1
|
Prodani C, Irvine EE, Sardini A, Gleneadie HJ, Dimond A, Van de Pette M, John R, Kokkinou M, Howes O, Withers DJ, Ungless MA, Merkenschlager M, Fisher AG. Protein restriction during pregnancy alters Cdkn1c silencing, dopamine circuitry and offspring behaviour without changing expression of key neuronal marker genes. Sci Rep 2024; 14:8528. [PMID: 38609446 PMCID: PMC11014953 DOI: 10.1038/s41598-024-59083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
We tracked the consequences of in utero protein restriction in mice throughout their development and life course using a luciferase-based allelic reporter of imprinted Cdkn1c. Exposure to gestational low-protein diet (LPD) results in the inappropriate expression of paternally inherited Cdkn1c in the brains of embryonic and juvenile mice. These animals were characterised by a developmental delay in motor skills, and by behavioural alterations indicative of reduced anxiety. Exposure to LPD in utero resulted in significantly more tyrosine hydroxylase positive (dopaminergic) neurons in the midbrain of adult offspring as compared to age-matched, control-diet equivalents. Positron emission tomography (PET) imaging revealed an increase in striatal dopamine synthesis capacity in LPD-exposed offspring, where elevated levels of dopamine correlated with an enhanced sensitivity to cocaine. These data highlight a profound sensitivity of the developing epigenome to gestational protein restriction. Our data also suggest that loss of Cdkn1c imprinting and p57KIP2 upregulation alters the cellular composition of the developing midbrain, compromises dopamine circuitry, and thereby provokes behavioural abnormalities in early postnatal life. Molecular analyses showed that despite this phenotype, exposure to LPD solely during pregnancy did not significantly change the expression of key neuronal- or dopamine-associated marker genes in adult offspring.
Collapse
Affiliation(s)
- Chiara Prodani
- Epigenetic Memory Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Elaine E Irvine
- Metabolic Signalling Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hannah J Gleneadie
- Epigenetic Memory Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Andrew Dimond
- Epigenetic Memory Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mathew Van de Pette
- MRC Toxicology Unit, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QR, UK
| | - Rosalind John
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Michelle Kokkinou
- Psychiatric Imaging Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Dominic J Withers
- Metabolic Signalling Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mark A Ungless
- MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC LMS, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
2
|
Amberg N, Cheung G, Hippenmeyer S. Protocol for sorting cells from mouse brains labeled with mosaic analysis with double markers by flow cytometry. STAR Protoc 2024; 5:102771. [PMID: 38070137 PMCID: PMC10755489 DOI: 10.1016/j.xpro.2023.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 01/01/2024] Open
Abstract
Mosaic analysis with double markers (MADM) technology enables the generation of genetic mosaic tissue in mice and high-resolution phenotyping at the individual cell level. Here, we present a protocol for isolating MADM-labeled cells with high yield for downstream molecular analyses using fluorescence-activated cell sorting (FACS). We describe steps for generating MADM-labeled mice, perfusion, single-cell suspension, and debris removal. We then detail procedures for cell sorting by FACS and downstream analysis. This protocol is suitable for embryonic to adult mice. For complete details on the use and execution of this protocol, please refer to Contreras et al. (2021).1.
Collapse
Affiliation(s)
- Nicole Amberg
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Giselle Cheung
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
3
|
Abad C, Robayo MC, Muñiz-Moreno MDM, Bernardi MT, Otero MG, Kosanovic C, Griswold AJ, Pierson TM, Walz K, Young JI. Gatad2b, associated with the neurodevelopmental syndrome GAND, plays a critical role in neurodevelopment and cortical patterning. Transl Psychiatry 2024; 14:33. [PMID: 38238293 PMCID: PMC10796954 DOI: 10.1038/s41398-023-02678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024] Open
Abstract
GATAD2B (GATA zinc finger domain containing 2B) variants are associated with the neurodevelopmental syndrome GAND, characterized by intellectual disability (ID), infantile hypotonia, apraxia of speech, epilepsy, macrocephaly and distinct facial features. GATAD2B encodes for a subunit of the Nucleosome Remodeling and Histone Deacetylase (NuRD) complex. NuRD controls transcriptional programs critical for proper neurodevelopment by coupling histone deacetylase with ATP-dependent chromatin remodeling activity. To study mechanisms of pathogenesis for GAND, we characterized a mouse model harboring an inactivating mutation in Gatad2b. Homozygous Gatad2b mutants die perinatally, while haploinsufficient Gatad2b mice exhibit behavioral abnormalities resembling the clinical features of GAND patients. We also observed abnormal cortical patterning, and cellular proportions and cell-specific alterations in the developmental transcriptome in these mice. scRNAseq of embryonic cortex indicated misexpression of genes key for corticogenesis and associated with neurodevelopmental syndromes such as Bcl11b, Nfia and H3f3b and Sox5. These data suggest a crucial role for Gatad2b in brain development.
Collapse
Affiliation(s)
- Clemer Abad
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maria C Robayo
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maria Del Mar Muñiz-Moreno
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Maria T Bernardi
- IQUIBICEN - CONICET, School of Exact and Natural Sciences - University of Buenos Aires, Buenos Aires, Argentina
| | - Maria G Otero
- The Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Christina Kosanovic
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Tyler Mark Pierson
- The Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Guerin Children's, Departments of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, USA
- The Center for the Undiagnosed Patient, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- IQUIBICEN - CONICET, School of Exact and Natural Sciences - University of Buenos Aires, Buenos Aires, Argentina
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan I Young
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
4
|
Zhang Y, Zeng J, Xu B. Phenotypic analysis with trans-recombination-based genetic mosaic models. J Biol Chem 2023; 299:105265. [PMID: 37734556 PMCID: PMC10587715 DOI: 10.1016/j.jbc.2023.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Mosaicism refers to the presence of genetically distinct cell populations in an individual derived from a single zygote, which occurs during the process of development, aging, and genetic diseases. To date, a variety of genetically engineered mosaic analysis models have been established and widely used in studying gene function at exceptional cellular and spatiotemporal resolution, leading to many ground-breaking discoveries. Mosaic analysis with a repressible cellular marker and mosaic analysis with double markers are genetic mosaic analysis models based on trans-recombination. These models can generate sibling cells of distinct genotypes in the same animal and simultaneously label them with different colors. As a result, they offer a powerful approach for lineage tracing and studying the behavior of individual mutant cells in a wildtype environment, which is particularly useful for determining whether gene function is cell autonomous or nonautonomous. Here, we present a comprehensive review on the establishment and applications of mosaic analysis with a repressible cellular marker and mosaic analysis with double marker systems. Leveraging the capabilities of these mosaic models for phenotypic analysis will facilitate new discoveries on the cellular and molecular mechanisms of development and disease.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
5
|
Cai Y, Zhang X, Li C, Ghashghaei HT, Greenbaum A. COMBINe enables automated detection and classification of neurons and astrocytes in tissue-cleared mouse brains. CELL REPORTS METHODS 2023; 3:100454. [PMID: 37159668 PMCID: PMC10163164 DOI: 10.1016/j.crmeth.2023.100454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 05/11/2023]
Abstract
Tissue clearing renders entire organs transparent to accelerate whole-tissue imaging; for example, with light-sheet fluorescence microscopy. Yet, challenges remain in analyzing the large resulting 3D datasets that consist of terabytes of images and information on millions of labeled cells. Previous work has established pipelines for automated analysis of tissue-cleared mouse brains, but the focus there was on single-color channels and/or detection of nuclear localized signals in relatively low-resolution images. Here, we present an automated workflow (COMBINe, Cell detectiOn in Mouse BraIN) to map sparsely labeled neurons and astrocytes in genetically distinct mouse forebrains using mosaic analysis with double markers (MADM). COMBINe blends modules from multiple pipelines with RetinaNet at its core. We quantitatively analyzed the regional and subregional effects of MADM-based deletion of the epidermal growth factor receptor (EGFR) on neuronal and astrocyte populations in the mouse forebrain.
Collapse
Affiliation(s)
- Yuheng Cai
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Xuying Zhang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Chen Li
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - H. Troy Ghashghaei
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Hippenmeyer S. Principles of neural stem cell lineage progression: Insights from developing cerebral cortex. Curr Opin Neurobiol 2023; 79:102695. [PMID: 36842274 DOI: 10.1016/j.conb.2023.102695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/28/2023]
Abstract
How to generate a brain of correct size and with appropriate cell-type diversity during development is a major question in Neuroscience. In the developing neocortex, radial glial progenitor (RGP) cells are the main neural stem cells that produce cortical excitatory projection neurons, glial cells, and establish the prospective postnatal stem cell niche in the lateral ventricles. RGPs follow a tightly orchestrated developmental program that when disrupted can result in severe cortical malformations such as microcephaly and megalencephaly. The precise cellular and molecular mechanisms instructing faithful RGP lineage progression are however not well understood. This review will summarize recent conceptual advances that contribute to our understanding of the general principles of RGP lineage progression.
Collapse
Affiliation(s)
- Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
7
|
Liang D, Aygün N, Matoba N, Ideraabdullah FY, Love MI, Stein JL. Inference of putative cell-type-specific imprinted regulatory elements and genes during human neuronal differentiation. Hum Mol Genet 2023; 32:402-416. [PMID: 35994039 PMCID: PMC9851749 DOI: 10.1093/hmg/ddac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
Genomic imprinting results in gene expression bias caused by parental chromosome of origin and occurs in genes with important roles during human brain development. However, the cell-type and temporal specificity of imprinting during human neurogenesis is generally unknown. By detecting within-donor allelic biases in chromatin accessibility and gene expression that are unrelated to cross-donor genotype, we inferred imprinting in both primary human neural progenitor cells and their differentiated neuronal progeny from up to 85 donors. We identified 43/20 putatively imprinted regulatory elements (IREs) in neurons/progenitors, and 133/79 putatively imprinted genes in neurons/progenitors. Although 10 IREs and 42 genes were shared between neurons and progenitors, most putative imprinting was only detected within specific cell types. In addition to well-known imprinted genes and their promoters, we inferred novel putative IREs and imprinted genes. Consistent with both DNA methylation-based and H3K27me3-based regulation of imprinted expression, some putative IREs also overlapped with differentially methylated or histone-marked regions. Finally, we identified a progenitor-specific putatively imprinted gene overlapping with copy number variation that is associated with uniparental disomy-like phenotypes. Our results can therefore be useful in interpreting the function of variants identified in future parent-of-origin association studies.
Collapse
Affiliation(s)
- Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Folami Y Ideraabdullah
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Lozano-Ureña A, Lázaro-Carot L, Jiménez-Villalba E, Montalbán-Loro R, Mateos-White I, Duart-Abadía P, Martínez-Gurrea I, Nakayama KI, Fariñas I, Kirstein M, Gil-Sanz C, Ferrón SR. IGF2 interacts with the imprinted gene Cdkn1c to promote terminal differentiation of neural stem cells. Development 2023; 150:dev200563. [PMID: 36633189 PMCID: PMC9903205 DOI: 10.1242/dev.200563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/23/2022] [Indexed: 01/13/2023]
Abstract
Adult neurogenesis is supported by multipotent neural stem cells (NSCs) with unique properties and growth requirements. Adult NSCs constitute a reversibly quiescent cell population that can be activated by extracellular signals from the microenvironment in which they reside in vivo. Although genomic imprinting plays a role in adult neurogenesis through dose regulation of some relevant signals, the roles of many imprinted genes in the process remain elusive. Insulin-like growth factor 2 (IGF2) is encoded by an imprinted gene that contributes to NSC maintenance in the adult subventricular zone through a biallelic expression in only the vascular compartment. We show here that IGF2 additionally promotes terminal differentiation of NSCs into astrocytes, neurons and oligodendrocytes by inducing the expression of the maternally expressed gene cyclin-dependent kinase inhibitor 1c (Cdkn1c), encoding the cell cycle inhibitor p57. Using intraventricular infusion of recombinant IGF2 in a conditional mutant strain with Cdkn1c-deficient NSCs, we confirm that p57 partially mediates the differentiation effects of IGF2 in NSCs and that this occurs independently of its role in cell-cycle progression, balancing the relationship between astrogliogenesis, neurogenesis and oligodendrogenesis.
Collapse
Affiliation(s)
- Anna Lozano-Ureña
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Laura Lázaro-Carot
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Esteban Jiménez-Villalba
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Raquel Montalbán-Loro
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Isabel Mateos-White
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Pere Duart-Abadía
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Irene Martínez-Gurrea
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 819-0395, Japan
| | - Isabel Fariñas
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Martina Kirstein
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Cristina Gil-Sanz
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Sacri R. Ferrón
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| |
Collapse
|
9
|
Samara A, Spildrejorde M, Sharma A, Falck M, Leithaug M, Modafferi S, Bjørnstad PM, Acharya G, Gervin K, Lyle R, Eskeland R. A multi-omics approach to visualize early neuronal differentiation from hESCs in 4D. iScience 2022; 25:105279. [PMID: 36304110 PMCID: PMC9593815 DOI: 10.1016/j.isci.2022.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal differentiation of pluripotent stem cells is an established method to study physiology, disease, and medication safety. However, the sequence of events in human neuronal differentiation and the ability of in vitro models to recapitulate early brain development are poorly understood. We developed a protocol optimized for the study of early human brain development and neuropharmacological applications. We comprehensively characterized gene expression and epigenetic profiles at four timepoints, because the cells differentiate from embryonic stem cells towards a heterogeneous population of progenitors, immature and mature neurons bearing telencephalic signatures. A multi-omics roadmap of neuronal differentiation, combined with searchable interactive gene analysis tools, allows for extensive exploration of early neuronal development and the effect of medications.
Collapse
Affiliation(s)
- Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital Karolinska University Hospital, Stockholm, Sweden
| | - Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Martin Falck
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Stefania Modafferi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Alfred Nobels Allé 8, SE-14152 Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild Eskeland
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Amberg N, Pauler FM, Streicher C, Hippenmeyer S. Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression. SCIENCE ADVANCES 2022; 8:eabq1263. [PMID: 36322669 PMCID: PMC9629739 DOI: 10.1126/sciadv.abq1263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The generation of a correctly sized cerebral cortex with all-embracing neuronal and glial cell-type diversity critically depends on faithful radial glial progenitor (RGP) cell proliferation/differentiation programs. Temporal RGP lineage progression is regulated by Polycomb repressive complex 2 (PRC2), and loss of PRC2 activity results in severe neurogenesis defects and microcephaly. How PRC2-dependent gene expression instructs RGP lineage progression is unknown. Here, we use mosaic analysis with double markers (MADM)-based single-cell technology and demonstrate that PRC2 is not cell-autonomously required in neurogenic RGPs but rather acts at the global tissue-wide level. Conversely, cortical astrocyte production and maturation is cell-autonomously controlled by PRC2-dependent transcriptional regulation. We thus reveal highly distinct and sequential PRC2 functions in RGP lineage progression that are dependent on complex interplays between intrinsic and tissue-wide properties. In a broader context, our results imply a critical role for the genetic and cellular niche environment in neural stem cell behavior.
Collapse
Affiliation(s)
| | - Florian M. Pauler
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | | |
Collapse
|
11
|
Latchney SE, Cadney MD, Hopkins A, Garland T. DNA Methylation Analysis of Imprinted Genes in the Cortex and Hippocampus of Cross-Fostered Mice Selectively Bred for Increased Voluntary Wheel-Running. Behav Genet 2022; 52:281-297. [PMID: 35988119 PMCID: PMC9463359 DOI: 10.1007/s10519-022-10112-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
We have previously shown that high runner (HR) mice (from a line genetically selected for increased wheel-running behavior) have distinct, genetically based, neurobiological phenotypes as compared with non-selected control (C) mice. However, developmental programming effects during early life, including maternal care and parent-of-origin-dependent expression of imprinted genes, can also contribute to variation in physical activity. Here, we used cross-fostering to address two questions. First, do HR mice have altered DNA methylation profiles of imprinted genes in the brain compared to C mice? Second, does maternal upbringing further modify the DNA methylation status of these imprinted genes? To address these questions, we cross-fostered all offspring at birth to create four experimental groups: C pups to other C dams, HR pups to other HR dams, C pups to HR dams, and HR pups to C dams. Bisulfite sequencing of 16 imprinted genes in the cortex and hippocampus revealed that the HR line had altered DNA methylation patterns of the paternally imprinted genes, Rasgrf1 and Zdbf2, as compared with the C line. Both fostering between the HR and C lines and sex modified the DNA methylation profiles for the paternally expressed genes Mest, Peg3, Igf2, Snrpn, and Impact. Ig-DMR, a gene with multiple paternal and maternal imprinted clusters, was also affected by maternal upbringing and sex. Our results suggest that differential methylation patterns of imprinted genes in the brain could contribute to evolutionary increases in wheel-running behavior and are also dependent on maternal upbringing and sex.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, 18952 E. Fisher Rd, Saint Mary's City, MD, 20686, USA.
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
12
|
Elevated BICD2 DNA methylation in blood of major depressive disorder patients and reduction of depressive-like behaviors in hippocampal Bicd2-knockdown mice. Proc Natl Acad Sci U S A 2022; 119:e2201967119. [PMID: 35858435 PMCID: PMC9335189 DOI: 10.1073/pnas.2201967119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent and devastating mental illness. To date, the diagnosis of MDD is largely dependent on clinical interviews and questionnaires and still lacks a reliable biomarker. DNA methylation has a stable and reversible nature and is likely associated with the course and therapeutic efficacy of complex diseases, which may play an important role in the etiology of a disease. Here, we identified and validated a DNA methylation biomarker for MDD from four independent cohorts of the Chinese Han population. First, we integrated the analysis of the DNA methylation microarray (n = 80) and RNA expression microarray data (n = 40) and identified BICD2 as the top-ranked gene. In the replication phase, we employed the Sequenom MassARRAY method to confirm the DNA hypermethylation change in a large sample size (n = 1,346) and used the methylation-sensitive restriction enzymes and a quantitative PCR approach (MSE-qPCR) and qPCR method to confirm the correlation between DNA hypermethylation and mRNA down-regulation of BICD2 (n = 60). The results were replicated in the peripheral blood of mice with depressive-like behaviors, while in the hippocampus of mice, Bicd2 showed DNA hypomethylation and mRNA/protein up-regulation. Hippocampal Bicd2 knockdown demonstrates antidepressant action in the chronic unpredictable mild stress (CUMS) mouse model of depression, which may be mediated by increased BDNF expression. Our study identified a potential DNA methylation biomarker and investigated its functional implications, which could be exploited to improve the diagnosis and treatment of MDD.
Collapse
|
13
|
Hansen AH, Pauler FM, Riedl M, Streicher C, Heger A, Laukoter S, Sommer C, Nicolas A, Hof B, Tsai LH, Rülicke T, Hippenmeyer S. Tissue-Wide Effects Override Cell-Intrinsic Gene Function in Radial Neuron Migration. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac009. [PMID: 38596707 PMCID: PMC10939316 DOI: 10.1093/oons/kvac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/26/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
The mammalian neocortex is composed of diverse neuronal and glial cell classes that broadly arrange in six distinct laminae. Cortical layers emerge during development and defects in the developmental programs that orchestrate cortical lamination are associated with neurodevelopmental diseases. The developmental principle of cortical layer formation depends on concerted radial projection neuron migration, from their birthplace to their final target position. Radial migration occurs in defined sequential steps, regulated by a large array of signaling pathways. However, based on genetic loss-of-function experiments, most studies have thus far focused on the role of cell-autonomous gene function. Yet, cortical neuron migration in situ is a complex process and migrating neurons traverse along diverse cellular compartments and environments. The role of tissue-wide properties and genetic state in radial neuron migration is however not clear. Here we utilized mosaic analysis with double markers (MADM) technology to either sparsely or globally delete gene function, followed by quantitative single-cell phenotyping. The MADM-based gene ablation paradigms in combination with computational modeling demonstrated that global tissue-wide effects predominate cell-autonomous gene function albeit in a gene-specific manner. Our results thus suggest that the genetic landscape in a tissue critically affects the overall migration phenotype of individual cortical projection neurons. In a broader context, our findings imply that global tissue-wide effects represent an essential component of the underlying etiology associated with focal malformations of cortical development in particular, and neurological diseases in general.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Michael Riedl
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Heger
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Armel Nicolas
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Björn Hof
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Li Huei Tsai
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
14
|
Multicolor strategies for investigating clonal expansion and tissue plasticity. Cell Mol Life Sci 2022; 79:141. [PMID: 35187598 PMCID: PMC8858928 DOI: 10.1007/s00018-021-04077-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022]
Abstract
Understanding the generation of complexity in living organisms requires the use of lineage tracing tools at a multicellular scale. In this review, we describe the different multicolor strategies focusing on mouse models expressing several fluorescent reporter proteins, generated by classical (MADM, Brainbow and its multiple derivatives) or acute (StarTrack, CLoNe, MAGIC Markers, iOn, viral vectors) transgenesis. After detailing the multi-reporter genetic strategies that serve as a basis for the establishment of these multicolor mouse models, we briefly mention other animal and cellular models (zebrafish, chicken, drosophila, iPSC) that also rely on these constructs. Then, we highlight practical applications of multicolor mouse models to better understand organogenesis at single progenitor scale (clonal analyses) in the brain and briefly in several other tissues (intestine, skin, vascular, hematopoietic and immune systems). In addition, we detail the critical contribution of multicolor fate mapping strategies in apprehending the fine cellular choreography underlying tissue morphogenesis in several models with a particular focus on brain cytoarchitecture in health and diseases. Finally, we present the latest technological advances in multichannel and in-depth imaging, and automated analyses that enable to better exploit the large amount of data generated from multicolored tissues.
Collapse
|
15
|
Weir P, Kumaria A, Mohmed A, Javed S, Paine S, Byrne P. Glioblastoma in Beckwith-Wiedemann syndrome: first case report and review of potential pathomechanisms. Acta Neurochir (Wien) 2022; 164:419-422. [PMID: 34993619 DOI: 10.1007/s00701-021-05105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/23/2021] [Indexed: 11/01/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is a rare congenital overgrowth syndrome associated with certain childhood tumours. We present the case of a 36-year-old lady with BWS who developed a left frontoinsular secondary glioblastoma. This is the first case report in the literature of glioblastoma associated with BWS. We explore similarities in the molecular pathomechanisms of BWS and glioblastoma.
Collapse
|
16
|
Amberg N, Hippenmeyer S. Genetic mosaic dissection of candidate genes in mice using mosaic analysis with double markers. STAR Protoc 2021; 2:100939. [PMID: 34825212 PMCID: PMC8603308 DOI: 10.1016/j.xpro.2021.100939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Mosaic analysis with double markers (MADM) technology enables the generation of genetic mosaic tissue in mice. MADM enables concomitant fluorescent cell labeling and introduction of a mutation of a gene of interest with single-cell resolution. This protocol highlights major steps for the generation of genetic mosaic tissue and the isolation and processing of respective tissues for downstream histological analysis. For complete details on the use and execution of this protocol, please refer to Contreras et al. (2021). Generation of genetic mosaic mice using mosaic analysis with double markers (MADM) Tissue harvesting from experimental MADM mice Processing and imaging of MADM-labeled tissue Distinct analyses to assess cell-autonomous gene function in MADM mice
Collapse
Affiliation(s)
- Nicole Amberg
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
17
|
Cai Y, Zhang X, Kovalsky SZ, Ghashghaei HT, Greenbaum A. Detection and classification of neurons and glial cells in the MADM mouse brain using RetinaNet. PLoS One 2021; 16:e0257426. [PMID: 34559842 PMCID: PMC8462685 DOI: 10.1371/journal.pone.0257426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
The ability to automatically detect and classify populations of cells in tissue sections is paramount in a wide variety of applications ranging from developmental biology to pathology. Although deep learning algorithms are widely applied to microscopy data, they typically focus on segmentation which requires extensive training and labor-intensive annotation. Here, we utilized object detection networks (neural networks) to detect and classify targets in complex microscopy images, while simplifying data annotation. To this end, we used a RetinaNet model to classify genetically labeled neurons and glia in the brains of Mosaic Analysis with Double Markers (MADM) mice. Our initial RetinaNet-based model achieved an average precision of 0.90 across six classes of cells differentiated by MADM reporter expression and their phenotype (neuron or glia). However, we found that a single RetinaNet model often failed when encountering dense and saturated glial clusters, which show high variability in their shape and fluorophore densities compared to neurons. To overcome this, we introduced a second RetinaNet model dedicated to the detection of glia clusters. Merging the predictions of the two computational models significantly improved the automated cell counting of glial clusters. The proposed cell detection workflow will be instrumental in quantitative analysis of the spatial organization of cellular populations, which is applicable not only to preparations in neuroscience studies, but also to any tissue preparation containing labeled populations of cells.
Collapse
Affiliation(s)
- Yuheng Cai
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Xuying Zhang
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Shahar Z. Kovalsky
- Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - H. Troy Ghashghaei
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
18
|
Contreras X, Amberg N, Davaatseren A, Hansen AH, Sonntag J, Andersen L, Bernthaler T, Streicher C, Heger A, Johnson RL, Schwarz LA, Luo L, Rülicke T, Hippenmeyer S. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Rep 2021; 35:109274. [PMID: 34161767 PMCID: PMC8317686 DOI: 10.1016/j.celrep.2021.109274] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/14/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022] Open
Abstract
Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division.
Collapse
Affiliation(s)
- Ximena Contreras
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Nicole Amberg
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | | | - Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Johanna Sonntag
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Lill Andersen
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Tina Bernthaler
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Heger
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, Houston, TX 77030, USA
| | - Lindsay A Schwarz
- HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
19
|
Xian H, Huang W, Sun T, Yang S, Zhang C, Wang J, Zhang Y, Cui J. Unanchored ubiquitin chain sustains RIG-I-induced interferon-I activation and controls selective gene expression. Sci Bull (Beijing) 2021; 66:794-802. [PMID: 36654136 DOI: 10.1016/j.scib.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 01/20/2023]
Abstract
Ubiquitination plays a crucial role in retinoic acid-inducible gene I (RIG-I)-induced antiviral responses. However, the precise regulatory mechanisms of RIG-I activity mediated by conjugated and unanchored ubiquitin chains remain to be determined. In this study, we discovered that T55 of RIG-I was required for its binding ability for the unanchored ubiquitin chains. Experimental and mathematical analysis showed that unanchored ubiquitin chains associated with RIG-I were essential for sustained activation of type I interferon (IFN) signaling. Transcriptomics study revealed that the binding of RIG-I with unanchored ubiquitin chains additionally regulated the expression of a subset of metabolic and cell fate decision genes. Moreover, we found that ubiquitin-specific peptidase 21 (USP21) and USP3 deubiquitinate conjugated and unanchored ubiquitin chains on RIG-I respectively. Taken together, characterization of the regulation mode and functions of conjugated ubiquitination and the unconjugated ubiquitin chain-binding of RIG-I may provide means to fine-tune RIG-I-mediated type I IFN signaling.
Collapse
Affiliation(s)
- Huifang Xian
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wanming Huang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Tingzhe Sun
- School of Life Sciences, Anqing Normal University, Anqing 246133, China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanxia Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuxia Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
20
|
Pauler FM, Hudson QJ, Laukoter S, Hippenmeyer S. Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond. Neurochem Int 2021; 145:104986. [PMID: 33600873 DOI: 10.1016/j.neuint.2021.104986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 12/27/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that results in parental allele-specific expression of ~1% of all genes in mouse and human. Imprinted genes are key developmental regulators and play pivotal roles in many biological processes such as nutrient transfer from the mother to offspring and neuronal development. Imprinted genes are also involved in human disease, including neurodevelopmental disorders, and often occur in clusters that are regulated by a common imprint control region (ICR). In extra-embryonic tissues ICRs can act over large distances, with the largest surrounding Igf2r spanning over 10 million base-pairs. Besides classical imprinted expression that shows near exclusive maternal or paternal expression, widespread biased imprinted expression has been identified mainly in brain. In this review we discuss recent developments mapping cell type specific imprinted expression in extra-embryonic tissues and neocortex in the mouse. We highlight the advantages of using an inducible uniparental chromosome disomy (UPD) system to generate cells carrying either two maternal or two paternal copies of a specific chromosome to analyze the functional consequences of genomic imprinting. Mosaic Analysis with Double Markers (MADM) allows fluorescent labeling and concomitant induction of UPD sparsely in specific cell types, and thus to over-express or suppress all imprinted genes on that chromosome. To illustrate the utility of this technique, we explain how MADM-induced UPD revealed new insights about the function of the well-studied Cdkn1c imprinted gene, and how MADM-induced UPDs led to identification of highly cell type specific phenotypes related to perturbed imprinted expression in the mouse neocortex. Finally, we give an outlook on how MADM could be used to probe cell type specific imprinted expression in other tissues in mouse, particularly in extra-embryonic tissues.
Collapse
Affiliation(s)
- Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Quanah J Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
21
|
Ghosh A, Chakrabarti R, Shukla PC. Inadvertent nucleotide sequence alterations during mutagenesis: highlighting the vulnerabilities in mouse transgenic technology. J Genet Eng Biotechnol 2021; 19:30. [PMID: 33570721 PMCID: PMC7877310 DOI: 10.1186/s43141-021-00130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
In the last three decades, researchers have utilized genome engineering to alter the DNA sequence in the living cells of a plethora of organisms, ranging from plants, fishes, mice, to even humans. This has been conventionally achieved by using methodologies such as single nucleotide insertion/deletion in coding sequences, exon(s) deletion, mutations in the promoter region, introducing stop codon for protein truncation, and addition of foreign DNA for functional elucidation of genes. However, recent years have witnessed the advent of novel techniques that use programmable site-specific nucleases like CRISPR/Cas9, TALENs, ZFNs, Cre/loxP system, and gene trapping. These have revolutionized the field of experimental transgenesis as well as contributed to the existing knowledge base of classical genetics and gene mapping. Yet there are certain experimental/technological barriers that we have been unable to cross while creating genetically modified organisms. Firstly, while interfering with coding strands, we inadvertently change introns, antisense strands, and other non-coding elements of the gene and genome that play integral roles in the determination of cellular phenotype. These unintended modifications become critical because introns and other non-coding elements, although traditionally regarded as “junk DNA,” have been found to play a major regulatory role in genetic pathways of several crucial cellular processes, development, homeostasis, and diseases. Secondly, post-insertion of transgene, non-coding RNAs are generated by host organism against the inserted foreign DNA or from the inserted transgene/construct against the host genes. The potential contribution of these non-coding RNAs to the resulting phenotype has not been considered. We aim to draw attention to these inherent flaws in the transgenic technology being employed to generate mutant mice and other model organisms. By overlooking these aspects of the whole gene and genetic makeup, perhaps our current understanding of gene function remains incomplete. Thus, it becomes important that, while using genetic engineering techniques to generate a mutant organism for a particular gene, we should carefully consider all the possible elements that may play a potential role in the resulting phenotype. This perspective highlights the commonly used mouse strains and the most probable associated complexities that have not been considered previously, resulting in possible limitations in the currently utilized transgenic technology. This work also warrants the use of already established mouse lines in further research.
Collapse
Affiliation(s)
- Anuran Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Rituparna Chakrabarti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
22
|
Laukoter S, Amberg N, Pauler FM, Hippenmeyer S. Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protoc 2020; 1:100215. [PMID: 33377108 PMCID: PMC7757670 DOI: 10.1016/j.xpro.2020.100215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mosaic analysis with double markers (MADM) technology enables concomitant fluorescent cell labeling and induction of uniparental chromosome disomy (UPD) with single-cell resolution. In UPD, imprinted genes are either overexpressed 2-fold or are not expressed. Here, the MADM platform is utilized to probe imprinting phenotypes at the transcriptional level. This protocol highlights major steps for the generation and isolation of projection neurons and astrocytes with MADM-induced UPD from mouse cerebral cortex for downstream single-cell and low-input sample RNA-sequencing experiments. For complete details on the use and execution of this protocol, please refer to Laukoter et al. (2020b).
Collapse
Affiliation(s)
- Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Nicole Amberg
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M. Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
23
|
Creff J, Besson A. Functional Versatility of the CDK Inhibitor p57 Kip2. Front Cell Dev Biol 2020; 8:584590. [PMID: 33117811 PMCID: PMC7575724 DOI: 10.3389/fcell.2020.584590] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The cyclin/CDK inhibitor p57Kip2 belongs to the Cip/Kip family, with p21Cip1 and p27Kip1, and is the least studied member of the family. Unlike the other family members, p57Kip2 has a unique role during embryogenesis and is the only CDK inhibitor required for embryonic development. p57Kip2 is encoded by the imprinted gene CDKN1C, which is the gene most frequently silenced or mutated in the genetic disorder Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental anomalies. Although initially identified as a cell cycle inhibitor based on its homology to other Cip/Kip family proteins, multiple novel functions have been ascribed to p57Kip2 in recent years that participate in the control of various cellular processes, including apoptosis, migration and transcription. Here, we will review our current knowledge on p57Kip2 structure, regulation, and its diverse functions during development and homeostasis, as well as its potential implication in the development of various pathologies, including cancer.
Collapse
Affiliation(s)
- Justine Creff
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| | - Arnaud Besson
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| |
Collapse
|
24
|
Hansen AH, Hippenmeyer S. Non-Cell-Autonomous Mechanisms in Radial Projection Neuron Migration in the Developing Cerebral Cortex. Front Cell Dev Biol 2020; 8:574382. [PMID: 33102480 PMCID: PMC7545535 DOI: 10.3389/fcell.2020.574382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023] Open
Abstract
Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final target lamina, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating the specific sequential steps of radial neuronal migration in vivo are however still unclear, let alone the effects and interactions with the extracellular environment. In any in vivo context, cells will always be exposed to a complex extracellular environment consisting of (1) secreted factors acting as potential signaling cues, (2) the extracellular matrix, and (3) other cells providing cell–cell interaction through receptors and/or direct physical stimuli. Most studies so far have described and focused mainly on intrinsic cell-autonomous gene functions in neuronal migration but there is accumulating evidence that non-cell-autonomous-, local-, systemic-, and/or whole tissue-wide effects substantially contribute to the regulation of radial neuronal migration. These non-cell-autonomous effects may differentially affect cortical neuron migration in distinct cellular environments. However, the cellular and molecular natures of such non-cell-autonomous mechanisms are mostly unknown. Furthermore, physical forces due to collective migration and/or community effects (i.e., interactions with surrounding cells) may play important roles in neocortical projection neuron migration. In this concise review, we first outline distinct models of non-cell-autonomous interactions of cortical projection neurons along their radial migration trajectory during development. We then summarize experimental assays and platforms that can be utilized to visualize and potentially probe non-cell-autonomous mechanisms. Lastly, we define key questions to address in the future.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
25
|
Laukoter S, Pauler FM, Beattie R, Amberg N, Hansen AH, Streicher C, Penz T, Bock C, Hippenmeyer S. Cell-Type Specificity of Genomic Imprinting in Cerebral Cortex. Neuron 2020; 107:1160-1179.e9. [PMID: 32707083 PMCID: PMC7523403 DOI: 10.1016/j.neuron.2020.06.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
In mammalian genomes, a subset of genes is regulated by genomic imprinting, resulting in silencing of one parental allele. Imprinting is essential for cerebral cortex development, but prevalence and functional impact in individual cells is unclear. Here, we determined allelic expression in cortical cell types and established a quantitative platform to interrogate imprinting in single cells. We created cells with uniparental chromosome disomy (UPD) containing two copies of either the maternal or the paternal chromosome; hence, imprinted genes will be 2-fold overexpressed or not expressed. By genetic labeling of UPD, we determined cellular phenotypes and transcriptional responses to deregulated imprinted gene expression at unprecedented single-cell resolution. We discovered an unexpected degree of cell-type specificity and a novel function of imprinting in the regulation of cortical astrocyte survival. More generally, our results suggest functional relevance of imprinted gene expression in glial astrocyte lineage and thus for generating cortical cell-type diversity.
Collapse
Affiliation(s)
- Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert Beattie
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Nicole Amberg
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
26
|
Varrault A, Dubois E, Le Digarcher A, Bouschet T. Quantifying Genomic Imprinting at Tissue and Cell Resolution in the Brain. EPIGENOMES 2020; 4:21. [PMID: 34968292 PMCID: PMC8594728 DOI: 10.3390/epigenomes4030021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Imprinted genes are a group of ~150 genes that are preferentially expressed from one parental allele owing to epigenetic marks asymmetrically distributed on inherited maternal and paternal chromosomes. Altered imprinted gene expression causes human brain disorders such as Prader-Willi and Angelman syndromes and additional rare brain diseases. Research data principally obtained from the mouse model revealed how imprinted genes act in the normal and pathological brain. However, a better understanding of imprinted gene functions calls for building detailed maps of their parent-of-origin-dependent expression and of associated epigenetic signatures. Here we review current methods for quantifying genomic imprinting at tissue and cell resolutions, with a special emphasis on methods to detect parent-of-origin dependent expression and their applications to the brain. We first focus on bulk RNA-sequencing, the main method to detect parent-of-origin-dependent expression transcriptome-wide. We discuss the benefits and caveats of bulk RNA-sequencing and provide a guideline to use it on F1 hybrid mice. We then review methods for detecting parent-of-origin-dependent expression at cell resolution, including single-cell RNA-seq, genetic reporters, and molecular probes. Finally, we provide an overview of single-cell epigenomics technologies that profile additional features of genomic imprinting, including DNA methylation, histone modifications and chromatin conformation and their combination into sc-multimodal omics approaches, which are expected to yield important insights into genomic imprinting in individual brain cells.
Collapse
Affiliation(s)
- Annie Varrault
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| | - Emeric Dubois
- Montpellier GenomiX (MGX), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France;
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle (IGF), Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France; (A.V.); (A.L.D.)
| |
Collapse
|
27
|
The Role of CDKs and CDKIs in Murine Development. Int J Mol Sci 2020; 21:ijms21155343. [PMID: 32731332 PMCID: PMC7432401 DOI: 10.3390/ijms21155343] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) and their inhibitors (CDKIs) play pivotal roles in the regulation of the cell cycle. As a result of these functions, it may be extrapolated that they are essential for appropriate embryonic development. The twenty known mouse CDKs and eight CDKIs have been studied to varying degrees in the developing mouse, but only a handful of CDKs and a single CDKI have been shown to be absolutely required for murine embryonic development. What has become apparent, as more studies have shone light on these family members, is that in addition to their primary functional role in regulating the cell cycle, many of these genes are also controlling specific cell fates by directing differentiation in various tissues. Here we review the extensive mouse models that have been generated to study the functions of CDKs and CDKIs, and discuss their varying roles in murine embryonic development, with a particular focus on the brain, pancreas and fertility.
Collapse
|