1
|
Nath VG, Tomar S, Rao NN, Kovilakath MSN, John NS, Bhattacharjee S, Lee SC, Subramanian A. Unraveling the Synergy of Interfacial Engineering in In Situ Prepared NiO/NdNiO 3 for ppb-Level SO 2 Sensing: Mechanistic and First-Principles Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502192. [PMID: 40264412 DOI: 10.1002/smll.202502192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Interfacial engineering of semiconductor metal oxides offers a plethora of features to overcome the limitations of chemiresistive gas sensors, thereby increasing their practical viability. Herein, the SO2 sensing characteristics of NiO are modulated through the incorporation of NdNiO3, via a facile in situ synthesis of NiO/NdNiO3 nanostructures that significantly enhance the sensor performance. To this end, systematic control of the Nd/Ni molar ratio is employed during the synthesis of NiO/NdNiO3, enabling the regulation of structural properties and interfacial interactions. The optimized NiO/NdNiO3-based sensor demonstrates superior SO2 detection at 140 °C, outperforming pristine NiO, owing to tunable charge carrier dynamics at the heterointerface during gas adsorption. The sensor showcases an extensive dynamic response range from 450 ppb to 200 ppm and an impressive detection limit (320 ppb), along with remarkable selectivity and excellent stability. First-principles calculations reveal NiO and NdNiO3 play distinct roles in SO2 adsorption, with NiO functioning as the receptor, selectively interacting with SO2 through dissociated oxygen, and NdNiO3 serving as the transducer, facilitating signal conversion by inhibiting oxygen dissociation. Additionally, the designed portable, threshold-triggered sensor prototype, integrating the developed NiO/NdNiO3 sensor with enhanced SO2 detection, presents a promising avenue for applications in industrial and environmental monitoring.
Collapse
Affiliation(s)
- Vishnu G Nath
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shalini Tomar
- Indo-Korea Science and Technology Center (IKST), Bengaluru, Karnataka, 560064, India
| | - Nikhil N Rao
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | | | - Neena S John
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162, India
| | | | - Seung-Cheol Lee
- Indo-Korea Science and Technology Center (IKST), Bengaluru, Karnataka, 560064, India
- Electronic Materials Research Center, Korea Institute of Science & Technology (KIST), Seoul, 130-650, South Korea
| | - Angappane Subramanian
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru, Karnataka, 562162, India
| |
Collapse
|
2
|
He Y, Tu M, Gan W, Zhu Z, Mushtaq M, Al-Mamun M, Deng J, Yang H, Wang Z, Balogun MS. Efficient Alkaline Freshwater/Seawater Hydrogen Production via Heterogeneous N-Doped FeMoO 4/Mo 2N Rod-Shaped Electrocatalysts. CHEMSUSCHEM 2025; 18:e202401425. [PMID: 39570669 DOI: 10.1002/cssc.202401425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/05/2024] [Indexed: 03/18/2025]
Abstract
Durable and efficient Fe-based electrocatalysts in alkaline freshwater/seawater electrolysis is highly desirable but persists a significant challenge. Herein, we report a durable and robust heterogenous nitrogen-doped FeMoO4/Mo2N rod-shaped catalyst on nickel foam (denoted NF@FMO/MN) affording hydrogen evolution reaction (HER) low overpotentials of 23/29 mV@10 mA cm-2 and 112/159 mV@100 mA cm-2 in both alkaline freshwater/seawater electrolytes, respectively. These results are significantly superior to the pristine FeMoO4 catalyst. Theoretical calculations consistently reveals that the combination of N-FeMoO4 and Mo2N effectively reduces water activation energy barrier, modulates the sluggish water-dissociation kinetics and accelerates the hydrogen adsorption process for efficient HER. The enhanced HER performance of the as-designed NF@FMO/MN catalyst is attributed to the in situ hetero-interfacial engineering between N-doped FeMoO4 and Mo2N. This present work nurtures the progress of FeMo-based electrocatalysts in alkaline freshwater/seawater electrolysis.
Collapse
Affiliation(s)
- Yanxiang He
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, People's Republic of China
| | - Meilian Tu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, People's Republic of China
| | - Weijiang Gan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Zhixiao Zhu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, People's Republic of China
| | - Muhammad Mushtaq
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, People's Republic of China
| | - Mohammad Al-Mamun
- Centre for Catalysis and Clean Energy, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Jianqiu Deng
- School, of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, People's Republic of China
| | - Hao Yang
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Zhongmin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - M-Sadeeq Balogun
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, People's Republic of China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
- School, of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, People's Republic of China
| |
Collapse
|
3
|
Zhu Y, Wang S, Chen Y, Zhang Y, Feng Y, Zhang G. Screened d-p Orbital Hybridization in Turing Structure of Confined Nickel for Sulfion Oxidation Accelerated Hydrogen Production. Angew Chem Int Ed Engl 2025; 64:e202419572. [PMID: 39565357 DOI: 10.1002/anie.202419572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
The sulfion oxidation reaction (SOR) could offer an energy-efficient and tech-economically favorable alternative to the oxygen evolution reaction (OER) for H2 production. Transition metal (TM) based catalysts have been considered promising candidates for SOR but suffer from limited activity due to the excessive bond strength from TM-S2- d-p orbit coupling. Herein, we propose a feasible strategy of screening direct d-p orbit hybridization between TM and S2- by constructing the Turing structure composed of lamellar stacking carbon-confined nickel nanosheets. The optimized p-p orbit coupling between electron-injected carbon and S2- enables exceptional catalytic activity and stability for sulfion degradation and energy-efficient yet value-added H2 production. Specifically, it achieves a current density of 500 mA cm-2 at an ultralow potential of 0.67 V vs. RHE for alkaline SOR. Theoretical calculations indicate that the electron transfer from Ni imparts metallicity and a higher p-band center to carbon shells, thereby contributing to optimized p-p orbit hybridization and a thermodynamically favorable stepwise sulfion degradation. Practically, a two-electrode flow cell achieves an industrial current density of 1 A cm-2 at an unprecedented low voltage of 0.91 V while maintaining stability for over 300 hours, and exhibits high productivities of 3.83 and 0.32 kg h-1 m-2 for sulfur and H2, respectively.
Collapse
Affiliation(s)
- Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanxu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yangyang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
4
|
Zheng X, Wu X, Wan R, Wang Y, Chen B, Meng G. Ohmic Contact Heterostructures Immobilized Pt Single Atoms for Boosting Alkaline Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411696. [PMID: 39901447 DOI: 10.1002/smll.202411696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/15/2025] [Indexed: 02/05/2025]
Abstract
Pt single-atoms catalysts have been widely confirmed as ideal electrocatalysts for high-efficiency hydrogen evolution reaction (HER), but their activity and durability at high current density remain great challenges, especially in alkaline media. Herein, a unique Ohmic contact heterostructure is fabricated by integrating Ni and NiO to immobilize Pt single-atoms (Ni-NiO-Pt) via Pt-O4 coordination for boosting the alkaline HER. Owing to transient high temperature and pressure in the laser ablation process, Ohmic contact heterojunctions are constructed at the interfaces between metal Ni core and nanoporous semiconducting NiO shell with adequate oxygen vacancies. The large work function difference triggers the electron transfer from Ni to Pt-decorated NiO, which dramatically eliminates the electron conduction impedance and regulates the charge redistribution. Density functional theory calculation unveils that the multiple regulations of energy barrier and charge redistribution on Ohmic contact endow Ni-NiO-Pt with outstanding electrical conductivity and favorable hydrogen binding energy. Consequently, Ni-NiO-Pt displays superior alkaline HER performances with an overpotential of 23.54 mV at 10 mA cm-2 and protruding durability for 75 h at 500 mA cm-2, drastically outperforming commercial Pt/C and most reported HER electrocatalysts. The immobilization of Pt single-atoms on Ohmic contact opens up an avenue toward the rational design of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoxiao Wu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Rui Wan
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yuguang Wang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Bin Chen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Guowen Meng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Yue HL, Zeng HY, Peng JF, Yan W, Zhang K, Luo CW, Tian ZF. Oxalate-derived porous C-doped NiO with amorphous-crystalline heterophase for supercapacitors. J Colloid Interface Sci 2025; 678:221-232. [PMID: 39243722 DOI: 10.1016/j.jcis.2024.08.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Constructing amorphous/crystalline heterophase structure with high porosity is a promising strategy to effectively tailor the physicochemical properties of electrode materials and further improve the electrochemical performance of supercapacitors. Here, the porous C-doped NiO (C-NiO) with amorphous/crystalline heterophase grown on NF was prepared using NF as Ni source via a self-sacrificial template method. Calcining the self-sacrificial NiC2O4 template at a suitable temperature (400 °C) was beneficial to the formation of porous heterophase structure with abundant cavities and cracks, resulting in high electrical conductivity and rich ion/electron-transport channels. The density functional theory (DFT) calculations further verified that in-situ C-doping could modulate the electronic structure and enhance the OH- adsorption capability. The unique porous amorphous/crystalline heterophase structure greatly accelerated electrons/ions transfer and Faradaic reaction kinetic, which effectively improved the charge storage. The C-NiO calcined at 400 °C (C-NiO(400)) displayed a markedly enhanced specific charge, outstanding rate property and excellent cycling stability. Furthermore, the hybrid supercapacitor assembled by C-NiO(400) and active carbon achieved a high energy density of 49.0 Wh kg-1 at 800 W kg-1 and excellent cycle stability (90.9 % retention at 5 A/g after 10 000 cycles). This work provided a new strategy for designing amorphous/crystalline heterophase electrode materials in high-performance energy storage.
Collapse
Affiliation(s)
- Hong-Li Yue
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Hong-Yan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
| | - Jin-Feng Peng
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
| | - Wei Yan
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Kai Zhang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Chao-Wei Luo
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Zi-Feng Tian
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| |
Collapse
|
6
|
Sarsenov S, Senthil RA, Min A, Kumar A, Moon CJ, Park J, Choi MY. Deciphering the Electronic Coupling Dynamics of Laser-induced Ru/Cu Electrocatalyst for Dual-Side Hydrogen Production and Formic Acid Co-synthesis via DFT Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403999. [PMID: 39420860 DOI: 10.1002/smll.202403999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Herein, a straightforward approach using pulsed laser technology to synthesize selective hexagonal-close-packed (hcp) Ru nanoparticles attached to Cu nanospheres (Ru/Cu) as bifunctional electrocatalyst for catalyzing the hydrogen evolution reaction (HER) and formaldehyde oxidation reaction (FOR) are reported. Initially, Ru-doped CuO flakes are synthesized using a coprecipitation method followed by transformation into Ru/Cu composites through a strategy involving pulsed laser irradiation in liquid. Specifically, the optimized Ru/Cu-4 composite not only demonstrates a low overpotential of 182 mV at 10 mA·cm-2 for the HER but also an ultralow working potential of 0.078 V (versus reversible hydrogen electrode) for the FOR at the same current density. Remarkably, the FOR∥HER-coupled electrolyzer employing the Ru/Cu-4∥Ru/Cu-4 system achieves H2 production at both electrodes with a cell voltage of 0.42 V at 10 mA·cm-2 while co-synthesizing formic acid. Furthermore, density functional theory analyses elucidate that the superior activity of the Ru/Cu composite originates from optimized adsorption energies of reactive species on the catalyst surfaces during the HER and FOR, facilitated by the synergistic coupling between Ru and Cu. This study presents an alternative strategy for synthesizing highly effective electrocatalytic materials for use in energy-efficient H2 production with the cosynthesis of value-added chemicals suitable for practical applications.
Collapse
Affiliation(s)
- Sagyntay Sarsenov
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Raja Arumugam Senthil
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Cheol Joo Moon
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Juhyeon Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
7
|
Mann DS, Thakur S, Sangale SS, Jeong K, Kwon S, Na S. Interfacial Engineering of Nickel Oxide-Perovskite Interface with Amino Acid Complexed NiO to Improve Perovskite Solar Cell Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405953. [PMID: 39301996 PMCID: PMC11618699 DOI: 10.1002/smll.202405953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Indexed: 09/22/2024]
Abstract
The interface between NiO and perovskite in inverted perovskite solar cells (PSCs) is a major factor that can limit device performance due to defects and inappropriate redox reactions, which cause nonradiative recombination and decrease in open-circuit voltage (VOC). In the present study, a novel approach is used for the first time, where an amino acid (glycine (Gly), alanine (Ala), and aminobutyric acid (ABA))-complexed NiO are used as interface modifiers to eliminate defect sites and hydroxyl groups from the surface of NiO. The Ala-complexed NiO suppresses interfacial non-radiative recombination, improves the perovskite layer quality and better energy band alignment with the perovskite, resulting in improved charge transfer and reduced recombination. The incorporation of the Ala-complexed NiO leads to a PCE of 20.27% with enhanced stability under the conditions of ambient air, light soaking, and heating to 85 °C, as it retains over 82%, 85%, and 61% of its initial PCE after 1000, 500, and 350 h, respectively. The low-temperature technique also leads to the fabrication of a NiO thin film that is suitable for flexible PSCs. The Ala-complexed NiO is fabricated on the flexible substrate and achieved 17.12% efficiency while retaining 71% of initial PCE after 5,000 bending.
Collapse
Affiliation(s)
- Dilpreet Singh Mann
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| | - Sakshi Thakur
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| | - Sushil S. Sangale
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| | - Kwang‐Un Jeong
- Department of Polymer‐Nano Science and TechnologyDepartment of Nano Convergence EngineeringJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| | - Sung‐Nam Kwon
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| | - Seok‐In Na
- Department of Flexible and Printable Electronics and LANL‐JBNU Engineering Institute‐KoreaJeonbuk National University567, Baekje‐daero, Deokjin‐guJeonju‐si54896Republic of Korea
| |
Collapse
|
8
|
Wang Z, Zhang L, Liu X, Ye L, Zhao S, Chen Y, Yan H, Han J, Lin H. Superwetting Nanofluids of NiO x-Nanocrystals/CsBr Solution for Fabricating Quality NiO x-CsPbBr 3 Gradient Hybrid Film in Carbon-Based Perovskite Solar Cells. SMALL METHODS 2024; 8:e2400283. [PMID: 38766885 DOI: 10.1002/smtd.202400283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Indexed: 05/22/2024]
Abstract
The wettability of precursor solution on substrates is the critical factor for fabricating quality film. In this work, superwetting nanofluids (NFs) of non-stoichiometric nickel oxide (NiOx) nanocrystals (NCs)-CsBr solution are first utilized to fabricate quality NiOx-CsPbBr3 hybrid film with gradient-distributed NiOx NCs in the upper part for constructing hole transport ladder in carbon-based perovskite solar cells (C-PSCs). As anticipated, the crystalline properties (improved crystalline grain diameters and reduced impurity phase) and hole extraction/transport of the NiOx-CsPbBr3 hybrid film are improved after incorporating NiOx NCs into CsPbBr3. This originates from the superb wettability of NiOx-CsBr NFs on substrates and the excellent hole-transport properties of NiOx. Consequently, the C-PSCs with the structure of FTO/SnO2/NiOx-CsPbBr3/C displays a power conversion efficiency of 10.07%, resulting in a 23.6% improvement as compared with the pristine CsPbBr3 cell. This work opens up a promising strategy to improve the absorber layer in PSCs by incorporating NCs into perovskite layers through the use of the superwettability of NFs and by composition gradient engineering.
Collapse
Affiliation(s)
- Zengyi Wang
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Lele Zhang
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Xuanling Liu
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Lin Ye
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Shuang Zhao
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Yingyu Chen
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, 300300, China
| | - Huiyu Yan
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Jianhua Han
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, 300300, China
- College of Science, Civil Aviation University of China, Tianjin, 300300, China
| | - Hong Lin
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Luu Luyen Doan T, Chuong Nguyen D, Komalla N, Hieu NV, Nguyen-Dinh L, Dzade NY, Sang Kim C, Hee Park C. Molybdenum oxide/nickel molybdenum oxide heterostructures hybridized active platinum co-catalyst toward superb-efficiency water splitting catalysis. J Colloid Interface Sci 2024; 670:12-27. [PMID: 38749379 DOI: 10.1016/j.jcis.2024.04.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
A new catalyst has been developed that utilizes molybdenum oxide (MoO3)/nickel molybdenum oxide (NiMoO4) heterostructured nanorods coupled with Pt ultrafine nanoparticles for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) toward industrial-grade water splitting. This catalyst has been synthesized using a versatile approach and has shown to perform better than noble-metals catalysts, such as Pt/C and RuO2, at industrial-grade current level (≥1000 mA·cm-2). When used simultaneously as a cathode and anode, the proposed material yields 10 mA·cm-2 at a remarkably small cell voltage of 1.55 V and has shown extraordinary durability for over 50 h. Density functional theory (DFT) calculations have proved that the combination of MoO3 and NiMoO4 creates a metallic heterostructure with outstanding charge transfer ability. The DFT calculations have also shown that the excellent chemical coupling effect between the MoO3/NiMoO4 and Pt synergistically optimize the charge transfer capability and Gibbs free energies of intermediate species, leading to remarkably speeding up the reaction kinetics of water electrolysis.
Collapse
Affiliation(s)
- Thi Luu Luyen Doan
- Division of Mechanical Design Engineering, School of Engineering, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea.
| | - Dinh Chuong Nguyen
- The University of Danang - University of Science and Education, Da Nang 550000, Viet Nam
| | - Nikhil Komalla
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Nguyen V Hieu
- The University of Danang - University of Science and Education, Da Nang 550000, Viet Nam
| | - Lam Nguyen-Dinh
- The University of Danang, University of Science and Technology, 54, Nguyen Luong Bang, Danang City, 550000, Viet Nam
| | - Nelson Y Dzade
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Cheol Sang Kim
- Division of Mechanical Design Engineering, School of Engineering, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University Jeollabuk-do Jeonju 54896, Republic of Korea.
| | - Chan Hee Park
- Division of Mechanical Design Engineering, School of Engineering, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University Jeollabuk-do Jeonju 54896, Republic of Korea.
| |
Collapse
|
10
|
Wang Y, Zhao Y, Lu Y, Huang G, Shen Z, Selvakumar K, Ma S, Yan Y, Sui M. Surficial Reconstruction of Pt-Ni/NiS and Its Effect on Electrocatalytic Hydrogen Evolution in Alkaline Medium. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44879-44888. [PMID: 39138606 DOI: 10.1021/acsami.4c09347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cyclic voltammetry pretreatment of Pt-based electrocatalysts has been proven to be a normal activation process on achieving the optimal alkaline hydrogen evolution performance. Until now, the congruent relationship between the microstructural evolution and performance improvement during this process has rarely been reported. Herein, when the in situ transmission electron microscopy and in situ Raman analyses are employed, a self-reconstruction process from crystalline NiS into amorphous nickel hydroxide hydrate [Ni(OH)2-x·H2O, where x ≈ 0.3] on the surface of platinum-nickel nanowires has first been captured, which is the critical water dissociation active site to offer a sufficient proton supply. Furthermore, such a surficial reconstruction triggers an increase in the current density from -2.3 to -38.8 mA/cm2 (at -70 mV), which is nearly 17 times. These observations point to the fact that it is essential to consider the fundamental mechanisms of hydrogen evolution on the active sites when the process is scaled up.
Collapse
Affiliation(s)
- Yueshuai Wang
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yuguo Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Guoyu Huang
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhitong Shen
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Karuppaiah Selvakumar
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Sai Ma
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yong Yan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
11
|
Wang S, Wu J, Xu Y, Liang D, Li D, Chen D, Liu G, Feng Y. Boosting Efficient Alkaline Hydrogen Evolution Reaction of CoFe-Layered Double Hydroxides Nanosheets via Co-Coordination Mechanism of W-Doping and Oxygen Defect Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311221. [PMID: 38462963 DOI: 10.1002/smll.202311221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/09/2024] [Indexed: 03/12/2024]
Abstract
While surface defects and heteroatom doping exhibit promising potential in augmenting the electrocatalytic hydrogen evolution reaction (HER), their performance remains unable to rival that of the costly Pt-based catalysts. Yet, the concurrent modification of catalysts by integrating both approaches stands as a promising strategy to effectively address the aforementioned limitation. In this work, tungsten dopants are introduced into self-supported CoFe-layered double hydroxides (LDH) on nickel foam using a hydrothermal method, and oxygen vacancies (Ov) are further introduced through calcination. The analysis results demonstrated that tungsten doping reduces the Ov formation energy of CoFeW-LDH. The Ov acted as oxophilic sites, facilitating water adsorption and dissociation, and reducing the barrier for cleaving HO─H bonds from 0.64 to 0.14 eV. Additionally, Ov regulated the electronic structure of CoFeW-LDH to endow optimized hydrogen binding ability on tungsten atoms, thereby accelerating alkaline Volmer and Heyrovsky reaction kinetics. Specifically, the abundance of Ov induced a transition of tungsten from a six-coordinated to highly active four-coordinated structure, which becomes the active site for HER. Consequently, an ultra-low overpotential of 41 mV at 10 mA cm-2, and a low Tafel slope of 35 mV dec-1 are achieved. These findings offer crucial insights for the design of efficient HER electrocatalysts.
Collapse
Affiliation(s)
- Shaohong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, P. R. China
| | - Jing Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, P. R. China
| | - Yin Xu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
- Hunan Key Lab for Environmental Behavior of New Pollutants and Control Principle, Xiangtan, Hunan, 411105, P. R. China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, P. R. China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, P. R. China
| | - Dahong Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, P. R. China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, P. R. China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, P. R. China
| |
Collapse
|
12
|
Yang Z, Huang T, Li M, Wang X, Zhou X, Yang S, Gao Q, Cai X, Liu Y, Fang Y, Wang Y, Zhang S, Zhang S. Unveiling the Synergistic Role of Frustrated Lewis Pairs in Carbon-Encapsulated Ni/NiO x Photothermal Cocatalyst for Enhanced Photocatalytic Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313513. [PMID: 38461147 DOI: 10.1002/adma.202313513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Indexed: 03/11/2024]
Abstract
The development of high-density and closely spaced frustrated Lewis pairs (FLPs) is crucial for enhancing catalyst activity and accelerating reaction rates. However, constructing efficient FLPs by breaking classical Lewis bonds poses a significant challenge. Here, this work has made a pivotal discovery regarding the Jahn-Teller effect during the formation of grain boundaries in carbon-encapsulated Ni/NiOx (Ni/NiOx@C). This effect facilitates the formation of high-density O (VO) and Ni (VNi) vacancy sites with different charge polarities, specifically FLP-VO-C basic sites and FLP-VNi-C acidic sites. The synergistic interaction between FLP-VO-C and FLP-VNi-C sites not only reduces energy barriers for water adsorption and splitting, but also induces a strong photothermal effect. This mutually reinforcing effect contributes to the exceptional performance of Ni/NiOx@C as a cocatalyst in photothermal-assisted photocatalytic hydrogen production. Notably, the Ni/NiOx@C/g-C3N4 (NOCC) composite photocatalyst exhibits remarkable hydrogen production activity with a rate of 10.7 mmol g-1 h-1, surpassing that of the Pt cocatalyst by 1.76 times. Moreover, the NOCC achieves an impressive apparent quantum yield of 40.78% at a wavelength of 380 nm. This work paves the way for designing novel defect-state multiphase cocatalysts with high-density and adjacent FLP sites, which hold promise for enhancing various catalytic reactions.
Collapse
Affiliation(s)
- Zhi Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong, 510643, P. R. China
| | - Taiyu Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong, 510643, P. R. China
| | - Meng Li
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong, 515200, China
| | - Xudong Wang
- SMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, Guangdong, 524048, P. R. China
| | - Siyuan Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong, 510643, P. R. China
| | - Qiongzhi Gao
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong, 510643, P. R. China
| | - Xin Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong, 510643, P. R. China
| | - Yingju Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong, 510643, P. R. China
| | - Yueping Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong, 510643, P. R. China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Shanqing Zhang
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- Centre for Clean Environment and Energy and School of Environment and Science, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Shengsen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong, 510643, P. R. China
| |
Collapse
|
13
|
Sang T, Xu H, Wang W, Ji D, Hao J, Li Z. Platelike carbon-encapsulated nickel nanocrystals for efficient electrooxidation of 5-hydroxymethylfurfural. Chem Commun (Camb) 2024; 60:5868-5871. [PMID: 38756077 DOI: 10.1039/d4cc01443j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Platelike carbon-encapsulated nickel nanocrystals (Ni@C) were engineered as a high-performance electrocatalyst for the conversion of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). This electrocatalyst demonstrated remarkable electrocatalytic performance in oxidizing HMF at a low potential, achieving 100% HMF conversion, 97.7% FDCA yield, and 97.4% Faraday efficiency (FE).
Collapse
Affiliation(s)
- Ting Sang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Hui Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Wenke Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Dongfang Ji
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Zhonghao Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| |
Collapse
|
14
|
Han P, Yang X, Wu L, Jia H, Luo W. Revealing the role of a bridging oxygen in a carbon shell coated Ni interface for enhanced alkaline hydrogen oxidation reaction. Chem Sci 2024; 15:5633-5641. [PMID: 38638231 PMCID: PMC11023030 DOI: 10.1039/d4sc00043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Encapsulating metal nanoparticles inside carbon layers is a promising approach to simultaneously improving the activity and stability of electrocatalysts. The role of carbon layer shells, however, is not fully understood. Herein, we report a study of boron doped carbon layers coated on nickel nanoparticles (Ni@BC), which were used as a model catalyst to understand the role of a bridging oxygen in a carbon shell coated Ni interface for the improvement of the hydrogen oxidation reaction (HOR) activity using an alkaline electrolyte. Combining experimental results and density functional theory (DFT) calculations, we find that the electronic structure of Ni can be precisely tailored by Ni-O-C and Ni-O-B coordinated environments, leading to a volcano type correlation between the binding ability of the OH* adsorbate and HOR activity. The obtained Ni@BC with a optimized d-band center displays a remarkable HOR performance with a mass activity of 34.91 mA mgNi-1, as well as superior stability and CO tolerance. The findings reported in this work not only highlight the role of the OH* binding strength in alkaline HOR but also provide guidelines for the rational design of advanced carbon layers used to coat metal electrocatalysts.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xinyi Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
15
|
Liao M, Shen H, Lin X, Li Z, Zhu M, Liu K, Zhou S, Dai J, Huang Y. Interfacial engineering of POM-stabilized Ni quantum dots on porous titanium mesh for high-rate and stable alkaline hydrogen production. Dalton Trans 2024; 53:5084-5088. [PMID: 38375913 DOI: 10.1039/d3dt03917j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The development of low-cost, high-efficiency, and stable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is a key challenge because the alkaline HER kinetics is slowed by an additional water dissociation step. Herein, we report an interfacial engineering strategy for polyoxometalate (POM)-stabilized nickel (Ni) quantum dots decorated on the surface of porous titanium mesh (POMs-Ni@PTM) for high-rate and stable alkaline hydrogen production. Benefiting from the strong interfacial interactions among POMs, Ni atoms, and PTM substrates, as well as unique POM-Ni quantum dot structures, the optimized POMs-Ni@PTM electrocatalyst exhibits a remarkable alkaline HER performance with an overpotential (η10) of 30.1 mV to reach a current density of 10 mA cm-2, which is much better than those of bare Ni decorated porous titanium mesh (Ni@PTM) (η10 = 171.1 mV) and POM decorated porous titanium mesh (POMs@PTM) electrocatalysts (η10 = 493.6 mV), comparable to that of the commercial 20 wt% platinum/carbon (20% Pt/C) electrocatalyst (η10 = 20 mV). Moreover, the optimized POMs-Ni@PTM electrocatalyst demonstrates excellent stability under continuous alkaline water-splitting at a current density of ∼100 mA cm-2 for 100 h, demonstrating great potential for its practical application.
Collapse
Affiliation(s)
- Meihong Liao
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Huawei Shen
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Xiaorui Lin
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Zhengji Li
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Muzi Zhu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Kefei Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Shuaishuai Zhou
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Jingjie Dai
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Yichao Huang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| |
Collapse
|
16
|
Kazemi A, Manteghi F, Tehrani Z. Metal Electrocatalysts for Hydrogen Production in Water Splitting. ACS OMEGA 2024; 9:7310-7335. [PMID: 38405471 PMCID: PMC10882616 DOI: 10.1021/acsomega.3c07911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
The rising demand for fossil fuels and the resulting pollution have raised environmental concerns about energy production. Undoubtedly, hydrogen is the best candidate for producing clean and sustainable energy now and in the future. Water splitting is a promising and efficient process for hydrogen production, where catalysts play a key role in the hydrogen evolution reaction (HER). HER electrocatalysis can be well performed by Pt with a low overpotential close to zero and a Tafel slope of about 30 mV dec-1. However, the main challenge in expanding the hydrogen production process is using efficient and inexpensive catalysts. Due to electrocatalytic activity and electrochemical stability, transition metal compounds are the best options for HER electrocatalysts. This study will focus on analyzing the current situation and recent advances in the design and development of nanostructured electrocatalysts for noble and non-noble metals in HER electrocatalysis. In general, strategies including doping, crystallization control, structural engineering, carbon nanomaterials, and increasing active sites by changing morphology are helpful to improve HER performance. Finally, the challenges and future perspectives in designing functional and stable electrocatalysts for HER in efficient hydrogen production from water-splitting electrolysis will be described.
Collapse
Affiliation(s)
- Amir Kazemi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Faranak Manteghi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Zari Tehrani
- The
Future Manufacturing Research Institute, Faculty of Science and Engineering, Swansea University, SA1 8EN Swansea, United Kingdom
| |
Collapse
|
17
|
Xu H, Zhang D, Liu M, Ye D, Huo S, Chen W, Zhang J. Self-supporting hierarchical Co 3O 4-nanowires@NiO-nanosheets core-shell nanostructure on carbon foam to form efficient bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2024; 654:1293-1302. [PMID: 37913718 DOI: 10.1016/j.jcis.2023.10.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Designing cost-effective and robust bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is highly desired in hydrogen production from overall water splitting, but still suffers great challenges due to the sluggish catalytic OER/HER kinetics. In this paper, a surface/defect engineering strategy is developed to synthesize three-dimensional (3D) carbon foam (CF)-supported unique hierarchical Co3O4 nanowires@NiO nanosheets core-shell nanostructured catalyst (NiO@Co3O4/CF) with rich oxygen-vacancies as a novel bifunctional catalyst for alkaline water splitting electrolysis. Benefited from the synergy of the 3D hierarchical core-shell structure and rich oxygen vacancies, the as-obtained NiO@Co3O4/CF shows both excellent OER (η200 = 325 mV, η500 = 374 mV) and HER (η10 = 104 mV) activities with low Tafel slopes (64.26 mV dec-1 for OER and 109.14 mV dec-1 for HER, respectively) and outstanding stability. A simple overall water splitting electrolysis cell assembled by this bifunctional NiO@Co3O4/CF as both OER and HER catalysts requires only a cell voltage of 1.53 V to obtain the current density of 10 mA cm-2 and displays a long-term stability. This work has successfully developed an approach for rational design and novel synthesis of metal oxide hybrids as bifunctional electrocatalysts with high activity and stability for overall water splitting.
Collapse
Affiliation(s)
- Huan Xu
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Dan Zhang
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Minmin Liu
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Daixin Ye
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Shengjuan Huo
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui 230026, PR China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Jiujun Zhang
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
18
|
Hong W, Jiang X, An C, Huang H, Zhu T, Sun Y, Wang H, Shen F, Li X. Engineering the Crystal Facet of Monoclinic NiO for Efficient Catalytic Ozonation of Toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20053-20063. [PMID: 37936384 DOI: 10.1021/acs.est.3c06194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Modulating oxygen vacancies of catalysts through crystal facet engineering is an innovative strategy for boosting the activity for ozonation of catalytic volatile organic compounds (VOCs). In this work, three kinds of facet-engineered monoclinic NiO catalysts were successfully prepared and utilized for catalytic toluene ozonation (CTO). Density functional theory calculations revealed that Ni vacancies were more likely to form preferentially than O vacancies on the (110), (100), and (111) facets of monoclinic NiO due to the stronger Ni-vacancy formation ability, further affecting O-vacancy formation. Extensive characterizations demonstrated that Ni vacancies significantly promoted the formation of O vacancies and thus reactive oxygen species in the (111) facet of monoclinic NiO, among the three facets. The performance evaluation showed that the monoclinic NiO catalyst with a dominant (111) facet exhibits excellent performance for CTO, achieving a toluene conversion of ∼100% at 30 °C after reaction for 120 min under 30 ppm toluene, 210 ppm ozone, 45% relative humidity, and a space velocity of 120 000 h-1. This outperformed the previously reported noble/non-noble metal oxide catalysts used for CTO at room temperature. This study provided novel insight into the development of highly efficient facet-engineered catalysts for the elimination of catalytic VOCs.
Collapse
Affiliation(s)
- Wei Hong
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Xinxin Jiang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Chenguang An
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianle Zhu
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Ye Sun
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Haining Wang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
19
|
Yang X, Xi M, Guo X, Shen J, Liu Z, Jiang H, Zhu Y. Ni-CeO 2 Heterostructure Promotes Hydrogen Evolution Reaction via Tuning of the O-H Bond Length of Adsorbed Water at the Electrolyte/Electrode Interface. CHEMSUSCHEM 2023; 16:e202300348. [PMID: 37198132 DOI: 10.1002/cssc.202300348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 05/19/2023]
Abstract
Understanding the properties and structure of reactant water molecules at the electrolyte solution/electrode interface is relevant to know the mechanisms of hydrogen evolution reaction (HER). However, this approach has rarely been implemented due to the elusive local microenvironment in the vicinity of the catalyst. Taking the Ni-CeO2 heterostructure immobilized onto carbon paper (Ni-CeO2 /CP) as a model, the dynamic behavior of adsorbed intermediates during the reaction was measured by in situ surface-enhanced infrared absorption spectroscopy with attenuated total reflection configuration (ATR-SEIRAS). Theoretical calculations are used in combination to comprehend the potential causes of increased HER activity. The results show that the O-H bond of adsorbed water at the electrolyte solution/electrode interface becomes longer for promoting the dissociation of water and accelerating the kinetically slow Volmer step. In addition, forming the Ni-CeO2 heterostructure interface optimizes the hydrogen adsorption Gibbs free energy, thus increasing HER activity. Therefore, the Ni-CeO2 /CP electrode exhibits remarkably low HER overpotentials of 37 and 119 mV at 10 and 100 mA cm-2 , which are close to commercial Pt/C (16 and 102.6 mV, respectively).
Collapse
Affiliation(s)
- Xiaoling Yang
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Menghua Xi
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Xing Guo
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Jianhua Shen
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Hongliang Jiang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Yihua Zhu
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
20
|
Riziki Ghislain M, Muzumbukilwa WT, Magula N. Risk factors for death in hospitalized COVID-19 patients in Africa: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e34405. [PMID: 37657047 PMCID: PMC10476721 DOI: 10.1097/md.0000000000034405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/28/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 has quickly spread worldwide since it first appeared in Wuhan, China, in late 2019. The most affected country in Africa was South Africa. This study aimed to identify the risk factors for death in hospitalized COVID-19 patients in Africa. METHODS We conducted a systematic review following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. We searched articles from the following database: PubMed, Embase, Cochrane Library, Medline, and COVID-19 Research Database. We used Google Scholar for gray literature. The language used in this article was English. The last search was conducted on January 15, 2023. Pooled HRs, or ORs, and 95% confidence intervals, were calculated separately to identify the risk factors for death in hospitalized COVID-19 patients. Heterogeneity was assessed by Cochran's Q statistic and the I2 test. The Egger test was used to assess publication bias. Subgroup analysis was performed to determine the source of heterogeneity. Data analysis was performed using Stata version 17. A P value < .05 was considered significant. RESULTS A total of 16,600 articles were obtained from the database search; finally, 16 articles met the inclusion criteria and were eligible for data extraction. The analysis revealed that the pooled prevalence of mortality in hospitalized COVID-19 patients was 13.9%. Advanced age was a significant risk factor for death in hospitalized COVID-19 patients, with the pooled coronavirus mortality HR and OR being 3.73 (95% CI: 2.27-5.19) and 1.04 (95% CI: 1.02-1.06), respectively. In addition, male gender (pOR 1.23; 95% CI: 1.07-1.40), patients with diabetes mellitus (DM) (pOR 1.26; 95% CI: 1.01-1.51), hypertension (HTN) (pOR 1.56; 95% CI: 1.27-1.85), chronic kidney disease (CKD) (pHR 5.43; 95% CI: 0.18-10.67), severe or critical conditions (pOR 9.04; 95% CI: 3.14-14.94) had a significantly increased risk of coronavirus-related mortality. The main limitations of the present study stem from the predominant use of published studies, which could introduce publication bias. CONCLUSION According to this study, advanced age, male gender, hypertension, diabetes mellitus, chronic kidney disease, and severe or critical condition were clinical risk factors associated with death outcomes in hospitalized COVID-19 patients in Africa.
Collapse
Affiliation(s)
- Manimani Riziki Ghislain
- The Department of Internal Medicine, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Willy Tambwe Muzumbukilwa
- The Discipline of Pharmaceutical Sciences, Westville Campus, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nombulelo Magula
- The Department of Internal Medicine, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
21
|
Bhatti AL, Tahira A, Kumar S, Ujjan ZA, Bhatti MA, Kumar S, Aftab U, Karsy A, Nafady A, Infantes-Molina A, Ibupoto ZH. Facile synthesis of efficient Co 3O 4 nanostructures using the milky sap of Calotropis procera for oxygen evolution reactions and supercapacitor applications. RSC Adv 2023; 13:17710-17726. [PMID: 37333727 PMCID: PMC10273030 DOI: 10.1039/d3ra02555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023] Open
Abstract
The preparation of Co3O4 nanostructures by a green method has been rapidly increasing owing to its promising aspects, such as facileness, atom economy, low cost, scale-up synthesis, environmental friendliness, and minimal use of hazardous chemicals. In this study, we report on the synthesis of Co3O4 nanostructures using the milky sap of Calotropis procera (CP) by a low-temperature aqueous chemical growth method. The milky sap of CP-mediated Co3O4 nanostructures were investigated for oxygen evolution reactions (OERs) and supercapacitor applications. The structure and shape characterizations were done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) techniques. The prepared Co3O4 nanostructures showed a heterogeneous morphology consisting of nanoparticles and large micro clusters. A typical cubic phase and a spinel structure of Co3O4 nanostructures were also observed. The OER result was obtained at a low overpotential of 250 mV at 10 mA cm-2 and a low Tafel slope of 53 mV dec-1. In addition, the durability of 45 hours was also found at 20 mA cm-2. The newly prepared Co3O4 nanostructures using the milky sap of CP were also used to demonstrate a high specific capacitance of 700 F g-1 at a current density of 0.8 A g-1 and a power density of 30 W h kg-1. The enhanced electrochemical performance of Co3O4 nanostructures prepared using the milky sap of CP could be attributed to the surface oxygen vacancies, a relatively high amount of Co2+, the reduction in the optical band gap and the fast charge transfer rate. These surface, structural, and optical properties were induced by reducing, capping, and stabilizing agents from the milky sap of CP. The obtained results of OERs and supercapacitor applications strongly recommend the use of the milky sap of CP for the synthesis of diverse efficient nanostructured materials in a specific application, particularly in energy conversion and storage devices.
Collapse
Affiliation(s)
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | - Shusheel Kumar
- Institute of Physics, University of Sindh Jamshoro 76080 Sindh Pakistan
| | | | - Muhammad Ali Bhatti
- Centre for Environmental Sciences, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Sooraj Kumar
- Department of Chemical Engineering, Mehran University of Engineering and Technology 7680 Jamshoro Sindh Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials, Mehran University of Engineering and Technology 7680 Jamshoro Sindh Pakistan
| | - Amal Karsy
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE) Cairo Egypt
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Antonia Infantes-Molina
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Unidad Asociada al ICP-CSIC, Faculty of Sciences, University of Malaga, Campus de Teatinos 29071 Malaga Spain
| | | |
Collapse
|
22
|
Cao H, Dang Y, Zhang Z, Chen F, Liu J, Sun Q, Xie Y, Xu Z, Zhang W. Rational Design of Cu-Doped Tetrahedron of Spinel Oxide for High-Performance Nitric Oxide Electrochemical Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23489-23500. [PMID: 37139799 DOI: 10.1021/acsami.3c03176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The real-time detection of nitric oxide (NO) in living cells is essential to reveal its physiological processes. However, the popular electrochemical detection strategy is limited to the utilization of noble metals. The development of new detection candidates without noble metal species still maintaining excellent catalytic performance has become a big challenge. Herein, we propose a spinel oxide doped with heteroatom-Cu-doped Co3O4 (Cu-Co3O4) for the sensitive and selective detection of NO release from the living cells. The material is strategically designed with Cu occupying the tetrahedral (Td) center of Co3O4 through the formation of a Cu-O bond. The introduced Cu regulates the local coordination environment and optimizes the electronic structure of Co3O4, hybridizing with the N 2p orbital to enhance charge transfer. The CuTd site can well inhibit the current response to nitrite (NO2-), resulting in a high improvement in the electrochemical oxidation of NO. The selectivity of Cu-Co3O4 can be markedly improved by the pore size of the molecular sieve and the negative charge on the surface. The rapid transmission of electrons is due to the fact that Cu-Co3O4 can be uniformly and densely in situ grown on Ti foil. The rationally designed Cu-Co3O4 sensor displays excellent catalytic activity toward NO oxidation with a low limit of detection of 2.0 nM (S/N = 3) and high sensitivity of 1.9 μA nM-1 cm-2 in cell culture medium. The Cu-Co3O4 sensor also shows good biocompatibility to monitor the real-time NO release from living cells (human umbilical vein endothelial cells: HUVECs; macrophage: RAW 264.7 cells). It was found that a remarkable response to NO was obtained in different living cells when stimulated by l-arginine (l-Arg). Moreover, the developed biosensor could be used for real-time monitoring of NO released from macrophages polarized to a M1/M2 phenotype. This cheap and convenient doping strategy shows universality and can be used for sensor design of other Cu-doped transition metal materials. The Cu-Co3O4 sensor presents an excellent example through the design of proper materials to implement unique sensing requirements and sheds light on the promising strategy for electrochemical sensor fabrication.
Collapse
Affiliation(s)
- Hongshuai Cao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhonghai Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Fengping Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jingyao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yangchun Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
23
|
Jian L, Li M, Liu X, Wang G, Zhang X, Kim MG, Fu Y, Ma H. Unveiling Hierarchical Dendritic Co 3O 4-SnO 2 Heterostructure for Efficient Water Purification. NANO LETTERS 2023; 23:3739-3747. [PMID: 37075087 DOI: 10.1021/acs.nanolett.2c05010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The construction of a desirable, environmentally friendly, and cost-effective nanoheterostructure photoanode to treat refractory organics is critical and challenging. Herein, we unveiled a hierarchical dendritic Co3O4-SnO2 heterostructure via a sequential hydrothermal process. The time of the secondary hydrothermal process can control the size of the ultrathin SnO2 nanosheets on the basis of the Ostwald solidification mass conservation principle. Ti/Co3O4-SnO2-168h with critical growth size demonstrated a photoelectrocatalysis degradation rate of ∼93.3% for a high dye concentrate of 90 mg/L with acceptable long-term cyclability and durability over reported Co3O4-based electrodes because of the large electrochemically active area, low charge transfer resistance, and high photocurrent intensity. To gain insight into the photoelectric synergy, we proposed a type-II heterojunction between Co3O4 and SnO2, which prevents photogenerated carriers' recombination and improves the generation of dominant active species •O2-, 1O2, and h+. This work uncovered the Ti/Co3O4-SnO2-168 as a promising catalyst and provided a simple and inexpensive assembly strategy to obtain binary integrated nanohybrids with targeted functionalities.
Collapse
Affiliation(s)
- Linhan Jian
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Ming Li
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Xinghui Liu
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-Gu, Suwon 03063, Republic of Korea
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, P. R. China
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, 602105 Tamilnadu, India
| | - Guowen Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Xinxin Zhang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yinghuan Fu
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| | - Hongchao Ma
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, P. R. China
| |
Collapse
|
24
|
Li GL, Qiao XY, Miao YY, Wang TY, Deng F. Synergistic Effect of N-NiMoO 4 /Ni Heterogeneous Interface with Oxygen Vacancies in N-NiMoO 4 /Ni/CNTs for Superior Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207196. [PMID: 37026435 DOI: 10.1002/smll.202207196] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The exploring of economical, high-efficiency, and stable bifunctional catalysts for hydrogen evolution and oxygen evolution reactions (HER/OER) is highly imperative for the development of electrolytic water. Herein, a 3D cross-linked carbon nanotube supported oxygen vacancy (Vo )-rich N-NiMoO4 /Ni heterostructure bifunctional water splitting catalyst (N-NiMoO4 /Ni/CNTs) is synthesized by hydrothermal-H2 calcination method. Physical characterization confirms that Vo -rich N-NiMoO4 /Ni nanoparticles with an average size of ≈19 nm are secondary aggregated on CNTs that form a hierarchical porous structure. The formation of Ni and NiMoO4 heterojunctions modify the electronic structure of N-NiMoO4 /Ni/CNTs. Benefiting from these properties, N-NiMoO4 /Ni/CNTs drives an impressive HER overpotential of only 46 mV and OER overpotential of 330 mV at 10 mA cm-2 , which also shows exceptional cycling stability, respectively. Furthermore, the as-assembled N-NiMoO4 /Ni/CNTs||N-NiMoO4 /Ni/CNTs electrolyzer reaches a cell voltage of 1.64 V at 10 mA cm-2 in alkaline solution. Operando Raman analysis reveals that surface reconstruction is essential for the improved catalytic activity. Density functional theory (DFT) calculations further demonstrate that the enhanced HER/OER performance should be attributed to the synergistic effect of Vo and heteostructure that improve the conductivity of N-NiMoO4 /Ni/CNTs and facilitatethe desorption of reaction intermediates.
Collapse
Affiliation(s)
- Guang-Lan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Xiang-Yue Qiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Ying-Ying Miao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Tian-Yu Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| | - Fei Deng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin, 124221, P. R. China
| |
Collapse
|
25
|
Gebhardt J, Elsässer C. DFT with corrections for an efficient and accurate description of strong electron correlations in NiO. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:205901. [PMID: 36863031 DOI: 10.1088/1361-648x/acc0be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
An efficient and accurate description of the electronic structure of a strongly correlated metal-oxide semiconductor like NiO has been notoriously difficult. Here, we study the capabilities and limitations of two frequently employed correction schemes, a DFT+Uon-site correction and a DFT+1/2 self-energy correction. While both methods individually are unable to provide satisfactory results, in combination they provide a very good description of all relevant physical quantities. Since both methods cope with different shortcomings of common density-functional theory (DFT) methods (using local-density or generalized-gradient approximations), their combination is not mutually dependent and remains broadly applicable. The combined approach retains the computational efficiency of DFT calculations while providing significantly improved predictive power.
Collapse
Affiliation(s)
- Julian Gebhardt
- Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg, Germany
- Cluster of Excellence livMatS at FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Christian Elsässer
- Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg, Germany
- Cluster of Excellence livMatS at FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, Freiburg 79104, Germany
| |
Collapse
|
26
|
Liu Y, Wu J, Zhang Y, Jin X, Li J, Xi X, Deng Y, Jiao S, Lei Z, Li X, Cao R. Ensemble Effect of Ruthenium Single-Atom and Nanoparticle Catalysts for Efficient Hydrogen Evolution in Neutral Media. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36905349 DOI: 10.1021/acsami.2c20863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogen evolution reaction (HER) plays a key role in electrochemical water splitting, which is a sustainable way for hydrogen production. The kinetics of HER is sluggish in neutral media that requires noble metal catalysts to alleviate energy consumption during the HER process. Here, we present a catalyst comprising a ruthenium single atom (Ru1) and nanoparticle (Run) loaded on the nitrogen-doped carbon substrate (Ru1-Run/CN), which exhibits excellent activity and superior durability for neutral HER. Benefiting from the synergistic effect between single atoms and nanoparticles in the Ru1-Run/CN, the catalyst exhibits a very low overpotential down to 32 mV at a current density of 10 mA cm-2 while maintaining excellent stability up to 700 h at a current density of 20 mA cm-2 during the long-term test. Computational calculations reveal that, in the Ru1-Run/CN catalyst, the existence of Ru nanoparticles affects the interactions between Ru single-atom sites and reactants and thus improves the catalytic activity of HER. This work highlights the ensemble effect of electrocatalysts for HER and could shed light on the rational design of efficient catalysts for other multistep electrochemical reactions.
Collapse
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianghua Wu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yuchen Zhang
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xu Jin
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Jianming Li
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Xiaoke Xi
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Deng
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shuhong Jiao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhanwu Lei
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiyu Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Ruiguo Cao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
27
|
Li T, Ruan M, Guo Z, Wang C, Liu Z. Modulation of Lewis and Brønsted Acidic Sites to Enhance the Redox Ability of Nb 2O 5 Photoanodes for Efficient Photoelectrochemical Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11914-11926. [PMID: 36848239 DOI: 10.1021/acsami.2c23284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Accelerated surface redox reaction and regulated carrier separation are the crux to the development of highly reactive oxide semiconductors for efficient photoelectrochemical water splitting. Here, we have selected Nb2O5 materials that combine unique surface acidity and semiconductor properties, and first used surface phosphorylation to change its surface acidic sites (Lewis and Brønsted acidic sites) to achieve efficient photoelectrochemical water splitting. The resulting photoanode born from this strategy exhibits a high photocurrent density of 0.348 mA/cm2 at 1.23 VRHE, which is about 2-fold higher than that of the bare Nb2O5, and a cathodic shift of 60 mV. Detailed experimental results show that the large increase in the Lewis acidic site can effectively modulate the electronic structure of the active sites involved in catalysis in [NbO5] polyhedra and promote the activation of lattice oxygen. As a result, higher redox properties and the ability to inhibit carrier recombination are exhibited. In addition, the weakening of the Brønsted acidic site drives the reduction of protons in the oxygen evolution reaction (OER) and accelerates the reaction kinetics. This work advances the development of efficient photoelectrochemical water splitting on photoanodes driven by the effective use of surface acidity and provides a strategy for enhancing redox capacity to achieve highly active photoanodes.
Collapse
Affiliation(s)
- Tianhao Li
- School of Materials Science and Engineering, Tianjin Chengjian University, 300384 Tianjin, China
| | - Mengnan Ruan
- School of Materials Science and Engineering, Tianjin Chengjian University, 300384 Tianjin, China
- Tianjin Key Laboratory of Building Green Functional Materials, 300384 Tianjin, China
| | - Zhengang Guo
- School of Materials Science and Engineering, Tianjin Chengjian University, 300384 Tianjin, China
- Tianjin Key Laboratory of Building Green Functional Materials, 300384 Tianjin, China
| | - Chengyi Wang
- School of Materials Science and Engineering, Tianjin Chengjian University, 300384 Tianjin, China
- Tianjin Key Laboratory of Building Green Functional Materials, 300384 Tianjin, China
| | - Zhifeng Liu
- School of Materials Science and Engineering, Tianjin Chengjian University, 300384 Tianjin, China
- Tianjin Key Laboratory of Building Green Functional Materials, 300384 Tianjin, China
| |
Collapse
|
28
|
Gaur A, Pundir V, Maruyama T, Bera C, Bagchi V. Electronic redistribution over the active sites of NiWO 4-NiO induces collegial enhancement in hydrogen evolution reaction in alkaline medium. J Colloid Interface Sci 2023; 641:82-90. [PMID: 36924548 DOI: 10.1016/j.jcis.2023.02.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The activity-enhancement of a new-generation catalyst focuses on the collegial approach among specific solids which exploit the mutual coactions of these materials for HER applications. Strategic manipulation of these solid interfaces typically reveals unique electronic states different from their pure phases, thus, providing a potential passage to create catalysts with excellent activity and stability. Herein, the formation of the NiWO4-NiO interface has been designed and synthesized via a three-step method. This strategy enhances the chance of the formation of abundant heterointerfaces due to the fine distribution of NiWO4 nanoparticles over Ni(OH)2 sheets. NiWO4-NiO has superior HER activity in an alkaline (1 M KOH) electrolyte with modest overpotentials of 68 mV at 10 mA cm-2 current density. The catalyst is highly stable in an alkaline medium and negligible change was observed in the current density even after 100 h of continuous operation. This study explores a unique method for high-performance hydrogen generation by constructing transition metal-oxides heterojunction. The XPS studies reveal an electronic redistribution driven by charge transfer through the NiWO4-NiO interface. The density functional theory (DFT) calculations show that the NiWO4-NiO exhibits a Pt-like activity with the hydrogen Gibbs free energy (ΔGH*) value of 0.06 eV compared to the Pt(ΔGH* = -0.02 eV).
Collapse
Affiliation(s)
- Ashish Gaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Vikas Pundir
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Takahiro Maruyama
- Department of Applied Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
| | - Chandan Bera
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Vivek Bagchi
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India.
| |
Collapse
|
29
|
Cao H, Qiao P, Zhong Q, Qi R, Dang Y, Wang L, Xu Z, Zhang W. In Situ Reconstruction NiO Octahedral Active Sites for Promoting Electrocatalytic Oxygen Evolution of Nickel Phosphate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204864. [PMID: 36394082 DOI: 10.1002/smll.202204864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical activation strategy is very effective to improve the intrinsic catalytic activity of metal phosphate toward the sluggish oxygen evolution reaction (OER) for water electrolysis. However, it is still challenging to operando trace the activated reconstruction and corresponding electrocatalytic dynamic mechanisms. Herein, a constant voltage activation strategy is adopted to in situ activate Ni2 P4 O12 , in which the break of NiONi bond and dissolution of PO4 3- groups could optimize the lattice oxygen, thus reconstructing an irreversible amorphous Ni(OH)2 layer with a thickness of 1.5-3.5 nm on the surface of Ni2 P4 O12 . The heterostructure electrocatalyst can afford an excellent OER activity in alkaline media with an overpotential of 216.5 mV at 27.0 mA cm-2 . Operando X-ray absorption fine structure spectroscopy analysis and density functional theory simulations indicate that the heterostructure follows a nonconcerted proton-electron transfer mechanism for OER. This activation strategy demonstrates universality and can be used to the surface reconstruction of other metal phosphates.
Collapse
Affiliation(s)
- Hongshuai Cao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qilan Zhong
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Science, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Science, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
30
|
Catalyst deactivation in alkaline water splitting. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Balamurugan C, Lee C, Cho K, Kim J, Park B, Pak Y, Kong J, Kwon S. Hydrothermally Grown Dual-Phase Heterogeneous Electrocatalysts for Highly Efficient Rechargeable Metal-Air Batteries with Long-Term Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203663. [PMID: 36104225 PMCID: PMC9661842 DOI: 10.1002/advs.202203663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Metal-air batteries as alternatives to the existing lithium-ion battery are becoming increasingly attractive sources of power due to their high energy-cost competitiveness and inherent safety; however, their low oxygen evolution and reduction reaction (OER/ORR) performance and poor operational stability must be overcome prior to commercialization. Herein, it is demonstrated that a novel class of hydrothermally grown dual-phase heterogeneous electrocatalysts, in which silver-manganese (AgMn) heterometal nanoparticles are anchored on top of 2D nanosheet-like nickel vanadium oxide (NiV2 O6 ), allows an enlarged surface area and efficient charge transfer/redistribution, resulting in a bifunctional OER/ORR superior to those of conventional Pt/C or RuO2 . The dual-phase NiV2 O6 /AgMn catalysts on the air cathode of a zinc-air battery lead to a stable discharge-charge voltage gap of 0.83 V at 50 mA cm-2 , with a specific capacity of 660 mAh g-1 and life cycle stabilities of more than 146 h at 10 mA cm-2 and 11 h at 50 mA cm-2 . The proposed new class of dual-phase NiV2 O6 /AgMn catalysts are successfully applied as pouch-type zinc-air batteries with long-term stability over 33.9 h at 10 mA cm-2 .
Collapse
Affiliation(s)
- Chandran Balamurugan
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul04620Republic of Korea
- Heeger Center Advanced Materials (HCAM)Gwangju Institute of Science and Technology (GIST)Gwangju500‐712Republic of Korea
| | - Changhoon Lee
- Max Planck POSTECH Center for Complex Phase of MaterialsPohang University of Science and TechnologyPohang37673Korea
| | - Kyusang Cho
- Research Institute for Solar and Sustainable Energies (RISE)Gwangju Institute of Science and Technology (GIST)Gwangju500‐712Republic of Korea
| | - Jehan Kim
- Pohang Accelerator LaboratoryPohang University of Science and TechnologyPohang37673Republic of Korea
| | - Byoungwook Park
- Division of Advanced MaterialsKorea Research Institute of Chemical TechnologyDaejeon305‐600Republic of Korea
| | - Yusin Pak
- Sensor System Research Center (SSRC)Korea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jaemin Kong
- Department of PhysicsGyeongsang National UniversityJinju52828Republic of Korea
| | - Sooncheol Kwon
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul04620Republic of Korea
| |
Collapse
|
32
|
Tan Z, Li C, Wang L, Kang M, Wang W, Tang M, Li G, Feng Z, Yan Z. Homogenous Cr and C Doped 3D Self-Supporting NiO Cellular Nanospheres for Hydrogen Evolution Reaction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7120. [PMID: 36295190 PMCID: PMC9605676 DOI: 10.3390/ma15207120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen evolution reaction (HER) is one promising technique to obtain high-purity hydrogen, therefore, exploiting inexpensive and high-efficiency HER electrocatalysts is a matter of cardinal significance under the background of achieving carbon neutrality. In this paper, a hydrothermal method was used to prepare the Cr-NiC2O4/NF (Ni foam) precursor. Then, the NiO-Cr-C/NF self-supporting HER catalyst was obtained by heating the precursor at 400 °C. The catalyst presents a 3D cellular nanospheres structure which was composed of 2D nanosheets. Microstructure characterization shows that Cr and C elements were successfully doped into NiO. The results of electrochemical measurements and density functional theory (DFT) calculations show that under the synergy of Cr and C, the conductivity of NiO was improved, and the Gibbs free energy of H* (∆GH*) value is optimized. As a result, in 1.0 M KOH solution the NiO-Cr-C/NF-3 (Ni:Cr = 7:3) HER catalyst exhibits an overpotential of 69 mV and a Tafel slope of 45 mV/dec when the current density is 10 mA·cm-2. Besides, after 20 h of chronopotentiometry, the catalytic activity is basically unchanged. It is demonstrated that C and Cr co-doping on the lattice of NiO prepared by a simple hydrothermal method and subsequent heat treatment to improve the catalytic activity and stability of the non-precious metal HER catalysts in an alkaline medium is facile and efficient.
Collapse
Affiliation(s)
- Zhaojun Tan
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Chuanbin Li
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Lijun Wang
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Mingjie Kang
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Wen Wang
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Mingqi Tang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Gang Li
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Zaiqiang Feng
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Zhenwei Yan
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| |
Collapse
|
33
|
Recent Development of Nanostructured Nickel Metal-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Top Catal 2022. [DOI: 10.1007/s11244-022-01706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
34
|
Yan Y, Ma Q, Cui F, Zhang J, Cui T. Carbon onions coated Ni/NiO nanoparticles as catalysts for alkaline hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Feng K, Xu J, Chen Y, Li S, Kang Z, Zhong J. Positively Charged Pt-Based Nanoreactor for Efficient and Stable Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203199. [PMID: 35945173 PMCID: PMC9534975 DOI: 10.1002/advs.202203199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Positively charged Pt can work as the active center for hydrogen evolution reaction (HER) but the corresponding design of state-of-the-art electrocatalysts at high current densities has never been realized. Here the application of positively charged Pt in an effective Fe-PtNiPO nanoreactor for highly efficient and stable HER is demonstrated. Synchrotron radiation X-ray absorption spectroscopy confirms the formation of internal positively charged Pt and the in situ experiments reveal the quick charge transfer in the nanoreactor. Ni-based materials around Pt are used to tune the electronic structure and promote the water dissociation to form locally enriched H+ , while a porous Fe shell can both prevent the loss of active material and allow the efficient material transport. All the beneficial compositions work together to form an effective nanoreactor for HER. As a result, the Fe-PtNiPO nanoreactor shows a low overpotential of 19 mV to achieve 10 mA cm-2 and exhibits a high mass activity of 10.93 A mgPt -1 (at 100 mV). Most importantly, it only needs an ultra-low overpotential of 193 mV to achieve a high current density of 1000 mA cm-2 with an excellent stability over 300 h, which represents one of the best electrocatalysts for alkaline HER and might be used for large-scale industrial application in the future.
Collapse
Affiliation(s)
- Kun Feng
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123P. R. China
| | - Jiabin Xu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123P. R. China
- Department of ChemistryUniversity of Western OntarioLondonOntarioN6A 5B7Canada
| | - Yufeng Chen
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123P. R. China
| | - Shuo Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE)MUST‐SUDA Joint Research Center for Advanced Functional MaterialsMacau University of Science and TechnologyTaipaMacao999078P. R. China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
36
|
Versatile Bifunctional and Supported IrNi Oxide Catalyst for Photoelectrochemical Water Splitting. Catalysts 2022. [DOI: 10.3390/catal12091056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Designing a high-performance electrocatalyst that operates with photon-level energy is of the utmost importance in order to address the world’s urgent energy concerns. Herein, we report IrNi nanoparticles uniformly distributed on cost-effective activated carbon support with a low mass loading of 3% by weight to drive the overall water splitting reaction under light illumination over a wide pH range. The prepared IrNi nanomaterials were extensively characterized by SEM/EDX, TEM, XRD, Raman, and UV-visible absorption spectroscopy. The experimental results demonstrate that when the Ir:Ni ratio is 4:1, the water splitting rate is high at 32 and 25 mA cm−2 for hydrogen (at −1.16 V) and oxygen evolution reactions (at 1.8 V) in alkaline electrolyte, respectively, upon the light irradiation (100 mW cm−2). The physical and electrochemical characterization of metal and alloy combinations show that the cumulative effect of relatively high crystallinity (among the materials used in this study), reduced charge recombination rate, and improved oxygen vacancies observed with the 4Ir1Ni@AC electrode is the reason for the superior activity obtained. A high level of durability for hydrogen and oxygen evolution under light illumination is seen in the chronoamperometric study over 15 h of operation. Overall water splitting examined in 0.1 M of NaOH medium at a 50 mV s−1 scan rate showed a cell voltage of 1.94 V at a 10 mA cm−2 current density.
Collapse
|
37
|
Augustyniak AW, Gniewek A, Szukiewicz R, Wiejak M, Korabik M, Trzeciak AM. NiOBDP and Ni/NiOBDP catalyzed transfer hydrogenation of acetophenone and 4-nitrophenol. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Zheng Y, Hu H, Zhu Y, Rong J, Zhang T, Yang D, Wen Q, Qiu F. ZIF-67-Derived (NiCo)S 2@NC Nanosheet Arrays Hybrid for Efficient Overall Water Splitting. Inorg Chem 2022; 61:14436-14446. [PMID: 36038523 DOI: 10.1021/acs.inorgchem.2c02375] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic water splitting is considered a promising approach to obtain clean and sustainable hydrogen energy. The integration of optimal nanoarchitecture and multicomponent synergy has been a significant factor for designing a bifunctional electrocatalyst to promote the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). In particular, the charge migration, mass transfer, and gas release rate in the catalyzing process are closely correlated with the architecture of the catalyst. Here, ZIF-67-derived N-doped carbon nanofiber-supported (NiCo)S2 nanosheet [(NiCo)S2/NCNF] as a bifunctional electrocatalyst was synthesized using electrospinning, template etching, and subsequent gas sulfidation method. The hierarchical hybrid nanofiber with inner hollow cubes and outer nanosheets provides easy electron penetration, high charge/mass transportation efficiency, and robust structure stability. Furthermore, the MOF-derived carbon-encapsuled bimetal-sulfide and the synergistic effect of double active centers are conducive to an exceptional performance, showing low overpotentials of 177 and 203 mV to drive a current density of 10 mA cm-2 and robust stability for the HER and OER, respectively. Meanwhile, the (NiCo)S2/NCNF electrodes exhibit a small voltage of 1.61 V for overall water splitting activity with an electrolyzer cell at current densities of 10 mA cm-2 over 12 h. This work presents novel insights into the bifunctional catalyst for promoting the overall water splitting via a MOF-derived nanoarchitecture and multicomponent synergy.
Collapse
Affiliation(s)
- Yunhua Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Huiting Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jian Rong
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qi Wen
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
39
|
Cui M, Yan Z, Zhang M, Jia S, Zhang Y. Ultrasound-assisted Synthesis of nickel/nickel Phosphide on Carbon Nanotubes as Highly Effective Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Li J, Zhang Q, Zhang J, Wu N, Liu G, Chen H, Yuan C, Liu X. Optimizing electronic structure of porous Ni/MoO 2 heterostructure to boost alkaline hydrogen evolution reaction. J Colloid Interface Sci 2022; 627:862-871. [PMID: 35901565 DOI: 10.1016/j.jcis.2022.07.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Heterostructure engineering is an efficient strategy to synergisticallyimprove electrocatalytic activity. In this work, Ni/MoO2 heterojunction nanorods with porous structure self-supported on nickel foam (NF) are elaborately designed through a facile solution-evaporationmethod followed by a thermal reduction process. Prominently, the optimal electrocatalyst Ni/MoO2@NF-E delivers an exceptionally low overpotential of 19 mV at the current density of 10 mA cm-2 and a small Tafel slope of 52.3 mV dec-1 toward the hydrogen evolution reaction (HER) in alkaline solution. Concurrently, Ni/MoO2@NF-E also maintains excellent stability after 120 h of electrolysis or 5000 cyclic voltammetry cycles. The experimental and density functional theory (DFT) results indicate that the enhanced HER performance of Ni/MoO2@NF-E should be ascribed to the porous structure in the Ni/MoO2 nanorods providing more active catalytic site, the moderate Gibbs free energy of hydrogen adsorption (ΔGH*), as well as strong synergistic effect between Ni and MoO2. This work provides an efficient route for developing HER electrocatalysts in alkaline media.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Qiman Zhang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, PR China
| | - Naiteng Wu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Guilong Liu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Haipeng Chen
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan 250022 PR China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| |
Collapse
|
41
|
Xu G, Feng M, Wang S, Cheng Y, Chen JJ. Kinetic Regulation Engineering and In‐Situ Spectroscopy Studies on Transition‐Metal‐Based Electrocatalysts for Water Splitting. ChemElectroChem 2022. [DOI: 10.1002/celc.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guodong Xu
- Nantong University School of Chemistry and Chemical Engineering CHINA
| | - Mingyue Feng
- Nantong University School of Chemistry and Chemical Engineering CHINA
| | - Shiyu Wang
- Nantong University School of Chemistry and Chemical Engineering CHINA
| | - Yu Cheng
- Nantong University School of Chemistry and Chemical Engineering CHINA
| | - Jia-Jia Chen
- Xiamen University Chemistry Xiamen University 361005 Xiamen CHINA
| |
Collapse
|
42
|
Sun H, Yan Z, Tian C, Li C, Feng X, Huang R, Lan Y, Chen J, Li CP, Zhang Z, Du M. Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution. Nat Commun 2022; 13:3857. [PMID: 35790749 PMCID: PMC9256667 DOI: 10.1038/s41467-022-31561-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/22/2022] [Indexed: 02/08/2023] Open
Abstract
The active-site density, intrinsic activity, and durability of Ni-based catalysts are critical to their application in industrial alkaline water electrolysis. This work develops a kind of promoters, the bixbyite-type lanthanide metal sesquioxides (Ln2O3), which can be implanted into metallic Ni by selective high-temperature reduction to achieve highly efficient Ni/Ln2O3 hybrid electrocatalysts toward hydrogen evolution reaction. The screened Ni/Yb2O3 catalyst shows the low overpotential (20.0 mV at 10 mA cm−2), low Tafel slope (44.6 mV dec−1), and excellent long-term durability (360 h at 500 mA cm−2), significantly outperforming the metallic Ni and benchmark Pt/C catalysts. The remarkable hydrogen evolution activity and stability of Ni/Yb2O3 are attributed to that the Yb2O3 promoter with high oxophilicity and thermodynamic stability can greatly enlarge the active-site density, reduce the energy barrier of water dissociation, optimize the free energy of hydrogen adsorption, and avoid the oxidation corrosion of Ni. While renewable H2 evolution will require inexpensive, abundant catalysts, non-noble metals typically show relatively low activities. Here, authors examine lanthanide metal sesquioxide doped metallic Ni and show efficient, stable performances for alkaline H2 evolution electrocatalysis.
Collapse
|
43
|
Zhou B, Gao R, Zou JJ, Yang H. Surface Design Strategy of Catalysts for Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202336. [PMID: 35665595 DOI: 10.1002/smll.202202336] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen, a new energy carrier that can replace traditional fossil fuels, is seen as one of the most promising clean energy sources. The use of renewable electricity to drive hydrogen production has very broad prospects for addressing energy and environmental problems. Therefore, many researchers favor electrolytic water due to its green and low-cost advantages. The electrolytic water reaction comprises the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Understanding the OER and HER mechanisms in acidic and alkaline processes contributes to further studying the design of surface regulation of electrolytic water catalysts. The OER and HER catalysts are mainly reviewed for defects, doping, alloying, surface reconstruction, crystal surface structure, and heterostructures. Besides, recent catalysts for overall water splitting are also reviewed. Finally, this review paves the way to the rational design and synthesis of new materials for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Binghui Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ruijie Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 200237, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 200237, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China
- State Key Lab of Powder Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
44
|
Xu X, Ji S, Wang H, Wang X, Linkov V, Wang R. Porous hetero-structured nickel oxide/nickel phosphide nanosheets as bifunctional electrocatalyst for hydrogen production via urea electrolysis. J Colloid Interface Sci 2022; 615:163-172. [DOI: 10.1016/j.jcis.2022.01.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 01/06/2023]
|
45
|
Nie F, Yang Z, Dai X, Ren Z, Yin X, Gan Y, Wu B, Cao Y, Cai R, Zhang X. Synergistic coupling of heterostructured porous CoP nanosheets with P doped NiO for highly efficient overall alkaline water splitting. J Colloid Interface Sci 2022; 621:213-221. [PMID: 35461136 DOI: 10.1016/j.jcis.2022.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/03/2023]
Abstract
Exploring non-noble metal materials as bifunctional catalysts for water electrolysis is of great significance for the development and utilization of hydrogen energy. Herein, a flower branch-leaf shaped phosphide/oxide heterogeneous electrocatalyst located on Ni foam (CoP/P-NiO/NF) was developed through hydrothermal and phosphorization strategy. Benefiting from the strong ability to dissociate H2O molecules on P-NiO and the suitable adsorption of intermediate H species on CoP, the optimal CoP/P-NiO/NF exhibited outstanding performance with low overpotentials of 52 mV at current density of 10 mA cm-2, smaller Tafel slopes of 73.6 mV dec-1 for hydrogen evolution reaction (HER). Meanwhile, CoP/P-NiO/NF indicated 265 mV at 100 mA cm-2 with Tafel slope of 101.8 mV dec-1 for oxygen evolution reaction (OER) due to the optimal redistribution of electrons among Ni2+, Co2+ and Co3+ for favorable adsorption/desorption of oxygen-intermediates. Both HER and OER shown robust stability during 32 h without decline. The corresponding two-electrode system for overall alkaline water splitting required a low voltage of 1.6 V at 100 mA cm-2 with long stability (20 h) which is far lower than that on RuO2-Pt/C and many other reported non-noble metal electrocatalysts. This work demonstrates that the synergistic effect and morphology engineering play vital roles in the enhanced electrocatalytic performance.
Collapse
Affiliation(s)
- Fei Nie
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Zhaohui Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xiaoping Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China.
| | - Ziteng Ren
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xueli Yin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yonghao Gan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Baoqiang Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yihua Cao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Run Cai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
46
|
Sha W, Song Y, Liu P, Wang J, Xu B, Feng X, Guo J. Constructing Multiple Heterostructures on Nickel Oxide Using Rare‐earth Oxide and Nickel as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ChemCatChem 2022. [DOI: 10.1002/cctc.202101975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenbo Sha
- Taiyuan University of Technology Key Laboratory of Interface Science and Enginieering in Advanced Materilas, Ministry of Education CHINA
| | - Yanhui Song
- Taiyuan University of Technology Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education CHINA
| | - Peizhi Liu
- Taiyuan University of Technology Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education CHINA
| | - Jingkun Wang
- Taiyuan University of Technology Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education CHINA
| | - Bingshe Xu
- Taiyuan University of Technology Key Laboratory of Interface and Engineering in Advanced Materials, Ministry of Education CHINA
| | - Xinliang Feng
- Shanxi Yuci Broad Wire Products Co., Ltd Shanxi Yuci Broad Wire Products Co., Ltd CHINA
| | - Junjie Guo
- Taiyuan University of Technology 79 Yingze west street Taiyuan CHINA
| |
Collapse
|
47
|
A MOF derived hierarchically porous 3D N-CoP /Ni2P electrode for accelerating hydrogen evolution at high current densities. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63982-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Liu J, Wang Z, Zhang D, Qin Y, Xiong J, Lai J, Wang L. Systematic Engineering on Ni-Based Nanocatalysts Effectively Promote Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108072. [PMID: 35128776 DOI: 10.1002/smll.202108072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Designing a synthesis of ultra-small Ni-based nanomaterials with high intrinsic activity and stability in alkaline hydrogen evolution reaction (HER) is a major challenge. Herein, a series of noble metal doped ultra-small size (4 nm) M-Ni/NiO nanoparticles supported on CNT are rationally designed by a solvent-free microwave reduction method that is fast (60 s), simple, includes no surfactants, extensive (>1 g), and has high yield (82.7%). The Ir-Ni/NiO@CNT has superior performance with a low overpotential of 24.6 mV at 10 mA cm-2 . In addition, the turnover frequency (TOF) value up to 2.51 s-1 and the exchange current density reaches 4.34 mA cm-2 , indicating that the catalyst has better intrinsic catalytic activity. It is further proved by density functional theory (DFT) that the NiO surface is conducive to the adsorption of OH* in the Volmer step while the Ni is inclined to adsorb H*, which synergistically promotes the water-splitting reaction, thereby increasing the catalytic rate of HER. It is believed that this work will provide valuable contributions and inspirations toward the large-scale production of high-performance Ni-based electrocatalysts for HER.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zuochao Wang
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dan Zhang
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingnan Qin
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Juan Xiong
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
49
|
Xiao X, Yang L, Sun W, Chen Y, Yu H, Li K, Jia B, Zhang L, Ma T. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105830. [PMID: 34878210 DOI: 10.1002/smll.202105830] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is regarded as the most effective pathway to generate green energy-hydrogen-which is considered as one of the most promising clean energy solutions to the world's energy crisis and climate change mitigation. Although electrocatalytic water splitting has been proposed for decades, large-scale industrial hydrogen production is hindered by high electricity cost, capital investment, and electrolysis media. Harsh conditions (strong acid/alkaline) are widely used in electrocatalytic mechanism studies, and excellent catalytic activities and efficiencies have been achieved. However, the practical application of electrocatalytic water splitting in harsh conditions encounters several obstacles, such as corrosion issues, catalyst stability, and membrane technical difficulties. Thus, the research on water splitting in mild conditions (neutral/near neutral), even in natural seawater, has aroused increasing attention. However, the mechanism in mild conditions or natural seawater is not clear. Herein, different conditions in electrocatalytic water splitting are reviewed and the effects and proposed mechanisms in the three conditions are summarized. Then, a comparison of the reaction process and the effects of the ions in different electrolytes are presented. Finally, the challenges and opportunities associated with direct electrocatalytic natural seawater splitting and the perspective are presented to promote the progress of hydrogen production by water splitting.
Collapse
Affiliation(s)
- Xue Xiao
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lijun Yang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Hai Yu
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Kangkang Li
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
50
|
Liu M, Chen H, Tang X, Liu H, Tu B, Guo W, Zheng Y, Liu Y, Tang Y, He R, Zhu W. Synthesis of Uranium Single Atom from Radioactive Wastewater for Enhanced Water Dissociation and Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107444. [PMID: 35128796 DOI: 10.1002/smll.202107444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
As a common nuclide in radioactive wastewater, uranium (U) is generally treated by landfill, which induces the massive abandonment of uranium resources. In this work, a pulse voltammetry method for the synthesis of U single atoms on MoS2 (U/MoS2 ) nanosheets from radioactive wastewater for the electrocatalytic alkaline hydrogen evolution reaction (HER) is reported. The mass loading of U single atoms is facilely controlled with high selectivity for coexisting ions in radioactive wastewater. In the electrolyte of 1 m of KOH, U/MoS2 nanosheets with 5.2% of U single atoms exhibit relatively low overpotentials of 72 mV at 10 mA cm-2 . The mechanistic study reveals that the HER on U/MoS2 includes the water dissociation on U single atoms to form OH* and H transfer from OH* to adjacent S-edge atoms. This procedure exhibits decreased activation energy for transition state in water dissociation and optimized Gibbs free energy for H* adsorption.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-Military Integration Institute, Faculty of Science Southwest University of Science and Technology, Southwest University of Science and Technology, Sichuan Mianyang, 621010, China
| | - Huimei Chen
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Xingrui Tang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-Military Integration Institute, Faculty of Science Southwest University of Science and Technology, Southwest University of Science and Technology, Sichuan Mianyang, 621010, China
| | - Huanhuan Liu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-Military Integration Institute, Faculty of Science Southwest University of Science and Technology, Southwest University of Science and Technology, Sichuan Mianyang, 621010, China
| | - Boyuan Tu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-Military Integration Institute, Faculty of Science Southwest University of Science and Technology, Southwest University of Science and Technology, Sichuan Mianyang, 621010, China
| | - Weicong Guo
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-Military Integration Institute, Faculty of Science Southwest University of Science and Technology, Southwest University of Science and Technology, Sichuan Mianyang, 621010, China
| | - Yamin Zheng
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yan Liu
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yongjian Tang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-Military Integration Institute, Faculty of Science Southwest University of Science and Technology, Southwest University of Science and Technology, Sichuan Mianyang, 621010, China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-Military Integration Institute, Faculty of Science Southwest University of Science and Technology, Southwest University of Science and Technology, Sichuan Mianyang, 621010, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-Military Integration Institute, Faculty of Science Southwest University of Science and Technology, Southwest University of Science and Technology, Sichuan Mianyang, 621010, China
| |
Collapse
|