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, P.R. China
| | - Juan Yan
- College of Chemical and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, P.R. China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Chongqing 400030, P. R. China
| | - Qing Luo
- College of Bioengineering, Chongqing University, Chongqing 400030, P. R. China
| | - Zesong Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
16
|
Liu HY, Zhang SQ, Cui MC, Gao LH, Zhao H, Wang KZ. pH-Sensitive Near-IR Emitting Dinuclear Ruthenium Complex for Recognition, Two-Photon Luminescent Imaging, and Subcellular Localization of Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:5420-5427. [PMID: 35021715 DOI: 10.1021/acsabm.0c00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A dinuclear Ru(II) complex of [(bpy)2Ru(Hdip)Ru(H2bip)](ClO4)4 {bpy is 2,2'-bipyridine, Hdip is 2-(2,6-di(pyridin-2-yl)-pyridin-4-yl)-1H-imidazo[4,5-f]-[1,10]phenanthroline, and H2bip is 2,6-bis(imidazole-2-yl)-pyridine} was synthesized and characterized by elemental analysis, mass spectrometry, and 1H NMR spectroscopy. Spectrophotometric pH titrations in aqueous buffer and in vitro cell experiments indicated the response ability of the complex to pH fluctuations in the physiological pH range (6.0-8.0). The complex was found to be capable of differentiating live HeLa cells from healthy HEK293 cells by selectively accumulating in lysosomes of the HeLa cells. The low cytotoxicity (IC50 > 100 μM), a large Stokes shift (∼200 nm), strong near-IR emission at ∼700 nm, a relatively long excited state lifetime, high photostability, and solubility make this complex considerably promising in real-time tracking and visualization of lysosomes in live cells. More interestingly, the tumor cell-specific two-photon luminescent imaging properties also endow this Ru complex with potential for applications in high-resolution tumor imaging and luminescence-guided tumor resection.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Si-Qi Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng-Chao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Li-Hua Gao
- School of Science, Beijing Technology and Business University, Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry, Beijing 100048, China
| | - Hua Zhao
- School of Science, Beijing Technology and Business University, Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry, Beijing 100048, China
| | - Ke-Zhi Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|