1
|
Zhao Y, Shen L, Yan R, Liu L, Guo P, Liu S, Chen Y, Yuan Z, Gong W, Ji J. Identification of Candidate Lung Function-Related Plasma Proteins to Pinpoint Drug Targets for Common Pulmonary Diseases: A Comprehensive Multi-Omics Integration Analysis. Curr Issues Mol Biol 2025; 47:167. [PMID: 40136421 PMCID: PMC11941423 DOI: 10.3390/cimb47030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
The genome-wide association studies (GWAS) of lung disease and lung function indices suffer from challenges to be transformed into clinical interventions, due to a lack of knowledge on the molecular mechanism underlying the GWAS associations. A proteome-wide association study (PWAS) was first performed to identify candidate proteins by integrating two independent largest protein quantitative trait loci datasets of plasma proteins and four large-scale GWAS summary statistics of lung function indices (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC and peak expiratory flow (PEF)), followed by enrichment analysis to reveal the underlying biological processes and pathways. Then, with a discovery dataset, we conducted Mendelian randomization (MR) and Bayesian colocalization analyses to select potentially causal proteins, followed by a replicated MR analysis with an independent dataset. Mediation analysis was also performed to explore the possible mediating role of these indices on the association between proteins and two common lung diseases (chronic obstructive pulmonary disease, COPD and Asthma). We finally prioritized the potential drug targets. A total of 210 protein-lung function index associations were identified by PWAS, and were significantly enriched in the pulmonary fibrosis and lung tissue repair. Subsequent MR and colocalization analysis identified 59 causal protein-index pairs, among which 42 pairs were replicated. Further mediation analysis identified 3 potential pathways from proteins to COPD or asthma mediated by FEV1/FVC. The mediated proportion ranges from 68.4% to 82.7%. Notably, 24 proteins were reported as druggable targets in Drug Gene Interaction Database, among which 8 were reported to interact with drugs, including FKBP4, GM2A, COL6A3, MAPK3, SERPING1, XPNPEP1, DNER, and FER. Our study identified the crucial plasma proteins causally associated with lung functions and highlighted potential mediating mechanism underlying the effect of proteins on common lung diseases. These findings may have an important insight into pathogenesis and possible future therapies of lung disorders.
Collapse
Affiliation(s)
- Yansong Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Wenhua West Road, Jinan 250012, China; (Y.Z.); (L.S.); (R.Y.); (P.G.); (S.L.); (Y.C.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Lujia Shen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Wenhua West Road, Jinan 250012, China; (Y.Z.); (L.S.); (R.Y.); (P.G.); (S.L.); (Y.C.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Ran Yan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Wenhua West Road, Jinan 250012, China; (Y.Z.); (L.S.); (R.Y.); (P.G.); (S.L.); (Y.C.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Lu Liu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA;
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping Guo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Wenhua West Road, Jinan 250012, China; (Y.Z.); (L.S.); (R.Y.); (P.G.); (S.L.); (Y.C.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Shuai Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Wenhua West Road, Jinan 250012, China; (Y.Z.); (L.S.); (R.Y.); (P.G.); (S.L.); (Y.C.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Yingxuan Chen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Wenhua West Road, Jinan 250012, China; (Y.Z.); (L.S.); (R.Y.); (P.G.); (S.L.); (Y.C.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Wenhua West Road, Jinan 250012, China; (Y.Z.); (L.S.); (R.Y.); (P.G.); (S.L.); (Y.C.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Weiming Gong
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Wenhua West Road, Jinan 250012, China; (Y.Z.); (L.S.); (R.Y.); (P.G.); (S.L.); (Y.C.); (Z.Y.)
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Jiadong Ji
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
- Department of Statistics, School of Mathematics, Shandong University, Shanda South Street, Jinan 250100, China
| |
Collapse
|
2
|
Guibin D, Xiaolan S, Wei Z, Xiaoli L, Liu D. Prediction of iodine-125 seed implantation efficacy in lung cancer using an enhanced CT-based nomogram model. PLoS One 2024; 19:e0313570. [PMID: 39546539 PMCID: PMC11567524 DOI: 10.1371/journal.pone.0313570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Lung cancer, a leading cause of death, sees variable outcomes with iodine-125 seed implantation. Predictive tools are lacking, complicating clinical decisions. This study integrates radiomics and clinical features to develop a predictive model, advancing personalized treatment. OBJECTIVE To construct a nomogram model combining enhanced CT image features and general clinical characteristics to evaluate the efficacy of radioactive iodine-125 seed implantation in lung cancer treatment. METHODS Patients who underwent lung iodine-125 seed implantation at the Nuclear Medicine Department of Xiling Campus, Yichang Central People's Hospital from January 1, 2018, to January 31, 2024, were randomly divided into a training set (73 cases) and a test set (31 cases). Radiomic features were extracted from the enhanced CT images, and optimal clinical factors were analyzed to construct clinical, radiomics, and combined models. The best model was selected and validated for its role in assessing the efficacy of iodine-125 seed implantation in lung cancer patients. RESULTS Three clinical features and five significant radiomic features were successfully selected, and a combined nomogram model was constructed to evaluate the efficacy of iodine-125 seed implantation in lung cancer patients. The AUC values of the model in the training and test sets were 0.95 (95% CI: 0.91-0.99) and 0.83 (95% CI: 0.69-0.98), respectively. The calibration curve demonstrated good agreement between predicted and observed values, and the decision curve indicated that the combined model outperformed the clinical or radiomics model across the majority of threshold ranges. CONCLUSION A combined nomogram model was successfully developed to assess the efficacy of iodine-125 seed implantation in lung cancer patients, demonstrating good clinical predictive performance and high clinical value.
Collapse
Affiliation(s)
- Deng Guibin
- The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang, China
| | - Shen Xiaolan
- The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang, China
| | - Zhang Wei
- Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Lan Xiaoli
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Dehui Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People’s Hospital, Yichang, China
| |
Collapse
|
3
|
Liu R, Yang G, Guo H, Chen F, Lu S, Zhu H. Roles of naïve CD4 + T cells and their differentiated subtypes in lung adenocarcinoma and underlying potential regulatory pathways. J Transl Med 2024; 22:781. [PMID: 39175022 PMCID: PMC11340134 DOI: 10.1186/s12967-024-05530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Naïve CD4+ T cells and their differentiated counterparts play a significant regulatory role in the tumor immune microenvironment, yet their effects on lung adenocarcinoma (LUAD) are not fully understood. METHODS We utilized Mendelian randomization to assess the causal association between naïve CD4+ T cells and LUAD. Employing a modified single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm with The Cancer Genome Atlas (TCGA) database, we determined the infiltration levels of naïve CD4+ T cells and their differentiation subtypes and investigated their correlation with clinical characteristics. Potential regulatory pathways of T helper cells were identified through Mantel tests and Kyoto Encyclopedia of Genes and Genomes (KEGG) database enrichment analysis. RESULTS Mendelian randomization analysis revealed an inhibitory effect of naïve CD4+ T cells on LUAD (false discovery rate < 0.05), which was corroborated by observational experiments using TCGA database. Specifically, T helper cell type 2 demonstrated a promotive effect on LUAD in terms of overall, disease-free, and progression-free survival (p < 0.05). Moreover, regulatory T cells exhibited a protective effect on LUAD in terms of disease-specific survival (p < 0.01). Concurrently, we explored the overall impact of naïve CD4+ T cell differentiation subtypes on LUAD, revealing upregulation in pathways such as neutrophil degranulation, MAPK family signaling pathways, and platelet activation, signaling, and aggregation. CONCLUSION Naïve CD4+ T cells and their differentiated counterparts play essential regulatory roles in the tumor immune microenvironment, demonstrating bidirectionality in their effects.Thus, elucidating the mechanisms and developing novel cell differentiation-inducing agents will benefit anti-cancer therapy.
Collapse
Affiliation(s)
- Runze Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Guangjian Yang
- Department of Respiratory Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hongbo Guo
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Feihu Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Shuangqing Lu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
4
|
Kyaw TW, Tsai MK, Wen CP, Shu CC, Su TC, Wu X, Gao W. Impaired lung function and lung cancer risk in 461 183 healthy individuals: a cohort study. BMJ Open Respir Res 2024; 11:e001936. [PMID: 38719501 PMCID: PMC11086288 DOI: 10.1136/bmjresp-2023-001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND It has been known that smoking and various lung diseases including lung cancer can cause lung function impairment. However, the impact of different types of lung function impairments, such as preserved ratio impaired spirometry (PRISm) and airflow obstruction (AO), on the incidence and mortality of lung cancer in both general and never-smoker populations remains unclear. We wished to examine the effect of lung function impairments on lung cancer risks. METHODS This was a retrospective cohort study (1 January 1994 to 31 December 2017) of individuals from a health surveillance programme in Taiwan who underwent baseline spirometry tests at the entry point. PRISm was defined as an FEV1/FVC (forced expiratory volume in 1 s/forced vital capacity) ratio >0.7 and FEV1 <0.8, while AO was defined as an FEV1/FVC ratio <0.7. Cox proportional hazards models and cubic spline curves were used to examine the associations between lung function impairments and lung cancer risks. RESULTS The study included 461,183 individuals, of whom 14.3% had PRISm and 7.9% had AO. A total of 4038 cases of lung cancer and 3314 lung cancer-related deaths were identified during the 23 years of follow-up. Individuals with PRISm and AO exhibited a higher risk of lung cancer incidence and mortality compared with those with normal lung function. The adjusted HRs and 95% CIs were 1.14 (1.03 to 1.26) and 1.23 (1.10 to 1.37) in the overall cohort, and 1.08 (0.93 to 1.24), and 1.23 (1.05 to 1.45) in the never-smoker cohort. The risks of both developing and dying of lung cancer increased with the severity levels of lung function impairments and lower FEV1 values. CONCLUSION Impaired lung function is associated with increased risks of developing lung cancer and subsequent mortality. The study highlights the importance of considering lung function in lung cancer screening for better candidate selection.
Collapse
Affiliation(s)
- Thu Win Kyaw
- Global Health and Health Security Program, School of Public Health, Taipei Medical University College of Public Health and Nutrition, Taipei, Taiwan
| | - Min-Kuang Tsai
- Global Health and Health Security Program, School of Public Health, Taipei Medical University College of Public Health and Nutrition, Taipei, Taiwan
| | - Chi Pang Wen
- National Health Research Institutes, Zhunan, Taiwan
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University, Taipei, Taiwan
| | - Ta-Chen Su
- Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Xifeng Wu
- School of Public Health, Zhejiang Medical University, Hangzhou, China
| | - Wayne Gao
- Global Health and Health Security Program, School of Public Health, Taipei Medical University College of Public Health and Nutrition, Taipei, Taiwan
| |
Collapse
|
5
|
Zhang D, Liu H, Zhao F, Guo P, Li J, Lu T, Li Z, Li S. Exploring the relationship between Treg-mediated risk in COPD and lung cancer through Mendelian randomization analysis and scRNA-seq data integration. BMC Cancer 2024; 24:453. [PMID: 38605291 PMCID: PMC11010300 DOI: 10.1186/s12885-024-12076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Evidence from observational studies suggests an association between chronic obstructive pulmonary disease (COPD) and lung cancer. The potential interactions between the immune system and the lungs may play a causative role in COPD and lung cancer and offer therapeutic prospects. However, the causal association and the immune-mediated mechanisms between COPD and lung cancer remain to be determined. METHODS We employed a two-sample Mendelian randomization (MR) approach to investigate the causal association between COPD and lung cancer. Additionally, we examined whether immune cell signals were causally related to lung cancer, as well as whether COPD was causally associated with immune cell signals. Furthermore, through two-step Mendelian randomization, we investigated the mediating effects of immune cell signals in the causal association between COPD and lung cancer. Leveraging publicly available genetic data, our analysis included 468,475 individuals of European ancestry with COPD, 492,803 individuals of European ancestry with lung cancer, and 731 immune cell signatures of European ancestry. Additionally, we conducted single-cell transcriptome sequencing analysis on COPD, lung cancer, and control samples to validate our findings. FINDINGS We found a causal association between COPD and lung cancer (odds ratio [OR] = 1.63, 95% confidence interval [CI] = 1.31-2.02, P-value < 0.001). We also observed a causal association between COPD and regulatory T cells (odds ratio [OR] = 1.19, 95% confidence interval [CI] = 1.01-1.40, P-value < 0.05), as well as a causal association between regulatory T cells and lung cancer (odds ratio [OR] = 1.02, 95% confidence interval [CI] = 1.002-1.045, P-value < 0.05). Furthermore, our two-step Mendelian randomization analysis demonstrated that COPD is associated with lung cancer through the mediation of regulatory T cells. These findings were further validated through single-cell sequencing analysis, confirming the mediating role of regulatory T cells in the association between COPD and lung cancer. INTERPRETATION As far as we are aware, we are the first to combine single-celled immune cell data with two-sample Mendelian randomization. Our analysis indicates a causal association between COPD and lung cancer, with regulatory T cells playing an intermediary role.
Collapse
Affiliation(s)
- Dengfeng Zhang
- Provincial Center for Clinical Laboratories,Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haitao Liu
- College of Life Science, Inner Mongolia University, Hohhot, China
| | - Fangchao Zhao
- Provincial Center for Clinical Laboratories,Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pengfei Guo
- Provincial Center for Clinical Laboratories,Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- Provincial Center for Clinical Laboratories,Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianxing Lu
- Provincial Center for Clinical Laboratories,Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhirong Li
- Provincial Center for Clinical Laboratories,Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Shujun Li
- Provincial Center for Clinical Laboratories,Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
6
|
de Biase MS, Massip F, Wei TT, Giorgi FM, Stark R, Stone A, Gladwell A, O'Reilly M, Schütte D, de Santiago I, Meyer KB, Markowetz F, Ponder BAJ, Rintoul RC, Schwarz RF. Smoking-associated gene expression alterations in nasal epithelium reveal immune impairment linked to lung cancer risk. Genome Med 2024; 16:54. [PMID: 38589970 PMCID: PMC11000304 DOI: 10.1186/s13073-024-01317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death in the world. In contrast to many other cancers, a direct connection to modifiable lifestyle risk in the form of tobacco smoke has long been established. More than 50% of all smoking-related lung cancers occur in former smokers, 40% of which occur more than 15 years after smoking cessation. Despite extensive research, the molecular processes for persistent lung cancer risk remain unclear. We thus set out to examine whether risk stratification in the clinic and in the general population can be improved upon by the addition of genetic data and to explore the mechanisms of the persisting risk in former smokers. METHODS We analysed transcriptomic data from accessible airway tissues of 487 subjects, including healthy volunteers and clinic patients of different smoking statuses. We developed a computational model to assess smoking-associated gene expression changes and their reversibility after smoking is stopped, comparing healthy subjects to clinic patients with and without lung cancer. RESULTS We find persistent smoking-associated immune alterations to be a hallmark of the clinic patients. Integrating previous GWAS data using a transcriptional network approach, we demonstrate that the same immune- and interferon-related pathways are strongly enriched for genes linked to known genetic risk factors, demonstrating a causal relationship between immune alteration and lung cancer risk. Finally, we used accessible airway transcriptomic data to derive a non-invasive lung cancer risk classifier. CONCLUSIONS Our results provide initial evidence for germline-mediated personalized smoke injury response and risk in the general population, with potential implications for managing long-term lung cancer incidence and mortality.
Collapse
Affiliation(s)
- Maria Stella de Biase
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
| | - Florian Massip
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
- MINES Paris, PSL University, CBIO-Centre for Computational Biology, 60 bd Saint Michel, 75006, Paris, France.
- Institut Curie, Cedex, Paris, France.
- INSERM, U900, Cedex, Paris, France.
| | - Tzu-Ting Wei
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Federico M Giorgi
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rory Stark
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
| | - Amanda Stone
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK
| | - Amy Gladwell
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK
| | - Martin O'Reilly
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: MRC Toxicology Unit, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Daniel Schütte
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Am Weyertal 115C, Gebäude 74, 50931, Cologne, Germany
| | - Ines de Santiago
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: e-therapeutics plc, 17 Blenheim Office Park, Long Hanborough, OX29 8LN, UK
| | - Kerstin B Meyer
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: The Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
| | - Bruce A J Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK.
| | - Robert C Rintoul
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK.
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK.
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, CB2 0XZ, UK.
| | - Roland F Schwarz
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Am Weyertal 115C, Gebäude 74, 50931, Cologne, Germany.
| |
Collapse
|
7
|
Luan J, Zhang F, Suo L, Zhang W, Li Y, Yu X, Liu B, Cao H. Analyzing lung cancer risks in patients with impaired pulmonary function through characterization of gut microbiome and metabolites. BMC Pulm Med 2024; 24:1. [PMID: 38166904 PMCID: PMC10759599 DOI: 10.1186/s12890-023-02825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lung cancer (LC) is one of the most devastating diseases worldwide, there is growing studies confirm the role of impaired lung function in LC susceptibility. Moreover, gut microbiota dysbiosis is associated with LC severity. Whether alterations in gut microbiota and metabolites are associated with long-term lung dysfunction in LC patients remain unclear. Our study aimed to analyze the risk factors in LC patients with impaired pulmonary function based on the characteristics of the gut microbiome and metabolites. METHODS Fecal samples from 55 LC patients and 28 benign pulmonary nodules patients were collected. Pulmonary ventilation function was graded according to the American Thoracic Society/ European Respiratory Society (ATS/ERS) method. LC patients were divided into 3 groups, including 20 patients with normal lung ventilation, 23 patients with mild pulmonary ventilation dysfunction and 12 patients with moderate or above pulmonary ventilation dysfunction. The fecal samples were analyzed using 16 S rRNA gene amplicon sequencing and metabolomics. RESULTS The gut microbiome composition between LC patients and benign pulmonary nodules patients presented clearly differences based on Partial Least Squares Discriminant Analysis (PLS-DA). Pulmonary ventilation function was positively correlated with LC tumor stage, the richness and diversity of the gut microbiota in LC patients with moderate or above pulmonary ventilation dysfunction increased significantly, characterized by increased abundance of Subdoligranulum and Romboutsia. The metabolomics analysis revealed 69 differential metabolites, which were mainly enriched in beta-Alanine metabolism, styrene degradation and pyrimidine metabolism pathway. The area under the curve (AUC) combining the gut microbiome and metabolites was 90% (95% CI: 79-100%), indicating that the two species and four metabolites might regarded as biomarkers to assess the prediction of LC patients with impaired pulmonary function. CONCLUSIONS Our results showed that microbiome and metabolomics analyses provide important candidate to be used as clinically diagnostic biomarkers and therapeutic targets related to lung cancer with impaired pulmonary function.
Collapse
Affiliation(s)
- Jiahui Luan
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Fuxin Zhang
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Lijun Suo
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Wei Zhang
- Department of General Thoracic Surgery, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Yige Li
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaofeng Yu
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Bo Liu
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China.
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo, 255400, China.
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Hongyun Cao
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China.
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China.
| |
Collapse
|
8
|
Heimke M, Richter F, Heinze T, Kunke M, Wedel T, Böttner M, Egberts JH, Lucius R, Cossais F. Localization Pattern of Dispatched Homolog 2 (DISP2) in the Central and Enteric Nervous System. J Mol Neurosci 2023; 73:539-548. [PMID: 37369878 PMCID: PMC10517031 DOI: 10.1007/s12031-023-02129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Dispatched homolog (DISP) proteins have been implicated in the regulation of hedgehog signaling during embryologic development. Although DISP2 has recently been associated with neuronal development and control of cognitive functions, its localization pattern in the mammalian central and peripheral nervous system has not yet been investigated. In this study, the Disp2 expression profile was assessed in human tissues from publicly available transcriptomic datasets. The DISP2 localization pattern was further characterized in the human and rat central nervous system (CNS), as well as within the colonic enteric nervous system (ENS) using dual-label immunohistochemistry. Colocalization of DISP2 with neuronal and glial markers was additionally analyzed in murine primary ENS culture. At transcriptomic level, DISP2 expression was predominant in neuronal cell types of the CNS and ENS. DISP2 immunoreactivity was mainly located within PGP9.5-positive neurons rather than in S100-positive glial cells throughout the nervous system. Investigation of human and rat brain tissues, colonic specimens, and murine ENS primary cultures revealed that DISP2 was located in neuronal cell somata, as well as along neuronal processes both in the human and murine CNS and ENS. Our results indicate that DISP2 is prominently localized within neuronal cells of the CNS and ENS and support putative functions of DISP2 in these tissues.
Collapse
Affiliation(s)
- Marvin Heimke
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - Florian Richter
- Department of General, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Tillmann Heinze
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - Madlen Kunke
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - Martina Böttner
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | | | - Ralph Lucius
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - François Cossais
- Institute of Anatomy, Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany.
| |
Collapse
|
9
|
Zhang Q, Cai G, Cui F, Li F, Liang H, Gao L, Guo W, Li M, Chen Y. The relationship of airflow limitation with lung squamous cell carcinoma: evidence from mendelian randomization analysis. J Cancer Res Clin Oncol 2023; 149:6999-7006. [PMID: 36853385 DOI: 10.1007/s00432-023-04612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Observational studies showed associations between smoking, and airflow limitation, with lung squamous cell carcinoma (LUSC). However, the causal association of airflow limitation with LUSC and the modification by smoking status for the association remains unclear. METHODS Genetic summary data were obtained from large genome-wide association studies (GWAS). One hundred two single nucleotide polymorphisms (SNPs) for airflow limitation (i.e., FEV1/FVC < 0.7) and 153 SNPs for smoking behavior were used as instrumental variables and the main MR analysis methods. The univariable and multivariable Mendelian Randomization (MR) in a two-sample setting were performed to assess the association of airflow limitation, and smoking behavior with LUSC. RESULTS In the univariable MR analysis, genetic predisposition towards airflow limitation [Inverse Variance-Weighted (IVW) method Odds Ratio (OR) = 4.83, 95% Confidence Interval (CI) 1.55 to 15.06, P = 0.006], age of smoking initiation (IVW method OR = 0.10, 95%CI 0.02 to 0.36, P < 0.001), cigarettes smoked per day (IVW method OR = 3.10, 95%CI 2.07 to 4.63, P < 0.001), ex-smoking (IVW method OR = 0.47, 95%CI 0.31 to 0.69, P < 0.001), current smoking status (IVW method OR = 13.08, 95%CI 2.53 to 67.84, P = 0.002), pack-years of smoking (Weighted median method OR = 11.49, 95%CI 3.71 to 35.63, P < 0.001) were associated with LUSC. In the multivariable MR analysis, the causal effect of airflow limitation was still observed on LUSC (IVW method OR = 2.97, 95% CI 1.09 to 8.04, P = 0.032 adjusted for age of smoking initiation and cigarettes smoked per day; IVW method OR = 3.24, 95% CI 1.09 to 9.58, P = 0.033 adjusted for ex-smoking, current smoking status, and pack years of smoking; IVW method OR = 2.91, 95% CI 1.01 to 8.41, P = 0.049 adjusted for 5 smoking behaviors mentioned above). CONCLUSIONS Our MR analysis demonstrated that airflow limitation is likely to be an independent predictor of LUSC.
Collapse
Affiliation(s)
- Qing Zhang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, China
| | - Guannan Cai
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, China
| | - Fei Cui
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, China
| | - Feng Li
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, China
| | - Hengrui Liang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, China
| | - Limei Gao
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, China
| | - Wenwei Guo
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, China
| | - Meihua Li
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, China
| | - Ying Chen
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, 510000, China.
| |
Collapse
|
10
|
Cortez Cardoso Penha R, Smith-Byrne K, Atkins JR, Haycock PC, Kar S, Codd V, Samani NJ, Nelson C, Milojevic M, Gabriel AAG, Amos C, Brennan P, Hung RJ, Kachuri L, Mckay JD. Common genetic variations in telomere length genes and lung cancer: a Mendelian randomisation study and its novel application in lung tumour transcriptome. eLife 2023; 12:e83118. [PMID: 37079368 PMCID: PMC10118386 DOI: 10.7554/elife.83118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Background Genome-wide association studies (GWASs) have identified genetic susceptibility variants for both leukocyte telomere length (LTL) and lung cancer susceptibility. Our study aims to explore the shared genetic basis between these traits and investigate their impact on somatic environment of lung tumours. Methods We performed genetic correlation, Mendelian randomisation (MR), and colocalisation analyses using the largest available GWASs summary statistics of LTL (N=464,716) and lung cancer (N=29,239 cases and 56,450 controls). Principal components analysis based on RNA-sequencing data was used to summarise gene expression profile in lung adenocarcinoma cases from TCGA (N=343). Results Although there was no genome-wide genetic correlation between LTL and lung cancer risk, longer LTL conferred an increased risk of lung cancer regardless of smoking status in the MR analyses, particularly for lung adenocarcinoma. Of the 144 LTL genetic instruments, 12 colocalised with lung adenocarcinoma risk and revealed novel susceptibility loci, including MPHOSPH6, PRPF6, and POLI. The polygenic risk score for LTL was associated with a specific gene expression profile (PC2) in lung adenocarcinoma tumours. The aspect of PC2 associated with longer LTL was also associated with being female, never smokers, and earlier tumour stages. PC2 was strongly associated with cell proliferation score and genomic features related to genome stability, including copy number changes and telomerase activity. Conclusions This study identified an association between longer genetically predicted LTL and lung cancer and sheds light on the potential molecular mechanisms related to LTL in lung adenocarcinomas. Funding Institut National du Cancer (GeniLuc2017-1-TABAC-03-CIRC-1-TABAC17-022), INTEGRAL/NIH (5U19CA203654-03), CRUK (C18281/A29019), and Agence Nationale pour la Recherche (ANR-10-INBS-09).
Collapse
Affiliation(s)
- Ricardo Cortez Cardoso Penha
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, University of OxfordOxfordUnited Kingdom
| | - Joshua R Atkins
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, Bristol Medical School (PHS)BristolUnited Kingdom
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, Bristol Medical School (PHS)BristolUnited Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Christopher Nelson
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Maja Milojevic
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Aurélie AG Gabriel
- Ludwig Lausanne Branch, Faculty of Biology and MedicineLausanneSwitzerland
| | - Christopher Amos
- Institute for Clinical and Translational Research, Baylor College of MedicineHoustonUnited States
| | - Paul Brennan
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai HealthTorontoCanada
| | - Linda Kachuri
- Departament of Epidemiology and Population Health, Stanford UniversityStanfordUnited States
| | - James D Mckay
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| |
Collapse
|
11
|
Ke C, Bandyopadhyay D, Acunzo M, Winn R. Gene Screening in High-Throughput Right-Censored Lung Cancer Data. ONCO 2022; 2:305-318. [PMID: 37066112 PMCID: PMC10100230 DOI: 10.3390/onco2040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Advances in sequencing technologies have allowed collection of massive genome-wide information that substantially advances lung cancer diagnosis and prognosis. Identifying influential markers for clinical endpoints of interest has been an indispensable and critical component of the statistical analysis pipeline. However, classical variable selection methods are not feasible or reliable for high-throughput genetic data. Our objective is to propose a model-free gene screening procedure for high-throughput right-censored data, and to develop a predictive gene signature for lung squamous cell carcinoma (LUSC) with the proposed procedure. Methods A gene screening procedure was developed based on a recently proposed independence measure. The Cancer Genome Atlas (TCGA) data on LUSC was then studied. The screening procedure was conducted to narrow down the set of influential genes to 378 candidates. A penalized Cox model was then fitted to the reduced set, which further identified a 6-gene signature for LUSC prognosis. The 6-gene signature was validated on datasets from the Gene Expression Omnibus. Results Both model-fitting and validation results reveal that our method selected influential genes that lead to biologically sensible findings as well as better predictive performance, compared to existing alternatives. According to our multivariable Cox regression analysis, the 6-gene signature was indeed a significant prognostic factor (p-value < 0.001) while controlling for clinical covariates. Conclusions Gene screening as a fast dimension reduction technique plays an important role in analyzing high-throughput data. The main contribution of this paper is to introduce a fundamental yet pragmatic model-free gene screening approach that aids statistical analysis of right-censored cancer data, and provide a lateral comparison with other available methods in the context of LUSC.
Collapse
Affiliation(s)
- Chenlu Ke
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Dipankar Bandyopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23284, USA
- Correspondence: ; Tel.: +1-804-827-2058
| | - Mario Acunzo
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Robert Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
12
|
Lin L, Lin G, Chen X, Lin H, Lin Q, Zeng Y, Xu Y. Identification of Small Airway Epithelium-Related Hub Genes in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:3001-3015. [PMID: 36475041 PMCID: PMC9719689 DOI: 10.2147/copd.s377026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Pulmonary small airway epithelia are the primary site of cellular and histological alterations in chronic obstructive pulmonary disease (COPD), while the potential therapeutic hub genes of pulmonary epithelia are rarely identified to elucidate profound alterations in the progression of the disease. Methods Microarray dataset of GSE11906 containing small airway epithelia from 34 healthy non-smokers and 33 COPD patients was applied to screen differentially expressed genes (DEGs). Weighted gene correlation network analysis (WGCNA) was further used to identify the hub genes related to clinical features. Moreover, single-cell RNA sequencing data from GSE173896 and GSE167295 dataset were applied to explore the expression and distribution of the hub genes. The expression levels of hub genes in epithelial cells stimulated by cigarette smoke extract (CSE) were detected by RT-qPCR. Results Ninety-eight DEGs correlated with clinical features of COPD were identified via limma and WGCNA. Eight hub genes (including AKR1C3, ALDH3A1, AKR1C1, CYP1A1, GPX2, CBR3, AKR1B1 and GSR) that might exert an antioxidant role in COPD process were identified. Single-cell transcriptomic analysis indicated that the expressions of AKRAC3, ALDH3A1, GPX2, CBR3 and AKR1B1 were significantly increased in the COPD group when compared with the normal group. Moreover, we found that the expression of ALDH3A1 was the most abundantly expressed in ciliated cells. RT-qPCR results indicated that the majority of candidate novel genes were significantly elevated when the epithelial cells were exposed to CSE. Conclusion Through integrating limma, WGCNA, and protein-protein interaction (PPI) analysis, a total of eight candidate hub genes of pulmonary airway epithelia were identified in COPD. Moreover, single-cell transcriptomic analysis indicated that ALDH3A1 was enriched in ciliated cells, which may provide a new insight into the pathogenesis and treatment of COPD.
Collapse
Affiliation(s)
- Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China
| | - Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China
| | - Hai Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China
| | - Qinhui Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China,Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China,Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Correspondence: Yuan Xu; Yiming Zeng, Department of Pulmonary and Critical Care Medicine, Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University; Respiratory Medicine Center of Fujian Province, Quanzhou, People’s Republic of China, Email ;
| |
Collapse
|
13
|
Su Y, Ding J, Yang F, He C, Xu Y, Zhu X, Zhou H, Li H. The regulatory role of PDE4B in the progression of inflammatory function study. Front Pharmacol 2022; 13:982130. [PMID: 36278172 PMCID: PMC9582262 DOI: 10.3389/fphar.2022.982130] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022] Open
Abstract
Inflammation is a response of the body to external stimuli (eg. chemical irritants, bacteria, viruses, etc.), and when the stimuli are persistent, they tend to trigger chronic inflammation. The presence of chronic inflammation is an important component of the tumor microenvironment produced by a variety of inflammatory cells (eg. macrophages, neutrophils, leukocytes, etc.). The relationship between chronic inflammation and cancer development has been widely accepted, and chronic inflammation has been associated with the development of many cancers, including chronic bronchitis and lung cancer, cystitis inducing bladder cancer. Moreover, chronic colorectitis is more likely to develop into colorectal cancer. Therefore, the specific relationship and cellular mechanisms between inflammation and cancer are a hot topic of research. Recent studies have identified phosphodiesterase 4B (PDE4B), a member of the phosphodiesterase (PDEs) protein family, as a major cyclic AMP (cAMP) metabolizing enzyme in inflammatory cells, and the therapeutic role of PDE4B as chronic inflammation, cancer. In this review, we will present the tumors associated with chronic inflammation, and PDE4B potential clinical application.
Collapse
Affiliation(s)
- Yue Su
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Public Foundation, Bengbu Medical University, Bengbu, China
| | - Jiaxiang Ding
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Public Foundation, Bengbu Medical University, Bengbu, China
| | - Fan Yang
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cuixia He
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Yuanyuan Xu
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xingyu Zhu
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Huan Zhou
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Public Foundation, Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
- *Correspondence: Hongtao Li, ; Huan Zhou,
| | - Hongtao Li
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- *Correspondence: Hongtao Li, ; Huan Zhou,
| |
Collapse
|
14
|
Uliński R, Kwiecień I, Domagała-Kulawik J. Lung Cancer in the Course of COPD-Emerging Problems Today. Cancers (Basel) 2022; 14:cancers14153819. [PMID: 35954482 PMCID: PMC9367492 DOI: 10.3390/cancers14153819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Tobacco smoking remains the main cause of tobacco-dependent diseases like lung cancer, chronic obstructive pulmonary disease (COPD), in addition to cardiovascular diseases and other cancers. Whilst the majority of smokers will not develop either COPD or lung cancer, they are closely related diseases, occurring as co-morbidities at a higher rate than if they were independently triggered by smoking. A patient with COPD has a four- to six-fold greater risk of developing lung cancer independent of smoking exposure, when compared to matched smokers with normal lung function. The 10 year risk is about 8.8% in the COPD group and only 2% in patients with normal lung function. COPD is not a uniform disorder: there are different phenotypes. One of them is manifested by the prevalence of emphysema and this is complicated by malignant processes most often. Here, we present and discuss the clinical problems of COPD in patients with lung cancer and against lung cancer in the course of COPD. There are common pathological pathways in both diseases. These are inflammation with participation of macrophages and neutrophils and proteases. It is known that anticancer immune regulation is distorted towards immunosuppression, while in COPD the elements of autoimmunity are described. Cytotoxic T cells, lymphocytes B and regulatory T cells with the important role of check point molecules are involved in both processes. A growing number of lung cancer patients are treated with immune check point inhibitors (ICIs), and it was found that COPD patients may have benefits from this treatment. Altogether, the data point to the necessity for deeper analysis and intensive research studies to limit the burden of these serious diseases by prevention and by elaboration of specific therapeutic options.
Collapse
Affiliation(s)
- Robert Uliński
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Iwona Kwiecień
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| |
Collapse
|
15
|
Liu X, An J. Effects of serratus anterior plane block and thoracic paravertebral nerve block on analgesia, immune function and serum tumor markers in patients after thoracoscopic radical resection of lung cancer. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:506-515. [PMID: 36237885 PMCID: PMC9529616 DOI: 10.18999/nagjms.84.3.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
We aimed to assess the effects of serratus anterior plane block (SAPB) and thoracic paravertebral nerve block (TPVB) on analgesia, immune function and serum tumor markers in patients after thoracoscopic radical resection of lung cancer. A total of 132 patients enrolled from February 2019 to November 2020 were prospectively selected and randomly divided into 3 groups (n=44). Control group received general anesthesia. After induction of general anesthesia, TPVB or SAPB group was given TPVB or SAPB. Their clinical data, operation conditions, Visual Analogue Scale (VAS) score, immune function, serum tumor markers and adverse reactions were compared. TPVB and SAPB groups had lower dosage of sufentanil during operation, later time of first pressing patient-controlled intravenous analgesia (PCA) pump after operation and smaller number of pressing PCA pump within 48 h after operation than those of control group (P<0.05). VAS scores at rest and coughing decreased 6 and 12 h after operation in TPVB and SAPB groups compared with that in control group (P<0.05). Cluster of differentiation 3 (CD3)+, CD4+ and CD4+/CD8+ ratio were higher, while CD8+ was lower 24 and 48 h after operation in TPVB and SAPB groups than those of control group (P<0.05). TPVB and SAPB groups had lower serum tumor marker levels 24 h after operation than those of control group (P<0.05). The three groups had similar incidence rates of adverse reactions (P>0.05). SAPB and TPVB can markedly improve postoperative analgesic effect, enhance immune function and decrease serum tumor marker levels in patients receiving thoracoscopic radical resection of lung cancer, without increasing adverse reactions. However, TPVB may puncture the pleura.
Collapse
Affiliation(s)
- Xiaole Liu
- Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jing An
- Henan Provincial Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Social Determinants of Health in Oncology: Towards a More Personalized and Equitable Delivery of Cancer Care. Am J Clin Oncol 2022; 45:273-278. [PMID: 35532746 DOI: 10.1097/coc.0000000000000914] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Social determinants of health (SDOH) are defined as the set of modifiable social and physical risk factors that affect health. It is known that SDOH directly influence the population's overall health, but their effects on patients with cancer are considerably less elucidated. Here, we review the literature describing the effects of SDOH outlined by the Healthy People 2020 framework on patients diagnosed with cancer. We have found that while some SDOH are well-defined in cancer patients, evidence surrounding several variables is scarce. In addition, we have found that many SDOH are associated with disparities at the screening stage, indicating that upstream interventions are necessary before addressing the clinical outcomes themselves. Further investigation is warranted to understand how SDOH affect screenings and outcomes in multiple disciplines of oncology and types of cancers as well as explore how SDOH affect the treatments sought by these vulnerable patients.
Collapse
|
17
|
Markozannes G, Kanellopoulou A, Dimopoulou O, Kosmidis D, Zhang X, Wang L, Theodoratou E, Gill D, Burgess S, Tsilidis KK. Systematic review of Mendelian randomization studies on risk of cancer. BMC Med 2022; 20:41. [PMID: 35105367 PMCID: PMC8809022 DOI: 10.1186/s12916-022-02246-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We aimed to map and describe the current state of Mendelian randomization (MR) literature on cancer risk and to identify associations supported by robust evidence. METHODS We searched PubMed and Scopus up to 06/10/2020 for MR studies investigating the association of any genetically predicted risk factor with cancer risk. We categorized the reported associations based on a priori designed levels of evidence supporting a causal association into four categories, namely robust, probable, suggestive, and insufficient, based on the significance and concordance of the main MR analysis results and at least one of the MR-Egger, weighed median, MRPRESSO, and multivariable MR analyses. Associations not presenting any of the aforementioned sensitivity analyses were not graded. RESULTS We included 190 publications reporting on 4667 MR analyses. Most analyses (3200; 68.6%) were not accompanied by any of the assessed sensitivity analyses. Of the 1467 evaluable analyses, 87 (5.9%) were supported by robust, 275 (18.7%) by probable, and 89 (6.1%) by suggestive evidence. The most prominent robust associations were observed for anthropometric indices with risk of breast, kidney, and endometrial cancers; circulating telomere length with risk of kidney, lung, osteosarcoma, skin, thyroid, and hematological cancers; sex steroid hormones and risk of breast and endometrial cancer; and lipids with risk of breast, endometrial, and ovarian cancer. CONCLUSIONS Despite the large amount of research on genetically predicted risk factors for cancer risk, limited associations are supported by robust evidence for causality. Most associations did not present a MR sensitivity analysis and were thus non-evaluable. Future research should focus on more thorough assessment of sensitivity MR analyses and on more transparent reporting.
Collapse
Affiliation(s)
- Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Afroditi Kanellopoulou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Dimitrios Kosmidis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Xiaomeng Zhang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, St. Mary's Campus, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
18
|
Xue W, Du J, Li Q, Wang Y, Lu Y, Fan J, Yu S, Yang Y. Preparation, properties and application of graphene-based materials in tissue engineering scaffolds. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1121-1136. [PMID: 34751592 DOI: 10.1089/ten.teb.2021.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tissue engineering has great application prospect as an effective treatment for tissue and organ injury, functional reduction or loss. Bioactive tissues are reconstructed and damaged organs are repaired by the three elements including cells, scaffold materials and growth factors. Graphene-based composites can be used as reinforcing auxiliary materials for tissue scaffold preparation because of their large specific surface area, and good mechanical support. Tissue engineering scaffolds with graphene-based composites have been widely studied. Part of research have focused on the application of graphene-based composites in single tissue engineering; The basic principles of graphene materials used in tissue engineering are summarized in some researches. Some studies emphasized the key problems and solutions urgently needed to be solved in the development of tissue engineering, and discussed their application prospect. Some related studies mainly focused on the conductivity of graphene, and discussed the application of electroactive scaffolds in tissue engineering. In this review, the composite materials for preparing tissue engineering scaffolds are briefly described, which emphasizes the preparation methods, biological properties and practical applications of graphene-based composite scaffolds. The synthetic techniques with stressing solvent casting, electrospinning and 3D printing are introduced in detail. The mechanical, cell-oriented and biocompatible properties of graphene-based composite scaffolds in tissue engineering are analyzed and summarized. Their applications in bone tissue engineering, nerve tissue engineering, cardiovascular tissue engineering and other tissue engineering are summarized systematically. In addition, this work also looks forward to the difficulties and challenges in the future research, providing some references for the follow-up research of graphene-based composites in tissue engineering scaffolds.
Collapse
Affiliation(s)
- Wenqiang Xue
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jinglei Du
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Qiang Li
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Yan Wang
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Yemin Lu
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jiangbo Fan
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Shiping Yu
- Second Hospital of Shanxi Medical University, 74761, 582 Wuyi Road, Taiyuan City, Shanxi Province, Taiyuan, China, 030001;
| | - Yongzhen Yang
- Taiyuan University of Technology, 47846, Taiyuan, Shanxi , China;
| |
Collapse
|
19
|
Kachuri L, Jeon S, DeWan AT, Metayer C, Ma X, Witte JS, Chiang CWK, Wiemels JL, de Smith AJ. Genetic determinants of blood-cell traits influence susceptibility to childhood acute lymphoblastic leukemia. Am J Hum Genet 2021; 108:1823-1835. [PMID: 34469753 PMCID: PMC8546033 DOI: 10.1016/j.ajhg.2021.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Despite overlap between genetic risk loci for ALL and hematologic traits, the etiological relevance of dysregulated blood-cell homeostasis remains unclear. We investigated this question in a genome-wide association study (GWAS) of childhood ALL (2,666 affected individuals, 60,272 control individuals) and a multi-trait GWAS of nine blood-cell indices in the UK Biobank. We identified 3,000 blood-cell-trait-associated (p < 5.0 × 10-8) variants, explaining 4.0% to 23.9% of trait variation and including 115 loci associated with blood-cell ratios (LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio). ALL susceptibility was genetically correlated with lymphocyte counts (rg = 0.088, p = 4.0 × 10-4) and PLR (rg = -0.072, p = 0.0017). In Mendelian randomization analyses, genetically predicted increase in lymphocyte counts was associated with increased ALL risk (odds ratio [OR] = 1.16, p = 0.031) and strengthened after accounting for other cell types (OR = 1.43, p = 8.8 × 10-4). We observed positive associations with increasing LMR (OR = 1.22, p = 0.0017) and inverse effects for NLR (OR = 0.67, p = 3.1 × 10-4) and PLR (OR = 0.80, p = 0.002). Our study shows that a genetically induced shift toward higher lymphocyte counts, overall and in relation to monocytes, neutrophils, and platelets, confers an increased susceptibility to childhood ALL.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Soyoung Jeon
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew T DeWan
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA; Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA
| | - Catherine Metayer
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
20
|
Meng H, Li G, Wei W, Bai Y, Feng Y, Fu M, Guan X, Li M, Li H, Wang C, Jie J, Wu X, He M, Zhang X, Wei S, Li Y, Guo H. Epigenome-wide DNA methylation signature of benzo[a]pyrene exposure and their mediation roles in benzo[a]pyrene-associated lung cancer development. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125839. [PMID: 33887567 DOI: 10.1016/j.jhazmat.2021.125839] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a typical carcinogen associated with increased lung cancer risk, but the underlying mechanisms remain unclear. This study aimed to investigate epigenome-wide DNA methylation associated with B[a]P exposure and their mediation effects on B[a]P-lung cancer association in two lung cancer case-control studies of 462 subjects. Their plasma levels of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) adducts and genome-wide DNA methylations were separately detected in peripheral blood by using enzyme-linked immunosorbent assay (ELISA) and genome-wide methylation arrays. The epigenome-wide meta-analysis was performed to analyze the associations between BPDE-Alb adducts and DNA methylations. Mediation analysis was applied to assess effect of DNA methylation on the B[a]P-lung cancer association. We identified 15 CpGs associated with BPDE-Alb adducts (P-meta < 1.0 × 10-5), among which the methylation levels at five loci (cg06245338, cg24256211, cg15107887, cg02211741, and cg04354393 annotated to UBE2O, SAMD4A, ACBD6, DGKZ, and SLFN13, respectively) mediated a separate 38.5%, 29.2%, 41.5%, 47.7%, 56.5%, and a joint 58.2% of the association between BPDE-Alb adducts and lung cancer risk. Compared to the traditional factors [area under the curve (AUC) = 0.788], addition of these CpGs exerted improved discriminations for lung cancer, with AUC ranging 0.828-0.861. Our results highlight DNA methylation alterations as potential mediators in lung tumorigenesis induced by B[a]P exposure.
Collapse
Affiliation(s)
- Hua Meng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Feng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Fu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Guan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengying Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hang Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education; State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Lung cancer LDCT screening and mortality reduction - evidence, pitfalls and future perspectives. Nat Rev Clin Oncol 2020; 18:135-151. [PMID: 33046839 DOI: 10.1038/s41571-020-00432-6] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
In the past decade, the introduction of molecularly targeted agents and immune-checkpoint inhibitors has led to improved survival outcomes for patients with advanced-stage lung cancer; however, this disease remains the leading cause of cancer-related mortality worldwide. Two large randomized controlled trials of low-dose CT (LDCT)-based lung cancer screening in high-risk populations - the US National Lung Screening Trial (NLST) and NELSON - have provided evidence of a statistically significant mortality reduction in patients. LDCT-based screening programmes for individuals at a high risk of lung cancer have already been implemented in the USA. Furthermore, implementation programmes are currently underway in the UK following the success of the UK Lung Cancer Screening (UKLS) trial, which included the Liverpool Health Lung Project, Manchester Lung Health Check, the Lung Screen Uptake Trial, the West London Lung Cancer Screening pilot and the Yorkshire Lung Screening trial. In this Review, we focus on the current evidence on LDCT-based lung cancer screening and discuss the clinical developments in high-risk populations worldwide; additionally, we address aspects such as cost-effectiveness. We present a framework to define the scope of future implementation research on lung cancer screening programmes referred to as Screening Planning and Implementation RAtionale for Lung cancer (SPIRAL).
Collapse
|