1
|
Del Rosario J, Coletta S, Kim SH, Mobille Z, Peelman K, Williams B, Otsuki AJ, Del Castillo Valerio A, Worden K, Blanpain LT, Lovell L, Choi H, Haider B. Lateral inhibition in V1 controls neural and perceptual contrast sensitivity. Nat Neurosci 2025; 28:836-847. [PMID: 40033123 DOI: 10.1038/s41593-025-01888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
Lateral inhibition is a central principle in sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. However, the neurons, computations and mechanisms underlying cortical lateral inhibition remain debated, and its importance for perception remains unknown. Here we show that lateral inhibition from parvalbumin neurons in mouse primary visual cortex reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from somatostatin neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model, anatomical tracing and direct subthreshold measurements indicated that the larger spatial footprint for somatostatin versus parvalbumin synaptic inhibition explains this difference. Together, these results define cell-type-specific computational roles for lateral inhibition in primary visual cortex, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.
Collapse
Affiliation(s)
- Joseph Del Rosario
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Stefano Coletta
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Soon Ho Kim
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zach Mobille
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kayla Peelman
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Brice Williams
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alan J Otsuki
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Kendell Worden
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lou T Blanpain
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lyndah Lovell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hannah Choi
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bilal Haider
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Peelman K, Haider B. Environmental context influences visual processing in thalamus. Curr Biol 2025; 35:1422-1430.e5. [PMID: 40049173 PMCID: PMC11952198 DOI: 10.1016/j.cub.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/23/2024] [Accepted: 02/05/2025] [Indexed: 03/12/2025]
Abstract
Behavioral state modulates neural activity throughout the visual system.1,2,3 This is largely due to changes in arousal that alter internal brain states.4,5,6,7,8,9,10 Much is known about how these internal factors influence visual processing,7,8,9,10,11 but comparatively less is known about the role of external environmental contexts.12 Environmental contexts can promote or prevent certain actions,13 and it remains unclear if and how this affects visual processing. Here, we addressed this question in the thalamus of awake, head-fixed mice while they viewed stimuli but remained stationary in two different environmental contexts: either a cylindrical tube or a circular running wheel that enabled locomotion. We made silicon probe recordings in the dorsal lateral geniculate nucleus (dLGN) while simultaneously measuring multiple metrics of arousal changes so that we could control for these across contexts. We found surprising differences in spatial and temporal processing in dLGN across contexts. The wheel context (versus tube) showed elevated baseline activity and faster but less spatially selective visual responses; however, these visual processing differences disappeared if the wheel no longer enabled locomotion. Our results reveal an unexpected influence of the physical environmental context on fundamental aspects of early visual processing, even in otherwise identical states of alertness and stillness.
Collapse
Affiliation(s)
- Kayla Peelman
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Bilal Haider
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
3
|
Akella S, Ledochowitsch P, Siegle JH, Belski H, Denman DD, Buice MA, Durand S, Koch C, Olsen SR, Jia X. Deciphering neuronal variability across states reveals dynamic sensory encoding. Nat Commun 2025; 16:1768. [PMID: 39971911 PMCID: PMC11839951 DOI: 10.1038/s41467-025-56733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025] Open
Abstract
Influenced by non-stationary factors such as brain states and behavior, neurons exhibit substantial response variability even to identical stimuli. However, it remains unclear how their relative impact on neuronal variability evolves over time. To address this question, we designed an encoding model conditioned on latent states to partition variability in the mouse visual cortex across internal brain dynamics, behavior, and external visual stimulus. Applying a hidden Markov model to local field potentials, we consistently identified three distinct oscillation states, each with a unique variability profile. Regression models within each state revealed a dynamic composition of factors influencing spiking variability, with the dominant factor switching within seconds. The state-conditioned regression model uncovered extensive diversity in source contributions across units, varying in accordance with anatomical hierarchy and internal state. This heterogeneity in encoding underscores the importance of partitioning variability over time, particularly when considering the influence of non-stationary factors on sensory processing.
Collapse
Affiliation(s)
| | | | | | | | - Daniel D Denman
- Allen Institute, Seattle, WA, USA
- Anschutz Medical Campus School of Medicine, University of Colorado, Aurora, CO, USA
| | | | | | | | | | - Xiaoxuan Jia
- School of Life Science, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Bradley C, McCann E, Nydam AS, Dux PE, Mattingley JB. Causal evidence for increased theta and gamma phase consistency in a parieto-frontal network during the maintenance of visual attention. Neuropsychologia 2025; 208:109079. [PMID: 39826797 DOI: 10.1016/j.neuropsychologia.2025.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Endogenous visuo-spatial attention is under the control of a fronto-parietal network of brain regions. One key node in this network, the intra-parietal sulcus (IPS), plays a crucial role in maintaining endogenous attention, but little is known about its ongoing physiology and network dynamics during different attentional states. Here, we investigated the reactivity of the left IPS in response to brain stimulation under different states of selective attention. We recorded electroencephalography (EEG) in response to single pulses of transcranial magnetic stimulation (TMS) of the IPS, while participants (N = 44) viewed bilateral random-dot motion displays. Individual MRI-guided TMS pulses targeted the left IPS, while the left primary somatosensory cortex (S1) served as an active control site. In separate blocks of trials, participants were cued to attend covertly to the motion display in one hemifield (left or right) and to report brief coherent motion targets. The perceptual load of the task was manipulated by varying the degree of motion coherence of the targets. Excitability, variability and information content of the neural responses to TMS were assessed by analysing TMS-evoked potential (TEP) amplitude and inter-trial phase clustering (ITPC), and by performing multivariate decoding of attentional state. Results revealed that a left posterior region displayed reduced variability in the phase of theta and gamma oscillations following TMS of the IPS, but not of S1, when attention was directed contralaterally, rather than ipsilaterally to the stimulation site. A right frontal cluster also displayed reduced theta variability and increased amplitude of TEPs when attention was directed contralaterally rather than ipsilaterally, after TMS of the IPS but not S1. Reliable decoding of attentional state was achieved after TMS pulses of both S1 and IPS. Taken together, our findings suggest that endogenous control of visuo-spatial attention leads to changes in the intrinsic oscillatory properties of the IPS and its associated fronto-parietal network.
Collapse
Affiliation(s)
- Claire Bradley
- Queensland Brain Institute, The University of Queensland, Australia.
| | - Emily McCann
- Queensland Brain Institute, The University of Queensland, Australia
| | - Abbey S Nydam
- Centre for Vision Research VISTA, York University, Canada
| | - Paul E Dux
- School of Psychology, The University of Queensland, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Australia; School of Psychology, The University of Queensland, Australia; CIFAR, Canada
| |
Collapse
|
5
|
Peelman K, Haider B. Environmental context sculpts spatial and temporal visual processing in thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.26.605345. [PMID: 39091887 PMCID: PMC11291113 DOI: 10.1101/2024.07.26.605345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Behavioral state modulates neural activity throughout the visual system1-3. This is largely due to changes in arousal that alter internal brain state4-10. Much is known about how these internal factors influence visual processing7-11, but comparatively less is known about the role of external environmental contexts12. Environmental contexts can promote or prevent certain actions13, and it remains unclear if and how this affects visual processing. Here, we addressed this question in the thalamus of awake head-fixed mice while they viewed stimuli but remained stationary in two different environmental contexts: either a cylindrical tube, or a circular running wheel that enabled locomotion. We made silicon probe recordings in the dorsal lateral geniculate nucleus (dLGN) while simultaneously measuring multiple metrics of arousal changes, so that we could control for them across contexts. We found surprising differences in spatial and temporal processing in dLGN across contexts. The wheel context (versus tube) showed elevated baseline activity, and faster but less spatially selective visual responses; however, these visual processing differences disappeared if the wheel no longer enabled locomotion. Our results reveal an unexpected influence of the physical environmental context on fundamental aspects of early visual processing, even in otherwise identical states of alertness and stillness.
Collapse
Affiliation(s)
- Kayla Peelman
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Bilal Haider
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Kang I, Talluri BC, Yates JL, Niell CM, Nienborg H. Is the impact of spontaneous movements on early visual cortex species specific? Trends Neurosci 2025; 48:7-21. [PMID: 39701910 PMCID: PMC11741931 DOI: 10.1016/j.tins.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/22/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
Recent studies in non-human primates do not find pronounced signals related to the animal's own body movements in the responses of neurons in the visual cortex. This is notable because such pronounced signals have been widely observed in the visual cortex of mice. Here, we discuss factors that may contribute to the differences observed between species, such as state, slow neural drift, eccentricity, and changes in retinal input. The interpretation of movement-related signals in the visual cortex also exemplifies the challenge of identifying the sources of correlated variables. Dissecting these sources is central for understanding the functional roles of movement-related signals. We suggest a functional classification of the possible sources, aimed at facilitating cross-species comparative approaches to studying the neural mechanisms of vision during natural behavior.
Collapse
Affiliation(s)
- Incheol Kang
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bharath Chandra Talluri
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob L Yates
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Ramamurthy DL, Rodriguez L, Cen C, Li S, Chen A, Feldman DE. Reward history guides focal attention in whisker somatosensory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603927. [PMID: 39131281 PMCID: PMC11312476 DOI: 10.1101/2024.07.17.603927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Prior reward is a potent cue for attentional capture, but the underlying neurobiology is largely unknown. In a novel whisker touch detection task, we show that mice flexibly shift attention between specific whiskers on a trial-by-trial timescale, guided by the recent history of stimulus-reward association. Two-photon calcium imaging and spike recordings revealed a robust neurobiological correlate of attention in the somatosensory cortex (S1), boosting sensory responses to the attended whisker in L2/3 and L5, but not L4. Attentional boosting in L2/3 pyramidal cells was topographically precise and whisker-specific, and shifted receptive fields toward the attended whisker. L2/3 VIP interneurons were broadly activated by whisker stimuli, motion, and arousal but did not carry a whisker-specific attentional signal, and thus did not mediate spatially focused tactile attention. Together, these findings establish a new model of focal attention in the mouse whisker tactile system, showing that the history of stimuli and rewards in the recent past can dynamically engage local modulation in cortical sensory maps to guide flexible shifts in ongoing behavior.
Collapse
Affiliation(s)
- Deepa L. Ramamurthy
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Lucia Rodriguez
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
- Neuroscience PhD Program, UC Berkeley
| | - Celine Cen
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Siqian Li
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Andrew Chen
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Daniel E. Feldman
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
- Lead Contact
| |
Collapse
|
8
|
Horrocks EAB, Rodrigues FR, Saleem AB. Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex. Nat Commun 2024; 15:6415. [PMID: 39080254 PMCID: PMC11289260 DOI: 10.1038/s41467-024-50563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Time courses of neural responses underlie real-time sensory processing and perception. How these temporal dynamics change may be fundamental to how sensory systems adapt to different perceptual demands. By simultaneously recording from hundreds of neurons in mouse primary visual cortex, we examined neural population responses to visual stimuli at sub-second timescales, during different behavioural states. We discovered that during active behavioural states characterised by locomotion, single-neurons shift from transient to sustained response modes, facilitating rapid emergence of visual stimulus tuning. Differences in single-neuron response dynamics were associated with changes in temporal dynamics of neural correlations, including faster stabilisation of stimulus-evoked changes in the structure of correlations during locomotion. Using Factor Analysis, we examined temporal dynamics of latent population responses and discovered that trajectories of population activity make more direct transitions between baseline and stimulus-encoding neural states during locomotion. This could be partly explained by dampening of oscillatory dynamics present during stationary behavioural states. Functionally, changes in temporal response dynamics collectively enabled faster, more stable and more efficient encoding of new visual information during locomotion. These findings reveal a principle of how sensory systems adapt to perceptual demands, where flexible neural population dynamics govern the speed and stability of sensory encoding.
Collapse
Affiliation(s)
- Edward A B Horrocks
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| | - Fabio R Rodrigues
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK
| | - Aman B Saleem
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| |
Collapse
|
9
|
Del Rosario J, Coletta S, Kim SH, Mobille Z, Peelman K, Williams B, Otsuki AJ, Del Castillo Valerio A, Worden K, Blanpain LT, Lovell L, Choi H, Haider B. Lateral inhibition in V1 controls neural & perceptual contrast sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566605. [PMID: 38014014 PMCID: PMC10680635 DOI: 10.1101/2023.11.10.566605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lateral inhibition is a central principle for sensory system function. It is thought to operate by the activation of inhibitory neurons that restrict the spatial spread of sensory excitation. Much work on the role of inhibition in sensory systems has focused on visual cortex; however, the neurons, computations, and mechanisms underlying cortical lateral inhibition remain debated, and its importance for visual perception remains unknown. Here, we tested how lateral inhibition from PV or SST neurons in mouse primary visual cortex (V1) modulates neural and perceptual sensitivity to stimulus contrast. Lateral inhibition from PV neurons reduced neural and perceptual sensitivity to visual contrast in a uniform subtractive manner, whereas lateral inhibition from SST neurons more effectively changed the slope (or gain) of neural and perceptual contrast sensitivity. A neural circuit model identified spatially extensive lateral projections from SST neurons as the key factor, and we confirmed this with anatomy and direct subthreshold measurements of a larger spatial footprint for SST versus PV lateral inhibition. Together, these results define cell-type specific computational roles for lateral inhibition in V1, and establish their unique consequences on sensitivity to contrast, a fundamental aspect of the visual world.
Collapse
|
10
|
Xia R, Chen X, Engel TA, Moore T. Common and distinct neural mechanisms of attention. Trends Cogn Sci 2024; 28:554-567. [PMID: 38388258 PMCID: PMC11153008 DOI: 10.1016/j.tics.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Despite a constant deluge of sensory stimulation, only a fraction of it is used to guide behavior. This selective processing is generally referred to as attention, and much research has focused on the neural mechanisms controlling it. Recently, research has broadened to include more ways by which different species selectively process sensory information, whether due to the sensory input itself or to different behavioral and brain states. This work has produced a complex and disjointed body of evidence across different species and forms of attention. However, it has also provided opportunities to better understand the breadth of attentional mechanisms. Here, we summarize the evidence that suggests that different forms of selective processing are supported by mechanisms both common and distinct.
Collapse
Affiliation(s)
- Ruobing Xia
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xiaomo Chen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Tatiana A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Wolff M, Halassa MM. The mediodorsal thalamus in executive control. Neuron 2024; 112:893-908. [PMID: 38295791 DOI: 10.1016/j.neuron.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024]
Abstract
Executive control, the ability to organize thoughts and action plans in real time, is a defining feature of higher cognition. Classical theories have emphasized cortical contributions to this process, but recent studies have reinvigorated interest in the role of the thalamus. Although it is well established that local thalamic damage diminishes cognitive capacity, such observations have been difficult to inform functional models. Recent progress in experimental techniques is beginning to enrich our understanding of the anatomical, physiological, and computational substrates underlying thalamic engagement in executive control. In this review, we discuss this progress and particularly focus on the mediodorsal thalamus, which regulates the activity within and across frontal cortical areas. We end with a synthesis that highlights frontal thalamocortical interactions in cognitive computations and discusses its functional implications in normal and pathological conditions.
Collapse
Affiliation(s)
- Mathieu Wolff
- University of Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France.
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
Myers-Joseph D, Wilmes KA, Fernandez-Otero M, Clopath C, Khan AG. Disinhibition by VIP interneurons is orthogonal to cross-modal attentional modulation in primary visual cortex. Neuron 2024; 112:628-645.e7. [PMID: 38070500 DOI: 10.1016/j.neuron.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/24/2023] [Accepted: 11/08/2023] [Indexed: 02/24/2024]
Abstract
Attentional modulation of sensory processing is a key feature of cognition; however, its neural circuit basis is poorly understood. A candidate mechanism is the disinhibition of pyramidal cells through vasoactive intestinal peptide (VIP) and somatostatin (SOM)-positive interneurons. However, the interaction of attentional modulation and VIP-SOM disinhibition has never been directly tested. We used all-optical methods to bi-directionally manipulate VIP interneuron activity as mice performed a cross-modal attention-switching task. We measured the activities of VIP, SOM, and parvalbumin (PV)-positive interneurons and pyramidal neurons identified in the same tissue and found that although activity in all cell classes was modulated by both attention and VIP manipulation, their effects were orthogonal. Attention and VIP-SOM disinhibition relied on distinct patterns of changes in activity and reorganization of interactions between inhibitory and excitatory cells. Circuit modeling revealed a precise network architecture consistent with multiplexing strong yet non-interacting modulations in the same neural population.
Collapse
Affiliation(s)
- Dylan Myers-Joseph
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | | | | | - Claudia Clopath
- Department of Bioengineering, Imperial College, London SW7 2AZ, UK
| | - Adil G Khan
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
13
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Mapping the bioimaging marker of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572613. [PMID: 38187675 PMCID: PMC10769340 DOI: 10.1101/2023.12.20.572613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients may be used as biomarkers of brain degeneration. To characterize AD-specific PLR and its underlying neuromodulatory sources, we combined high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction ( P c ) and post-illumination pupil dilation recovery (amplitude, P d , and time, T ). The P c -driven differential analysis revealed altered visual signal processing coupled with reduced thalamocortical activation in AD mice compared with the wild-type normal mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlighted multiple brain areas related to AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Also, brain-wide functional connectivity analysis highlighted the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work combined non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
|
14
|
Wang X, Nandy AS, Jadi MP. Laminar compartmentalization of attention modulation in area V4 aligns with the demands of visual processing hierarchy in the cortex. Sci Rep 2023; 13:19558. [PMID: 37945642 PMCID: PMC10636153 DOI: 10.1038/s41598-023-46722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023] Open
Abstract
Attention selectively enhances neural responses to low contrast stimuli in visual area V4, a critical hub that sends projections both up and down the visual hierarchy. Veridical encoding of contrast information is a key computation in early visual areas, while later stages encoding higher level features benefit from improved sensitivity to low contrast. How area V4 meets these distinct information processing demands in the attentive state is unknown. We found that attentional modulation in V4 is cortical layer and cell-class specific. Putative excitatory neurons in the superficial layers show enhanced boosting of low contrast information, while those of deep layers exhibit contrast-independent scaling. Computational modeling suggested the extent of spatial integration of inhibitory neurons as the mechanism behind such laminar differences. Considering that superficial neurons are known to project to higher areas and deep layers to early visual areas, our findings suggest that the interactions between attention and contrast in V4 are compartmentalized, in alignment with the demands of the visual processing hierarchy.
Collapse
Affiliation(s)
- Xiang Wang
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA
| | - Anirvan S Nandy
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT, 06511, USA
| | - Monika P Jadi
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA.
- Department of Psychiatry, Yale University, New Haven, CT, 06511, USA.
- Department of Neuroscience, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
15
|
Lehnert J, Cha K, Halperin J, Yang K, Zheng DF, Khadra A, Cook EP, Krishnaswamy A. Visual attention to features and space in mice using reverse correlation. Curr Biol 2023; 33:3690-3701.e4. [PMID: 37611588 DOI: 10.1016/j.cub.2023.07.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Visual attention allows the brain to evoke behaviors based on the most important visual features. Mouse models offer immense potential to gain a circuit-level understanding of this phenomenon, yet how mice distribute attention across features and locations is not well understood. Here, we describe a new approach to address this limitation by training mice to detect weak vertical bars in a background of dynamic noise while spatial cues manipulate their attention. By adapting a reverse-correlation method from human studies, we linked behavioral decisions to stimulus features and locations. We show that mice deployed attention to a small rostral region of the visual field. Within this region, mice attended to multiple features (orientation, spatial frequency, contrast) that indicated the presence of weak vertical bars. This attentional tuning grew with training, multiplicatively scaled behavioral sensitivity, approached that of an ideal observer, and resembled the effects of attention in humans. Taken together, we demonstrate that mice can simultaneously attend to multiple features and locations of a visual stimulus.
Collapse
Affiliation(s)
- Jonas Lehnert
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada
| | - Kuwook Cha
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jamie Halperin
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kerry Yang
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Daniel F Zheng
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada; Centre for Applied Mathematics in Bioscience and Medicine, McGill University, Montreal, QC H3G 0B1, Canada
| | - Erik P Cook
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada; Centre for Applied Mathematics in Bioscience and Medicine, McGill University, Montreal, QC H3G 0B1, Canada.
| | - Arjun Krishnaswamy
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada.
| |
Collapse
|
16
|
Scaffei E, Mazziotti R, Conti E, Costanzo V, Calderoni S, Stoccoro A, Carmassi C, Tancredi R, Baroncelli L, Battini R. A Potential Biomarker of Brain Activity in Autism Spectrum Disorders: A Pilot fNIRS Study in Female Preschoolers. Brain Sci 2023; 13:951. [PMID: 37371429 DOI: 10.3390/brainsci13060951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Autism spectrum disorder (ASD) refers to a neurodevelopmental condition whose detection still remains challenging in young females due to the heterogeneity of the behavioral phenotype and the capacity of camouflage. The availability of quantitative biomarkers to assess brain function may support in the assessment of ASD. Functional Near-infrared Spectroscopy (fNIRS) is a non-invasive and flexible tool that quantifies cortical hemodynamic responses (HDR) that can be easily employed to describe brain activity. Since the study of the visual phenotype is a paradigmatic model to evaluate cerebral processing in many neurodevelopmental conditions, we hypothesized that visually-evoked HDR (vHDR) might represent a potential biomarker in ASD females. We performed a case-control study comparing vHDR in a cohort of high-functioning preschooler females with ASD (fASD) and sex/age matched peers. We demonstrated the feasibility of visual fNIRS measurements in fASD, and the possibility to discriminate between fASD and typical subjects using different signal features, such as the amplitude and lateralization of vHDR. Moreover, the level of response lateralization was correlated to the severity of autistic traits. These results corroborate the cruciality of sensory symptoms in ASD, paving the way for the validation of the fNIRS analytical tool for diagnosis and treatment outcome monitoring in the ASD population.
Collapse
Affiliation(s)
- Elena Scaffei
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50135 Florence, Italy
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
| | - Raffaele Mazziotti
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Eugenia Conti
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
| | - Valeria Costanzo
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
| | - Sara Calderoni
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | | | - Laura Baroncelli
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Roberta Battini
- IRCCS Stella Maris Foundation, Viale del Tirreno, 56128 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
17
|
Shin D, Peelman K, Lien AD, Del Rosario J, Haider B. Narrowband gamma oscillations propagate and synchronize throughout the mouse thalamocortical visual system. Neuron 2023; 111:1076-1085.e8. [PMID: 37023711 PMCID: PMC10112544 DOI: 10.1016/j.neuron.2023.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/16/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Oscillations of neural activity permeate sensory systems. In the visual system, broadband gamma oscillations (30-80 Hz) are thought to act as a communication mechanism underlying perception. However, these oscillations show widely varying frequency and phase, providing constraints for coordinating spike timing across areas. Here, we examined Allen Brain Observatory data and performed causal experiments to show that narrowband gamma (NBG) oscillations (50-70 Hz) propagate and synchronize throughout the awake mouse visual system. Lateral geniculate nucleus (LGN) neurons fired precisely relative to NBG phase in primary visual cortex (V1) and multiple higher visual areas (HVAs). NBG neurons across areas showed a higher likelihood of functional connectivity and stronger visual responses; remarkably, NBG neurons in LGN, preferring bright (ON) versus dark (OFF), fired at distinct NBG phases aligned across the cortical hierarchy. NBG oscillations may thus serve to coordinate spike timing across brain areas and facilitate communication of distinct visual features during perception.
Collapse
Affiliation(s)
- Donghoon Shin
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA; Electrical and Computer Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA; Bioengineering, UCSF - UC Berkeley Joint PhD Program, San Francisco, CA, USA
| | - Kayla Peelman
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Anthony D Lien
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Joseph Del Rosario
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Bilal Haider
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
18
|
Reitman ME, Tse V, Mi X, Willoughby DD, Peinado A, Aivazidis A, Myagmar BE, Simpson PC, Bayraktar OA, Yu G, Poskanzer KE. Norepinephrine links astrocytic activity to regulation of cortical state. Nat Neurosci 2023; 26:579-593. [PMID: 36997759 PMCID: PMC10089924 DOI: 10.1038/s41593-023-01284-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 02/14/2023] [Indexed: 04/01/2023]
Abstract
Cortical state, defined by population-level neuronal activity patterns, determines sensory perception. While arousal-associated neuromodulators-including norepinephrine (NE)-reduce cortical synchrony, how the cortex resynchronizes remains unknown. Furthermore, general mechanisms regulating cortical synchrony in the wake state are poorly understood. Using in vivo imaging and electrophysiology in mouse visual cortex, we describe a critical role for cortical astrocytes in circuit resynchronization. We characterize astrocytes' calcium responses to changes in behavioral arousal and NE, and show that astrocytes signal when arousal-driven neuronal activity is reduced and bi-hemispheric cortical synchrony is increased. Using in vivo pharmacology, we uncover a paradoxical, synchronizing response to Adra1a receptor stimulation. We reconcile these results by demonstrating that astrocyte-specific deletion of Adra1a enhances arousal-driven neuronal activity, while impairing arousal-related cortical synchrony. Our findings demonstrate that astrocytic NE signaling acts as a distinct neuromodulatory pathway, regulating cortical state and linking arousal-associated desynchrony to cortical circuit resynchronization.
Collapse
Affiliation(s)
- Michael E Reitman
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Tse
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | - Drew D Willoughby
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Alba Peinado
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Bat-Erdene Myagmar
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Paul C Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | | | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | - Kira E Poskanzer
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA.
| |
Collapse
|
19
|
Debes SR, Dragoi V. Suppressing feedback signals to visual cortex abolishes attentional modulation. Science 2023; 379:468-473. [PMID: 36730414 DOI: 10.1126/science.ade1855] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023]
Abstract
Attention improves perception by enhancing the neural encoding of sensory information. A long-standing hypothesis is that cortical feedback projections carry top-down signals to influence sensory coding. However, this hypothesis has never been tested to establish causal links. We used viral tools to label feedback connections from cortical area V4 targeting early visual cortex (area V1). While monkeys performed a visual-spatial attention task, inactivating feedback axonal terminals in V1 without altering local intracortical and feedforward inputs reduced the response gain of single cells and impaired the accuracy of neural populations for encoding external stimuli. These effects are primarily manifested in the superficial layers of V1 and propagate to downstream area V4. Attention enhances sensory coding across visual cortex by specifically altering the strength of corticocortical feedback in a layer-dependent manner.
Collapse
Affiliation(s)
- Samantha R Debes
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas at Houston, Houston, TX 77030, USA
| | - Valentin Dragoi
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas at Houston, Houston, TX 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
20
|
Kanamori T, Mrsic-Flogel TD. Independent response modulation of visual cortical neurons by attentional and behavioral states. Neuron 2022; 110:3907-3918.e6. [PMID: 36137550 DOI: 10.1016/j.neuron.2022.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022]
Abstract
Sensory processing is influenced by cognitive and behavioral states, but how these states interact to modulate responses of individual neurons is unknown. We trained mice in a visual discrimination task wherein they attended to different locations within a hemifield while running or sitting still, enabling us to examine how visual responses are modulated by spatial attention and running behavior. We found that spatial attention improved discrimination performance and strengthened visual responses of excitatory neurons in the primary visual cortex whose receptive fields overlapped with the attended location. Although individual neurons were modulated by both spatial attention and running, the magnitudes of these influences were not correlated. While running-dependent modulation was stable across days, attentional modulation was dynamic, influencing individual neurons to different degrees after repeated changes in attentional states. Thus, despite similar effects on neural responses, spatial attention and running act independently with different dynamics, implying separable mechanisms for their implementation.
Collapse
Affiliation(s)
- Takahiro Kanamori
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK.
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK.
| |
Collapse
|
21
|
Prakash SS, Mayo JP, Ray S. Decoding of attentional state using local field potentials. Curr Opin Neurobiol 2022; 76:102589. [PMID: 35751949 PMCID: PMC9840850 DOI: 10.1016/j.conb.2022.102589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/18/2023]
Abstract
We review recent efforts to decode visual spatial attention from different types of brain signals, such as spikes and local field potentials (LFPs). Combining signals from more electrodes improves decoding, but the pattern of improvement varies considerably depending on the signal as well as the task (for example, decoding of sensory stimulus/motor intention versus location of attention). We argue that this pattern of results conveys important information not only about the usefulness of a particular brain signal for decoding attention, but also about the spatial scale over which attention operates in the brain. The spatial scale, in turn, likely depends on the extent of underlying mechanisms such as normalization, gain control via excitation-inhibition interactions, and neuromodulatory regulation of attention.
Collapse
Affiliation(s)
- Surya S. Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - J. Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
22
|
Recruitment of frontal sensory circuits during visual discrimination. Cell Rep 2022; 39:110932. [PMID: 35675774 PMCID: PMC9247711 DOI: 10.1016/j.celrep.2022.110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/28/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
A long-range circuit linking the medial frontal cortex to the primary visual cortex (V1) has been proposed to mediate visual selective attention in mice during visually guided behavior. Here, we use in vivo two-photon functional imaging to measure the endogenous activity of axons of A24b/M2 neurons from this region projecting to layer 1 of V1 (A24b/M2-V1axons) in mice either passively viewing stimuli or performing a go/no-go visually guided task. We observe that while A24b/M2-V1axons are recruited under these conditions, this is not linked to enhancement of neural or behavioral measures of sensory coding. Instead, A24b/M2-V1axon activity is associated with licking behavior, modulated by reward, and biased toward the sensory cortical hemisphere representing the stimulus currently being discriminated. Endogenous A24b/M2-V1 axon activity elevation does not enhance sensory processing A24b/M2-V1 axon activity is correlated with licking A24b/M2-V1 axon lick-correlated activity is modulated by reward
Collapse
|
23
|
Pütz C, van den Berg B, Lorist MM. Dynamic modulation of neural feedback processing and attention during spatial probabilistic learning. iScience 2022; 25:104302. [PMID: 35602968 PMCID: PMC9118728 DOI: 10.1016/j.isci.2022.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Learned stimulus-reward associations can modulate behavior and the underlying neural processing of information. We investigated the cascade of these neurocognitive mechanisms involved in the learning of spatial stimulus-reward associations. Using electroencephalogram recordings while participants performed a probabilistic spatial reward learning task, we observed that the feedback-related negativity component was more negative in response to loss feedback compared to gain feedback but showed no modulation by learning. The late positive component became larger in response to losses as the learning set progressed but smaller in response to gains. In addition, feedback-locked alpha frequency oscillations measured over occipital sites were predictive of N2pc amplitudes—a marker of spatial attention orienting—observed on the next trial. This relationship was found to become stronger with learning set progression. Taken together, we elucidated neurocognitive dynamics underlying feedback processing during spatial reward learning, and the subsequent effects of these learned spatial stimulus-reward associations on spatial attention. We can learn which spatial location relates to the highest probability of reward Neural processing of feedback valence was not influenced by learning LPC amplitude was dynamically modulated by learning, reflecting context updating Feedback-locked alpha power was predictive of ensuing orientation of attention
Collapse
Affiliation(s)
- Celina Pütz
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands.,Department of Neurobiology, University of Groningen, P.O. Box 11103, Groningen 9700CC, the Netherlands.,Department of Neurology, University Medical Center Groningen, Postbus 30001, Groningen 9700RB, the Netherlands
| | - Berry van den Berg
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| | - Monicque M Lorist
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712TS, the Netherlands
| |
Collapse
|
24
|
You 游文愷 WK, Mysore SP. Dynamics of Visual Perceptual Decision-Making in Freely Behaving Mice. eNeuro 2022; 9:ENEURO.0161-21.2022. [PMID: 35228308 DOI: 10.1101/2020.02.20.958652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 05/25/2023] Open
Abstract
The temporal dynamics of perceptual decisions offer a key window into the cognitive processes contributing to decision-making. Investigating perceptual dynamics in a genetically tractable animal model can facilitate the subsequent unpacking of the underlying neural mechanisms. Here, we investigated the time course as well as fundamental psychophysical constants governing visual perceptual decision-making in freely behaving mice. We did so by analyzing response accuracy against reaction time (RT), i.e., conditional accuracy, in a series of two-alternative forced choice (2-AFC) orientation discrimination tasks in which we varied target size, luminance, duration, and presence of a foil. Our results quantified two distinct stages in the time course of mouse visual decision-making: a "sensory encoding" stage in which conditional accuracy exhibits a classic trade-off with response speed, and a subsequent "short-term memory (STM)-dependent" stage in which conditional accuracy exhibits a classic asymptotic decay following stimulus offset. We estimated the duration of visual sensory encoding as 200-320 ms across tasks, the lower bound of the duration of STM as ∼1700 ms, and the briefest duration of visual stimulus input that is informative as ≤50 ms. Separately, by varying stimulus onset delay, we demonstrated that the conditional accuracy function (CAF) and RT distribution can be independently modulated, and found that the duration for which mice naturally withhold from responding is a quantitative metric of impulsivity. Taken together, our results establish a quantitative foundation for investigating the neural circuit bases of visual decision dynamics in mice.
Collapse
Affiliation(s)
- Wen-Kai You 游文愷
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
25
|
Dynamics of Visual Perceptual Decision-Making in Freely Behaving Mice. eNeuro 2022; 9:ENEURO.0161-21.2022. [PMID: 35228308 PMCID: PMC8925649 DOI: 10.1523/eneuro.0161-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
The temporal dynamics of perceptual decisions offer a key window into the cognitive processes contributing to decision-making. Investigating perceptual dynamics in a genetically tractable animal model can facilitate the subsequent unpacking of the underlying neural mechanisms. Here, we investigated the time course as well as fundamental psychophysical constants governing visual perceptual decision-making in freely behaving mice. We did so by analyzing response accuracy against reaction time (RT), i.e., conditional accuracy, in a series of two-alternative forced choice (2-AFC) orientation discrimination tasks in which we varied target size, luminance, duration, and presence of a foil. Our results quantified two distinct stages in the time course of mouse visual decision-making: a “sensory encoding” stage in which conditional accuracy exhibits a classic trade-off with response speed, and a subsequent “short-term memory (STM)-dependent” stage in which conditional accuracy exhibits a classic asymptotic decay following stimulus offset. We estimated the duration of visual sensory encoding as 200–320 ms across tasks, the lower bound of the duration of STM as ∼1700 ms, and the briefest duration of visual stimulus input that is informative as ≤50 ms. Separately, by varying stimulus onset delay, we demonstrated that the conditional accuracy function (CAF) and RT distribution can be independently modulated, and found that the duration for which mice naturally withhold from responding is a quantitative metric of impulsivity. Taken together, our results establish a quantitative foundation for investigating the neural circuit bases of visual decision dynamics in mice.
Collapse
|
26
|
Poort J, Wilmes KA, Blot A, Chadwick A, Sahani M, Clopath C, Mrsic-Flogel TD, Hofer SB, Khan AG. Learning and attention increase visual response selectivity through distinct mechanisms. Neuron 2022; 110:686-697.e6. [PMID: 34906356 PMCID: PMC8860382 DOI: 10.1016/j.neuron.2021.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/31/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Selectivity of cortical neurons for sensory stimuli can increase across days as animals learn their behavioral relevance and across seconds when animals switch attention. While both phenomena occur in the same circuit, it is unknown whether they rely on similar mechanisms. We imaged primary visual cortex as mice learned a visual discrimination task and subsequently performed an attention switching task. Selectivity changes due to learning and attention were uncorrelated in individual neurons. Selectivity increases after learning mainly arose from selective suppression of responses to one of the stimuli but from selective enhancement and suppression during attention. Learning and attention differentially affected interactions between excitatory and PV, SOM, and VIP inhibitory cells. Circuit modeling revealed that cell class-specific top-down inputs best explained attentional modulation, while reorganization of local functional connectivity accounted for learning-related changes. Thus, distinct mechanisms underlie increased discriminability of relevant sensory stimuli across longer and shorter timescales.
Collapse
Affiliation(s)
- Jasper Poort
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | - Antonin Blot
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Angus Chadwick
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | | | - Thomas D Mrsic-Flogel
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Sonja B Hofer
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Adil G Khan
- Biozentrum, University of Basel, Basel, Switzerland; Centre for Developmental Neurobiology, King's College London, London, UK.
| |
Collapse
|
27
|
Wang L, Herman JP, Krauzlis RJ. Neuronal modulation in the mouse superior colliculus during covert visual selective attention. Sci Rep 2022; 12:2482. [PMID: 35169189 PMCID: PMC8847498 DOI: 10.1038/s41598-022-06410-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Covert visual attention is accomplished by a cascade of mechanisms distributed across multiple brain regions. Visual cortex is associated with enhanced representations of relevant stimulus features, whereas the contributions of subcortical circuits are less well understood but have been associated with selection of relevant spatial locations and suppression of distracting stimuli. As a step toward understanding these subcortical circuits, here we identified how neuronal activity in the intermediate layers of the superior colliculus (SC) of head-fixed mice is modulated during covert visual attention. We found that spatial cues modulated both firing rate and spike-count correlations. Crucially, the cue-related modulation in firing rate was due to enhancement of activity at the cued spatial location rather than suppression at the uncued location, indicating that SC neurons in our task were modulated by an excitatory or disinhibitory circuit mechanism focused on the relevant location, rather than broad inhibition of irrelevant locations. This modulation improved the neuronal discriminability of visual-change-evoked activity, but only when assessed for neuronal activity between the contralateral and ipsilateral SC. Together, our findings indicate that neurons in the mouse SC can contribute to covert visual selective attention by biasing processing in favor of locations expected to contain task-relevant information.
Collapse
Affiliation(s)
- Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA.
| | - James P Herman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Optimizing intact skull intrinsic signal imaging for subsequent targeted electrophysiology across mouse visual cortex. Sci Rep 2022; 12:2063. [PMID: 35136111 PMCID: PMC8826313 DOI: 10.1038/s41598-022-05932-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Understanding brain function requires repeatable measurements of neural activity across multiple scales and multiple brain areas. In mice, large scale cortical neural activity evokes hemodynamic changes readily observable with intrinsic signal imaging (ISI). Pairing ISI with visual stimulation allows identification of primary visual cortex (V1) and higher visual areas (HVAs), typically through cranial windows that thin or remove the skull. These procedures can diminish long-term mechanical and physiological stability required for delicate electrophysiological measurements made weeks to months after imaging (e.g., in subjects undergoing behavioral training). Here, we optimized and directly validated an intact skull ISI system in mice. We first assessed how imaging quality and duration affect reliability of retinotopic maps in V1 and HVAs. We then verified ISI map retinotopy in V1 and HVAs with targeted, multi-site electrophysiology several weeks after imaging. Reliable ISI maps of V1 and multiple HVAs emerged with ~ 60 trials of imaging (65 ± 6 min), and these showed strong correlation to local field potential (LFP) retinotopy in superficial cortical layers (r2 = 0.74–0.82). This system is thus well-suited for targeted, multi-area electrophysiology weeks to months after imaging. We provide detailed instructions and code for other researchers to implement this system.
Collapse
|
29
|
Goldstein S, Wang L, McAlonan K, Torres-Cruz M, Krauzlis RJ. Stimulus-driven visual attention in mice. J Vis 2022; 22:11. [PMID: 35044435 PMCID: PMC8787543 DOI: 10.1167/jov.22.1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022] Open
Abstract
In primates, stimulus-driven changes in visual attention can facilitate or hinder perceptual performance, depending on the location and timing of the stimulus event. Mice have emerged as a powerful model for studying visual circuits and behavior; however, it is unclear whether mice show similar interactions between stimulus events and visual attention during perceptual decisions. To investigate this, we trained head-fixed mice to detect a near-threshold change in visual orientation and tested how performance was altered by task-irrelevant stimuli that occurred at different times and locations with respect to the orientation change. We found that task-irrelevant stimuli strongly affected mouse performance. Specifically, stimulus-driven attention in mice followed a similar time course as that in other species: The decreases in reaction times fully emerged between 250 and 400 ms after the stimulus event, and detection accuracy was not affected. However, the effects of stimulus-driven attention on behavior in mice were insensitive to stimulus-event location, an aspect different from what is known in primates. In contrast, reaction times in mice were reduced at longer delays after the task-irrelevant stimulus event regardless of its spatial congruence to the target. These results highlight the strengths and limitations of using mice as a model for studying higher-order visual functions.
Collapse
Affiliation(s)
- Sheridan Goldstein
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Kerry McAlonan
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Mateus Torres-Cruz
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
- Laboratory for Neuroscience and Behavior, University of Sao Paulo, Sao Paulo, Brazil
- https://orcid.org/0000-0001-7571-0072
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| |
Collapse
|
30
|
An inferior-superior colliculus circuit controls auditory cue-directed visual spatial attention. Neuron 2021; 110:109-119.e3. [PMID: 34699777 DOI: 10.1016/j.neuron.2021.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/30/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
Selective attention modulates neuronal activity in multiple brain regions, but the origins of attention signals remain unclear. We show that, during a visual task requiring spatial attention directed by an auditory cue, an inferior-superior colliculus circuit provides the key attention signal. In mice performing a task based on a visual stimulus in the cued hemifield while ignoring a conflicting stimulus on the uncued side, the visual cortex (V1) and superior colliculus (SC) showed strong attentional modulation, with a shorter latency in the SC. The nucleus of the brachium of the inferior colliculus (nBIC), which provides auditory inputs to the SC, was activated not only at auditory cue onset but also during the delay period before the visual stimulus. The delay activity, but not cue onset activity, was crucial for task performance and attentional modulation in the SC and V1. These results establish a new behavioral paradigm for studying visual attention in mice and identify a midbrain signal controlling auditory cue-directed spatial attention.
Collapse
|
31
|
Speed A, Haider B. Probing mechanisms of visual spatial attention in mice. Trends Neurosci 2021; 44:822-836. [PMID: 34446296 PMCID: PMC8484049 DOI: 10.1016/j.tins.2021.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
The role of spatial attention for visual perception has been thoroughly studied in primates, but less so in mice. Several behavioral tasks in mice reveal spatial attentional effects, with similarities to observations in primates. Pairing these tasks with large-scale, cell-type-specific techniques could enable deeper access to underlying mechanisms, and help define the utility and limitations of resolving attentional effects on visual perception and neural activity in mice. In this Review, we evaluate behavioral and neural evidence for visual spatial attention in mice; assess how specializations of the mouse visual system and behavioral repertoire impact interpretation of spatial attentional effects; and outline how several measurement and manipulation techniques in mice could precisely test and refine models of attentional modulation across scales.
Collapse
Affiliation(s)
- Anderson Speed
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Bilal Haider
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
32
|
Williams B, Del Rosario J, Muzzu T, Peelman K, Coletta S, Bichler EK, Speed A, Meyer-Baese L, Saleem AB, Haider B. Spatial modulation of dark versus bright stimulus responses in the mouse visual system. Curr Biol 2021; 31:4172-4179.e6. [PMID: 34314675 PMCID: PMC8478832 DOI: 10.1016/j.cub.2021.06.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023]
Abstract
A fundamental task of the visual system is to respond to both increases and decreases of luminance with action potentials (ON and OFF responses1-4). OFF responses are stronger, faster, and more salient than ON responses in primary visual cortex (V1) of both cats5,6 and primates,7,8 but in ferrets9 and mice,10 ON responses can be stronger, weaker,11 or balanced12 in comparison to OFF responses. These discrepancies could arise from differences in species, experimental techniques, or stimulus properties, particularly retinotopic location in the visual field, as has been speculated;9 however, the role of retinotopy for ON/OFF dominance has not been systematically tested across multiple scales of neural activity within species. Here, we measured OFF versus ON responses across large portions of visual space with silicon probe and whole-cell patch-clamp recordings in mouse V1 and lateral geniculate nucleus (LGN). We found that OFF responses dominated in the central visual field, whereas ON and OFF responses were more balanced in the periphery. These findings were consistent across local field potential (LFP), spikes, and subthreshold membrane potential in V1, and were aligned with spatial biases in ON and OFF responses in LGN. Our findings reveal that retinotopy may provide a common organizing principle for spatial modulation of OFF versus ON processing in mammalian visual systems.
Collapse
Affiliation(s)
- Brice Williams
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Joseph Del Rosario
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Tomaso Muzzu
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Kayla Peelman
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Stefano Coletta
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Edyta K Bichler
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Anderson Speed
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Lisa Meyer-Baese
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Aman B Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Bilal Haider
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
33
|
Del Rosario J, Speed A, Arrowood H, Motz C, Pardue M, Haider B. Diminished Cortical Excitation and Elevated Inhibition During Perceptual Impairments in a Mouse Model of Autism. Cereb Cortex 2021; 31:3462-3474. [PMID: 33677512 PMCID: PMC8525192 DOI: 10.1093/cercor/bhab025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 01/02/2023] Open
Abstract
Sensory impairments are a core feature of autism spectrum disorder (ASD). These impairments affect visual perception and have been hypothesized to arise from imbalances in cortical excitatory and inhibitory activity. There is conflicting evidence for this hypothesis from several recent studies of transgenic mouse models of ASD; crucially, none have measured activity from identified excitatory and inhibitory neurons during simultaneous impairments of sensory perception. Here, we directly recorded putative excitatory and inhibitory population spiking in primary visual cortex (V1) while simultaneously measuring visual perceptual behavior in CNTNAP2-/- knockout (KO) mice. We observed quantitative impairments in the speed, accuracy, and contrast sensitivity of visual perception in KO mice. During these perceptual impairments, stimuli evoked more firing of inhibitory neurons and less firing of excitatory neurons, with reduced neural sensitivity to contrast. In addition, pervasive 3-10 Hz oscillations in superficial cortical layers 2/3 (L2/3) of KO mice degraded predictions of behavioral performance from neural activity. Our findings show that perceptual deficits relevant to ASD may be associated with elevated cortical inhibitory activity along with diminished and aberrant excitatory population activity in L2/3, a major source of feedforward projections to higher cortical regions.
Collapse
Affiliation(s)
- Joseph Del Rosario
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Anderson Speed
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Hayley Arrowood
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Cara Motz
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA 30033, USA
| | - Machelle Pardue
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, GA 30033, USA
| | - Bilal Haider
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
34
|
Morimoto MM, Uchishiba E, Saleem AB. Organization of feedback projections to mouse primary visual cortex. iScience 2021; 24:102450. [PMID: 34113813 PMCID: PMC8169797 DOI: 10.1016/j.isci.2021.102450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/01/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Top-down, context-dependent modulation of visual processing has been a topic of wide interest, including in mouse primary visual cortex (V1). However, the organization of feedback projections to V1 is relatively unknown. Here, we investigated inputs to mouse V1 by injecting retrograde tracers. We developed a software pipeline that maps labeled cell bodies to corresponding brain areas in the Allen Reference Atlas. We identified more than 24 brain areas that provide inputs to V1 and quantified the relative strength of their projections. We also assessed the organization of the projections, based on either the organization of cell bodies in the source area (topography) or the distribution of projections across V1 (bias). Projections from most higher visual and some nonvisual areas to V1 showed both topography and bias. Such organization of feedback projections to V1 suggests that parts of the visual field are differentially modulated by context, which can be ethologically relevant for a navigating animal.
Collapse
Affiliation(s)
- Mai M. Morimoto
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Emi Uchishiba
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Aman B. Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| |
Collapse
|
35
|
Evaluating Visual Cues Modulates Their Representation in Mouse Visual and Cingulate Cortex. J Neurosci 2021; 41:3531-3544. [PMID: 33687964 DOI: 10.1523/jneurosci.1828-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
Choosing an action in response to visual cues relies on cognitive processes, such as perception, evaluation, and prediction, which can modulate visual representations even at early processing stages. In the mouse, it is challenging to isolate cognitive modulations of sensory signals because concurrent overt behavior patterns, such as locomotion, can also have brainwide influences. To address this challenge, we designed a task, in which head-fixed mice had to evaluate one of two visual cues. While their global shape signaled the opportunity to earn reward, the cues provided equivalent local stimulation to receptive fields of neurons in primary visual (V1) and anterior cingulate cortex (ACC). We found that mice evaluated these cues within few hundred milliseconds. During this period, ∼30% of V1 neurons became cue-selective, with preferences for either cue being balanced across the recorded population. This selectivity emerged in response to the behavioral demands because the same neurons could not discriminate the cues in sensory control measurements. In ACC, cue evaluation affected a similar fraction of neurons; emerging selectivity, however, was stronger than in V1, and preferences in the recorded population were biased toward the cue promising reward. Such a biased selectivity regime might allow the mouse to infer the promise of reward simply by the overall level of activity. Together, these experiments isolate the impact of task demands on neural responses in mouse cerebral cortex, and document distinct neural signatures of cue evaluation in V1 and ACC.SIGNIFICANCE STATEMENT Performing a cognitive task, such as evaluating visual cues, not only recruits frontal and parietal brain regions, but also modulates sensory processing stages. We trained mice to evaluate two visual cues, and show that, during this task, ∼30% of neurons recorded in V1 became selective for either cue, although they provided equivalent visual stimulation. We also show that, during cue evaluation, mice frequently move their eyes, even under head fixation, and that ignoring systematic differences in eye position can substantially obscure the modulations seen in V1 neurons. Finally, we document that modulations are stronger in ACC, and biased toward the reward-predicting cue, suggesting a transition in the neural representation of task-relevant information across processing stages in mouse cerebral cortex.
Collapse
|
36
|
Wei PH, Chen H, Ye Q, Zhao H, Xu Y, Bai F. Self-reference Network-Related Interactions During the Process of Cognitive Impairment in the Early Stages of Alzheimer's Disease. Front Aging Neurosci 2021; 13:666437. [PMID: 33841130 PMCID: PMC8024683 DOI: 10.3389/fnagi.2021.666437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Normal establishment of cognition occurs after forming a sensation to stimuli from internal or external cues, in which self-reference processing may be partially involved. However, self-reference processing has been less studied in the Alzheimer’s disease (AD) field within the self-reference network (SRN) and has instead been investigated within the default-mode network (DMN). Differences between these networks have been proven in the last decade, while ultra-early diagnoses have increased. Therefore, investigation of the altered pattern of SRN is significantly important, especially in the early stages of AD. Methods: A total of 65 individuals, including 43 with mild cognitive impairment (MCI) and 22 cognitively normal individuals, participated in this study. The SRN, dorsal attention network (DAN), and salience network (SN) were constructed with resting-state functional magnetic resonance imaging (fMRI), and voxel-based analysis of variance (ANOVA) was used to explore significant regions of network interactions. Finally, the correlation between the network interactions and clinical characteristics was analyzed. Results: We discovered four interactions among the three networks, with the SRN showing different distributions in the left and right hemispheres from the DAN and SN and modulated interactions between them. Group differences in the interactions that were impaired in MCI patients indicated that the degree of damage was most severe in the SRN, least severe in the SN, and intermediate in the DAN. The two SRN-related interactions showed positive effects on the executive and memory performances of MCI patients with no overlap with the clinical assessments performed in this study. Conclusion: This study is the first and primary evidence of SRN interactions related to MCI patients’ functional performance. The influence of the SRN in the ultra-early stages of AD is nonnegligible. There are still many unknowns regarding the contribution of the SRN in AD progression, and we strongly recommend future research in this area.
Collapse
Affiliation(s)
- Ping-Hsuan Wei
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Qing Ye
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- Department of Neurology, Affiliated Drum Tower Hospital of Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | | |
Collapse
|
37
|
Schnabel UH, Van der Bijl T, Roelfsema PR, Lorteije JAM. A Direct Comparison of Spatial Attention and Stimulus-Response Compatibility between Mice and Humans. J Cogn Neurosci 2021; 33:771-783. [PMID: 33544053 DOI: 10.1162/jocn_a_01681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mice are becoming an increasingly popular model for investigating the neural substrates of visual processing and higher cognitive functions. To validate the translation of mouse visual attention and sensorimotor processing to humans, we compared their performance in the same visual task. Mice and human participants judged the orientation of a grating presented on either the right or left side in the visual field. To induce shifts of spatial attention, we varied the stimulus probability on each side. As expected, human participants showed faster RTs and a higher accuracy for the side with a higher probability, a well-established effect of visual attention. The attentional effect was only present in mice when their response was slow. Although the task demanded a judgment of grating orientation, the accuracy of the mice was strongly affected by whether the side of the stimulus corresponded to the side of the behavioral response. This stimulus-response compatibility (Simon) effect was much weaker in humans and only significant for their fastest responses. Both species exhibited a speed-accuracy trade-off in their responses, because slower responses were more accurate than faster responses. We found that mice typically respond very fast, which contributes to the stronger stimulus-response compatibility and weaker attentional effects, which were only apparent in the trials with slowest responses. Humans responded slower and had stronger attentional effects, combined with a weak influence of stimulus-response compatibility, which was only apparent in trials with fast responses. We conclude that spatial attention and stimulus-response compatibility influence the responses of humans and mice but that strategy differences between species determine the dominance of these effects.
Collapse
Affiliation(s)
| | | | - Pieter R Roelfsema
- Netherlands Institute for Neuroscience.,University of Amsterdam.,Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
38
|
Involvement of Striatal Direct Pathway in Visual Spatial Attention in Mice. Curr Biol 2020; 30:4739-4744.e5. [PMID: 32976807 DOI: 10.1016/j.cub.2020.08.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
The basal ganglia are implicated in a range of perceptual functions [1], in addition to their well-known role in the regulation of movement [2]. One unifying explanation for these diverse roles is that the basal ganglia control the level of commitment to particular motor or cognitive outcomes based on the behavioral context [3, 4]. If this explanation is applicable to the allocation of visual spatial attention, then the involvement of basal ganglia circuits should incorporate the subject's expectations about the spatial location of upcoming events as well as the routing of visual signals that guide the response. From the viewpoint of signal detection theory, these changes in the level of commitment might correspond to shifts in the subject's decision criterion, one of two distinct components recently ascribed to visual selective attention [5]. We tested this idea using unilateral optogenetic activation of neurons in the dorsal striatum of mice during a visual spatial attention task [6], taking advantage of the ability to specifically target medium spiny neurons in the "direct" pathway associated with promoting responses [7, 8]. By comparing results across attention task conditions, we found that direct-pathway activation caused changes in performance determined by the spatial probability and location of the visual event. Moreover, across conditions with identical visual stimulation, activation shifted the decision criterion selectively when attention was directed to the contralateral visual field. These results demonstrate that activity through the basal ganglia may play an important and distinct role among the multifarious mechanisms that accomplish visual spatial attention.
Collapse
|
39
|
Ortiz AV, Aziz D, Hestrin S. Motivation and Engagement during Visually Guided Behavior. Cell Rep 2020; 33:108272. [PMID: 33086072 PMCID: PMC7676510 DOI: 10.1016/j.celrep.2020.108272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/11/2020] [Accepted: 09/23/2020] [Indexed: 12/03/2022] Open
Abstract
Animal behavior is motivated by internal drives, such as thirst and hunger, generated in hypothalamic neurons that project widely to many brain areas. We find that water-restricted mice maintain stable, high-level contrast sensitivity and brief reaction time while performing a visual task, but then abruptly stop and become disengaged. Mice consume a significant amount of water when freely provided in their home cage immediately after the task, indicating that disengagement does not reflect cessation of thirst. Neuronal responses of V1 neurons are reduced in the disengaged state, but pupil diameter does not decrease, suggesting that animals’ reduced level of arousal does not drive the transition to disengagement. Our findings indicate that satiation level alone does not have an instructive role in visually guided behavior and suggest that animals’ behavior is governed by cost-benefit analysis that can override thirst signals. Ortiz et al. study performance of mice in a visual task during engagement and disengagement. Mice disengage from the task without reaching satiation. Pupil diameter indicates that reduced alertness is not associated with disengagement. We suggest that areas downstream of visual cortex perform cost-benefit analysis governing response to thirst signals.
Collapse
Affiliation(s)
- Alexander V Ortiz
- Department of Comparative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - David Aziz
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Shaul Hestrin
- Department of Comparative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Abstract
Neural activity and behavior are both notoriously variable, with responses differing widely between repeated presentation of identical stimuli or trials. Recent results in humans and animals reveal that these variations are not random in their nature, but may in fact be due in large part to rapid shifts in neural, cognitive, and behavioral states. Here we review recent advances in the understanding of rapid variations in the waking state, how variations are generated, and how they modulate neural and behavioral responses in both mice and humans. We propose that the brain has an identifiable set of states through which it wanders continuously in a nonrandom fashion, owing to the activity of both ascending modulatory and fast-acting corticocortical and subcortical-cortical neural pathways. These state variations provide the backdrop upon which the brain operates, and understanding them is critical to making progress in revealing the neural mechanisms underlying cognition and behavior.
Collapse
Affiliation(s)
- David A McCormick
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA;
| | - Dennis B Nestvogel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA;
| | - Biyu J He
- Departments of Neurology, Neuroscience and Physiology, and Radiology, Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|