1
|
Cashel J, Yan D, Han R, Jeong H, Yoon CW, Ambay JA, Liu Y, Ung AT, Yang L, Huang Z. Chemical Bonds Containing Hydrogen: Choices for Hydrogen Carriers and Catalysts. Angew Chem Int Ed Engl 2025; 64:e202423661. [PMID: 40040292 PMCID: PMC12087849 DOI: 10.1002/anie.202423661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/06/2025]
Abstract
Compounds containing B─H, C─H, N─H, or O─H bonds with high hydrogen content have been extensively studied as potential hydrogen carriers. Their hydrogen storage performance is largely determined by the nature of these bonds, decomposition pathways, and the properties of the dehydrogenation products. Among these compounds, methanol, cyclohexane, and ammonia stand out due to their low costs and established infrastructure, making them promising hydrogen carriers for large-scale storage and transport. They offer viable pathways for decarbonizing society by enabling hydrogen to serve as a clean energy source. However, several challenges persist, including the high temperatures required for (de)hydrogenation, slow kinetics, and the reliance on costly catalysts. To address these issues, strategies such as chemical modification and catalyst development are being pursued to improve hydrogen cycling performance. This review highlights recent progress in hydrogen carriers with B─H, C─H, N─H, or O─H bonds. It examines the fundamental characteristics of these bonds and carriers, as well as advances in catalyst development. Our objective is to offer a comprehensive understanding of current state of hydrogen carriers and identify future research directions, such as molecular modification and system optimization. Innovations in these areas are crucial to advance hydrogen storage technologies for a large-scale hydrogen deployment.
Collapse
Affiliation(s)
- James Cashel
- School of Civil and Environmental EngineeringUniversity of Technology SydneyBroadwayUltimoNew South Wales2007Australia
| | - Dai Yan
- School of Civil and Environmental EngineeringUniversity of Technology SydneyBroadwayUltimoNew South Wales2007Australia
| | - Rui Han
- School of Civil and Environmental EngineeringUniversity of Technology SydneyBroadwayUltimoNew South Wales2007Australia
| | - Hyangsoo Jeong
- Center for Hydrogen and Fuel CellsKorea Institute of Science and Technology5 Hwarang‐ro 14‐gilSongbuk‐guSeoul02792South Korea
| | - Chang Won Yoon
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Cheongam‐ro, Nam‐gu, PohangGyeongbu37673South Korea
| | - John Arnold Ambay
- School of Civil and Environmental EngineeringUniversity of Technology SydneyBroadwayUltimoNew South Wales2007Australia
| | - Yongfeng Liu
- School of Materials Science and EngineeringZhejiang University38 Zheda Rd, Yuquan CampusHangzhou310027China
| | - Alison T. Ung
- School of Mathematical and Physical SciencesUniversity of Technology SydneyBroadwayUltimoNew South Wales2007Australia
| | - Limei Yang
- School of Civil and Environmental EngineeringUniversity of Technology SydneyBroadwayUltimoNew South Wales2007Australia
| | - Zhenguo Huang
- School of Civil and Environmental EngineeringUniversity of Technology SydneyBroadwayUltimoNew South Wales2007Australia
| |
Collapse
|
2
|
Lu L, You C, Montag M, Maity A, Leskes M, Milstein D. Aqueous Dehydrogenation of Methyl Formate Catalyzed by a Recyclable Polymer-Grafted Manganese(I) Pincer Complex. Angew Chem Int Ed Engl 2025; 64:e202423074. [PMID: 40080048 DOI: 10.1002/anie.202423074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 03/15/2025]
Abstract
Liquid organic hydrogen carriers (LOHCs) are an effective solution for the long-term storage of hydrogen and its long-distance transportation, but one that requires efficient catalysis for hydrogen uptake and release. Homogeneous molecular catalysts employed in LOHC systems usually exhibit high reactivity and selectivity but are difficult to recover and reuse, a fact that severely limits their practical application. Herein, we report an easily synthesized polymer-grafted pincer-type complex of earth-abundant manganese, which can catalyze the aqueous dehydrogenation of methyl formate, an emerging LOHC material. Importantly, this immobilized Mn-pincer catalyst retains the high reactivity of the corresponding molecular catalyst, yet is also recyclable, exhibiting high stability and achieving a total hydrogen-based turnover number of more than 230000 after 5 consecutive recycling rounds.
Collapse
Affiliation(s)
- Lijun Lu
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Cai You
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michael Montag
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ayan Maity
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
3
|
Monreal-Corona R, Joly N, Gaillard S, Renaud JL, Valero M, Mayolas E, Pla-Quintana A, Poater A. Mechanism and optimization of ruthenium-catalyzed oxalamide synthesis using DFT. Dalton Trans 2025; 54:1655-1664. [PMID: 39668800 DOI: 10.1039/d4dt03182b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The oxalamide skeleton is a common structural motif in many biologically active molecules. These scaffolds can be synthesized via ruthenium pincer complex-catalyzed acceptorless dehydrogenative coupling of ethylene glycol and amines. In this study, we elucidate the mechanism of this oxalamide synthesis using density functional theory calculations. The rate-determining state is identified as the formation of molecular hydrogen following the oxidation of hydroxyacetamide to oxoacetamide. In predictive catalysis exercises, various modifications to the ruthenium pincer catalyst were investigated to assess their impact on the reactivity.
Collapse
Affiliation(s)
- Roger Monreal-Corona
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Nicolas Joly
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France.
| | - Sylvain Gaillard
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France.
| | - Jean-Luc Renaud
- Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 6 boulevard du Maréchal Juin, 14000 Caen, France.
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005 Paris, France
| | - Marc Valero
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Enric Mayolas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Anna Pla-Quintana
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
4
|
Kundu BK, Sun Y. Electricity-driven organic hydrogenation using water as the hydrogen source. Chem Sci 2024; 15:d4sc03836c. [PMID: 39371462 PMCID: PMC11450802 DOI: 10.1039/d4sc03836c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024] Open
Abstract
Hydrogenation is a pivotal process in organic synthesis and various catalytic strategies have been developed in achieving effective hydrogenation of diverse substrates. Despite the competence of these methods, the predominant reliance on molecular hydrogen (H2) gas under high temperature and elevated pressure presents operational challenges. Other alternative hydrogen sources such as inorganic hydrides and organic acids are often prohibitively expensive, limiting their practical utility on a large scale. In contrast, employing water as a hydrogen source for organic hydrogenation presents an attractive and sustainable alternative, promising to overcome the drawbacks associated with traditional hydrogen sources. Integrated with electricity as the sole driving force under ambient conditions, hydrogenation using water as the sole hydrogen source aligns well with the environmental sustainability goals but also offers a safer and potentially more cost-effective solution. This article starts with the discussion on the inherent advantages and limitations of conventional hydrogen sources compared to water in hydrogenation reactions, followed by the introduction of representative electrocatalytic systems that successfully utilize water as the hydrogen source in realizing a large number of organic hydrogenation transformations, with a focus on heterogeneous electrocatalysts. In summary, transitioning to water as a hydrogen source in organic hydrogenation represents a promising direction for sustainable chemistry. In particular, by exploring and optimizing electrocatalytic hydrogenation systems, the chemical industry can reduce its reliance on hazardous and expensive hydrogen sources, paving the way for safer, greener, and less energy-intensive hydrogenation processes.
Collapse
Affiliation(s)
- Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati Cincinnati Ohio 45221 USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|
5
|
Zhou MJ, Miao Y, Gu Y, Xie Y. Recent Advances in Reversible Liquid Organic Hydrogen Carrier Systems: From Hydrogen Carriers to Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311355. [PMID: 38374727 DOI: 10.1002/adma.202311355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Liquid organic hydrogen carriers (LOHCs) have gained significant attention for large-scale hydrogen storage due to their remarkable gravimetric hydrogen storage capacity (HSC) and compatibility with existing oil and gas transportation networks for long-distance transport. However, the practical application of reversible LOHC systems has been constrained by the intrinsic thermodynamic properties of hydrogen carriers and the performances of associated catalysts in the (de)hydrogenation cycles. To overcome these challenges, thermodynamically favored carriers, high-performance catalysts, and catalytic procedures need to be developed. Here, significant advances in recent years have been summarized, primarily centered on regular LOHC systems catalyzed by homogeneous and heterogeneous catalysts, including dehydrogenative aromatization of cycloalkanes to arenes and N-heterocyclics to N-heteroarenes, as well as reverse hydrogenation processes. Furthermore, with the development of metal complexes for dehydrogenative coupling, a new family of reversible LOHC systems based on alcohols is described that can release H2 under relatively mild conditions. Finally, views on the next steps and challenges in the field of LOHC technology are provided, emphasizing new resources for low-cost hydrogen carriers, high-performance catalysts, catalytic technologies, and application scenarios.
Collapse
Affiliation(s)
- Min-Jie Zhou
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yulong Miao
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yanwei Gu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yinjun Xie
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
6
|
Kou T, Chen W, He A, Wang X, Li X, Cui B, Wu Z, Zhao M, Xie M, Shao Z. Manganese-catalyzed oxidation of furfuryl alcohols and furfurals to efficient synthesis of furoic acids. RSC Adv 2024; 14:27060-27065. [PMID: 39193299 PMCID: PMC11348847 DOI: 10.1039/d4ra05903d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Herein, the direct oxidation of furfuryl alcohols and furfurals to the corresponding furoic acids is performed highly efficiently with potassium hydroxide as the base in the presence of a catalytic amount of PNP pincer manganese catalyst in dioxane. The manganese catalytic system can not only achieve the dehydrogenation conversion of furfuryl alcohols to prepare furoic acids but can also achieve the synthesis of furoic acids from furfurals under more moderate conditions and with less reaction time. In addition, the bifunctional furfuryl alcohols or furfurals can also be efficiently converted into dicarboxylic acid products under optimal reaction conditions.
Collapse
Affiliation(s)
- Tianshu Kou
- Technology Center of China Tobacco Hebei Industrial Co., Ltd Shijiazhuang 050051 China
| | - Weihua Chen
- Technology Center of China Tobacco Hebei Industrial Co., Ltd Shijiazhuang 050051 China
| | - Aimin He
- Technology Center of China Tobacco Hebei Industrial Co., Ltd Shijiazhuang 050051 China
| | - Xiaoru Wang
- Technology Center of China Tobacco Hebei Industrial Co., Ltd Shijiazhuang 050051 China
| | - Xin Li
- Technology Center of China Tobacco Hebei Industrial Co., Ltd Shijiazhuang 050051 China
| | - Bing Cui
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University Zhengzhou 450002 China
| | - Zhiyong Wu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University Zhengzhou 450002 China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University Zhengzhou 450002 China
| | - Min Xie
- Technology Center of China Tobacco Hebei Industrial Co., Ltd Shijiazhuang 050051 China
| | - Zhihui Shao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University Zhengzhou 450002 China
| |
Collapse
|
7
|
Tian H, Ding CY, Liao RZ, Li M, Tang C. Cobalt-Catalyzed Acceptorless Dehydrogenation of Primary Amines to Nitriles. J Am Chem Soc 2024; 146:11801-11810. [PMID: 38626455 DOI: 10.1021/jacs.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The direct double dehydrogenation from primary amines to nitriles without an oxidant or hydrogen acceptor is both intriguing and challenging. In this paper, we describe a non-noble metal catalyst capable of realizing such a transformation with high efficiency. A cobalt-centered N,N-bidentate complex was designed and employed as a metal-ligand cooperative dehydrogenation catalyst. Detailed kinetic studies, control experiments, and DFT calculations revealed the crucial hydride transfer, proton transfer, and hydrogen evolution processes. Finally, a tandem outer-sphere/inner-sphere mechanism was proposed for the dehydrogenation of amines to nitriles through an imine intermediate.
Collapse
Affiliation(s)
- Haitao Tian
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Cai-Yun Ding
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Man Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Zhang Y, Yang X, Liu S, Liu J, Pang S. Catalytic dehydrogenative coupling and reversal of methanol-amines: advances and prospects. Chem Commun (Camb) 2024; 60:4121-4139. [PMID: 38533605 DOI: 10.1039/d4cc00653d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The development of efficient hydrogen release and storage processes to provide environmentally friendly hydrogen solutions for mobile energy storage systems (MESS) stands as one of the most challenging tasks in addressing the energy crisis and environmental degradation. The catalytic dehydrogenative coupling of methanol and amines (DCMA) and its reverse are featured by high capacity for hydrogen release and storage, enhanced capability to purify the produced hydrogen, avoidance of carbon emissions and singular product composition, offering the environmentally and operationally benign strategy of overcoming the challenges associated with MESS. Particularly, the cycle between these two processes within the same catalytic system eliminates the need for collecting and transporting spent fuel back to a central facility, significantly facilitating easy recharging. Despite the promising attributes of the above strategy for environmentally friendly hydrogen solutions, challenges persist, primarily due to the high thermodynamic barriers encountered in methanol dehydrogenation and amide hydrogenation. By systematically summarizing various reaction mechanisms and pathways involving Ru-, Mn-, Fe-, and Mo-based catalytic systems in the development of catalytic DCMA and its reverse and the cycling between the two, this review highlights the current research landscape, identifies gaps, and suggests directions for future investigations to overcome these challenges. Additionally, the critical importance of developing efficient catalytic systems that operate under milder conditions, thereby facilitating the practical application of DCMA in MESS, is also underscored.
Collapse
Affiliation(s)
- Yujing Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Xiaomei Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Shimin Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China
| | - Jiacheng Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Shaofeng Pang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| |
Collapse
|
9
|
Mondal A, Pal D, Phukan HJ, Roy M, Kumar S, Purkayastha S, Guha AK, Srimani D. Manganese Complex Catalyzed Sequential Multi-component Reaction: Enroute to a Quinoline-Derived Azafluorenes. CHEMSUSCHEM 2024; 17:e202301138. [PMID: 38096176 DOI: 10.1002/cssc.202301138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Indexed: 01/09/2024]
Abstract
The development of innovative synthetic strategies for constructing complex molecular structures is the heart of organic chemistry. This significance of novel reactions or reaction sequences would further enhance if they permitted the synthesis of new classes of structural motifs, which have not been previously created. The research on the synthesis of heterocyclic compounds is one of the most active topics in organic chemistry due to the widespread application of N-heterocycles in life and material science. The development of a new catalytic process that employs first-row transition metals to produce a range of heterocycles from renewable raw materials is considered highly sustainable approach. This would be more advantageous if done in an eco-friendly and atom-efficient manner. Herein we introduce, the synthesis of various new quinoline based azafluorenes via sequential dehydrogenative multicomponent reaction (MCR) followed by C(sp3)-H hydroxylation and annulation. Our newly developed, Mn-complexes have the ability to direct the reaction in order to achieve a high amount of desired functionalized heterocycles while minimizing the possibility of multiple side reactions. We also performed a series of control experiments, hydride trapping experiments, reaction kinetics, catalytic intermediate and DFT studies to comprehend the detailed reaction route and the catalyst's function in the MCR sequence.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Hirak Jyoti Phukan
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Mithu Roy
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Saurabh Kumar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | | | - Ankur Kanti Guha
- Advanced Computational Chemistry Centre, Cotton University, Guwahati, 781001, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| |
Collapse
|
10
|
Ji J, Huo Y, Dai Z, Chen Z, Tu T. Manganese-Catalyzed Mono-N-Methylation of Aliphatic Primary Amines without the Requirement of External High-Hydrogen Pressure. Angew Chem Int Ed Engl 2024; 63:e202318763. [PMID: 38300154 DOI: 10.1002/anie.202318763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The synthesis of mono-N-methylated aliphatic primary amines has traditionally been challenging, requiring noble metal catalysts and high-pressure H2 for achieving satisfactory yields and selectivity. Herein, we developed an approach for the selective coupling of methanol and aliphatic primary amines, without high-pressure hydrogen, using a manganese-based catalyst. Remarkably, up to 98 % yields with broad substrate scope were achieved at low catalyst loadings. Notably, due to the weak base-catalyzed alcoholysis of formamide intermediates, our novel protocol not only obviates the addition of high-pressure H2 but also prevents side secondary N-methylation, supported by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Jiale Ji
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yinghao Huo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhaowen Dai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Zhening Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
11
|
Zhu J, Wang Y, Yao J, Li H. Switching the hydrogenation selectivity of urea derivatives via subtly tuning the amount and type of additive in the catalyst system. Chem Sci 2024; 15:2089-2099. [PMID: 38332828 PMCID: PMC10848806 DOI: 10.1039/d3sc05674k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024] Open
Abstract
Catalytic hydrogenation of urea derivatives is considered to be one of the most feasible methods for indirect reduction functionalization of CO2 and synthesis of valuable chemicals and fuels. Among value-added products, methylamines, formamides and methanol are highly attractive as important industrial raw materials. Herein, we report the highly selective catalytic hydrogenation of urea derivatives to N-monomethylamines for the first time. More importantly, two- and six-electron reduction products can be switched on/off by subtly tuning 0.5 mol% KOtBu (2% to 1.5%): when the molar ratio of KOtBu/(PPh3)3RuCl2 exceeds 2.0, it is favorable for the formation of two-electron reduction products (N-formamides), while when it is below 2.0, the two-electron reduction products are further hydrogenated to six-electron reduction products (N-monomethylamines and methanol). Furthermore, changing the type of additive can also regulate this interesting selectivity. Control experiments showed that this selectivity is achieved by regulating the acid-base environment of the reaction to control the fate of the common hemiaminal intermediate. A feasible mechanism is proposed based on mechanistic experiments and characterization. This method has the advantages of being simple, universal and highly efficient, and opens up a new synthesis strategy for the utilization of renewable carbon sources.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University Hangzhou 310027 China
| | - Yongtao Wang
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University Hangzhou 310027 China
| | - Jia Yao
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University Hangzhou 310027 China
| | - Haoran Li
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
12
|
Tian X, Pei J. Study progress on the pipeline transportation safety of hydrogen-blended natural gas. Heliyon 2023; 9:e21454. [PMID: 38028008 PMCID: PMC10643300 DOI: 10.1016/j.heliyon.2023.e21454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
The core of carbon neutrality is the energy structure adjustment and economic structure transformation. Hydrogen energy, as a kind of clean energy with great potential, has provided important support for the implementation of the carbon peaking and carbon neutrality goals of China. How to achieve the large-range, safe, and reliable transportation of hydrogen energy with good economic benefits remains the key to limiting the development of hydrogen energy. Using the existing natural gas pipeline network can save many infrastructure construction costs to transport hydrogen-blended natural gas. However, due to great differences in the physical and chemical properties of hydrogen and natural gas, the transportation of hydrogen-blended natural gas will bring safety risks to the pipeline network operation to a certain extent. In this paper, the influences of pipeline transportation of hydrogen-blended natural gas on existing pipelines and parts along the pipelines are analyzed from two aspects of pipe compatibility and hydrogen blending ratio, and the safety of pipeline transportation of hydrogen-blended natural gas is summarized from two aspects of leakage and accumulation as well as combustion and explosion. In addition, the integrity management of hydrogen-blended natural gas pipelines and the existing relevant standards and specifications are reviewed. This paper points out the shortcomings of current hydrogen-blended natural gas pipeline transportation and gives some relevant suggestions. Hopefully, this work can provide a useful reference for developing a hydrogen-blended natural gas pipeline transportation system.
Collapse
Affiliation(s)
- Xiao Tian
- China University of Geosciences, Beijing, China
| | | |
Collapse
|
13
|
Wei D, Shi X, Junge H, Du C, Beller M. Carbon neutral hydrogen storage and release cycles based on dual-functional roles of formamides. Nat Commun 2023; 14:3726. [PMID: 37349304 DOI: 10.1038/s41467-023-39309-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
The development of alternative clean energy carriers is a key challenge for our society. Carbon-based hydrogen storage materials are well-suited to undergo reversible (de)hydrogenation reactions and the development of catalysts for the individual process steps is crucial. In the current state, noble metal-based catalysts still dominate this field. Here, a system for partially reversible and carbon-neutral hydrogen storage and release is reported. It is based on the dual-functional roles of formamides and uses a small molecule Fe-pincer complex as the catalyst, showing good stability and reusability with high productivity. Starting from formamides, quantitative production of CO-free hydrogen is achieved at high selectivity ( > 99.9%). This system works at modest temperatures of 90 °C, which can be easily supplied by the waste heat from e.g., proton-exchange membrane fuel cells. Employing such system, we achieve >70% H2 evolution efficiency and >99% H2 selectivity in 10 charge-discharge cycles, avoiding undesired carbon emission between cycles.
Collapse
Affiliation(s)
- Duo Wei
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Leibniz-Institut für Katalyse e.V, 18059, Rostock, Germany
| | - Xinzhe Shi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Leibniz-Institut für Katalyse e.V, 18059, Rostock, Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e.V, 18059, Rostock, Germany.
| | - Chunyu Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | | |
Collapse
|
14
|
He H, Chen C, Bian C, Ren J, Liu J, Huang W. Enhanced Ammonia Decomposition by Tuning the Support Properties of Ni/Gd xCe 1-xO 2-δ at 600 °C. Molecules 2023; 28:molecules28062750. [PMID: 36985722 PMCID: PMC10059070 DOI: 10.3390/molecules28062750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Ammonia decomposition is a promising method to produce high-purity hydrogen. However, this process typically requires precious metals (such as Ru, Pt, etc.) as catalysts to ensure high efficiency at relatively low temperatures. In this study, we propose using several Ni/GdxCe1-xO2-δ catalysts to improve ammonia decomposition performance by adjusting the support properties. We also investigate the underlying mechanism for this enhanced performance. Our results show that Ni/Ce0.8Gd0.2O2-δ at 600 °C can achieve nearly complete ammonia decomposition, resulting in a hydrogen production rate of 2008.9 mmol.g-1.h-1 with minimal decrease over 150 h. Density functional theory calculations reveal that the recombinative desorption of nitrogen is the rate-limiting step of ammonia decomposition over Ni. Our characterizations indicate that Ni/Ce0.8Gd0.2O2-δ exhibits a high concentration of oxygen vacancies, highly dispersed Ni on the surface, and abundant strong basic sites. These properties significantly enhance the associative desorption of N and strengthen the metal support interactions, resulting in high catalytic activity and stability. We anticipate that the mechanism could be applied to designing additional catalysts with high ammonia decomposition performance at relatively low temperatures.
Collapse
Affiliation(s)
- Haihua He
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| | - Chonglai Chen
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| | - Chaoqun Bian
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| | - Junhua Ren
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| | - Jiajia Liu
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| | - Wei Huang
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| |
Collapse
|
15
|
Sheetal, Mehara P, Das P. Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Wei D, Shi X, Sponholz P, Junge H, Beller M. Manganese Promoted (Bi)carbonate Hydrogenation and Formate Dehydrogenation: Toward a Circular Carbon and Hydrogen Economy. ACS CENTRAL SCIENCE 2022; 8:1457-1463. [PMID: 36313168 PMCID: PMC9615124 DOI: 10.1021/acscentsci.2c00723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 06/16/2023]
Abstract
We report here a feasible hydrogen storage and release process by interconversion of readily available (bi)carbonate and formate salts in the presence of naturally occurring α-amino acids. These transformations are of interest for the concept of a circular carbon economy. The use of inorganic carbonate salts for hydrogen storage and release is also described for the first time. Hydrogenation of these substrates proceeds with high formate yields in the presence of specific manganese pincer catalysts and glutamic acid. Based on this, cyclic hydrogen storage and release processes with carbonate salts succeed with good H2 yields.
Collapse
Affiliation(s)
- Duo Wei
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Str. 29a, 18059Rostock, Germany
| | - Xinzhe Shi
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Str. 29a, 18059Rostock, Germany
| | - Peter Sponholz
- APEX
Energy Teterow GmbH, Hans-Adam-Allee 1, 18299Rostock-Laage, Germany
| | - Henrik Junge
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Str. 29a, 18059Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Str. 29a, 18059Rostock, Germany
| |
Collapse
|
17
|
Sen R, Goeppert A, Surya Prakash GK. Homogeneous Hydrogenation of CO 2 and CO to Methanol: The Renaissance of Low-Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022; 61:e202207278. [PMID: 35921247 PMCID: PMC9825957 DOI: 10.1002/anie.202207278] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/11/2023]
Abstract
The traditional economy based on carbon-intensive fuels and materials has led to an exponential rise in anthropogenic CO2 emissions. Outpacing the natural carbon cycle, atmospheric CO2 levels increased by 50 % since the pre-industrial age and can be directly linked to global warming. Being at the core of the proposed methanol economy pioneered by the late George A. Olah, the chemical recycling of CO2 to produce methanol, a green fuel and feedstock, is a prime channel to achieve carbon neutrality. In this direction, homogeneous catalytic systems have lately been a major focus for methanol synthesis from CO2 , CO and their derivatives as potential low-temperature alternatives to the commercial processes. This Review provides an account of this rapidly growing field over the past decade, since its resurgence in 2011. Based on the critical assessment of the progress thus far, the present key challenges in this field have been highlighted and potential directions have been suggested for practically viable applications.
Collapse
Affiliation(s)
- Raktim Sen
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| |
Collapse
|
18
|
Ganguli K, Mandal A, Kundu S. Well-Defined Bis(NHC)Mn(I) Complex Catalyzed Tandem Transformation of α,β-Unsaturated Ketones to α-Methylated Ketones Using Methanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kasturi Ganguli
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur208016, India
| | - Adarsha Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur208016, India
| |
Collapse
|
19
|
Wang Y, Liu S, Yang H, Li H, Lan Y, Liu Q. Structure, reactivity and catalytic properties of manganese-hydride amidate complexes. Nat Chem 2022; 14:1233-1241. [PMID: 36097055 DOI: 10.1038/s41557-022-01036-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
The high efficiency of widely applied Noyori-type hydrogenation catalysts arises from the N-H moiety coordinated to a metal centre, which stabilizes rate-determining transition states through hydrogen-bonding interactions. It was proposed that a higher efficiency could be achieved by substituting an N-M' group (M' = alkali metals) for the N-H moiety using a large excess of metal alkoxides (M'OR); however, such a metal-hydride amidate intermediate has not yet been isolated. Here we present the synthesis, isolation and reactivity of a metal-hydride amidate complex (HMn-NLi). Kinetic studies show that the rate of hydride transfer from HMn-NLi to a ketone is 24-fold higher than that of the corresponding amino metal-hydride complex (HMn-NH). Moreover, the hydrogenation of N-alkyl-substituted aldimines was realized using HMn-NLi as the active catalyst, whereas HMn-NH is much less effective. These results highlight the superiority of M/NM' bifunctional catalysis over the classic M/NH bifunctional catalysis for hydrogenation reactions.
Collapse
Affiliation(s)
- Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China
| | - Haobo Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Hengxu Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China. .,College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China.
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
20
|
Prakash SG, Sen R, Goeppert A. Homogeneous Hydrogenation of CO2 and CO to Methanol: The Renaissance of Low Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Surya G. Prakash
- University of Southern California Loker Hydrocarbon Research Institute 837 Bloom WalkUniversity Park 90089-1661 Los Angeles UNITED STATES
| | - Raktim Sen
- University of Southern California Loker Hydrocarbon Res. Inst., and Department box Chemistry UNITED STATES
| | - Alain Goeppert
- University of Southern California Loker Hydrocarbon Res. Inst., and Department of Chemistry UNITED STATES
| |
Collapse
|
21
|
Fu YH, Geng C, Shen GB, Wang K, Zhu XQ. Kinetic Studies of Hantzsch Ester and Dihydrogen Donors Releasing Two Hydrogen Atoms in Acetonitrile. ACS OMEGA 2022; 7:26416-26424. [PMID: 35936422 PMCID: PMC9352257 DOI: 10.1021/acsomega.2c02264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In this work, kinetic studies on HEH2, 2-benzylmalononitrile, 2-benzyl-1H-indene-1,3(2H)-dione, 5-benzyl-2,2-dimethyl-1,3-dioxane-4,6-dione, 5-benzyl-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione, 2-(9H-fluoren-9-yl)malononitrile, ethyl 2-cyano-2-(9H-fluoren-9-yl)acetate, diethyl 2-(9H-fluoren-9-yl)malonate, and the derivatives (28 XH2) releasing two hydrogen atoms were carried out. The thermokinetic parameters ΔG ⧧° of 28 dihydrogen donors (XH2) and the corresponding hydrogen atom acceptors (XH•) in acetonitrile at 298 K were determined. The abilities of releasing two hydrogen atoms for these organic dihydrogen donors were researched using their thermokinetic parameters ΔG ⧧°(XH2), which can be used not only to compare the H-donating ability of different XH2 qualitatively and quantitatively but also to predict the rates of HAT reactions. Predictions of rate constants for 12 HAT reactions using thermokinetic parameters were determined, and the reliabilities of the predicted results were also examined.
Collapse
Affiliation(s)
- Yan-Hua Fu
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
| | - Cuihuan Geng
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
| | - Guang-Bin Shen
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Kai Wang
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
| | - Xiao-Qing Zhu
- Department of Chemistry, Nankai
University, Tianjin 300071, P.R. China
| |
Collapse
|
22
|
Guo J, Tang J, Xi H, Zhao SY, Liu W. Manganese catalyzed urea and polyurea synthesis using methanol as C1 source. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Zhao M, Li X, Zhang X, Shao Z. Efficient Synthesis of C3-Alkylated and Alkenylated Indoles via Manganese-Catalyzed Dehydrogenation. Chem Asian J 2022; 17:e202200483. [PMID: 35771722 DOI: 10.1002/asia.202200483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Indexed: 11/10/2022]
Abstract
The catalytic dehydrogenation of alcohols is essential for the sustainable production of valuable products. This provids a new strategy for green organic synthesis in chemical industries. Herein, we describe a manganese-based catalytic system that enables the efficient synthesis of C3-alkylated indoles from benzyl alcohols and indoles via the borrowing hydrogen process. Furthermore, dehydrogenative coupling of 2-arylethanols and indoles yields C3-alkenylated indoles. Meanwhile, reacting 2-aminophenethanol instead of indoles can also obtain the corresponding indole products with high selectivity under the same conditions.
Collapse
Affiliation(s)
- Mingqin Zhao
- Henan University, College of Tobacco Science, CHINA
| | - Xinyan Li
- Henan Agricultural University, College of Tobacco Science, CHINA
| | - Xiaoyu Zhang
- Henan Agricultural University, College of Tobacco Science, CHINA
| | - Zhihui Shao
- Henan Agricultural University, College of Tobacco Science, Wenhua Road, 450002, Zhengzhou, CHINA
| |
Collapse
|
24
|
Xiong N, Dong Y, Xu B, Li Y, Zeng R. Mild Amide Synthesis Using Nitrobenzene under Neutral Conditions. Org Lett 2022; 24:4766-4771. [PMID: 35758649 DOI: 10.1021/acs.orglett.2c01743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Amide synthesis is one of the most important transformations in organic chemistry due to the broad application in pharmaceutical drugs and organic materials. In this report, we describe a mild protocol for amide formation using the readily available nitroarenes as nitrogen sources and an inexpensive iron complex as a catalyst. Because of the use of the pH-neutral conditions and the avoidance of the strong oxidant or reductant, a wide range of aromatic and aliphatic aldehydes as well as nitroarenes with various functional groups could be tolerated well. A plausible mechanism is proposed based on the detailed studies, in which iron catalyst initiates the radical process and the solvent plays a key role as O-atom acceptor.
Collapse
Affiliation(s)
- Ni Xiong
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuanqi Dong
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bin Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rong Zeng
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
25
|
Wei D, Sang R, Moazezbarabadi A, Junge H, Beller M. Homogeneous Carbon Capture and Catalytic Hydrogenation: Toward a Chemical Hydrogen Battery System. JACS AU 2022; 2:1020-1031. [PMID: 35647600 PMCID: PMC9131476 DOI: 10.1021/jacsau.1c00489] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 05/03/2023]
Abstract
Recent developments of CO2 capture and subsequent catalytic hydrogenation to C1 products are discussed and evaluated in this Perspective. Such processes can become a crucial part of a more sustainable energy economy in the future. The individual steps of this catalytic carbon capture and usage (CCU) approach also provide the basis for chemical hydrogen batteries. Here, specifically the reversible CO2/formic acid (or bicarbonate/formate salts) system is presented, and the utilized catalysts are discussed.
Collapse
|
26
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
27
|
Wang J, Liu H, Chen J, Cao L, Wang C. Enabling alcohol as a hydrogen carrier using metal-organic framework-stabilized Ir-Sc bifunctional catalytic sites. Chem Commun (Camb) 2022; 58:5857-5860. [PMID: 35467674 DOI: 10.1039/d2cc01114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alcohols are attractive portable chemical carriers of hydrogen thanks to their reversible dehydrogenation, but the hydrogen release reaction is thermodynamically unfavorable. Coupling the alcohol dehydrogenation to acetal formation can shift the reaction thermodynamics for hydrogen production. Here, we stabilized Ir3+ and Sc3+ in a metal-organic framework (MOF) for tandem catalysis. The Ir3+ center bearing an α-hydroxybipyridine ligand catalyzes alcohol dehydrogenation, and the Sc3+ Lewis acid site catalyzes acetal formation that allows further dehydrogenation to form esters. The bifunctional UiO-bpyOH-IrCp-Sc catalyst effectively converts ethylene glycol to ester and H2 without producing CO.
Collapse
Affiliation(s)
- Jing Wang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Huichong Liu
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Jiawei Chen
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Lingyun Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| | - Cheng Wang
- iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
28
|
Nitrogen-doped Carbon Supported Nanocobalt for the Synthesis of Functionalized Triazines via Oxidative Cleavage of Biomass Derived vicinal Diols as Carbon Synthons. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Wang Q, Lan J, Liang R, Xia Y, Qin L, Chung LW, Zheng Z. New Tricks for an Old Dog: Grubbs Catalysts Enable Efficient Hydrogen Production from Aqueous-Phase Methanol Reforming. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jialing Lan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rong Liang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yihao Xia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lei Qin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lung Wa Chung
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
30
|
Wen X, He J, Xi H, Zheng Q, Liu W. Hydration of nitriles enabled by PNP‐manganese pincer catalyst. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoting Wen
- Donghua University - Songjiang Campus: Donghua University college of chemistry, chemical engineering and biotechnology CHINA
| | - Jingxi He
- Donghua University - Songjiang Campus: Donghua University college of chemistry, chemical engineering and biotechnology CHINA
| | - Hui Xi
- Zhengzhou Tobacco Research Institute Key laboratory of tobacco flavor basic research CHINA
| | - Qi Zheng
- Donghua University - Songjiang Campus: Donghua University State key laboratory for modification of chemical fibers and polymer materials, College of materials science and engineering CHINA
| | - Weiping Liu
- college of chemistry, chemical engineering and biotechnology Chemistry North Renmin Road NO.2999 201620 Shanghai CHINA
| |
Collapse
|
31
|
Shao Z, Yuan S, Li Y, Liu Q. Using Methanol as a Formaldehyde Surrogate for Sustainable Synthesis of
N
‐Heterocycles
via
Manganese‐Catalyzed
Dehydrogenative Cyclization. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhihui Shao
- Center of Basic Molecular Science (CBMS), Department of Chemistry Tsinghua University Beijing 100084 China
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science Henan Agricultural University Zhengzhou 450002 China
| | - Shanshan Yuan
- Center of Basic Molecular Science (CBMS), Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yibiao Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen Guangdong Province 529090 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
32
|
Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev 2022; 122:385-441. [PMID: 34727501 PMCID: PMC8759071 DOI: 10.1021/acs.chemrev.1c00412] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
As the world pledges to significantly cut carbon emissions, the demand for sustainable and clean energy has now become more important than ever. This includes both production and storage of energy carriers, a majority of which involve catalytic reactions. This article reviews recent developments of homogeneous catalysts in emerging applications of sustainable energy. The most important focus has been on hydrogen storage as several efficient homogeneous catalysts have been reported recently for (de)hydrogenative transformations promising to the hydrogen economy. Another direction that has been extensively covered in this review is that of the methanol economy. Homogeneous catalysts investigated for the production of methanol from CO2, CO, and HCOOH have been discussed in detail. Moreover, catalytic processes for the production of conventional fuels (higher alkanes such as diesel, wax) from biomass or lower alkanes have also been discussed. A section has also been dedicated to the production of ethylene glycol from CO and H2 using homogeneous catalysts. Well-defined transition metal complexes, in particular, pincer complexes, have been discussed in more detail due to their high activity and well-studied mechanisms.
Collapse
Affiliation(s)
- Amit Kumar
- School
of Chemistry, University of St. Andrews, North Haugh, Fife, U.K., KY16 9ST
| | - Prosenjit Daw
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Berhampur, Govt. ITI (transit Campus), Berhampur 760010, India
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
33
|
Yan Z, Liu F, Wang X, Qiang Q, Li Y, Zhang Y, Rong Z. Redox-Neutral Dehydrogenative Cross-Coupling of Alcohols and Amines Enabled by Nickel Catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00004k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is a facile and straightforward synthetic method for the construction of amides via Ni/NHC-catalyzed amidation of alcohols with amines. The strategy exhibits various advantages over existing methods, including...
Collapse
|
34
|
Kaithal A, Chatterjee B, Werlé C, Leitner W. Acceptorless Dehydrogenation of Methanol to Carbon Monoxide and Hydrogen using Molecular Catalysts. Angew Chem Int Ed Engl 2021; 60:26500-26505. [PMID: 34596302 PMCID: PMC9299216 DOI: 10.1002/anie.202110910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Indexed: 12/16/2022]
Abstract
The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH4 )(HN(C2 H4 PPh2 )2 )] (Ru-MACHO-BH) achieved up to 3150 turnovers for carbon monoxide and 9230 turnovers for hydrogen formation at 150 °C reaching pressures up to 12 bar when the decomposition was carried out in a closed vessel. Control experiments affirmed that the metal complex mediates the initial fast dehydrogenation of methanol to formaldehyde and methyl formate followed by subsequent slow decarbonylation. Depending on the catalyst and reaction conditions, the CO/H2 ratio in the gas mixture thus varies over a broad range from almost pure hydrogen to the stoichiometric limit of 1:2.
Collapse
Affiliation(s)
- Akash Kaithal
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
35
|
Kaithal A, Chatterjee B, Werlé C, Leitner W. Acceptorless Dehydrogenation of Methanol to Carbon Monoxide and Hydrogen using Molecular Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Akash Kaithal
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| |
Collapse
|
36
|
Recent Advances in Homogeneous/Heterogeneous Catalytic Hydrogenation and Dehydrogenation for Potential Liquid Organic Hydrogen Carrier (LOHC) Systems. Catalysts 2021. [DOI: 10.3390/catal11121497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Here, we review liquid organic hydrogen carriers (LOHCs) as a potential solution to the global warming problem due to the increased use of fossil fuels. Recently, hydrogen molecules have attracted attention as a sustainable energy carrier from renewable energy-rich regions to energy-deficient regions. The LOHC system is one a particularly promising hydrogen storage system in the “hydrogen economy”, and efficient hydrogen mass production that generates only benign byproducts can be applied in the industry. Therefore, this article presents hydrogenation and dehydrogenation, using homogeneous or heterogeneous catalysts, for several types of LOHCs, including formic acid/formaldehyde/ammonia, homocyclic compounds, nitrogen- and oxygen-containing compounds. In addition, it introduces LOHC system reactor types.
Collapse
|
37
|
Huang H, Jian C, Zhu Y, Guo R, Chen X, Wang FF, Chen DL, Zhang F, Zhu W. Single non-noble metal atom doped C 2N catalysts for chemoselective hydrogenation of 3-nitrostyrene. Phys Chem Chem Phys 2021; 23:25761-25768. [PMID: 34755735 DOI: 10.1039/d1cp03858c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improving the reaction selectivity and activity for challenging substrates such as nitroaromatics bearing two reducible functional groups is important in industry, yet remains a great challenge using traditional metal nanoparticle based catalysts. In this study, single metal atom doped M-C2N catalysts were theoretically screened for selective hydrogenation of 3-nitrostyrene to 3-vinylaniline with H2 as the H-source. Among 20 M-C2N catalysts, the non-noble Mn-C2N catalyst was found to have excellent reaction selectivity. Importantly, due to the solid frustrated Lewis pair sites in the pores of Mn-C2N, a low H2 activation energy is achieved on high-spin Mn-C2N and the rate-determining step for the hydrogenation reactions is the H diffusion from the metal site to the N site. The unraveled mechanism of the hydrogenation of 3-nitrostyrene using Mn-C2N enriches the applications of Mn based catalysts and demonstrates its excellent properties for catalyzing the challenging hydrogenation reaction of substrates with two reducible functional groups.
Collapse
Affiliation(s)
- Huaquan Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Changping Jian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Yijia Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Rou Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Xujian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Fang-Fang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Fumin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China.
| |
Collapse
|
38
|
Cheng Y, Zhou S, Shi B, Dong B, Ji X, Li S, Zhang W. A novel Ce 0.8Fe 0.1Zr 0.1O 2 solid solution with high catalytic activity for hydrogen storage in MgH 2. RSC Adv 2021; 11:37677-37683. [PMID: 35498102 PMCID: PMC9043827 DOI: 10.1039/d1ra06951a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The effect of the solid solution Ce0.8Fe0.1Zr0.1O2, successfully prepared by a hydrothermal synthesis method, on the hydrogen sorption properties of MgH2 is systemically investigated. The Ce0.8Fe0.1Zr0.1O2-modified MgH2 composite exhibits remarkable hydrogen kinetics properties and thermodynamics behavior compared to those of as-milled MgH2, with a reduction in the initial desorption temperature of approximately 82 K. With respect to the hydrogen kinetics, the Ce0.8Fe0.1Zr0.1O2-added sample could uptake approximately 5.3 wt% H2 at 473 K in 2500 s, whereas only 1.5 wt% hydrogen could be absorbed by pristine MgH2 in the same conditions. Furthermore, about 4.5 wt% of hydrogen could be desorbed by Ce0.8Fe0.1Zr0.1O2-doped MgH2 composite at 623 K, which was 2 wt% higher than the as-milled MgH2 sample over the same period of time. The decomposition apparent activation energy for MgH2–Ce0.8Fe0.1Zr0.1O2 is reduced to 84.3 kJ mol−1, which is about 77 kJ mol−1 lower than that of pristine MgH2. It is believed that the notable improvement in the hydrogen sorption kinetics is due to the in situ-formed active species of CeH2.51 and MgO as well as the abundant oxygen vacancies, which play a vital role in catalyzing the hydrogen sorption performance of MgH2. The MgH2–Ce0.8Fe0.1Zr0.1O2 onset dissociation temperature was 82 K lower than that of MgH2.![]()
Collapse
Affiliation(s)
- Ying Cheng
- Department of Environmental Engineering, Hebei University of Environmental Engineering Qinhuangdao 066102 PR China
| | - Shuhua Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 PR China +86-010-8387744
| | - Biqing Shi
- Department of Environmental Engineering, Hebei University of Environmental Engineering Qinhuangdao 066102 PR China
| | - Bing Dong
- Department of Environmental Engineering, Hebei University of Environmental Engineering Qinhuangdao 066102 PR China
| | - Xianbin Ji
- Department of Environmental Engineering, Hebei University of Environmental Engineering Qinhuangdao 066102 PR China
| | - Siqi Li
- Department of Environmental Engineering, Hebei University of Environmental Engineering Qinhuangdao 066102 PR China
| | - Wei Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 PR China +86-010-8387744
| |
Collapse
|
39
|
Yadav V, Sivakumar G, Gupta V, Balaraman E. Recent Advances in Liquid Organic Hydrogen Carriers: An Alcohol-Based Hydrogen Economy. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vinita Yadav
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Virendrakumar Gupta
- Polymer Synthesis & Catalysis, Reliance Research & Development Centre, Reliance Industries Limited, Ghansoli, Navi Mumbai 400701, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
40
|
Sardar B, Jamatia R, Pal D, Srimani D. Multicomponent Dehydrogenative Synthesis of Acridine‐1,8‐diones Catalyzed by Ru‐doped Hydrotalcite. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bitan Sardar
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
| | - Ramen Jamatia
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
- Department of Chemistry Rajiv Gandhi University Rono Hills Doimukh 791112 Arunachal Pradesh India
| | - Debjyoti Pal
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
41
|
Nad P, Mukherjee A. Acceptorless Dehydrogenative Coupling Reactions by Manganese Pincer Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pinaki Nad
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| | - Arup Mukherjee
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| |
Collapse
|
42
|
Xie F, Chen X, Zhang X, Luo C, Lin S, Chen X, Li B, Li Y, Zhang M. OMS-2 nanorod-supported cobalt catalyst for aerobic dehydrocyclization of vicinal diols and amidines: Access to functionalized imidazolones. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
|
44
|
Abstract
We describe as 'reversible' a bidirectional catalyst that allows a reaction to proceed at a significant rate in response to even a small departure from equilibrium, resulting in fast and energy-efficient chemical transformation. Examining the relation between reaction rate and thermodynamic driving force is the basis of electrochemical investigations of redox reactions, which can be catalysed by metallic surfaces and biological or synthetic molecular catalysts. This relation has also been discussed in the context of biological energy transduction, regarding the function of biological molecular machines that harness chemical reactions to do mechanical work. This Perspective describes mean-field kinetic modelling of these three types of systems - surface catalysts, molecular catalysts of redox reactions and molecular machines - with the goal of unifying concepts in these different fields. We emphasize that reversibility should be distinguished from other figures of merit, such as rate or directionality, before its design principles can be identified and used to engineer synthetic catalysts.
Collapse
|
45
|
Zhang GY, Ruan SH, Li YY, Gao JX. Manganese catalyzed asymmetric transfer hydrogenation of ketones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Liu C, Wang M, Liu S, Wang Y, Peng Y, Lan Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of Quinolines Enabled by π–π Interaction**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013540] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Shihan Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yong Peng
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yu Lan
- Institute of Green Catalysis College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
47
|
Liu C, Wang M, Liu S, Wang Y, Peng Y, Lan Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of Quinolines Enabled by π–π Interaction**. Angew Chem Int Ed Engl 2021; 60:5108-5113. [DOI: 10.1002/anie.202013540] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Shihan Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yong Peng
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yu Lan
- Institute of Green Catalysis College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
- Chongqing Key Laboratory of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
48
|
Jana A, Kumar A, Maji B. Manganese catalyzed C-alkylation of methyl N-heteroarenes with primary alcohols. Chem Commun (Camb) 2021; 57:3026-3029. [DOI: 10.1039/d1cc00181g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
C-Alkylations of nine different classes of methyl-substituted N-heteroarenes are disclosed using a bench stable Mn(i)-catalyst under borrowing hydrogen conditions.
Collapse
Affiliation(s)
- Akash Jana
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Amol Kumar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Biplab Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| |
Collapse
|
49
|
Zhou QQ, Zou YQ, Ben-David Y, Milstein D. A Reversible Liquid-to-Liquid Organic Hydrogen Carrier System Based on Ethylene Glycol and Ethanol. Chemistry 2020; 26:15487-15490. [PMID: 33459426 DOI: 10.1002/chem.202002749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 01/22/2023]
Abstract
Liquid organic hydrogen carriers (LOHCs) are powerful systems for the efficient unloading and loading molecular hydrogen. Herein, a liquid-to-liquid organic hydrogen carrier system based on reversible dehydrogenative coupling of ethylene glycol (EG) with ethanol catalysed by ruthenium pincer complexes is reported. Noticeable advantages of the current LOHC system is that both reactants (hydrogen-rich components) and the produced esters (hydrogen-lean components) are liquids at room temperature, and the dehydrogenation process can be performed under solvent and base-free conditions. Moreover, the hydrogenation reaction proceeds under low hydrogen pressure (5 bar), and the LOHC system has a relatively high theoretical gravimetric hydrogen storage capacity (HSC>5.0 wt %), presenting an attractive hydrogen storage system.
Collapse
Affiliation(s)
- Quan-Quan Zhou
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - You-Quan Zou
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yehoshoa Ben-David
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - David Milstein
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
50
|
Reversible aerobic oxidative dehydrogenation/hydrogenation of N-heterocycles over AlN supported redox cobalt catalysts. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|