1
|
Zhu H, Yao C, Xu Z, Shang G, Peng J, Xie H, Qian T, Qiu Z, Maeso L, Mao M, Liao Y, Jiang Y, Li D, Orive G, Boccaccini AR. Recent advances in 3D models of the nervous system for neural regeneration research and drug development. Acta Biomater 2025:S1742-7061(25)00421-0. [PMID: 40490242 DOI: 10.1016/j.actbio.2025.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/12/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025]
Abstract
The development of drugs for nervous diseases poses distinctive difficulties owing to the incomplete understanding of the physiology and complex pathogenesis of the multifaceted central (CNS) and peripheral (PNS) nervous systems. Conventional animal tests and in vitro two-dimensional (2D) cell cultures fail to reproduce the sophisticated structure of natural human tissues, hindering the new drug discovery process. The emerging three-dimensional (3D) neural tissue models, including organoids, organ-on-chips and 3D-printed neural scaffolds, can provide an improved reproduction of the critical features, structural complexity, biological functions, dynamic circulation micro-environment and cell-matrix/cell interactions of the nervous systems. This review examines state-of-the-art 3D models for neural physiology/pathology, emphasizing their drug development applications. Fundamental advantages of various in vitro 3D neural models for investigating the mechanisms of nerve regeneration and disorders in both the CNS and PNS are compared in terms of the different modeling techniques. In addition, the applications of 3D neural models in drug development are summarized covering a range of areas such as disease modeling for basic research, pharmacokinetic and pharmacodynamic testing for drug screening and drug safety evaluation. Furthermore, current challenges and future outlook of biomimetic models and the existing bottlenecks hindering their successful translation into clinical use are discussed. STATEMENT OF SIGNIFICANCE: This review highlights the groundbreaking potential of 3D neural models-organoids, organ-on-chips, and 3D-printed scaffolds-to revolutionize neurological research and drug development. Unlike conventional methods, these models replicate the intricate structure and function of human nervous systems, enabling precise study of diseases like Alzheimer's, spinal injuries, and brain tumors. By synthesizing recent advancements, the review compares techniques, their applications in drug screening and personalized medicine, and addresses challenges in model accuracy and scalability. Bridging neuroscience, engineering, and pharmacology, this work provides a roadmap for researchers to innovate therapies. Its insights are critical for accelerating drug discovery and improving treatment outcomes, making it essential for scientists and clinicians tackling neurological disorders.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, P. R. China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Cong Yao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, P. R. China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhengqi Xu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, P. R. China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Guojin Shang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, P. R. China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Huangfan Xie
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tingyu Qian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, P. R. China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, P. R. China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, P. R. China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yucheng Liao
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi' an, Shaanxi, China.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, P. R. China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91085 Erlangen, Germany
| |
Collapse
|
2
|
Guarino V, Perrone E, De Luca E, Rainer A, Cesaria M, Zizzari A, Bianco M, Gigli G, Moroni L, Arima V. Pericyte-Assisted Vascular Lumen Organization in a Novel Dynamic Human Blood-Brain Barrier-on-Chip Model. Adv Healthc Mater 2025; 14:e2401804. [PMID: 40326185 DOI: 10.1002/adhm.202401804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Organ-on-Chip (OoC) technology provides a powerful platform for neurovascular research, enabling the precise replication of the blood-brain barrier (BBB) microenvironment, including its 3D architecture and the influence of dynamic blood flow. This study introduces a novel microfluidic device designed to investigate the morphological and structural adaptations of human brain endothelial cells (ECs) within narrow, square-shaped microchannels that closely mimic the microvessels of the brain's microcirculation. The endothelial microchannels are layered above a microchamber filled with Matrigel and abluminal vascular cells, enhancing cell-cell interactions across the BBB interface. The system integrates co-culture with pericytes and astrocytes while subjecting brain ECs to physiologically relevant pulsatile flow. The findings reveal that the morphology and cytoskeletal organization of brain ECs are distinctly influenced by pulsatile flow depending on the presence of pericytes and astrocytes. Specifically, in the absence of perivascular support, brain ECs exhibit a stretched morphology with prominent actin stress fibers, while co-culture with pericytes and astrocytes promotes endothelial rearrangement, leading to lumen formation and enhanced barrier properties. This study highlights the essential role of perivascular cells in modulating endothelial responses under microvascular confinement and physiologically relevant flow. These insights advance in vitro models of the neurovascular unit and BBB mechanobiology.
Collapse
Affiliation(s)
- Vita Guarino
- Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Elisabetta Perrone
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Elisa De Luca
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
- CBN Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia (IIT), Arnesano, 73010, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus bio-Medico di Roma, Rome, 00128, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, 00128, Italy
| | - Maura Cesaria
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Alessandra Zizzari
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Monica Bianco
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Giuseppe Gigli
- Department of Experimental Medicine, University of Salento, Lecce, 73100, Italy
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| | - Lorenzo Moroni
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
- MERLN Institute for Technology-Inspired Regenerative Medicine, department of complex tissue regeneration, Maastricht University, Maastricht, 6211 LK, The Netherlands
| | - Valentina Arima
- NANOTEC Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Lecce, 73100, Italy
| |
Collapse
|
3
|
Wang P, Liu J, Zhang M, Yang J, Lian P, Cheng X, Qin J. Radiation Exposure Induced Blood-Brain Barrier Injury via Mitochondria-Mediated Sterile Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e02356. [PMID: 40433769 DOI: 10.1002/advs.202502356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Radiation-induced brain injury (RIBI) is caused by exposure to high doses of ionizing radiation and characterized by severe cognitive dysfunction and brain necrosis. However, the pathogenesis of RIBI is not fully understood, and no effective intervention is available. This work describes a blood-brain barrier (BBB) microphysiological system (MPS), that allowed to explore the responses of BBB and distinct brain cells to radiation exposure. Following acute exposure to radiation of X-ray or γ-ray, characteristic RIBI-associated pathological responses are observed, including BBB compromise, DNA breaks, inhibited cell proliferation, cell hypertrophy, and proinflammatory cytokine release. Among the distinctive types of cells, brain endothelial cells show the highest radiosensitivity as compared to other cells in the MPS. Intriguingly, X-ray and γ-ray radiation consistently induce prominent sterile inflammation responses, especially type I interferon response, in the BBB MPS. These responses are mediated by radiation-induced mitochondrial DNA release and subsequent activation of cGAS-STING signaling pathway. Furthermore, it is found abrocitinib (JAK1 inhibitor) and idebenone (mitochondrial protectant) can attenuate radiation-induced inflammation and ameliorate injuries in the BBB MPS. These findings reveal the involvement of mitochondria-mediated sterile inflammation in RIBI pathogenesis, identifying mitochondria as a potential target for new radioprotective measures.
Collapse
Affiliation(s)
- Peng Wang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Jiayue Liu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Min Zhang
- Disvision of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Juan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, P. R. China
| | - Peihan Lian
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Xiu Cheng
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
| | - Jianhua Qin
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, P. R. China
- Disvision of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100000, China
| |
Collapse
|
4
|
Tong S, Liu J, Chen Y, Xiao X, Li S, Song X, Yang H. Surface engineering of NIR-II luminescent gold nanoclusters for brain glioma-targeted imaging. NANOSCALE 2025; 17:10670-10676. [PMID: 40190226 DOI: 10.1039/d4nr05158k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Ultrasmall gold nanoclusters (AuNCs) with photoluminescence in the second near-infrared region (NIR-II) have emerged as promising probes for in vivo biomedical applications. However, it remains a challenge to utilize NIR-II-emitting AuNCs for imaging brain glioblastoma (GBM), which is highly lethal and hard to diagnose in time. Herein, we have presented systematic investigations on the brain delivery and GBM targeting efficacies of NIR-II-emitting AuNCs protected by different ligands. We first synthesized four types of AuNCs with surface coatings of small thiolated ligands and proteins, and then studied their in vitro penetration capability into the blood-brain barrier (BBB) and in vivo GBM targeting performances. It was found that the BBB permeability of AuNCs determined by the in vitro transwell model was not evidently affected by the surface ligands. Significantly, AuNCs protected by albumin exhibited notably extended blood circulation and less skull binding compared to those protected by small ligands, enabling superior in vivo brain GBM-targeted NIR-II PL imaging. We also modified the albumin-AuNCs with targeting peptides to improve in vivo imaging contrast. Additionally, AuNCs had negligible toxic effects on major organs as well as brain tissues and neurons, corroborating their good biocompatibility. This study examined the surface engineering of NIR-II luminescent AuNCs for brain GBM targeting, which may offer insights into the future design of AuNCs for bioapplications.
Collapse
Affiliation(s)
- Shufen Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jie Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yonghui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Xinyun Xiao
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Shihua Li
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
5
|
Chen P, Wang S, Zhang H, Li J. Recent advances in nanotherapy-based treatment of epilepsy. Colloids Surf B Biointerfaces 2025; 249:114499. [PMID: 39778465 DOI: 10.1016/j.colsurfb.2025.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Epilepsy is a complex neurological disorder characterized by recurrent seizures affecting millions of people worldwide. Despite advances in drug therapy, a significant proportion of patients remain resistant to conventional antiepileptic drugs (AEDs) due to challenges such as impermeability of the blood-brain barrier (BBB), multidrug resistance, and multifaceted epileptogenesis. Nanotechnology offers promising strategies to overcome these barriers by enhancing drug delivery across the BBB, improving target specificity and minimizing systemic side effects. This review explores recent advances in different innovative strategies of nanodelivery systems for epilepsy therapy, and we will discuss the design principles, mechanisms of action and therapeutic efficacy of these nanodelivery systems. In addition, we discuss the challenges and limitations that hinder the clinical translation of nanomedicine-based therapies for epilepsy. We emphasize the need for personalized and multidisciplinary approaches as well as the importance of continued research and interdisciplinary collaboration in order to translate these innovative strategies into effective therapies. Ultimately, the use of nanotechnology has the potential to enhance seizure control, reduce the burden of epilepsy, and improve the quality of life of patients affected by this complex neurological disorder. Nanotechnology-based drug delivery systems may usher in a new era of precision medicine for epilepsy treatment.
Collapse
Affiliation(s)
- Peng Chen
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Shudong Wang
- Jinzhou Medical University, Liaoning 121001, China
| | - Heming Zhang
- Dalian Medical University, Liaoning 116044, China
| | - Jian Li
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
6
|
Refaat A, Thomas P, Zhang W, Esser L, Tong Z, Beer M, Mawdsley D, Thirkettle-Watts D, Shields KA, Nicolazzo JA, Voelcker NH. An In Vitro-In Vivo Comparative Study Using Highly Sensitive Radioisotopic Assays to Assess the Predictive Power of Emerging Blood-Brain Barrier Models. SMALL METHODS 2025; 9:e2401400. [PMID: 39663724 DOI: 10.1002/smtd.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Microfluidic BBB-on-a-chip models (μBBB) aim to recapitulate the organotypic features of the human BBB with great potential to model CNS diseases and advance CNS therapeutics. Nevertheless, their predictive capacity for drug uptake into the brain remains uncertain due to limited evaluation with only a small number of model drugs. Here, the in vivo brain uptake of a panel of nine radiolabeled compounds is evaluated in Swiss-outbred mice following a single intravenously administered dose and compared against results from the microfluidic μBBB platform and the conventional Transwell BBB model. Radioisotopic measurements are employed to calculate brain-to-plasma concentration ratios (B/P) of the compounds both in vivo and in vitro. The in vitro-in vivo correlation plots of the B/P ratios revealed a strong positive correlation (r = 0.8081, R2 = 0.6530) for the μBBB, suggesting a high degree of predictive ability for drug permeability into the brain. In contrast, the Transwell assay showed a weaker in vitro-in vivo correlation (r = 0.6467, R2 = 0.4182). Finally, brain uptake of radiolabeled, brain-targeted, angiopep2-conjugated nanoparticles (ANG2-NP) is assessed in the μBBB and results mirrored the in vivo uptake, while the Transwell model failed to resolve the differences between the targeted and non-targeted NPs.
Collapse
Affiliation(s)
- Ahmed Refaat
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
| | - Patrick Thomas
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
- Department of Defence, Defence Science and Technology Group, 506 Lorimer Street, Port Melbourne, VIC, 3207, Australia
| | - Weisen Zhang
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC, 3168, Australia
| | - Lars Esser
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC, 3168, Australia
| | - Ziqiu Tong
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
| | - Michael Beer
- Department of Defence, Defence Science and Technology Group, 506 Lorimer Street, Port Melbourne, VIC, 3207, Australia
| | - David Mawdsley
- Department of Defence, Defence Science and Technology Group, 506 Lorimer Street, Port Melbourne, VIC, 3207, Australia
| | - David Thirkettle-Watts
- Department of Defence, Defence Science and Technology Group, 506 Lorimer Street, Port Melbourne, VIC, 3207, Australia
| | - Katherine A Shields
- Department of Defence, Defence Science and Technology Group, 506 Lorimer Street, Port Melbourne, VIC, 3207, Australia
| | - Joseph A Nicolazzo
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
| | - Nicolas H Voelcker
- Department of Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Rd, Melbourne, VIC, 3168, Australia
- Department of Materials Science & Engineering, Faculty of Engineering, Monash University, 14 Alliance Ln, Melbourne, VIC, 3168, Australia
| |
Collapse
|
7
|
Vetter J, Palagi I, Waisman A, Blaeser A. Recent advances in blood-brain barrier-on-a-chip models. Acta Biomater 2025; 197:1-28. [PMID: 40127880 DOI: 10.1016/j.actbio.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
The blood-brain barrier is a physiological barrier between the vascular system and the nervous system. Under healthy conditions, it restricts the passage of most biomolecules into the brain, making drug development exceedingly challenging. Conventional cell-based in vitro models provide valuable insights into certain features of the BBB. Nevertheless, these models often lack the three-dimensional structure and dynamic interactions of the surrounding microenvironment, which greatly influence cell functionality. Consequently, considerable efforts have been made to enhance in vitro models for drug development and disease research. Recently, microfluidic organ-on-a-chip systems have emerged as promising candidates to better mimic the dynamic nature of the BBB. This review provides a comprehensive overview of recent BBB-on-chip devices. The typical building blocks, chip designs, the perfusion infrastructure, and readouts used to characterize and evaluate BBB formation are presented, analyzed, and discussed in detail. STATEMENT OF SIGNIFICANCE: The blood-brain barrier (BBB) is a highly selective barrier that controls what can enter the brain. While it protects the brain from harmful substances, it also hinders the delivery of treatments for neurological diseases such as Alzheimer's and Parkinson's. Due to its complexity, studying the BBB in living organisms remains difficult. However, recent advances in "organ-on-a-chip" technology have allowed scientists to create small, engineered models that replicate the BBB. These models provide a powerful platform to study diseases and test potential drugs with greater accuracy than traditional methods. Organ-on-a-chip devices are designed to mimic the behavior of organs or tissues in the human body, offering a more realistic and controlled environment for research. This review highlights recent breakthroughs in BBB-on-a-chip technology, showing how these models enhance current research and have the potential to transform the way we study brain diseases and develop new drugs. By integrating biology and engineering, BBB-on-a-chip technology has the potential to transform neuroscience research, improve drug development, and enhance our understanding of brain disorders.
Collapse
Affiliation(s)
- Johanna Vetter
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Ilaria Palagi
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
8
|
Mendes M, Morais AS, Carlos A, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-chip: Quo vademus? Applications and regulatory status. Colloids Surf B Biointerfaces 2025; 249:114507. [PMID: 39826309 DOI: 10.1016/j.colsurfb.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process. Moreover, these systems can be tailored to mimic specific disease states, facilitating the investigation of disease progression, drug responses, and potential therapeutic interventions. In particular, they can demonstrate, in early-phase pre-clinical studies, the safety and toxicity profiles of potential therapeutic compounds. Furthermore, they play a pivotal role in the in vitro evaluation of drug efficacy and the modeling of human diseases. One of the most promising prospects of organ-on-a-chip technology is to simulate the pathophysiology of specific subpopulations and even individual patients, thereby being used in personalized medicine. By mimicking the physiological responses of diverse patient groups, these systems hold the promise of revolutionizing therapeutic strategies, guiding them towards tailored intervention to the unique needs of each patient. This review presents the development status and evolution of microfluidic platforms that have facilitated the transition from cells to organs recreated on chips and some of the opportunities and applications offered by organ-on-a-chip technology. Additionally, the current potential and future perspectives of these microphysiological systems and the challenges this technology still faces are discussed.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Carlos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal.
| |
Collapse
|
9
|
Li H, Zhang Y, Han X, Li B, Liu D, Sun G. GRB2 promotes brain metastasis in HER2-positive breast cancer by regulating the Ras/MAPK pathway. Sci Rep 2025; 15:14736. [PMID: 40289214 PMCID: PMC12034778 DOI: 10.1038/s41598-025-99685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025] Open
Abstract
Brain metastasis is emerging as the most serious concern for breast cancer patients. HER2-positive breast cancer is more prone to undergo brain metastasis than other subtypes; notably, there has been little improvement in the treatment of brain metastasis .Our study confirmed the relevance of HER2 status to brain metastasis risk via clinical data analysis and revealed that exerts GRB2 tumorigenic effects by regulating the Ras/MAPK pathway in vivo and in vitro. Both an in situ injection model and a direct cerebral injection model were used to explore the ability of GRB2 to promote the brain metastasis. Results indicated that HER2- positive is a risk factor for brain metastasis according to clinical data. GRB2 enhances proliferation, migration, and invasion while suppressing apoptosis in HER2-positive breast cancer cells in vitro, primarily by regulating phosphorylation and alternative splicing of key proteins within the Ras/MAPK pathway. Notably, tumor cells were able to cross the blood‒brain barrier in both models assessed in this study. Thus, GRB2 is an oncogenic factor that contributes to the malignancy of HER2-positive breast cancer, GRB2 and HER2 can synergistically promote tumor cell penetration of the blood‒brain barrier and induce metastasis.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Breast Internal Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China.
- Postdoctoral Research Workstation of Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, China.
| | - Yalin Zhang
- Department of Radiation Oncology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - Xiao Han
- Department of Radiation Oncology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - Bingyu Li
- Department of Breast Internal Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - Dan Liu
- Department of Breast Internal Medicine, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, 830011, China
| | - Gang Sun
- Key Laboratory of Oncology of Xinjiang Uygur Autonomous Region, Department of Breast and Thyroid Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830011, China.
| |
Collapse
|
10
|
Schneider BM, Hamurcu HI, Salzbrunn A, von Kopylow K. Microfluidic systems in testicular in vitro culture: a powerful model tool for spermatogenesis and reprotoxicity studies. Asian J Androl 2025:00129336-990000000-00307. [PMID: 40260644 DOI: 10.4103/aja20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/22/2025] [Indexed: 04/23/2025] Open
Abstract
ABSTRACT As prepubertal boys do not yet produce spermatozoa, they cannot rely on sperm cryopreservation for fertility preservation before gonadotoxic therapy, such as high-dose alkylating agents or radiotherapy in the case of childhood cancers. According to the current guidelines, cryopreservation of testicular biopsies containing spermatogonial stem cells (SSCs) may be proposed to high-risk patients for potential later therapeutic use to fulfill the patients' wish for a biological child. One promising technique for human in vitro spermatogenesis and in vitro propagation of human SSCs is microfluidic (MF) culture, in which cells or tissues are subjected to a continuous flow of medium. This provides exact control over such parameters as nutrient content and gradients, as well as the removal of waste metabolites. While MF has been shown to maintain tissues and cell populations of organs for longer than conventional in vitro culture techniques, it has not been widely used for testicular in vitro culture. MF could advance human testicular in vitro culture and is also applicable to reprotoxicity studies. This review summarizes the findings and achievements of testis-on-chip (ToC) setups to date and discusses the benefits and limitations of these for spermatogenesis in vitro and toxicity assessment.
Collapse
Affiliation(s)
- Botho Maximilian Schneider
- Clinic and Polyclinic for Dermatology and Venerology, Andrological Section, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | | | | | |
Collapse
|
11
|
Zhang M, Wang P, Wu Y, Jin L, Liu J, Deng P, Luo R, Chen X, Zhao M, Zhang X, Guo Y, Yan Y, Di Y, Qin J. A microengineered 3D human neurovascular unit model to probe the neuropathogenesis of herpes simplex encephalitis. Nat Commun 2025; 16:3701. [PMID: 40251168 PMCID: PMC12008363 DOI: 10.1038/s41467-025-59042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
Herpes simplex encephalitis (HSE) caused by HSV-1 is the most common non-epidemic viral encephalitis, and the neuropathogenesis of HSE remains elusive. This work describes a 3D human neurovascular unit (NVU) model that allows to explore the neuropathogenesis of HSE in vitro. This model is established by co-culturing human microvascular endothelial cells, astrocytes, microglia and neurons on a multi-compartment chip. Upon HSV-1 infection, this NVU model exhibited HSE-associated pathological changes, including cytopathic effects, blood-brain barrier dysfunction and pro-inflammatory cytokines release. Besides, significant innate immune responses were observed with the infiltration of peripheral immune cells and microglial activation. Transcriptomic analysis revealed broadly inflammatory and chemotactic responses in host cells. Mechanistically, we found HSV-1 could induce severe suppression of autophagic flux in glial cells, especially in microglia. Autophagy activators could effectively inhibit HSV-1 replication and rescue neurovascular injuries, indicating the utility of this unique platform for studying neurological diseases and new therapeutics.
Collapse
Affiliation(s)
- Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peng Wang
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Jin
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Pengwei Deng
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiyue Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengqian Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ying Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Yingtong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Science and Technology of China, Hefei, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Wu Y, Chen Z, Chen F, Su J, Han J, Liu S. Using Regular Porous Membrane-Based Blood-Brain Barrier Model to Screen Brain-Targeted Drugs with Nanochannel Electrochemistry. Anal Chem 2025; 97:7968-7977. [PMID: 40183921 DOI: 10.1021/acs.analchem.5c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Constructing in vitro blood-brain barrier (BBB) model provides an innovative approach for studying the pathophysiology of the brain and screening drugs. Although commercial Transwell was the simplest and most widely utilized in vitro model, reasonably mimicking essential characteristics of human BBB and dynamic monitoring BBB function remain a challenge. Herein, inspired by the highly permeable extracellular matrix membrane in human BBB, a novel in vitro BBB model was established by combining functionalized anodic alumina oxide (AAO) membrane with nanochannel electrochemistry (ANE-BBB). Benefiting from the topographical nanostructures and modified cell-adhesive peptide on the AAO surface, a tight endothelial barrier was formed, which can be directly visualized by phase-contrast microscope, and the barrier function can be real time monitored by nanochannel electrochemistry. More importantly, according to the current signal induced by the diffusion of redox species through the nanochannels toward the underlying electrode surface, dynamic evaluation of BBB-crossing behavior and precise screening of brain-targeted nanodrugs can be achieved. The constructed ANE-BBB overcomes the shortcomings of invisible cell culture, low permeability, and inaccurate real-time monitoring of screening drugs in traditional Transwell and provides a reliable tool for the design of nanodrugs to the central nervous system.
Collapse
Affiliation(s)
- Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zixuan Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Juan Su
- Targeted MRI Contrast Agents Laboratory of Jiangsu Province, Nanjing Polytechnic Institute, Nanjing 210048, China
| | - Jianyu Han
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
13
|
Schellberg BG, Koppes AN, Koppes RA. In situ monitoring of barrier function on-chip via automated, non-invasive luminescence sensing. LAB ON A CHIP 2025. [PMID: 40181784 PMCID: PMC11969330 DOI: 10.1039/d4lc01090f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Over the past 30 years, organs-on-a-chip (OOCs) have emerged as a robust alternative to address the technological challenges associated with current in vitro and in vivo options. Although OOCs offer improved bio-relevance and controlled complexity, broad adoption has remained limited. Most approaches to characterize on-chip structure and function require human intervention, limiting device translation and feasibility. Here, we introduce a new fiber optic-based sensing platform that enables automated, temporal luminescence sensing on-chip, validated for real-time readout of epithelial and endothelial barrier function under cytokine-induced inflammation. Our platform, capable of at least 1 μM resolution, tracked paracellular transport in situ for 9 days of culture under perfusion on-chip. These results offer an alternative sensing approach for continuous, non-invasive luminescence monitoring in OOCs.
Collapse
Affiliation(s)
- Bryan G Schellberg
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Zhang W, Ding Y, He H, Chen K, Zeng Q, Cao X, Xiang Y, Zeng H. Prospects and challenges of ovarian cancer organoids in chemotherapy research (Review). Oncol Lett 2025; 29:198. [PMID: 40052067 PMCID: PMC11883337 DOI: 10.3892/ol.2025.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/20/2025] [Indexed: 03/09/2025] Open
Abstract
Ovarian cancer (OC), a prevalent and severe malignancy of the female reproductive system, often presents with mild early symptoms and is therefore diagnosed at advanced stages, leading to a poor prognosis. Current chemotherapeutic treatment relies on platinum-based combinational therapy and there have been no recent breakthroughs in the development of new drugs. Advances in organoid technology offer a novel approach to study OC by simulating tumors and their microenvironment, enhancing drug screening effectiveness and accuracy, and providing a foundation for personalized therapy. In recent years, researchers have made notable advancements, successfully developing a diverse array of OC organoid models, with biobanks serving a pivotal role in enhancing their success rates and overall efficiency. The present review summarizes the advantages of organoids over other models, such as two-dimensional cell models, three-dimensional spheres and patient-derived xenograft models, as well as the application of organoids. In particular, the current review emphasizes the application of organoids in chemotherapeutic drug screening, testing and personalized treatment. The limitations and prospects of organoid technology are also discussed. The present study aimed to reveal the unique advantages of OC organoids in chemotherapeutic applications, so as to provide insights into screening and testing new drugs for OC.
Collapse
Affiliation(s)
- Weijia Zhang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yuqing Ding
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hui He
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Keming Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Qingsong Zeng
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiaoming Cao
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Department of Cell Biology and Medical Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hai Zeng
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
15
|
Hachey SJ, Hatch CJ, Gaebler D, Forsythe AG, Ewald ML, Chopra AL, Fang JS, Hughes CC. Methods for Processing and Analyzing Images of Vascularized Micro-Organ and Tumor Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642741. [PMID: 40161596 PMCID: PMC11952417 DOI: 10.1101/2025.03.12.642741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Our group has developed and validated an advanced microfluidic platform to improve preclinical modeling of healthy and disease states, enabling extended culture and detailed analysis of tissue-engineered miniaturized organ constructs, or "organs-on-chips." Within this system, diverse cell types self-organize into perfused microvascular networks under dynamic flow within tissue chambers, effectively mimicking the structure and function of native tissues. This setup facilitates physiological intravascular delivery of nutrients, immune cells, and therapeutic agents, and creates a realistic microenvironment to study cellular interactions and tissue responses. Known as the vascularized micro-organ (VMO), this adaptable platform can be customized to represent various organ systems or tumors, forming a vascularized micro-tumor (VMT) for cancer studies. The VMO/VMT system closely simulates in vivo nutrient exchange and drug delivery within a 3D microenvironment, establishing a high-fidelity model for drug screening and mechanistic studies in vascular biology, cancer, and organ-specific pathologies. Furthermore, the optical transparency of the device supports high-resolution, real-time imaging of fluorescently labeled cells and molecules within the tissue construct, providing key insights into drug responses, cell interactions, and dynamic processes such as epithelial-mesenchymal transition. To manage the extensive imaging data generated, we created standardized, high-throughput workflows for image analysis. This manuscript presents our image processing and analysis pipeline, utilizing a suite of tools in Fiji/ImageJ to streamline data extraction from the VMO/VMT model, substantially reducing manual processing time. Additionally, we demonstrate how these tools can be adapted for analyzing imaging data from traditional in vitro models and microphysiological systems developed by other researchers.
Collapse
Affiliation(s)
- Stephanie J. Hachey
- University of California, Irvine, Molecular Biology and Biochemistry, Irvine, CA, USA
| | | | - Daniela Gaebler
- University of California, Irvine, Molecular Biology and Biochemistry, Irvine, CA, USA
| | | | - Makena L. Ewald
- University of California, Irvine, Molecular Biology and Biochemistry, Irvine, CA, USA
| | - Alexander L. Chopra
- University of California, Irvine, Molecular Biology and Biochemistry, Irvine, CA, USA
| | - Jennifer S. Fang
- Tulane University, Cell and Molecular Biology, New Orleans, LA, USA
- Tulane University, Physiology, New Orleans, LA, USA
- Louisiana Cancer Research Center, New Orleans, LA, USA
| | - Christopher C.W. Hughes
- University of California, Irvine, Molecular Biology and Biochemistry, Irvine, CA, USA
- University of California, Irvine, Biomedical Engineering, Irvine, CA, USA
| |
Collapse
|
16
|
Nabi AE, Pouladvand P, Liu L, Hua N, Ayubcha C. Machine Learning in Drug Development for Neurological Diseases: A Review of Blood Brain Barrier Permeability Prediction Models. Mol Inform 2025; 44:e202400325. [PMID: 40146590 PMCID: PMC11949286 DOI: 10.1002/minf.202400325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 03/29/2025]
Abstract
The blood brain barrier (BBB) is an endothelial-derived structure which restricts the movement of certain molecules between the general somatic circulatory system to the central nervous system (CNS). While the BBB maintains homeostasis by regulating the molecular environment induced by cerebrovascular perfusion, it also presents significant challenges in developing therapeutics intended to act on CNS targets. Many drug development practices rely partly on extensive cell and animal models to predict, to an extent, whether prospective therapeutic molecules can cross the BBB. In interest to reduce costs and improve prediction accuracy, many propose using advanced computational modeling of BBB permeability profiles leveraging empirical data. Given the scale of growth in machine learning and deep learning, we review the most recent machine learning approaches in predicting BBB permeability.
Collapse
Affiliation(s)
- Aryon Eckleel Nabi
- Harvard Medical SchoolDepartment of EpidemiologyHarvard T.H. Chan School of Public HealthBoston, MAUSA
| | - Pedram Pouladvand
- Department of EpidemiologyHarvard Chan School of Public HealthBoston, MAUSA
| | - Litian Liu
- Boonshoft School of MedicineWright State UniversityDayton, OHUSA
| | - Ning Hua
- Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyBoston, MAUSA
| | - Cyrus Ayubcha
- Harvard Medical SchoolDepartment of EpidemiologyHarvard T.H. Chan School of Public HealthBoston, MAUSA
- Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyBoston, MAUSA
| |
Collapse
|
17
|
Soliman Y, Al-Khodor J, Yildirim Köken G, Mustafaoglu N. A guide for blood-brain barrier models. FEBS Lett 2025; 599:599-644. [PMID: 39533665 DOI: 10.1002/1873-3468.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Understanding the intricate mechanisms underlying brain-related diseases hinges on unraveling the pivotal role of the blood-brain barrier (BBB), an essential dynamic interface crucial for maintaining brain equilibrium. This review offers a comprehensive analysis of BBB physiology, delving into its cellular and molecular components while exploring a wide range of in vivo and in vitro BBB models. Notably, recent advancements in 3D cell culture techniques are explicitly discussed, as they have significantly improved the fidelity of BBB modeling by enabling the replication of physiologically relevant environments under flow conditions. Special attention is given to the cellular aspects of in vitro BBB models, alongside discussions on advances in stem cell technologies, providing valuable insights into generating robust cellular systems for BBB modeling. The diverse array of cell types used in BBB modeling, depending on their sources, is meticulously examined in this comprehensive review, scrutinizing their respective derivation protocols and implications. By synthesizing diverse approaches, this review sheds light on the improvements of BBB models to capture physiological conditions, aiding in understanding BBB interactions in health and disease conditions to foster clinical developments.
Collapse
Affiliation(s)
- Yomna Soliman
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Faculty of Pharmacy, Mansoura University, Egypt
| | - Jana Al-Khodor
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | | | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center, Istanbul, Turkey
| |
Collapse
|
18
|
Liu J, Wang T, Dong J, Lu Y. The blood-brain barriers: novel nanocarriers for central nervous system diseases. J Nanobiotechnology 2025; 23:146. [PMID: 40011926 PMCID: PMC11866817 DOI: 10.1186/s12951-025-03247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
The central nervous system (CNS) diseases are major contributors to death and disability worldwide. However, the blood-brain barrier (BBB) often prevents drugs intended for CNS diseases from effectively crossing into the brain parenchyma to deliver their therapeutic effects. The blood-brain barrier is a semi-permeable barrier with high selectivity. The BBB primarily manages the transport of substances between the blood and the CNS. To enhance drug delivery for CNS disease treatment, various brain-based drug delivery strategies overcoming the BBB have been developed. Among them, nanoparticles (NPs) have been emphasized due to their multiple excellent properties. This review starts with an overview of the BBB's anatomical structure and physiological roles, and then explores the mechanisms, both endogenous and exogenous, that facilitate the NP passage across the BBB. The text also delves into how nanoparticles' shape, charge, size, and surface ligands affect their ability to cross the BBB and offers an overview of different nanoparticle classifications. This review concludes with an examination of the current challenges in utilizing nanomaterials for brain drug delivery and discusses corresponding directions for solutions. This review aims to propose innovative diagnostic and therapeutic approaches for CNS diseases and enhance drug design for more effective delivery across the BBB.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Wang
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Dong
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan Lu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Chang Y, Chen T, Geng S, Wang Y, Zhang W, Hu Q, Zhao Y, Pu Q, Liu Z, Guo G, Wang X. A Scenario-Adaptive Microfluidic Chip for Constructing In Vitro Models of Biological Barriers. Anal Chem 2025; 97:3816-3821. [PMID: 39951486 DOI: 10.1021/acs.analchem.4c06602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Microfluidic-based in vitro physiological barrier models are capable of simulating crucial environmental factors during barrier formation, including fluid shear and geometric-level cellular cocultures, thus offering enhanced physiological fidelity relative to conventional platforms. However, the sealed structure of microfluidic barrier chips faces challenges in characterizing and monitoring the barrier performance, especially in measuring transendothelial/epithelial electrical resistance (TEER). Here, we developed a microfluidic barrier chip that can be easily adapted to commercial TEER detectors. During the barrier construction phase, continuous perfusion culture was utilized to maintain a constant fluid shear stress; for barrier characterization, commercial resistance meters were employed to measure TEER directly. Using this chip, we successfully constructed an in vitro blood-brain barrier model with a TEER of approximately 220 Ω·cm2, indicating high physiological relevance. This scenario-adaptive microfluidic chip demonstrates extensive potential for developing organ-on-a-chip models across various barrier systems, with significant implications for barrier characteristic monitoring and in situ cell sampling within the chip.
Collapse
Affiliation(s)
- Yaran Chang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Tian Chen
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Shanshan Geng
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yilin Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wenmei Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Qin Hu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yaoyao Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhihong Liu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
20
|
Wu H, Feng E, Yin H, Zhang Y, Chen G, Zhu B, Yue X, Zhang H, Liu Q, Xiong L. Biomaterials for neuroengineering: applications and challenges. Regen Biomater 2025; 12:rbae137. [PMID: 40007617 PMCID: PMC11855295 DOI: 10.1093/rb/rbae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/19/2024] [Accepted: 11/03/2024] [Indexed: 02/27/2025] Open
Abstract
Neurological injuries and diseases are a leading cause of disability worldwide, underscoring the urgent need for effective therapies. Neural regaining and enhancement therapies are seen as the most promising strategies for restoring neural function, offering hope for individuals affected by these conditions. Despite their promise, the path from animal research to clinical application is fraught with challenges. Neuroengineering, particularly through the use of biomaterials, has emerged as a key field that is paving the way for innovative solutions to these challenges. It seeks to understand and treat neurological disorders, unravel the nature of consciousness, and explore the mechanisms of memory and the brain's relationship with behavior, offering solutions for neural tissue engineering, neural interfaces and targeted drug delivery systems. These biomaterials, including both natural and synthetic types, are designed to replicate the cellular environment of the brain, thereby facilitating neural repair. This review aims to provide a comprehensive overview for biomaterials in neuroengineering, highlighting their application in neural functional regaining and enhancement across both basic research and clinical practice. It covers recent developments in biomaterial-based products, including 2D to 3D bioprinted scaffolds for cell and organoid culture, brain-on-a-chip systems, biomimetic electrodes and brain-computer interfaces. It also explores artificial synapses and neural networks, discussing their applications in modeling neural microenvironments for repair and regeneration, neural modulation and manipulation and the integration of traditional Chinese medicine. This review serves as a comprehensive guide to the role of biomaterials in advancing neuroengineering solutions, providing insights into the ongoing efforts to bridge the gap between innovation and clinical application.
Collapse
Affiliation(s)
- Huanghui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Enduo Feng
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Huanxin Yin
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yuxin Zhang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Guozhong Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Beier Zhu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xuezheng Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
| | - Qiong Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
21
|
Du Y, Wang YR, Bao QY, Xu XX, Xu C, Wang S, Liu Q, Liu F, Zeng YL, Wang YJ, Liu W, Liu Y, Yu SX, Chen YC, Wang C, Zhang W, Gao H, Luo H, Liu B, Jing G, Guo M, Chen FX, Liu YJ. Personalized Vascularized Tumor Organoid-on-a-Chip for Tumor Metastasis and Therapeutic Targeting Assessment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412815. [PMID: 39726096 DOI: 10.1002/adma.202412815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/14/2024] [Indexed: 12/28/2024]
Abstract
While tumor organoids have revolutionized cancer research by recapitulating the cellular architecture and behaviors of real tumors in vitro, their lack of functional vasculature hinders their attainment of full physiological capabilities. Current efforts to vascularize organoids are struggling to achieve well-defined vascular networks, mimicking the intricate hierarchy observed in vivo, which restricts the physiological relevance particularly for studying tumor progression and response to therapies targeting the tumor vasculature. An innovative vascularized patient-derived tumor organoids (PDTOs)-on-a-chip with hierarchical, tumor-specific microvasculature is presented, providing a versatile platform to explore tumor-vascular dynamics and antivascular drug efficacy. It is found that highly metastatic tumor cells induced vessel angiogenesis and simultaneously migrated toward blood vessels via the Notch pathway. The evident association between the angiogenic and migratory capacities of PDTOs and their clinical metastatic outcomes underscores the potential of the innovative platform for evaluating tumor metastasis, thus offering valuable insights for clinical decision-making. Ultimately, the system represents a promising avenue for advancing the understanding of tumor metastasis and developing personalized treatment strategies based on patient-specific tumor characteristics.
Collapse
Affiliation(s)
- Yang Du
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Yi-Ran Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Qi-Yuan Bao
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Shanghai, 200025, China
| | - Xin-Xin Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Congling Xu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaoxuan Wang
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qi Liu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Shanghai, 200025, China
| | - Fan Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu-Lian Zeng
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Yixin Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Yu-Chen Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Chen Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Weibin Zhang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Shanghai, 200025, China
| | - Hai Gao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Hao Luo
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Baohong Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| | - Guangyin Jing
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China
| |
Collapse
|
22
|
Panigaj M, Basu Roy T, Skelly E, Chandler MR, Wang J, Ekambaram S, Bircsak K, Dokholyan NV, Afonin KA. Autonomous Nucleic Acid and Protein Nanocomputing Agents Engineered to Operate in Living Cells. ACS NANO 2025; 19:1865-1883. [PMID: 39760461 PMCID: PMC11757000 DOI: 10.1021/acsnano.4c13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In recent years, the rapid development and employment of autonomous technology have been observed in many areas of human activity. Autonomous technology can readily adjust its function to environmental conditions and enable an efficient operation without human control. While applying the same concept to designing advanced biomolecular therapies would revolutionize nanomedicine, the design approaches to engineering biological nanocomputing agents for predefined operations within living cells remain a challenge. Autonomous nanocomputing agents made of nucleic acids and proteins are an appealing idea, and two decades of research has shown that the engineered agents act under real physical and biochemical constraints in a logical manner. Throughout all domains of life, nucleic acids and proteins perform a variety of vital functions, where the sequence-defined structures of these biopolymers either operate on their own or efficiently function together. This programmability and synergy inspire massive research efforts that utilize the versatility of nucleic and amino acids to encode functions and properties that otherwise do not exist in nature. This Perspective covers the key concepts used in the design and application of nanocomputing agents and discusses potential limitations and paths forward.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Tanaya Basu Roy
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | | | - Jian Wang
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Srinivasan Ekambaram
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kristin Bircsak
- MIMETAS
US, INC, Gaithersburg, Maryland 20878, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
23
|
Mokarram N, Case A, Hossainy NN, Lyon JG, MacDonald TJ, Bellamkonda R. Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma. COMMUNICATIONS MATERIALS 2025; 6:5. [PMID: 39790893 PMCID: PMC11706785 DOI: 10.1038/s43246-024-00721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier, essential for protecting the central nervous system, also restricts drug delivery to this region. Thus, delivering drugs across the blood-brain barrier is an active research area in immunology, oncology, and neurology; moreover, novel methods are urgently needed to expand therapeutic options for central nervous system pathologies. While previous strategies have focused on small molecules that modulate blood-brain barrier permeability or penetrate the barrier, there is an increased focus on biomedical devices-external or implanted-for improving drug delivery. Here, we review device-assisted drug delivery across the blood-brain barrier, emphasizing its application in glioblastoma, an aggressively malignant primary brain cancer in which the blood-brain barrier plays a central role. We examine the blood-brain barrier and its features in glioblastoma, emerging models for studying the blood-brain barrier, and device-assisted methods for crossing the blood-brain barrier. We conclude by presenting methods to monitor the blood-brain barrier and paradigms for combined cross-BBB drug delivery.
Collapse
Affiliation(s)
- Nassir Mokarram
- Department of Neurosurgery, Emory University, Atlanta, GA USA
| | - Ayden Case
- Trinity College of Arts and Sciences, Duke University, Durham, NC USA
| | | | - Johnathan G. Lyon
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA USA
| | | |
Collapse
|
24
|
Teertam SK, Setaluri V, Ayuso JM. Advances in Microengineered Platforms for Skin Research. JID INNOVATIONS 2025; 5:100315. [PMID: 39525704 PMCID: PMC11550131 DOI: 10.1016/j.xjidi.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024] Open
Abstract
The skin plays a critical role in human physiology, acting both as a barrier to environmental insults and as a window to environmental stimuli. Disruption of this homeostasis leads to numerous skin disorders. Human and animal skin differ significantly, limiting the translational potential of animal-based investigations to advance therapeutics to human skin diseases. Hence, there is a critical need for physiologically relevant human skin models to explore novel treatment strategies. Recent advances in microfluidic technologies now allow design and generation of organ-on-chip devices that mimic critical features of tissue architecture. Skin-on-a-chip and microfluidic platforms hold promise as useful models for diverse dermatology applications. Compared with traditional in vitro models, microfluidic platforms offer improved control of fluid flow, which in turn allows precise manipulation of cell and molecular distribution. These properties enable the generation of multilayered in vitro models that mimic human skin structure while simultaneously offering superior control over nutrient and drug distribution. Researchers have used microfluidic platforms for a variety of applications in skin research, including epidermal-dermal cellular crosstalk, cell migration, mechanobiology, microbiome-immune response interactions, vascular biology, and wound healing. In this review, we comprehensively review state-of-the-art microfluidic models for skin research. We discuss the challenges and promise of current skin-on-a-chip technologies and provide a roadmap for future research in this active field.
Collapse
Affiliation(s)
- Sireesh Kumar Teertam
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
- William S. Middleton Memorial VA Hospital. Madison, Wisconsin, USA
| | - Jose M. Ayuso
- Department of Dermatology, University of Wisconsin-Madison, Wisconsin, USA
- UW Carbone Cancer Center, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
25
|
Maulana TI, Wevers NR, Kristoforus T, Chandler M, Lanz HL, Joore J, Vulto P, Villenave R, Kustermann S, Loskill P, Bircsak KM. Opportunities for Microphysiological Systems in Toxicity Testing of New Drug Modalities. Annu Rev Pharmacol Toxicol 2025; 65:47-69. [PMID: 39227343 DOI: 10.1146/annurev-pharmtox-061724-080621] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
New drug modalities offer life-saving benefits for patients through access to previously undruggable targets. Yet these modalities pose a challenge for the pharmaceutical industry, as side effects are complex, unpredictable, and often uniquely human. With animal studies having limited predictive value due to translatability challenges, the pharmaceutical industry seeks out new approach methodologies. Microphysiological systems (MPS) offer important features that enable complex toxicological processes to be modeled in vitro such as (a) an adjustable complexity of cellular components, including immune components; (b) a modifiable tissue architecture; (c) integration and monitoring of dynamic mechanisms; and (d) a multiorgan connection. Here we review MPS studies in the context of four clinical adverse events triggered by new drug modalities: peripheral neuropathy, thrombocytopenia, immune-mediated hepatotoxicity, and cytokine release syndrome. We conclude that while the use of MPS for testing new drug modality-induced toxicities is still in its infancy, we see strong potential going forward.
Collapse
Affiliation(s)
- Tengku Ibrahim Maulana
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Theodora Kristoforus
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | - Jos Joore
- MIMETAS BV, Oegstgeest, The Netherlands
| | | | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Kustermann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Peter Loskill
- Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | |
Collapse
|
26
|
Power L, Shuhmaher R, Houtz P, Chen J, Rudolph S, Yuen J, Machour M, Levy E, Wu L, Levenberg S, Whalen M, Chen Y, Kaplan DL. 3D Neurovascular Unit Tissue Model to Assess Responses to Traumatic Brain Injury. J Biomed Mater Res A 2025; 113:e37816. [PMID: 39440483 DOI: 10.1002/jbm.a.37816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The neurovascular unit (NVU) is a critical interface in the central nervous system that links vascular interactions with glial and neural tissue. Disruption of the NVU has been linked to the onset and progression of neurodegenerative diseases. Despite its significance the NVU remains challenging to study in a physiologically relevant manner. Here, a 3D cell triculture model of the NVU is developed that incorporates human primary brain microvascular endothelial cells, astrocytes, and pericytes into a tissue system that can be sustained in vitro for several weeks. This tissue model helps recapitulate the complexity of the NVU and can be used to interrogate the mechanisms of disease and cell-cell interactions. The NVU tissue model displays elevated cell death and inflammatory responses following mechanical damage, to emulate traumatic brain injury (TBI) under controlled laboratory conditions, including lactate dehydrogenase (LDH) release, elevated inflammatory markers TNF-α and monocyte chemoattractant cytokines MCP-2 and MCP-3 and reduced expression of the tight junction marker ZO-1. This 3D tissue model serves as a tool for deciphering mechanisms of TBIs and immune responses associated with the NVU.
Collapse
Affiliation(s)
- Liam Power
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Rita Shuhmaher
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Philip Houtz
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Jinpeng Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - John Yuen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Majd Machour
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Emily Levy
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Michael Whalen
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
27
|
Nogueira Pinto H, Zarekiani P, de Vries HE. Neuroglia and the blood-brain barrier. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:127-141. [PMID: 40122621 DOI: 10.1016/b978-0-443-19104-6.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The blood-brain barrier (BBB) is a highly dynamic and complex structure, present throughout the brain vasculature, that safeguards the brain against blood-borne insults. Neuroglial cells play a major role in its development, function, and homeostasis of the BBB by establishing intricate interactions via direct cell-cell contacts and paracrine signaling. Astrocytes, pericytes, oligodendrocytes, and microglia, alongside specialized brain endothelial cells, orchestrate key events in the brain in health and disease, which can be partially recapitulated by in vitro and in vivo models for biomedical research. This chapter presents a detailed description of the main cellular and molecular mechanisms that govern the neuroglia-BBB crosstalk and the available models for its investigation, emphasizing the importance of each cell population and the synergistic roles they play in the brain.
Collapse
Affiliation(s)
- Henrique Nogueira Pinto
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands; Amsterdam Neuroscience, Neuroinfection & Inflammation, Amsterdam, The Netherlands
| | - Parand Zarekiani
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands; Amsterdam Neuroscience, Neuroinfection & Inflammation, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands; Amsterdam Neuroscience, Neuroinfection & Inflammation, Amsterdam, The Netherlands; MS Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Carnicer‐Lombarte A, Malliaras GG, Barone DG. The Future of Biohybrid Regenerative Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408308. [PMID: 39564751 PMCID: PMC11756040 DOI: 10.1002/adma.202408308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Indexed: 11/21/2024]
Abstract
Biohybrid regenerative bioelectronics are an emerging technology combining implantable devices with cell transplantation. Once implanted, biohybrid regenerative devices integrate with host tissue. The combination of transplant and device provides an avenue to both replace damaged or dysfunctional tissue, and monitor or control its function with high precision. While early challenges in the fusion of the biological and technological components limited development of biohybrid regenerative technologies, progress in the field has resulted in a rapidly increasing number of applications. In this perspective the great potential of this emerging technology for the delivery of therapy is discussed, including both recent research progress and potential new directions. Then the technology barriers are discussed that will need to be addressed to unlock the full potential of biohybrid regenerative devices.
Collapse
Affiliation(s)
| | - George G. Malliaras
- Department of EngineeringElectrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
| | - Damiano G. Barone
- Department of EngineeringElectrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
- Department of Neurosurgery, Houston MethodistHouston77030USA
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| |
Collapse
|
29
|
Wysoczański B, Świątek M, Wójcik-Gładysz A. Organ-on-a-Chip Models-New Possibilities in Experimental Science and Disease Modeling. Biomolecules 2024; 14:1569. [PMID: 39766276 PMCID: PMC11674024 DOI: 10.3390/biom14121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
'Organ-on-a-chip' technology is a promising and rapidly evolving model in biological research. This innovative microfluidic cell culture device was created using a microchip with continuously perfused chambers, populated by living cells arranged to replicate physiological processes at the tissue and organ levels. By consolidating multicellular structures, tissue-tissue interfaces, and physicochemical microenvironments, these microchips can replicate key organ functions. They also enable the high-resolution, real-time imaging and analysis of the biochemical, genetic, and metabolic activities of living cells in the functional tissue and organ contexts. This technology can accelerate research into tissue development, organ physiology and disease etiology, therapeutic approaches, and drug testing. It enables the replication of entire organ functions (e.g., liver-on-a-chip, hypothalamus-pituitary-on-a-chip) or the creation of disease models (e.g., amyotrophic lateral sclerosis-on-a-chip, Parkinson's disease-on-a-chip) using specialized microchips and combining them into an integrated functional system. This technology allows for a significant reduction in the number of animals used in experiments, high reproducibility of results, and the possibility of simultaneous use of multiple cell types in a single model. However, its application requires specialized equipment, advanced expertise, and currently incurs high costs. Additionally, achieving the level of standardization needed for commercialization remains a challenge at this stage of development.
Collapse
Affiliation(s)
- Bartłomiej Wysoczański
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Marcin Świątek
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
| |
Collapse
|
30
|
Jo H, Lee S, Kim MH, Park S, Lee SY. Recapitulating Glioma Stem Cell Niches Using 3D Spheroid Models for Glioblastoma Research. BIOSENSORS 2024; 14:539. [PMID: 39589998 PMCID: PMC11592235 DOI: 10.3390/bios14110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Glioblastoma multiforme (GBM) is among the most aggressive brain cancers, and it contains glioma stem cells (GSCs) that drive tumor initiation, progression, and recurrence. These cells resist conventional therapies, contributing to high recurrence rates in GBM patients. Developing in vitro models that mimic the tumor microenvironment (TME), particularly the GSC niche, is crucial for understanding GBM growth and therapeutic resistance. Three-dimensional (3D) spheroid models provide a more physiologically relevant approach than traditional two-dimensional (2D) cultures, recapitulating key tumor features like hypoxia, cell heterogeneity, and drug resistance. This review examines scaffold-free and scaffold-based methods for generating 3D GBM spheroids, focusing on their applications in studying the cancer stem cell niche. The discussion encompasses methods such as the hanging drop, low-adhesion plates, and magnetic levitation, alongside advancements in embedding spheroids within extracellular matrix-based hydrogels and employing 3D bioprinting to fabricate more intricate tumor models. These 3D culture systems offer substantial potential for enhancing our understanding of GBM biology and devising more effective targeted therapies.
Collapse
Affiliation(s)
- Hyunji Jo
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (H.J.); (S.L.)
| | - Seulgi Lee
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (H.J.); (S.L.)
| | - Min-Hyeok Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea;
| | - Sungsu Park
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (H.J.); (S.L.)
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea;
- Department of Quantum Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seo-Yeon Lee
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
- Department of Biomedical Science, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| |
Collapse
|
31
|
Ceccarelli MC, Lefevre MC, Marino A, Pignatelli F, Krukiewicz K, Battaglini M, Ciofani G. Real-time monitoring of a 3D blood-brain barrier model maturation and integrity with a sensorized microfluidic device. LAB ON A CHIP 2024; 24:5085-5100. [PMID: 39412878 PMCID: PMC11482549 DOI: 10.1039/d4lc00633j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
A significant challenge in the treatment of central nervous system (CNS) disorders is represented by the presence of the blood-brain barrier (BBB), a highly selective membrane that regulates molecular transport and restricts the passage of pathogens and therapeutic compounds. Traditional in vivo models are constrained by high costs, lengthy experimental timelines, ethical concerns, and interspecies variations. In vitro models, particularly microfluidic BBB-on-a-chip devices, have been developed to address these limitations. These advanced models aim to more accurately replicate human BBB conditions by incorporating human cells and physiological flow dynamics. In this framework, here we developed an innovative microfluidic system that integrates thin-film electrodes for non-invasive, real-time monitoring of BBB integrity using electrochemical impedance spectroscopy (EIS). EIS measurements showed frequency-dependent impedance changes, indicating BBB integrity and distinguishing well-formed from non-mature barriers. The data from EIS monitoring was confirmed by permeability assays performed with a fluorescence tracer. The model incorporates human endothelial cells in a vessel-like arrangement to mimic the vascular component and three-dimensional cell distribution of human astrocytes and microglia to simulate the parenchymal compartment. By modeling the BBB-on-a-chip with an equivalent circuit, a more accurate trans-endothelial electrical resistance (TEER) value was extracted. The device demonstrated successful BBB formation and maturation, confirmed through live/dead assays, immunofluorescence and permeability assays. Computational fluid dynamics (CFD) simulations confirmed that the device mimics in vivo shear stress conditions. Drug crossing assessment was performed with two chemotherapy drugs: doxorubicin, with a known poor BBB penetration, and temozolomide, conversely a specific drug for CNS disorders and able to cross the BBB, to validate the model predictive capability for drug crossing behavior. The proposed sensorized microfluidic device represents a significant advancement in BBB modeling, offering a versatile platform for CNS drug development, disease modeling, and personalized medicine.
Collapse
Affiliation(s)
- Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Marie Celine Lefevre
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Francesca Pignatelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Księdza Marcina Strzody 9, 44-100 Gliwice, Poland
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.
| |
Collapse
|
32
|
Pang B, Wu L, Peng Y. In vitro modelling of the neurovascular unit for ischemic stroke research: Emphasis on human cell applications and 3D model design. Exp Neurol 2024; 381:114942. [PMID: 39222766 DOI: 10.1016/j.expneurol.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke has garnered global medical attention as one of the most serious cerebrovascular diseases. The mechanisms involved in both the development and recovery phases of ischemic stroke are complex, involving intricate interactions among different types of cells, each with its own unique functions. To better understand the possible pathogenesis, neurovascular unit (NVU), a concept comprising neurons, endothelial cells, mural cells, glial cells, and extracellular matrix components, has been used in analysing various brain diseases, particularly in ischemic stroke, aiming to depict the interactions between cerebral vasculature and neural cells. While in vivo models often face limitations in terms of reproducibility and the ability to precisely mimic human pathophysiology, it is now important to establish in vitro NVU models for ischemic stroke research. In order to accurately portray the pathological processes occurring within the brain, a diverse array of NVU 2D and 3D in vitro models, each possessing unique characteristics and advantages, have been meticulously developed. This review presents a comprehensive overview of recent advancements in in vitro models specifically tailored for investigating ischemic stroke. Through a systematic categorization of these developments, we elucidate the intricate links between NVU components and the pathogenesis of ischemic stroke. Furthermore, we explore the distinct advantages offered by innovative NVU models, notably 3D models, which closely emulate in vivo conditions. Additionally, an examination of current therapeutic modalities for ischemic stroke developed utilizing in vitro NVU models is provided. Serving as a valuable reference, this review aids in the design and implementation of effective in vitro models for ischemic stroke research.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
33
|
Cai X, Huang Y, Wang T, Wang Z, Jiao L, Liao J, Zhou L, Zhu C, Rong S. A biocompatible polydopamine platform for targeted delivery of nicotinamide mononucleotide and boosting NAD+ levels in the brain. NANOSCALE 2024; 16:19335-19343. [PMID: 39324237 DOI: 10.1039/d4nr02934h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Nicotinamide mononucleotide (NMN), a precursor of the coenzyme nicotinamide adenine dinucleotide (NAD+), has gained wide attention as an anti-aging agent, which plays a significant role in intracellular redox reactions. However, its effectiveness is limited by easy metabolism in the liver and subsequent excretion as nicotinamide, resulting in low bioavailability, particularly in the brain. Additionally, the blood-brain barrier (BBB) further hinders NMN supply to the brain, compromising its potential anti-aging effects. Herein, we developed a biocompatible polydopamine (PDA) platform to deliver NMN for boosting NAD+ levels in the brain for the first time. The lactoferrin (Lf) ligand was covalently attached to the PDA spheres to improve BBB transport efficiency. The resultant PDA-based system, referred to as PDA-Lf-NMN, not only exhibited superior BBB penetration ability but also improved the utilization rate of brain NMN in elevating NAD+ levels compared to NMN alone for both young (3 months) and old (21 months) mice. Moreover, after the old mice were treated with low-dose PDA-Lf-NMN (8 mg kg-1 day-1), they exhibited improved spatial cognition. Importantly, these nanomedicines did not induce any cellular necrosis or apoptosis. It provides a promising avenue for delivering NMN specifically to the brain, boosting NAD+ levels for promoting longevity and treating brain aging-related diseases.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ting Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ziping Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jingling Liao
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Li Zhou
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
34
|
O’Grady BJ, McCall AS, Cullison S, Chavarria D, Kjar A, Schrag MS, Lippmann ES. Anatomically and Physiologically Accurate Engineered Neurovascular Unit and Blood-Brain Barrier Model Using Microvessels Isolated from Postmortem Human Brain Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615283. [PMID: 39386654 PMCID: PMC11463414 DOI: 10.1101/2024.09.26.615283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Brain vasculature is a complex and heterogeneous physiological structure that serves specialized roles in maintaining brain health and homeostasis. There is substantial interest in developing representative human models of the brain vasculature for drug screening and disease modeling applications. Many contemporary strategies have focused on culturing neurovascular cell types in hydrogels and microdevices, but it remains challenging to achieve anatomically relevant vascular structures that have physiologically similar function to their in vivo counterparts. Here, we present a strategy for isolating microvessels from cryopreserved human cortical tissue and culturing these vessels in a biomimetic gelatin-based hydrogel contained in a microfluidic device. We provide histological evidence of arteriole and capillary architectures within hydrogels, as well as anastomosis to the hydrogel edges allowing lumen perfusion. In capillaries, we demonstrate restricted diffusion of a 10 kDa dextran, indicating intact passive blood-brain barrier function. We anticipate this bona fide human brain vasculature-on-a-chip will be useful for various biotechnology applications.
Collapse
Affiliation(s)
- Brian J. O’Grady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - A. Scott McCall
- Department of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Cullison
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Daniel Chavarria
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Matthew S. Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
35
|
Rodrigues RO, Shin SR, Bañobre-López M. Brain-on-a-chip: an emerging platform for studying the nanotechnology-biology interface for neurodegenerative disorders. J Nanobiotechnology 2024; 22:573. [PMID: 39294645 PMCID: PMC11409741 DOI: 10.1186/s12951-024-02720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/12/2024] [Indexed: 09/21/2024] Open
Abstract
Neurological disorders have for a long time been a global challenge dismissed by drug companies, especially due to the low efficiency of most therapeutic compounds to cross the brain capillary wall, that forms the blood-brain barrier (BBB) and reach the brain. This has boosted an incessant search for novel carriers and methodologies to drive these compounds throughout the BBB. However, it remains a challenge to artificially mimic the physiology and function of the human BBB, allowing a reliable, reproducible and throughput screening of these rapidly growing technologies and nanoformulations (NFs). To surpass these challenges, brain-on-a-chip (BoC) - advanced microphysiological platforms that emulate key features of the brain composition and functionality, with the potential to emulate pathophysiological signatures of neurological disorders, are emerging as a microfluidic tool to screen new brain-targeting drugs, investigate neuropathogenesis and reach personalized medicine. In this review, the advance of BoC as a bioengineered screening tool of new brain-targeting drugs and NFs, enabling to decipher the intricate nanotechnology-biology interface is discussed. Firstly, the main challenges to model the brain are outlined, then, examples of BoC platforms to recapitulate the neurodegenerative diseases and screen NFs are summarized, emphasizing the current most promising nanotechnological-based drug delivery strategies and lastly, the integration of high-throughput screening biosensing systems as possible cutting-edge technologies for an end-use perspective is discussed as future perspective.
Collapse
Affiliation(s)
- Raquel O Rodrigues
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA
- CMEMS-UMinho, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Su-Ryon Shin
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA.
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal.
| |
Collapse
|
36
|
Kaur N, Gautam P, Nanda D, Meena AS, Shanavas A, Prasad R. Lipid Nanoparticles for Brain Tumor Theranostics: Challenges and Status. Bioconjug Chem 2024; 35:1283-1299. [PMID: 39207940 DOI: 10.1021/acs.bioconjchem.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lipid nanoparticles have been recognized as a powerful weapon for delivering various imaging and therapeutic agents to the localized solid tumors, especially brain tumors individually or in combination. Promisingly, lipid-based nanosystems have been considered as safe delivery systems which are even approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). One recent spotlight of lipid nanoparticles as COVID-19 mRNA vaccines where lipid nanoparticles play an important role in effectively protecting and delivering mRNA to the desired cells. As of now, successive progress in lipid-based nanocarriers, viz., nanoliposomes, solid lipid nanoparticles, ionizable lipid nanostructures, etc., with better biochemical and biophysical stabilities, has been noticed and reported. Moreover, lipid nanostructures have been considered as versatile therapeutics platforms for a variety of diseases due to their biocompatibility, ability to protect and deliver therapeutics to the localized site, and better reproducibility and reliability. However, lipid nanoparticles still face morphological and biochemical changes upon their in vivo administration. These changes alter the specific biological and pathological response of lipid nanoparticles during their personalized brain tumor theranostics. Second, lipid nanomedicine still faces major challenges of zero premature leakage of loaded cargo, long-term colloidal stability, and off targeting. Herein, various lipid-based nanomedicines for brain tumor imaging and therapeutics "theranostics" have been reviewed and summarized considering major aspects of preclinical and clinical studies. On the other hand, engineering and biological challenges of lipid theranostics systems with relevant advantages and guidelines for clinical practice for different brain tumors have also been discussed. This review provides in-depth knowledge of lipid nanoparticle-based theranostics agents for brain tumor imaging and therapeutics.
Collapse
Affiliation(s)
- Navneet Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Priyadarshi Gautam
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Dibyani Nanda
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Avtar Singh Meena
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
37
|
Filiz Y, Esposito A, De Maria C, Vozzi G, Yesil-Celiktas O. A comprehensive review on organ-on-chips as powerful preclinical models to study tissue barriers. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:042001. [PMID: 39655848 DOI: 10.1088/2516-1091/ad776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/04/2024] [Indexed: 12/18/2024]
Abstract
In the preclinical stage of drug development, 2D and 3D cell cultures under static conditions followed by animal models are utilized. However, these models are insufficient to recapitulate the complexity of human physiology. With the developing organ-on-chip (OoC) technology in recent years, human physiology and pathophysiology can be modeled better than traditional models. In this review, the need for OoC platforms is discussed and evaluated from both biological and engineering perspectives. The cellular and extracellular matrix components are discussed from a biological perspective, whereas the technical aspects such as the intricate working principles of these systems, the pivotal role played by flow dynamics and sensor integration within OoCs are elucidated from an engineering perspective. Combining these two perspectives, bioengineering applications are critically discussed with a focus on tissue barriers such as blood-brain barrier, ocular barrier, nasal barrier, pulmonary barrier and gastrointestinal barrier, featuring recent examples from the literature. Furthermore, this review offers insights into the practical utility of OoC platforms for modeling tissue barriers, showcasing their potential and drawbacks while providing future projections for innovative technologies.
Collapse
Affiliation(s)
- Yagmur Filiz
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, 8500 Kortrijk, Belgium
| | - Alessio Esposito
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Carmelo De Maria
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Giovanni Vozzi
- Research Center E. Piaggio and Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa 56126, Italy
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- EgeSAM-Ege University Translational Pulmonary Research Center, Bornova, Izmir, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| |
Collapse
|
38
|
Dong R, Li L, Chang H, Song G, Liu S. Study on the mechanisms of defective spermatogenesis induced by TiO 2 NPs based on 3D blood-testis barrier microfluidic chip. Toxicology 2024; 507:153888. [PMID: 39019315 DOI: 10.1016/j.tox.2024.153888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) can reduce sperm number, but the mechanisms of defective spermatogenesis induced by TiO2 NPs have not been studied through cell-cell interactions at present. A kind of biomimetic three-dimensional blood-testis barrier microfluidic chip capable of intercellular communication was constructed with soft lithography techniques, including Sertoli cell (TM4), spermatogonia (GC-1) and vascular endothelial cell units, to study the mechanisms of TiO2 NPs-induced defective spermatogenesis. TM4 and GC-1 cells cultured in TiO2 NPs exposure and control chips were collected for transcriptomics and metabonomics analysis, and key proteins and metabolites in changed biological processes were validated. In TM4 cells, TiO2 NPs suppressed glucose metabolism, especially lactate production, which reduced energy substrate supply for spermatogenesis. TiO2 NPs also decreased the levels of key proteins and metabolites of lactate production. In GC-1 cells, TiO2 NPs disturbed chemokine signaling pathways regulating cell proliferation and interfered with glutathione metabolism. The Cxcl13, Stat3 and p-Stat3 levels and cell proliferation rate were decreased, and the GSR, GPX4 and GSH contents were increased in GC-1 cells in chips under TiO2 NPs treatment. The decrease in energy substrate supply for spermatogenesis and inhibition of spermatogonia proliferation could be the main mechanisms of defective spermatogenesis induced by TiO2 NPs.
Collapse
Affiliation(s)
- Ruoyun Dong
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Li Li
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hongmei Chang
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Guanling Song
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
39
|
Wang P, Jin L, Zhang M, Wu Y, Duan Z, Guo Y, Wang C, Guo Y, Chen W, Liao Z, Wang Y, Lai R, Lee LP, Qin J. Blood-brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung-brain microphysiological system. Nat Biomed Eng 2024; 8:1053-1068. [PMID: 37349391 DOI: 10.1038/s41551-023-01054-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
In some patients, COVID-19 can trigger neurological symptoms with unclear pathogenesis. Here we describe a microphysiological system integrating alveolus and blood-brain barrier (BBB) tissue chips that recapitulates neuropathogenesis associated with infection by SARS-CoV-2. Direct exposure of the BBB chip to SARS-CoV-2 caused mild changes to the BBB, and infusion of medium from the infected alveolus chip led to more severe injuries on the BBB chip, including endothelial dysfunction, pericyte detachment and neuroinflammation. Transcriptomic analyses indicated downregulated expression of the actin cytoskeleton in brain endothelium and upregulated expression of inflammatory genes in glial cells. We also observed early cerebral microvascular damage following lung infection with a low viral load in the brains of transgenic mice expressing human angiotensin-converting enzyme 2. Our findings suggest that systemic inflammation is probably contributing to neuropathogenesis following SARS-CoV-2 infection, and that direct viral neural invasion might not be a prerequisite for this neuropathogenesis. Lung-brain microphysiological systems should aid the further understanding of the systemic effects and neurological complications of viral infection.
Collapse
Affiliation(s)
- Peng Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zilei Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chaoming Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingqi Guo
- Core Technology Facility of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenwen Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhiyi Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Science and Technology of China, Hefei, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
de Roode KE, Hashemi K, Verdurmen WPR, Brock R. Tumor-On-A-Chip Models for Predicting In Vivo Nanoparticle Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402311. [PMID: 38700060 DOI: 10.1002/smll.202402311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 05/05/2024]
Abstract
Nanosized drug formulations are broadly explored for the improvement of cancer therapy. Prediction of in vivo nanoparticle (NP) behavior, however, is challenging, given the complexity of the tumor and its microenvironment. Microfluidic tumor-on-a-chip models are gaining popularity for the in vitro testing of nanoparticle targeting under conditions that simulate the 3D tumor (microenvironment). In this review, following a description of the tumor microenvironment (TME), the state of the art regarding tumor-on-a-chip models for investigating nanoparticle delivery to solid tumors is summarized. The models are classified based on the degree of compartmentalization (single/multi-compartment) and cell composition (tumor only/tumor microenvironment). The physiological relevance of the models is critically evaluated. Overall, microfluidic tumor-on-a-chip models greatly improve the simulation of the TME in comparison to 2D tissue cultures and static 3D spheroid models and contribute to the understanding of nanoparticle behavior. Interestingly, two interrelated aspects have received little attention so far which are the presence and potential impact of a protein corona as well as nanoparticle uptake through phagocytosing cells. A better understanding of their relevance for the predictive capacity of tumor-on-a-chip systems and development of best practices will be a next step for the further refinement of advanced in vitro tumor models.
Collapse
Affiliation(s)
- Kim E de Roode
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Khadijeh Hashemi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, 329, Bahrain
| |
Collapse
|
41
|
Mulay AR, Hwang J, Kim DH. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development. Adv Healthc Mater 2024; 13:e2303180. [PMID: 38430211 PMCID: PMC11338747 DOI: 10.1002/adhm.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The blood-brain barrier (BBB) is a highly controlled microenvironment that regulates the interactions between cerebral blood and brain tissue. Due to its selectivity, many therapeutics targeting various neurological disorders are not able to penetrate into brain tissue. Pre-clinical studies using animals and other in vitro platforms have not shown the ability to fully replicate the human BBB leading to the failure of a majority of therapeutics in clinical trials. However, recent innovations in vitro and ex vivo modeling called organs-on-chips have shown the potential to create more accurate disease models for improved drug development. These microfluidic platforms induce physiological stressors on cultured cells and are able to generate more physiologically accurate BBBs compared to previous in vitro models. In this review, different approaches to create BBBs-on-chips are explored alongside their application in modeling various neurological disorders and potential therapeutic efficacy. Additionally, organs-on-chips use in BBB drug delivery studies is discussed, and advances in linking brain organs-on-chips onto multiorgan platforms to mimic organ crosstalk are reviewed.
Collapse
Affiliation(s)
- Atharva R. Mulay
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Jihyun Hwang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Center for Microphysiological Systems, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218
| |
Collapse
|
42
|
Rapier CE, Jagadeesan S, Vatine GD, Ben-Yoav H. Impedance Characteristics of Microfluidic Channels and Integrated Coplanar Parallel Electrodes as Design Parameters for Whole-Channel Analysis in Organ-on-Chip Micro-Systems. BIOSENSORS 2024; 14:374. [PMID: 39194604 DOI: 10.3390/bios14080374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Microfluidics have revolutionized cell culture by allowing for precise physical and chemical environmental control. Coupled with electrodes, microfluidic cell culture can be activated or have its changes sensed in real-time. We used our previously developed reliable and stable microfluidic device for cell growth and monitoring to design, fabricate, and characterize a whole-channel impedance-based sensor and used it to systematically assess the electrical and electrochemical influences of microfluidic channel boundaries coupled with varying electrode sizes, distances, coatings, and cell coverage. Our investigation includes both theoretical and experimental approaches to investigate how design parameters and insulating boundary conditions change impedance characteristics. We examined the system with various solutions using a frequency range of 0.5 Hz to 1 MHz and a modulation voltage of 50 mV. The results show that impedance is directly proportional to electrode distance and inversely proportional to electrode coating, area, and channel size. We also demonstrate that electrode spacing is a dominant factor contributing to impedance. In the end, we summarize all the relationships found and comment on the appropriateness of using this system to investigate barrier cells in blood vessel models and organ-on-a-chip devices. This fundamental study can help in the careful design of microfluidic culture constructs and models that require channel geometries and impedance-based biosensing.
Collapse
Affiliation(s)
- Crystal E Rapier
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Faculty of Engineering Sciences, Ilse Katz Institute for Nanoscale Science and Technology, Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, Building 64, Rm 204, Beer Sheva 8410501, Israel
| | - Srikanth Jagadeesan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Regenerative Medicine and Stem Cell (RMSC) Research Center, Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, Building 42, Rm 326, Beer Sheva 8410501, Israel
| | - Gad D Vatine
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Regenerative Medicine and Stem Cell (RMSC) Research Center, Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, Building 42, Rm 326, Beer Sheva 8410501, Israel
| | - Hadar Ben-Yoav
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Faculty of Engineering Sciences, Ilse Katz Institute for Nanoscale Science and Technology, Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, Building 64, Rm 204, Beer Sheva 8410501, Israel
| |
Collapse
|
43
|
Kim J, Yoon T, Lee S, Kim PJ, Kim Y. Reconstitution of human tissue barrier function for precision and personalized medicine. LAB ON A CHIP 2024; 24:3347-3366. [PMID: 38895863 DOI: 10.1039/d4lc00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tissue barriers in a body, well known as tissue-to-tissue interfaces represented by endothelium of the blood vessels or epithelium of organs, are essential for maintaining physiological homeostasis by regulating molecular and cellular transports. It is crucial for predicting drug response to understand physiology of tissue barriers through which drugs are absorbed, distributed, metabolized and excreted. Since the FDA Modernization Act 2.0, which prompts the inception of alternative technologies for animal models, tissue barrier chips, one of the applications of organ-on-a-chip or microphysiological system (MPS), have only recently been utilized in the context of drug development. Recent advancements in stem cell technology have brightened the prospects for the application of tissue barrier chips in personalized medicine. In past decade, designing and engineering these microfluidic devices, and demonstrating the ability to reconstitute tissue functions were main focus of this field. However, the field is now advancing to the next level of challenges: validating their utility in drug evaluation and creating personalized models using patient-derived cells. In this review, we briefly introduce key design parameters to develop functional tissue barrier chip, explore the remarkable recent progress in the field of tissue barrier chips and discuss future perspectives on realizing personalized medicine through the utilization of tissue barrier chips.
Collapse
Affiliation(s)
- Jaehoon Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Taehee Yoon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sungryeong Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Paul J Kim
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
44
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
45
|
Kim JT, Song K, Han SW, Youn DH, Jung H, Kim KS, Lee HJ, Hong JY, Cho YJ, Kang SM, Jeon JP. Modeling of the brain-lung axis using organoids in traumatic brain injury: an updated review. Cell Biosci 2024; 14:83. [PMID: 38909262 PMCID: PMC11193205 DOI: 10.1186/s13578-024-01252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Clinical outcome after traumatic brain injury (TBI) is closely associated conditions of other organs, especially lungs as well as degree of brain injury. Even if there is no direct lung damage, severe brain injury can enhance sympathetic tones on blood vessels and vascular resistance, resulting in neurogenic pulmonary edema. Conversely, lung damage can worsen brain damage by dysregulating immunity. These findings suggest the importance of brain-lung axis interactions in TBI. However, little research has been conducted on the topic. An advanced disease model using stem cell technology may be an alternative for investigating the brain and lungs simultaneously but separately, as they can be potential candidates for improving the clinical outcomes of TBI.In this review, we describe the importance of brain-lung axis interactions in TBI by focusing on the concepts and reproducibility of brain and lung organoids in vitro. We also summarize recent research using pluripotent stem cell-derived brain organoids and their preclinical applications in various brain disease conditions and explore how they mimic the brain-lung axis. Reviewing the current status and discussing the limitations and potential perspectives in organoid research may offer a better understanding of pathophysiological interactions between the brain and lung after TBI.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Kang Song
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Young Hong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
46
|
Ohbuchi M, Shibuta M, Tetsuka K, Sasaki-Iwaoka H, Oishi M, Shimizu F, Nagasaka Y. Modeling of Blood-Brain Barrier (BBB) Dysfunction and Immune Cell Migration Using Human BBB-on-a-Chip for Drug Discovery Research. Int J Mol Sci 2024; 25:6496. [PMID: 38928202 PMCID: PMC11204321 DOI: 10.3390/ijms25126496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Blood-brain barrier (BBB) dysfunction is a key feature in neuroimmunological and neurodegenerative diseases. In this study, we developed a microfluidic human BBB-on-a-chip to model barrier dysfunction and immune cell migration using immortalized TY10 brain endothelial cells, pericytes, and astrocytes. It was found that immortalized TY10 brain endothelial cells developed a microvascular structure under flow. Pericytes were localized on the basal side surrounding the TY10 microvascular structure, showing an in vivo-like structure. Barrier integrity increased under co-culture with pericytes. In addition, both ethylenediaminetetraacetic acid (EDTA) and anti-Claudin-5 (CLDN5) neutralizing antibody caused a decrease in the transendothelial electrical resistance (TEER). EDTA caused the leakage of 20 kDa dextran, suggesting different effects on the BBB based on the mechanism of action, whereas anti-CLDN5 antibody did not cause leakage. In the tri-culture model, human T cells migrated through endothelial vessels towards basal C-X-C motif chemokine ligand 12 (CXCL12). The live-imaging analysis confirmed the extravasation of fluorescence-labelled T cells in a CXCL12-concentration- and time-dependent manner. Our BBB model had an in vivo-like structure and successfully represented barrier dysfunction and transendothelial T cell migration. In addition, our study suggests that the inhibition of CLDN5 attenuates the BBB in humans. This platform has various potential uses in relation to the BBB in both drug discovery research and in elucidating the mechanisms of central nervous system diseases.
Collapse
Affiliation(s)
- Masato Ohbuchi
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Mayu Shibuta
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Kazuhiro Tetsuka
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Haruna Sasaki-Iwaoka
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Masayo Oishi
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Yamaguchi, Japan;
| | - Yasuhisa Nagasaka
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba 305-8585, Ibaraki, Japan; (M.S.); (K.T.); (H.S.-I.); (M.O.); (Y.N.)
| |
Collapse
|
47
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
48
|
Wang R, Li J, Wang X, Zhang Y, Zhu A, Feng K, Li J, Di L. Personalized Nanovaccines Enhance Lymph Node Accumulation and Reprogram the Tumor Microenvironment for Improved Photodynamic Immunotherapy. NANO LETTERS 2024. [PMID: 38767889 DOI: 10.1021/acs.nanolett.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Tumor immunotherapy has emerged as an efficacious therapeutic approach that mobilizes the patient's immune system to achieve durable tumor suppression. Here, we design a photodynamic therapy-motivated nanovaccine (Dex-HDL/ALA-Fe3O4) co-delivering 5-aminolevulinic acid and Fe3O4 nanozyme that demonstrate a long-term durable immunotherapy strategy. After vaccination, the nanovaccine exhibits obvious tumor site accumulation, lymph node homing, and specific and memory antitumor immunity evocation. Upon laser irradiation, Dex-HDL/ALA-Fe3O4 effectively generates reactive oxygen species at the tumor site not only to induce the immunogenic cell death-cascade but also to trigger the on-demand release of full types of tumor antigens. Intriguingly, Fe3O4 nanozyme-catalyzed hydrogen peroxide generated oxygen for alleviating tumor hypoxia and modifying the inhibitory tumor microenvironment, thereby exhibiting remarkable potential as a sensitizer. The intravenous administration of nanovaccines in diverse preclinical cancer models has demonstrated remarkable tumor regression and inhibition of postoperative tumor recurrence and metastasis, thereby enabling personalized treatment strategies against highly heterogeneous tumors.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Jinge Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Xiaohong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yingjie Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Anran Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Kuanhan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| |
Collapse
|
49
|
Asimakidou E, Tan JKS, Zeng J, Lo CH. Blood-Brain Barrier-Targeting Nanoparticles: Biomaterial Properties and Biomedical Applications in Translational Neuroscience. Pharmaceuticals (Basel) 2024; 17:612. [PMID: 38794182 PMCID: PMC11123901 DOI: 10.3390/ph17050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Overcoming the blood-brain barrier (BBB) remains a significant hurdle in effective drug delivery to the brain. While the BBB serves as a crucial protective barrier, it poses challenges in delivering therapeutic agents to their intended targets within the brain parenchyma. To enhance drug delivery for the treatment of neurological diseases, several delivery technologies to circumvent the BBB have been developed in the last few years. Among them, nanoparticles (NPs) are one of the most versatile and promising tools. Here, we summarize the characteristics of NPs that facilitate BBB penetration, including their size, shape, chemical composition, surface charge, and importantly, their conjugation with various biological or synthetic molecules such as glucose, transferrin, insulin, polyethylene glycol, peptides, and aptamers. Additionally, we discuss the coating of NPs with surfactants. A comprehensive overview of the common in vitro and in vivo models of the BBB for NP penetration studies is also provided. The discussion extends to discussing BBB impairment under pathological conditions and leveraging BBB alterations under pathological conditions to enhance drug delivery. Emphasizing the need for future studies to uncover the inherent therapeutic properties of NPs, the review advocates for their role beyond delivery systems and calls for efforts translating NPs to the clinic as therapeutics. Overall, NPs stand out as a highly promising therapeutic strategy for precise BBB targeting and drug delivery in neurological disorders.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Justin Kok Soon Tan
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore;
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
50
|
Spitz S, Schobesberger S, Brandauer K, Ertl P. Sensor-integrated brain-on-a-chip platforms: Improving the predictive validity in neurodegenerative research. Bioeng Transl Med 2024; 9:e10604. [PMID: 38818126 PMCID: PMC11135156 DOI: 10.1002/btm2.10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 06/01/2024] Open
Abstract
Affecting millions of individuals worldwide, neurodegenerative diseases (NDDs) pose a significant and growing health concern in people over the age of 60 years. Contributing to this trend are the steady increase in the aging population coupled with a persistent lack of disease-altering treatment strategies targeting NDDs. The absence of efficient therapeutics can be attributed to high failure rates in clinical trials and the ineptness of animal models in preceding preclinical studies. To that end, in recent years, significant research effort has been dedicated to the development of human cell-based preclinical disease models characterized by a higher degree of predictive validity. However, a key requirement of any in vitro model constitutes the precise knowledge and replication of the target tissues' (patho-)physiological microenvironment. Herein, microphysiological systems have demonstrated superiority over conventional static 2D/3D in vitro cell culture systems, as they allow for the emulation and continuous monitoring of the onset, progression, and remission of disease-associated phenotypes. This review provides an overview of recent advances in the field of NDD research using organ-on-a-chip platforms. Specific focus is directed toward non-invasive sensing strategies encompassing electrical, electrochemical, and optical sensors. Additionally, promising on- and integrable off-chip sensing strategies targeting key analytes in NDDs will be presented and discussed in detail.
Collapse
Affiliation(s)
- Sarah Spitz
- Faculty of Technical ChemistryVienna University of TechnologyViennaAustria
- Present address:
Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | | | - Peter Ertl
- Faculty of Technical ChemistryVienna University of TechnologyViennaAustria
| |
Collapse
|