1
|
Chen X, Peng Y, Liu XS. DNA Methylation in Long-Term Memory. Physiology (Bethesda) 2025; 40:0. [PMID: 39907057 DOI: 10.1152/physiol.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Understanding the neural mechanisms of memory has been one of the key questions in biology. Long-term memory, specifically, allows one to travel mentally without constraints of time and space. A long-term memory must have gone through a series of temporal processes: encoding, consolidation, storage, and retrieval. Decades of studies have revealed cellular and molecular mechanisms underlying each process. In this article, we first review the emerging concept of memory engrams and technologies of engram labeling, as these methods provide a new avenue to study the molecular mechanisms for memory. Then, we focus on DNA methylation and its role in long-term memory. Finally, we discuss some key remaining questions in this field and their implications in memory-related disease.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Neuroscience, Columbia University, New York, New York, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, New York, United States
- Department of Neurology, Columbia University Medical Center, Columbia University, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, Columbia University, New York, New York, United States
| | - Yueqing Peng
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, New York, United States
- Department of Neurology, Columbia University Medical Center, Columbia University, New York, New York, United States
| | - X Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, Columbia University, New York, New York, United States
| |
Collapse
|
2
|
Gulmez Karaca K, Bahtiyar S, van Dongen L, Wolf OT, Hermans EJ, Henckens MJAG, Roozendaal B. Posttraining noradrenergic stimulation maintains hippocampal engram reactivation and episodic-like specificity of remote memory. Neuropsychopharmacology 2025:10.1038/s41386-025-02122-2. [PMID: 40341755 DOI: 10.1038/s41386-025-02122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 04/08/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Recent findings indicate that noradrenergic arousal maintains long-term episodic-like specificity of memory. However, the neural mechanism of how norepinephrine can alter the temporal dynamics of systems consolidation to maintain hippocampus dependency of remote memory is currently unknown. Memories are stored within ensembles of neurons that become activated during learning and display strengthened mutual plasticity and connectivity. This strengthened connectivity is believed to guide the coordinated reactivation of these neurons upon subsequent memory recall. Here, we used male transgenic FosTRAP2xtdTomato mice to investigate whether the noradrenergic stimulant yohimbine administered systemically immediately after an episodic-like object-in-context training experience maintained long-term memory specificity which was joined by an enhanced reactivation of training-activated cells within the hippocampus during remote retention testing. We found that saline-treated control mice time-dependently lost their episodic-like specificity of memory, which was associated with a shift in neuronal reactivation from the dorsal hippocampus to the prelimbic cortex at a 14-day retention test. Importantly, yohimbine-treated mice maintained episodic-like specificity of remote memory and retained high neuronal reactivation within the dorsal hippocampus, without a time-dependent increase in prelimbic cortex reactivation. These findings suggest that noradrenergic arousal shortly after training maintains episodic-like specificity of remote memory by strengthening the connectivity between training-activated hippocampal cells during consolidation, and provide a cellular model of how emotional memories remain vivid and detailed.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands.
- UMC Brain Center, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, Netherlands.
| | - Sevgi Bahtiyar
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Linde van Dongen
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Oliver T Wolf
- Department of Cognitive Psychology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Erno J Hermans
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Marloes J A G Henckens
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Benno Roozendaal
- Department of Medical Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Kupke J, Oliveira AMM. The molecular and cellular basis of memory engrams: Mechanisms of synaptic and systems consolidation. Neurobiol Learn Mem 2025; 219:108057. [PMID: 40258487 DOI: 10.1016/j.nlm.2025.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
The capacity to record and store life experiences for periods ranging from days to a lifetime is what allows an individual to adapt and survive. Memory consolidation is the process that drives the stabilization and long-term storage of memory and takes place at two levels - synaptic and systems. Recently, several studies have provided insight into the processes that drive synaptic and systems consolidation through the characterization of the molecular, functional and structural changes of memory engram cells at distinct time points of the memory consolidation process. In this review we summarize and discuss these recent findings that have allowed a significant step forward in our understanding of how episodic memory is formed and stored in engram cells of the hippocampus and the medial prefrontal cortex.
Collapse
Affiliation(s)
- Janina Kupke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany.
| |
Collapse
|
4
|
Chen J, Fang Z, Zhang X, Zheng Y, Chen Z. How Fear Memory is Updated: From Reconsolidation to Extinction? Neurosci Bull 2025:10.1007/s12264-025-01367-7. [PMID: 40205305 DOI: 10.1007/s12264-025-01367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/21/2024] [Indexed: 04/11/2025] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder caused by traumatic past experiences, rooted in the neurocircuits of fear memory formation. Memory processes include encoding, storing, and recalling to forgetting, suggesting the potential to erase fear memories through timely interventions. Conventional strategies such as medications or electroconvulsive therapy often fail to provide permanent relief and come with significant side-effects. This review explores how fear memory may be erased, particularly focusing on the mnemonic phases of reconsolidation and extinction. Reconsolidation strengthens memory, while extinction weakens it. Interfering with memory reconsolidation could diminish the fear response. Alternatively, the extinction of acquired memory could reduce the fear memory response. This review summarizes experimental animal models of PTSD, examines the nature and epidemiology of reconsolidation to extinction, and discusses current behavioral therapy aimed at transforming fear memories to treat PTSD. In sum, understanding how fear memory updates holds significant promise for PTSD treatment.
Collapse
Affiliation(s)
- Jiahui Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuowen Fang
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaolan Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Liu Y, Wang XQ, Zhang P, Haghparast A, He WB, Zhang JJ. Research progress of DNA methylation on the regulation of substance use disorders and the mechanisms. Front Cell Neurosci 2025; 19:1566001. [PMID: 40230379 PMCID: PMC11994631 DOI: 10.3389/fncel.2025.1566001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Drug abuse can damage the central nervous system and lead to substance use disorder (SUD). SUD is influenced by both genetic and environmental factors. Genes determine an individual's susceptibility to drug, while the dysregulation of epigenome drives the abnormal transcription processes, promoting the development of SUD. One of the most widely studied epigenetic mechanisms is DNA methylation, which can be inherited stably. In ontogeny, DNA methylation pattern is dynamic. DNA dysmethylation is prevalent in drug-related psychiatric disorders, resulting in local hypermethylation and transcriptional silencing of related genes. In this review, we summarize the role and regulatory mechanisms of DNA methylation in cocaine, opioids, and methamphetamine in terms of drug exposure, addiction memory, withdrawal relapse, intergenerational inheritance, and focus on cell-specific aspects of the studies with a view to suggesting possible therapeutic regimens for targeting methylation in both human and animal research.
Collapse
Affiliation(s)
- Ya Liu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiao-Qian Wang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Peng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Abbas Haghparast
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Wen-Bin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jian-Jun Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
6
|
Zuzina A, Kolotova D, Balaban P. DNA Methylation and Histone Acetylation Contribute to the Maintenance of LTP in the Withdrawal Behavior Interneurons in Terrestrial Snails. Cells 2024; 13:1850. [PMID: 39594599 PMCID: PMC11592888 DOI: 10.3390/cells13221850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Accumulated data indicate that epigenetic regulations, including histone modifications and DNA methylation, are important means for adjusting the expression of genes in response to various stimuli. In contrast to the success in studying the role of DNA methylation in laboratory rodents, the role of DNA methylation in the terrestrial snail Helix lucorum has been studied only in behavioral experiments. This prompted us to further investigate the role of DNA methylation and the interaction between DNA methylation and histone acetylation in the mechanisms of neuroplasticity in terrestrial snails using in vitro experiments. Dysregulation of DNA methylation by the DNMT inhibitor RG108 significantly suppressed the long-term potentiation (LTP) of synaptic inputs in identified neurons. We then tested whether the RG108-induced weakening of potentiation can be reversed under co-application of histone deacetylase inhibitors sodium butyrate or trichostatin A. It was found that increased histone acetylation significantly compensated for RG108-induced LTP deficiency. These data bring important insights into the functional role of DNA methylation as an important regulatory mechanism and a necessary condition for the development and maintenance of long-term synaptic changes in withdrawal interneurons of terrestrial snails. Moreover, these results support the idea of the interaction of DNA methylation and histone acetylation in the epigenetic regulation of synaptic plasticity.
Collapse
Affiliation(s)
- Alena Zuzina
- Cellular Neurobiology of Learning Laboratory, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
| | | | - Pavel Balaban
- Cellular Neurobiology of Learning Laboratory, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia;
| |
Collapse
|
7
|
Kupke J, Klimmt J, Mudlaff F, Schwab M, Lutsik P, Plass C, Sticht C, Oliveira AMM. Dnmt3a1 regulates hippocampus-dependent memory via the downstream target Nrp1. Neuropsychopharmacology 2024; 49:1528-1539. [PMID: 38499720 PMCID: PMC11319347 DOI: 10.1038/s41386-024-01843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Epigenetic factors are well-established players in memory formation. Specifically, DNA methylation is necessary for the formation of long-term memory in multiple brain regions including the hippocampus. Despite the demonstrated role of DNA methyltransferases (Dnmts) in memory formation, it is unclear whether individual Dnmts have unique or redundant functions in long-term memory formation. Furthermore, the downstream processes controlled by Dnmts during memory consolidation have not been investigated. In this study, we demonstrated that Dnmt3a1, the predominant Dnmt in the adult brain, is required for long-term spatial object recognition and contextual fear memory. Using RNA sequencing, we identified an activity-regulated Dnmt3a1-dependent genomic program in which several genes were associated with functional and structural plasticity. Furthermore, we found that some of the identified genes are selectively dependent on Dnmt3a1, but not its isoform Dnmt3a2. Specifically, we identified Neuropilin 1 (Nrp1) as a downstream target of Dnmt3a1 and further demonstrated the involvement of Nrp1 in hippocampus-dependent memory formation. Importantly, we found that Dnmt3a1 regulates hippocampus-dependent memory via Nrp1. In contrast, Nrp1 overexpression did not rescue memory impairments triggered by reduced Dnmt3a2 levels. Taken together, our study uncovered a Dnmt3a-isoform-specific mechanism in memory formation, identified a novel regulator of memory, and further highlighted the complex and highly regulated functions of distinct epigenetic regulators in brain function.
Collapse
Affiliation(s)
- Janina Kupke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Julien Klimmt
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Franziska Mudlaff
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B4, Canada
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal, QC, H3G 1A4, Canada
| | - Maximilian Schwab
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Carsten Sticht
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
- Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
8
|
Zheng X, Ma R, He E, Peng X, Ma W, Zhang X, Li Y, Li H, Li Y, Gong Z. Study on the Role of Dnmt3a Expression in the Dentate Gyrus of the Hippocampus in Reward Memory. ALPHA PSYCHIATRY 2024; 25:641-647. [PMID: 39553491 PMCID: PMC11562246 DOI: 10.5152/alphapsychiatry.2024.241602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/15/2024] [Indexed: 11/19/2024]
Abstract
Objective Emotional memory has been associated with many psychiatric diseases. Understanding emotional memory could be beneficial in comprehending and discovering new therapies for diseases related to emotional memory, such as depression and post-traumatic stress disorder (PTSD). Our previous study revealed that Dnmt3a expression in the dentate gyrus (DG) contributes to fear memory. However, is there a correlation between Dnmt3a expression in the DG and reward memory? This study aims to explore the relationship between Dnmt3a expression and reward memory. Methods We induced fear memory (Fear group) or reward memory (Reward group) using fear conditioning and social interaction in females, respectively. We then measured the expression levels of Dnmt3a and c-fos after the retrieval of different types of memory. Additionally, we used a recombinant Adeno-Associated Virus (rAAV) to overexpress Dnmt3a in the DG and conducted conditioned place preference (CPP) tests to assess changes in reward memory. Results We observed a significant increase in Dnmt3a and c-fos expression in the Fear group compared with the Reward group. Overexpression of Dnmt3a in the DG led to an increase in time spent in the white box during CPP tests. Conclusion Dnmt3a expression levels varied after the retrieval of fear or reward memory, and overexpression of Dnmt3a in the DG enhanced reward memory. These findings suggest that Dnmt3a expression in the DG plays a role in reward memory.
Collapse
Affiliation(s)
- Xiaoye Zheng
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Ruixue Ma
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Ershu He
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Xin Peng
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Wenhao Ma
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Xueyan Zhang
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Ying Li
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Hanwei Li
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Yanjiao Li
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| | - Zhiting Gong
- Department of Human Anatomy, Dali University School of Medicine, Dali, China
| |
Collapse
|
9
|
Aksan B, Kenkel AK, Yan J, Sánchez Romero J, Missirlis D, Mauceri D. VEGFD signaling balances stability and activity-dependent structural plasticity of dendrites. Cell Mol Life Sci 2024; 81:354. [PMID: 39158743 PMCID: PMC11335284 DOI: 10.1007/s00018-024-05357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Mature neurons have stable dendritic architecture, which is essential for the nervous system to operate correctly. The ability to undergo structural plasticity, required to support adaptive processes like memory formation, is still present in mature neurons. It is unclear what molecular and cellular processes control this delicate balance between dendritic structural plasticity and stabilization. Failures in the preservation of optimal dendrite structure due to atrophy or maladaptive plasticity result in abnormal connectivity and are associated with various neurological diseases. Vascular endothelial growth factor D (VEGFD) is critical for the maintenance of mature dendritic trees. Here, we describe how VEGFD affects the neuronal cytoskeleton and demonstrate that VEGFD exerts its effects on dendrite stabilization by influencing the actin cortex and reducing microtubule dynamics. Further, we found that during synaptic activity-induced structural plasticity VEGFD is downregulated. Our findings revealed that VEGFD, acting on its cognate receptor VEGFR3, opposes structural changes by negatively regulating dendrite growth in cultured hippocampal neurons and in vivo in the adult mouse hippocampus with consequences on memory formation. A phosphoproteomic screening identified several regulatory proteins of the cytoskeleton modulated by VEGFD. Among the actin cortex-associated proteins, we found that VEGFD induces dephosphorylation of ezrin at tyrosine 478 via activation of the striatal-enriched protein tyrosine phosphatase (STEP). Activity-triggered structural plasticity of dendrites was impaired by expression of a phospho-deficient mutant ezrin in vitro and in vivo. Thus, VEGFD governs the equilibrium between stabilization and plasticity of dendrites by acting as a molecular brake of structural remodeling.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Ann-Kristin Kenkel
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Javier Sánchez Romero
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Department Molecular and Cellular Neuroscience, Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
10
|
Brito DVC, Kupke J, Sokolov R, Cambridge S, Both M, Bengtson CP, Rozov A, Oliveira AMM. Biphasic Npas4 expression promotes inhibitory plasticity and suppression of fear memory consolidation in mice. Mol Psychiatry 2024; 29:1929-1940. [PMID: 38347124 PMCID: PMC11408256 DOI: 10.1038/s41380-024-02454-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
Long-term memories are believed to be encoded by unique transcriptional signatures in the brain. The expression of immediate early genes (IEG) promotes structural and molecular changes required for memory consolidation. Recent evidence has shown that the brain is equipped with mechanisms that not only promote, but actively constrict memory formation. However, it remains unknown whether IEG expression may play a role in memory suppression. Here we uncovered a novel function of the IEG neuronal PAS domain protein 4 (Npas4), as an inducible memory suppressor gene of highly salient aversive experiences. Using a contextual fear conditioning paradigm, we found that low stimulus salience leads to monophasic Npas4 expression, while highly salient learning induces a biphasic expression of Npas4 in the hippocampus. The later phase requires N-methyl-D-aspartate (NMDA) receptor activity and is independent of dopaminergic neurotransmission. Our in vivo pharmacological and genetic manipulation experiments suggested that the later phase of Npas4 expression restricts the consolidation of a fear memory and promote behavioral flexibility, by facilitating fear extinction and the contextual specificity of fear responses. Moreover, immunofluorescence and electrophysiological analysis revealed a concomitant increase in synaptic input from cholecystokinin (CCK)-expressing interneurons. Our results demonstrate how salient experiences evoke unique temporal patterns of IEG expression that fine-tune memory consolidation. Moreover, our study provides evidence for inducible gene expression associated with memory suppression as a possible mechanism to balance the consolidation of highly salient memories, and thereby to evade the formation of maladaptive behavior.
Collapse
Affiliation(s)
- David V C Brito
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the Netherlands
| | - Rostilav Sokolov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny, Novgorod, Russia
| | - Sidney Cambridge
- Anatomy II, Dr. Senckenberg Anatomy, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Andrei Rozov
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
- OpenLab of Neurobiology, Kazan Federal University, 420008, Kazan, Russia
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
- Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
11
|
Dirven BCJ, van Melis L, Daneva T, Dillen L, Homberg JR, Kozicz T, Henckens MJAG. Hippocampal Trauma Memory Processing Conveying Susceptibility to Traumatic Stress. Neuroscience 2024; 540:87-102. [PMID: 38220126 DOI: 10.1016/j.neuroscience.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
While the majority of the population is ever exposed to a traumatic event during their lifetime, only a fraction develops posttraumatic stress disorder (PTSD). Disrupted trauma memory processing has been proposed as a core factor underlying PTSD symptomatology. We used transgenic Targeted-Recombination-in-Active-Populations (TRAP) mice to investigate potential alterations in trauma-related hippocampal memory engrams associated with the development of PTSD-like symptomatology. Mice were exposed to a stress-enhanced fear learning paradigm, in which prior exposure to a stressor affects the learning of a subsequent fearful event (contextual fear conditioning using foot shocks), during which neuronal activity was labeled. One week later, mice were behaviorally phenotyped to identify mice resilient and susceptible to developing PTSD-like symptomatology. Three weeks post-learning, mice were re-exposed to the conditioning context to induce remote fear memory recall, and associated hippocampal neuronal activity was assessed. While no differences in the size of the hippocampal neuronal ensemble activated during fear learning were observed between groups, susceptible mice displayed a smaller ensemble activated upon remote fear memory recall in the ventral CA1, higher regional hippocampal parvalbuminneuronal density and a relatively lower activity of parvalbumininterneurons upon recall. Investigation of potential epigenetic regulators of the engram revealed rather generic (rather than engram-specific) differences between groups, with susceptible mice displaying lower hippocampal histone deacetylase 2 expression, and higher methylation and hydroxymethylation levels. These finding implicate variation in epigenetic regulation within the hippocampus, as well as reduced regional hippocampal activity during remote fear memory recall in interindividual differences in susceptibility to traumatic stress.
Collapse
Affiliation(s)
- Bart C J Dirven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Lennart van Melis
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Teya Daneva
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Lieke Dillen
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Medical Imaging, Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Center for Individualized Medicine, Department of Clinical Genomics, and Biochemical Genetics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; University of Pecs Medical School, Department of Anatomy, Pecs, Hungary
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Coda DM, Gräff J. From cellular to fear memory: An epigenetic toolbox to remember. Curr Opin Neurobiol 2024; 84:102829. [PMID: 38128422 DOI: 10.1016/j.conb.2023.102829] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Throughout development, the neuronal epigenome is highly sensitive to external stimuli, yet capable of safeguarding cellular memory for a lifetime. In the adult brain, memories of fearful experiences are rapidly instantiated, yet can last for decades, but the mechanisms underlying such longevity remain unknown. Here, we showcase how fear memory formation and storage - traditionally thought to exclusively affect synapse-based events - elicit profound and enduring changes to the chromatin, proposing epigenetic regulation as a plausible molecular template for mnemonic processes. By comparing these to mechanisms occurring in development and differentiation, we notice that an epigenetic machinery similar to that preserving cellular memories might be employed by brain cells so as to form, store, and retrieve behavioral memories.
Collapse
Affiliation(s)
- Davide Martino Coda
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federale Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federale Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
13
|
Chiapperino L, Panese F. Engram Studies: A Call for Historical, Philosophical, and Sociological Approaches. ADVANCES IN NEUROBIOLOGY 2024; 38:259-272. [PMID: 39008020 DOI: 10.1007/978-3-031-62983-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In this chapter, we identify three distinct avenues of research on the philosophical, historical, and sociopolitical dimensions of engram research. First, we single out the need to refine philosophical understandings of memory within neuroscientific research on the engram. Specifically, we question the place of constructivist and preservationist philosophical claims on memory in the formulation of the engram concept and its operationalization in contemporary neuroscience research. Second, we delve into the received historiography of the engram claiming its disappearance after Richard Semon's (1859-1918) coinage of the concept. Differently from this view, we underline that Semon's legacy is still largely undocumented: Unknown are the ways the engram circulated within studies of organic memory as well as the role Semon's ideas had in specific national contexts of research in neurosciences. Finally, another research gap on the engram concerns a socio-anthropological documentation of the factual and normative resources this research offers to think about memory in healthcare and society. Representations of memory in this research, experimental strategies of intervention into the engram, as well as their translational potential for neurodegenerative (e.g., Alzheimer's disease) and psychiatric (e.g., post-traumatic stress disorder) conditions have not yet received scrutiny notwithstanding their obvious social and political relevance.All these knowledge gaps combined call for a strong commitment towards interdisciplinarity to align the ambitions of a foundational neuroscience of the engram with a socially responsible circulation of this knowledge. What role can the facts, metaphors, and interventional strategies of engram research play in the wider society? With what implications for philosophical questions at the foundation of memory, which have accompanied its study from antiquity? And what can neuro- and social scientists do jointly to shape the social and political framings of engram research?
Collapse
Affiliation(s)
- Luca Chiapperino
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Francesco Panese
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Fuentes-Ramos M, Barco Á. Unveiling Transcriptional and Epigenetic Mechanisms Within Engram Cells: Insights into Memory Formation and Stability. ADVANCES IN NEUROBIOLOGY 2024; 38:111-129. [PMID: 39008013 DOI: 10.1007/978-3-031-62983-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Memory traces for behavioral experiences, such as fear conditioning or taste aversion, are believed to be stored through biophysical and molecular changes in distributed neuronal ensembles across various brain regions. These ensembles are known as engrams, and the cells that constitute them are referred to as engram cells. Recent advancements in techniques for labeling and manipulating neural activity have facilitated the study of engram cells throughout different memory phases, including acquisition, allocation, long-term storage, retrieval, and erasure. In this chapter, we will explore the application of next-generation sequencing methods to engram research, shedding new light on the contribution of transcriptional and epigenetic mechanisms to engram formation and stability.
Collapse
Affiliation(s)
- Miguel Fuentes-Ramos
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain.
| |
Collapse
|
15
|
Liu X, Wang F, Le Q, Ma L. Cellular and molecular basis of drug addiction: The role of neuronal ensembles in addiction. Curr Opin Neurobiol 2023; 83:102813. [PMID: 37972536 DOI: 10.1016/j.conb.2023.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Addiction has been conceptualized as a disease of learning and memory. Learned associations between environmental cues and unconditioned rewards induced by drug administration, which play a critical role in addiction, have been shown to be encoded in sparsely distributed populations of neurons called neuronal ensembles. This review aims to highlight how synaptic remodeling and alterations in signaling pathways that occur specifically in neuronal ensembles contribute to the pathogenesis of addiction. Furthermore, a causal link between transcriptional and epigenetic modifications in neuronal ensembles and the development of the addictive state is proposed. Translational studies of molecular and cellular changes in neuronal ensembles that contribute to drug-seeking behavior, will allow the identification of molecular and circuit targets and interventions for substance use disorders.
Collapse
Affiliation(s)
- Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| |
Collapse
|
16
|
Yang L, Zhang Q, Wu XQ, Qiu XY, Fei F, Lai NX, Zheng YY, Zhang MD, Zhang QY, Wang Y, Wang F, Xu CL, Ruan YP, Wang Y, Chen Z. Chemogenetic inhibition of subicular seizure-activated neurons alleviates cognitive deficit in male mouse epilepsy model. Acta Pharmacol Sin 2023; 44:2376-2387. [PMID: 37488426 PMCID: PMC10692337 DOI: 10.1038/s41401-023-01129-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
Cognitive deficit is a common comorbidity in temporal lobe epilepsy (TLE) and is not well controlled by current therapeutics. How epileptic seizure affects cognitive performance remains largely unclear. In this study we investigated the role of subicular seizure-activated neurons in cognitive impairment in TLE. A bipolar electrode was implanted into hippocampal CA3 in male mice for kindling stimulation and EEG recording; a special promoter with enhanced synaptic activity-responsive element (E-SARE) was used to label seizure-activated neurons in the subiculum; the activity of subicular seizure-activated neurons was manipulated using chemogenetic approach; cognitive function was assessed in object location memory (OLM) and novel object recognition (NOR) tasks. We showed that chemogenetic inhibition of subicular seizure-activated neurons (mainly CaMKIIα+ glutamatergic neurons) alleviated seizure generalization and improved cognitive performance, but inhibition of seizure-activated GABAergic interneurons had no effect on seizure and cognition. For comparison, inhibition of the whole subicular CaMKIIα+ neuron impaired cognitive function in naïve mice in basal condition. Notably, chemogenetic inhibition of subicular seizure-activated neurons enhanced the recruitment of cognition-responsive c-fos+ neurons via increasing neural excitability during cognition tasks. Our results demonstrate that subicular seizure-activated neurons contribute to cognitive impairment in TLE, suggesting seizure-activated neurons as the potential therapeutic target to alleviate cognitive impairment in TLE.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Nan-Xi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Yi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Meng-di Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qing-Yang Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ye-Ping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310013, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
17
|
Matchynski JI, Cilley TS, Sadik N, Makki KM, Wu M, Manwar R, Woznicki AR, Kallakuri S, Arfken CL, Hope BT, Avanaki K, Conti AC, Perrine SA. Quantification of prefrontal cortical neuronal ensembles following conditioned fear learning in a Fos-LacZ transgenic rat with photoacoustic imaging in Vivo. PHOTOACOUSTICS 2023; 33:100551. [PMID: 38021296 PMCID: PMC10658601 DOI: 10.1016/j.pacs.2023.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/19/2023] [Accepted: 08/26/2023] [Indexed: 12/01/2023]
Abstract
Understanding the neurobiology of complex behaviors requires measurement of activity in the discrete population of active neurons, neuronal ensembles, which control the behavior. Conventional neuroimaging techniques ineffectively measure neuronal ensemble activity in the brain in vivo because they assess the average regional neuronal activity instead of the specific activity of the neuronal ensemble that mediates the behavior. Our functional molecular photoacoustic tomography (FM-PAT) system allows direct imaging of Fos-dependent neuronal ensemble activation in Fos-LacZ transgenic rats in vivo. We tested four experimental conditions and found increased FM-PAT signal in prefrontal cortical areas in rats undergoing conditioned fear or novel context exposure. A parallel immunofluorescence ex vivo study of Fos expression found similar findings. These findings demonstrate the ability of FM-PAT to measure Fos-expressing neuronal ensembles directly in vivo and support a mechanistic role for the prefrontal cortex in higher-order processing of response to specific stimuli or environmental cues.
Collapse
Affiliation(s)
- James I Matchynski
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
- Wayne State MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Timothy S Cilley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nareen Sadik
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kassem M Makki
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Min Wu
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Rayyan Manwar
- University of Illinois at Chicago, Department of Bioengineering, Chicago, IL, USA
| | | | - Srinivasu Kallakuri
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Cynthia L Arfken
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruce T Hope
- The National Institute on Drug Abuse (NIDA), Intramural Research Program, Baltimore, MD, USA
| | - Kamran Avanaki
- University of Illinois at Chicago, Department of Bioengineering, Chicago, IL, USA
| | - Alana C Conti
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
18
|
Vanrobaeys Y, Mukherjee U, Langmack L, Beyer SE, Bahl E, Lin LC, Michaelson JJ, Abel T, Chatterjee S. Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation. Nat Commun 2023; 14:6100. [PMID: 37773230 PMCID: PMC10541893 DOI: 10.1038/s41467-023-41715-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Memory consolidation involves discrete patterns of transcriptional events in the hippocampus. Despite the emergence of single-cell transcriptomic profiling techniques, mapping the transcriptomic signature across subregions of the hippocampus has remained challenging. Here, we utilized unbiased spatial sequencing to delineate transcriptome-wide gene expression changes across subregions of the dorsal hippocampus of male mice following learning. We find that each subregion of the hippocampus exhibits distinct yet overlapping transcriptomic signatures. The CA1 region exhibited increased expression of genes related to transcriptional regulation, while the DG showed upregulation of genes associated with protein folding. Importantly, our approach enabled us to define the transcriptomic signature of learning within two less-defined hippocampal subregions, CA1 stratum radiatum, and oriens. We demonstrated that CA1 subregion-specific expression of a transcription factor subfamily has a critical functional role in the consolidation of long-term memory. This work demonstrates the power of spatial molecular approaches to reveal simultaneous transcriptional events across the hippocampus during memory consolidation.
Collapse
Affiliation(s)
- Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| | - Utsav Mukherjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52242, USA
| | - Lucy Langmack
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Biochemistry and Molecular Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Stacy E Beyer
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Ethan Bahl
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Li-Chun Lin
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Jacob J Michaelson
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
Zuzina AB, Vinarskaya AK, Balaban PM. DNA Methylation Inhibition Reversibly Impairs the Long-Term Context Memory Maintenance in Helix. Int J Mol Sci 2023; 24:14068. [PMID: 37762369 PMCID: PMC10531757 DOI: 10.3390/ijms241814068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
This work aims to study the epigenetic mechanisms of regulating long-term context memory in the gastropod mollusk: Helix. We have shown that RG108, an inhibitor of DNA methyltransferase (DNMT), impaired long-term context memory in snails, and this impairment can be reversed within a limited time window: no more than 48 h. Research on the mechanisms through which the long-term context memory impaired by DNMT inhibition could be reinstated demonstrated that this effect depends on several biochemical mechanisms: nitric oxide synthesis, protein synthesis, and activity of the serotonergic system. Memory recovery did not occur if at least one of these mechanisms was impaired. The need for the joint synergic activity of several biochemical systems for a successful memory rescue confirms the assumption that the memory recovery process depends on the process of active reconsolidation, and is not simply a passive weakening of the effect of RG108 over time. Finally, we showed that the reactivation of the impaired memory by RG108, followed by administration of histone deacetylase inhibitor sodium butyrate, led to memory recovery only within a narrow time window: no more than 48 h after memory disruption.
Collapse
Affiliation(s)
| | | | - Pavel M. Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia; (A.B.Z.); (A.K.V.)
| |
Collapse
|
20
|
Poon CH, Liu Y, Pak S, Zhao RC, Aquili L, Tipoe GL, Leung GKK, Chan YS, Yang S, Fung ML, Wu EX, Lim LW. Prelimbic Cortical Stimulation with L-methionine Enhances Cognition through Hippocampal DNA Methylation and Neuroplasticity Mechanisms. Aging Dis 2023; 14:112-135. [PMID: 36818556 PMCID: PMC9937711 DOI: 10.14336/ad.2022.0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Declining global DNA methylation and cognitive impairment are reported to occur in the normal aging process. It is not known if DNA methylation plays a role in the efficacy of memory-enhancing therapies. In this study, aged animals were administered prelimbic cortical deep brain stimulation (PrL DBS) and/or L-methionine (MET) treatment. We found that PrL DBS and MET (MET-PrL DBS) co-administration resulted in hippocampal-dependent spatial memory enhancements in aged animals. Molecular data suggested MET-PrL DBS induced DNA methyltransferase DNMT3a-dependent methylation, robust synergistic upregulation of neuroplasticity-related genes, and simultaneous inhibition of the memory-suppressing gene calcineurin in the hippocampus. We further found that MET-PrL DBS also activated the PKA-CaMKIIα-BDNF pathway, increased hippocampal neurogenesis, and enhanced dopaminergic and serotonergic neurotransmission. We next inhibited the activity of DNA methyltransferase (DNMT) by RG108 infusion in the hippocampus of young animals to establish a causal relationship between DNMT activity and the effects of PrL DBS. Hippocampal DNMT inhibition in young animals was sufficient to recapitulate the behavioral deficits observed in aged animals and abolished the memory-enhancing and molecular effects of PrL DBS. Our findings implicate hippocampal DNMT as a therapeutic target for PrL DBS and pave way for the potential use of non-invasive neuromodulation modalities against dementia.
Collapse
Affiliation(s)
- Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yanzhi Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Sojeong Pak
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, China.
| | | | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,College of Science, Health, Engineering and Education, Discipline of Psychology, Murdoch University, Perth, Australia.
| | - George Lim Tipoe
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Ed Xuekui Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Correspondence should be addressed to: Dr. Lee Wei LIM, Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. .
| |
Collapse
|
21
|
Pratt KJB, Shea JM, Remesal-Gomez L, Bieri G, Smith LK, Couthouis J, Chen CP, Roy IJ, Gontier G, Villeda SA. Loss of neuronal Tet2 enhances hippocampal-dependent cognitive function. Cell Rep 2022; 41:111612. [PMID: 36351399 PMCID: PMC10032941 DOI: 10.1016/j.celrep.2022.111612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
DNA methylation has emerged as a critical modulator of neuronal plasticity and cognitive function. Notwithstanding, the role of enzymes that demethylate DNA remain to be fully explored. Here, we report that loss of ten-eleven translocation methylcytosine dioxygenase 2 (Tet2), which catalyzes oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), in adult neurons enhances cognitive function. In the adult mouse hippocampus, we detected an enrichment of Tet2 in neurons. Viral-mediated neuronal overexpression and RNA interference of Tet2 altered dendritic complexity and synaptic-plasticity-related gene expression in vitro. Overexpression of neuronal Tet2 in adult hippocampus, and loss of Tet2 in adult glutamatergic neurons, resulted in differential hydroxymethylation associated with genes involved in synaptic transmission. Functionally, overexpression of neuronal Tet2 impaired hippocampal-dependent memory, while loss of neuronal Tet2 enhanced memory. Ultimately, these data identify neuronal Tet2 as a molecular target to boost cognitive function.
Collapse
Affiliation(s)
- Karishma J B Pratt
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA 94143, USA; Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeremy M Shea
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA 94143, USA
| | - Laura Remesal-Gomez
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA 94143, USA
| | - Gregor Bieri
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA 94143, USA
| | - Lucas K Smith
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher P Chen
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Irena J Roy
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Geraldine Gontier
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA 94143, USA.
| | - Saul A Villeda
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA 94143, USA; Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA; Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. A New Concept of Associations between Gut Microbiota, Immunity and Central Nervous System for the Innovative Treatment of Neurodegenerative Disorders. Metabolites 2022; 12:1052. [PMID: 36355135 PMCID: PMC9692629 DOI: 10.3390/metabo12111052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Nerve cell death accounts for various neurodegenerative disorders, in which altered immunity to the integrated central nervous system (CNS) might have destructive consequences. This undesirable immune response often affects the progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, schizophrenia and/or amyotrophic lateral sclerosis (ALS). It has been shown that commensal gut microbiota could influence the brain and/or several machineries of immune function. In other words, neurodegenerative disorders may be connected to the gut-brain-immune correlational system. The engrams in the brain could retain the information of a certain inflammation in the body which might be involved in the pathogenesis of neurodegenerative disorders. Tactics involving the use of probiotics and/or fecal microbiota transplantation (FMT) are now evolving as the most promising and/or valuable for the modification of the gut-brain-immune axis. More deliberation of this concept and the roles of gut microbiota would lead to the development of stupendous treatments for the prevention of, and/or therapeutics for, various intractable diseases including several neurodegenerative disorders.
Collapse
|
23
|
Takehara-Nishiuchi K. Flexibility of memory for future-oriented cognition. Curr Opin Neurobiol 2022; 76:102622. [PMID: 35994840 DOI: 10.1016/j.conb.2022.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Abstract
Memories of daily experiences contain incidental details unique to each experience as well as common latent patterns shared with others. Neural representations focusing on the latter aspect can be reinstated by similar new experiences even though their perceptual features do not match the original experiences perfectly. Such flexible memory use allows for faster learning and better decision-making in novel situations. Here, I review evidence from rodent and primate electrophysiological studies to discuss how memory flexibility is implemented in the spiking activity of neuronal ensembles. These findings uncovered innate and learned coding properties and their potential refinement during sleep that support flexible integration and application of memories for better future adaptation.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, University of Toronto, Toronto, M5S 3G3, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G3, Canada; Neuroscience Program, University of Toronto, Toronto, M5S 3G3, Canada.
| |
Collapse
|
24
|
Sagarkar S, Bhat N, Sapre M, Dudhabhate B, Kokare DM, Subhedar NK, Sakharkar AJ. TET1-induced DNA demethylation in dentate gyrus is important for reward conditioning and reinforcement. Mol Neurobiol 2022; 59:5426-5442. [PMID: 35705787 DOI: 10.1007/s12035-022-02917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Neuroadaptations in neurocircuitry of reward memories govern the persistent and compulsive behaviors. The study of the role of hippocampus in processing of reward memory and its retrieval is critical to our understanding of addiction and relapse. The aim of this study is to probe the epigenetic mechanisms underlying reward memory in the frame of dentate gyrus (DG). To that end, the rats conditioned to the food baited arm of a Y-maze and subjected to memory probe trial. The hippocampus of conditioned rats displayed higher mRNA levels of Ten-eleven translocase 1 (Tet1) and brain-derived neurotrophic factor (Bdnf) after memory probe trial. The DNA hydroxymethylation and TET1 occupancy at the Bdnf promoters showed concomitant increase. Stereotactic administration of Tet1 siRNA in the DG before and after conditioning inhibited reward memory formation and recall, respectively. Administration of Tet1 siRNA impaired the reward memory recall that was reinstated following administration of exogenous BDNF peptide or after wash-off period of 8 days. Infusion of a MEK/ERK inhibitor, U0126 in the DG inhibited reward memory retrieval. The TET1-induced DNA demethylation at the Bdnf promoters raised BDNF levels in the hippocampus, thereby setting the stage for reward memory retrieval. The study underscores the causative role of TET1 in the DG for reward memory formation and recall.
Collapse
Affiliation(s)
- Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India.
| | - Nagashree Bhat
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Madhura Sapre
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Biru Dudhabhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Pune, 411 008, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
25
|
Yan N, Li Y, Xing Y, Wu J, Li J, Liang Y, Tang Y, Wang Z, Song H, Wang H, Xiao S, Lu M. Developmental arsenic exposure impairs cognition, directly targets DNMT3A, and reduces DNA methylation. EMBO Rep 2022; 23:e54147. [PMID: 35373418 PMCID: PMC9171692 DOI: 10.15252/embr.202154147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Developmental arsenic exposure has been associated with cognitive deficits in epidemiological studies, but the underlying mechanisms remain poorly understood. Here, we establish a mouse model of developmental arsenic exposure exhibiting deficits of recognition and spatial memory in the offspring. These deficits are associated with genome-wide DNA hypomethylation and abnormal expression of cognition-related genes in the hippocampus. Arsenic atoms directly bind to the cysteine-rich ADD domain of DNA methyltransferase 3A (DNMT3A), triggering ubiquitin- and proteasome-mediated degradation of DNMT3A in different cellular contexts. DNMT3A degradation leads to genome-wide DNA hypomethylation in mouse embryonic fibroblasts but not in non-embryonic cell lines. Treatment with metformin, a first-line antidiabetic agent reported to increase DNA methylation, ameliorates the behavioral deficits and normalizes the aberrant expression of cognition-related genes and DNA methylation in the hippocampus of arsenic-exposed offspring. Our study establishes a DNA hypomethylation effect of developmental arsenic exposure and proposes a potential treatment against cognitive deficits in the offspring of pregnant women in arsenic-contaminated areas.
Collapse
Affiliation(s)
- Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuntong Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yangfei Xing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabing Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Ortega-de San Luis C, Ryan TJ. Understanding the physical basis of memory: Molecular mechanisms of the engram. J Biol Chem 2022; 298:101866. [PMID: 35346687 PMCID: PMC9065729 DOI: 10.1016/j.jbc.2022.101866] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Tomás J Ryan
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Kaplan G, Xu H, Abreu K, Feng J. DNA Epigenetics in Addiction Susceptibility. Front Genet 2022; 13:806685. [PMID: 35145550 PMCID: PMC8821887 DOI: 10.3389/fgene.2022.806685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Addiction is a chronically relapsing neuropsychiatric disease that occurs in some, but not all, individuals who use substances of abuse. Relatively little is known about the mechanisms which contribute to individual differences in susceptibility to addiction. Neural gene expression regulation underlies the pathogenesis of addiction, which is mediated by epigenetic mechanisms, such as DNA modifications. A growing body of work has demonstrated distinct DNA epigenetic signatures in brain reward regions that may be associated with addiction susceptibility. Furthermore, factors that influence addiction susceptibility are also known to have a DNA epigenetic basis. In the present review, we discuss the notion that addiction susceptibility has an underlying DNA epigenetic basis. We focus on major phenotypes of addiction susceptibility and review evidence of cell type-specific, time dependent, and sex biased effects of drug use. We highlight the role of DNA epigenetics in these diverse processes and propose its contribution to addiction susceptibility differences. Given the prevalence and lack of effective treatments for addiction, elucidating the DNA epigenetic mechanism of addiction vulnerability may represent an expeditious approach to relieving the addiction disease burden.
Collapse
|
28
|
Xu M, Zhu J, Liu XD, Luo MY, Xu NJ. Roles of physical exercise in neurodegeneration: reversal of epigenetic clock. Transl Neurodegener 2021; 10:30. [PMID: 34389067 PMCID: PMC8361623 DOI: 10.1186/s40035-021-00254-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
The epigenetic clock is defined by the DNA methylation (DNAm) level and has been extensively applied to distinguish biological age from chronological age. Aging-related neurodegeneration is associated with epigenetic alteration, which determines the status of diseases. In recent years, extensive research has shown that physical exercise (PE) can affect the DNAm level, implying a reversal of the epigenetic clock in neurodegeneration. PE also regulates brain plasticity, neuroinflammation, and molecular signaling cascades associated with epigenetics. This review summarizes the effects of PE on neurodegenerative diseases via both general and disease-specific DNAm mechanisms, and discusses epigenetic modifications that alleviate the pathological symptoms of these diseases. This may lead to probing of the underpinnings of neurodegenerative disorders and provide valuable therapeutic references for cognitive and motor dysfunction.
Collapse
Affiliation(s)
- Miao Xu
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, 650500, China.,Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - JiaYi Zhu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xian-Dong Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming-Ying Luo
- Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, 650500, China
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
29
|
Zocher S, Overall RW, Berdugo-Vega G, Rund N, Karasinsky A, Adusumilli VS, Steinhauer C, Scheibenstock S, Händler K, Schultze JL, Calegari F, Kempermann G. De novo DNA methylation controls neuronal maturation during adult hippocampal neurogenesis. EMBO J 2021; 40:e107100. [PMID: 34337766 PMCID: PMC8441477 DOI: 10.15252/embj.2020107100] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Adult neurogenesis enables the life‐long addition of functional neurons to the hippocampus and is regulated by both cell‐intrinsic molecular programs and behavioral activity. De novo DNA methylation is crucial for embryonic brain development, but its role during adult hippocampal neurogenesis has remained unknown. Here, we show that de novo DNA methylation is critical for maturation and functional integration of adult‐born neurons in the mouse hippocampus. Bisulfite sequencing revealed that de novo DNA methyltransferases target neuronal enhancers and gene bodies during adult hippocampal neural stem cell differentiation, to establish neuronal methylomes and facilitate transcriptional up‐regulation of neuronal genes. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells did not affect proliferation or fate specification, but specifically impaired dendritic outgrowth and synaptogenesis of newborn neurons, thereby hampering their functional maturation. Consequently, abolishing de novo DNA methylation modulated activation patterns in the hippocampal circuitry and caused specific deficits in hippocampus‐dependent learning and memory. Our results demonstrate that proper establishment of neuronal methylomes during adult neurogenesis is fundamental for hippocampal function.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gabriel Berdugo-Vega
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Nicole Rund
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Anne Karasinsky
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Vijay S Adusumilli
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Christina Steinhauer
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sina Scheibenstock
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Federico Calegari
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
30
|
Bellver-Sanchis A, Pallàs M, Griñán-Ferré C. The Contribution of Epigenetic Inheritance Processes on Age-Related Cognitive Decline and Alzheimer's Disease. EPIGENOMES 2021; 5:15. [PMID: 34968302 PMCID: PMC8594669 DOI: 10.3390/epigenomes5020015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
During the last years, epigenetic processes have emerged as important factors for many neurodegenerative diseases, such as Alzheimer's disease (AD). These complex diseases seem to have a heritable component; however, genome-wide association studies failed to identify the genetic loci involved in the etiology. So, how can these changes be transmitted from one generation to the next? Answering this question would allow us to understand how the environment can affect human populations for multiple generations and explain the high prevalence of neurodegenerative diseases, such as AD. This review pays particular attention to the relationship among epigenetics, cognition, and neurodegeneration across generations, deepening the understanding of the relevance of heritability in neurodegenerative diseases. We highlight some recent examples of EI induced by experiences, focusing on their contribution of processes in learning and memory to point out new targets for therapeutic interventions. Here, we first describe the prominent role of epigenetic factors in memory processing. Then, we briefly discuss aspects of EI. Additionally, we summarize evidence of how epigenetic marks inherited by experience and/or environmental stimuli contribute to cognitive status offspring since better knowledge of EI can provide clues in the appearance and development of age-related cognitive decline and AD.
Collapse
Affiliation(s)
| | | | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028 Barcelona, Spain; (A.B.-S.); (M.P.)
| |
Collapse
|
31
|
Fuentes-Ramos M, Alaiz-Noya M, Barco A. Transcriptome and epigenome analysis of engram cells: Next-generation sequencing technologies in memory research. Neurosci Biobehav Rev 2021; 127:865-875. [PMID: 34097980 DOI: 10.1016/j.neubiorev.2021.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Abstract
Transcription and epigenetic changes are integral components of the neuronal response to stimulation and have been postulated to be drivers or substrates for enduring changes in animal behavior, including learning and memory. Memories are thought to be deposited in neuronal assemblies called engrams, i.e., groups of cells that undergo persistent physical or chemical changes during learning and are selectively reactivated to retrieve the memory. Despite the research progress made in recent years, the identity of specific epigenetic changes, if any, that occur in these cells and subsequently contribute to the persistence of memory traces remains unknown. The analysis of these changes is challenging due to the difficulty of exploring molecular alterations that only occur in a relatively small percentage of cells embedded in a complex tissue. In this review, we discuss the recent advances in this field and the promise of next-generation sequencing (NGS) and epigenome editing methods for overcoming these challenges and address long-standing questions concerning the role of epigenetic mechanisms in memory encoding, maintenance and expression.
Collapse
Affiliation(s)
- Miguel Fuentes-Ramos
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Marta Alaiz-Noya
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
32
|
Han DH, Park P, Choi DI, Bliss TVP, Kaang BK. The essence of the engram: Cellular or synaptic? Semin Cell Dev Biol 2021; 125:122-135. [PMID: 34103208 DOI: 10.1016/j.semcdb.2021.05.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Memory is composed of various phases including cellular consolidation, systems consolidation, reconsolidation, and extinction. In the last few years it has been shown that simple association memories can be encoded by a subset of the neuronal population called engram cells. Activity of these cells is necessary and sufficient for the recall of association memory. However, it is unclear which molecular mechanisms allow cellular engrams to encode the diverse phases of memory. Further research is needed to examine the possibility that it is the synapses between engram cells (the synaptic engram) that constitute the memory. In this review we summarize recent findings on cellular engrams with a focus on different phases of memory, and discuss the distinct molecular mechanism required for cellular and synaptic engrams.
Collapse
Affiliation(s)
- Dae Hee Han
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Pojeong Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Il Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Tim V P Bliss
- Group leader emeritus, The Francis Crick Institute, 1 Midland Rd, Somers Town, London NW1 1AT, UK
| | - Bong-Kiun Kaang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
33
|
Gulmez Karaca K, Brito DVC, Kupke J, Zeuch B, Oliveira AMM. Engram reactivation during memory retrieval predicts long-term memory performance in aged mice. Neurobiol Aging 2021; 101:256-261. [PMID: 33647524 DOI: 10.1016/j.neurobiolaging.2021.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Age-related cognitive decline preferentially targets long-lasting episodic memories that require intact hippocampal function. Memory traces (or engrams) are believed to be encoded within the neurons activated during learning (neuronal ensembles), and recalled by reactivation of the same population. However, whether engram reactivation dictates memory performance late in life is not known. Here, we labeled neuronal ensembles formed during object location recognition learning in the dentate gyrus, and analyzed the reactivation of this population during long-term memory recall in young adult, cognitively impaired- and unimpaired-aged mice. We found that reactivation of memory-encoding neuronal ensembles at long-term memory recall was disrupted in impaired but not unimpaired-aged mice. Furthermore, we showed that the memory performance in the aged population correlated with the degree of engram reactivation at long-term memory recall. Overall, our data implicates recall-induced engram reactivation as a prediction factor of memory performance in aging. Moreover, our findings suggest impairments in neuronal ensemble stabilization and/or reactivation as an underlying mechanism in age-dependent cognitive decline.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Benjamin Zeuch
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
34
|
Mozolewski P, Jeziorek M, Schuster CM, Bading H, Frost B, Dobrowolski R. The role of nuclear Ca2+ in maintaining neuronal homeostasis and brain health. J Cell Sci 2021; 134:jcs254904. [PMID: 33912918 PMCID: PMC8084578 DOI: 10.1242/jcs.254904] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear Ca2+ has emerged as one of the most potent mediators of the dialogue between neuronal synapses and the nucleus that regulates heterochromatin states, transcription factor activity, nuclear morphology and neuronal gene expression induced by synaptic activity. Recent studies underline the importance of nuclear Ca2+ signaling in long-lasting, activity-induced adaptation and maintenance of proper brain function. Diverse forms of neuroadaptation require transient nuclear Ca2+ signaling and cyclic AMP-responsive element-binding protein (CREB1, referred to here as CREB) as its prime target, which works as a tunable switch to drive and modulate specific gene expression profiles associated with memory, pain, addiction and neuroprotection. Furthermore, a reduction of nuclear Ca2+ levels has been shown to be neurotoxic and a causal factor driving the progression of neurodegenerative disorders, as well as affecting neuronal autophagy. Because of its central role in the brain, deficits in nuclear Ca2+ signaling may underlie a continuous loss of neuroprotection in the aging brain, contributing to the pathophysiology of Alzheimer's disease. In this Review, we discuss the principles of the 'nuclear calcium hypothesis' in the context of human brain function and its role in controlling diverse forms of neuroadaptation and neuroprotection. Furthermore, we present the most relevant and promising perspectives for future studies.
Collapse
Affiliation(s)
- Pawel Mozolewski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Maciej Jeziorek
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Christoph M. Schuster
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 345 and INF 366, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 345 and INF 366, 69120 Heidelberg, Germany
| | - Bess Frost
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
35
|
Rao-Ruiz P, Visser E, Mitrić M, Smit AB, van den Oever MC. A Synaptic Framework for the Persistence of Memory Engrams. Front Synaptic Neurosci 2021; 13:661476. [PMID: 33841124 PMCID: PMC8024575 DOI: 10.3389/fnsyn.2021.661476] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022] Open
Abstract
The ability to store and retrieve learned information over prolonged periods of time is an essential and intriguing property of the brain. Insight into the neurobiological mechanisms that underlie memory consolidation is of utmost importance for our understanding of memory persistence and how this is affected in memory disorders. Recent evidence indicates that a given memory is encoded by sparsely distributed neurons that become highly activated during learning, so-called engram cells. Research by us and others confirms the persistent nature of cortical engram cells by showing that these neurons are required for memory expression up to at least 1 month after they were activated during learning. Strengthened synaptic connectivity between engram cells is thought to ensure reactivation of the engram cell network during retrieval. However, given the continuous integration of new information into existing neuronal circuits and the relatively rapid turnover rate of synaptic proteins, it is unclear whether a lasting learning-induced increase in synaptic connectivity is mediated by stable synapses or by continuous dynamic turnover of synapses of the engram cell network. Here, we first discuss evidence for the persistence of engram cells and memory-relevant adaptations in synaptic plasticity, and then propose models of synaptic adaptations and molecular mechanisms that may support memory persistence through the maintenance of enhanced synaptic connectivity within an engram cell network.
Collapse
Affiliation(s)
- Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther Visser
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miodrag Mitrić
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Molecular and cellular mechanisms of engram allocation and maintenance. Brain Res Bull 2021; 170:274-282. [PMID: 33647419 DOI: 10.1016/j.brainresbull.2021.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023]
Abstract
Understanding how we learn and remember has been a long-standing question in neuroscience. Technological developments of the past 15 years have allowed for dramatically increased access to the neurons that hold the physical representation of memory, also known as a memory trace or engram. Such developments have tremendously facilitated advancement of the memory field, since they made possible interrogation of the cellular and molecular mechanisms underlying memory formation with unprecedented cellular specificity. Here, we discuss the studies that have investigated rules governing neuronal recruitment to a particular memory engram. Furthermore, we provide an overview of the evidence that functional and structural changes associated with memory consolidation occur in engram neurons. Moreover, we summarize the expanding literature showing that transcriptional regulatory factors such as transcription factors and epigenetic mechanisms play an important role in the maintained allocation of behaviorally-selected neurons to an engram. Together, these studies have begun elucidating how neuronal networks are selected and modified in order to support memory formation and storage.
Collapse
|
37
|
Brito DVC, Gulmez Karaca K, Kupke J, Frank L, Oliveira AMM. MeCP2 gates spatial learning-induced alternative splicing events in the mouse hippocampus. Mol Brain 2020; 13:156. [PMID: 33203444 PMCID: PMC7672966 DOI: 10.1186/s13041-020-00695-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Long-term memory formation is supported by functional and structural changes of neuronal networks, which rely on de novo gene transcription and protein synthesis. The modulation of the neuronal transcriptome in response to learning depends on transcriptional and post-transcriptional mechanisms. DNA methylation writers and readers regulate the activity-dependent genomic program required for memory consolidation. The most abundant DNA methylation reader, the Methyl CpG binding domain protein 2 (MeCP2), has been shown to regulate alternative splicing, but whether it establishes splicing events important for memory consolidation has not been investigated. In this study, we identified the alternative splicing profile of the mouse hippocampus in basal conditions and after a spatial learning experience, and investigated the requirement of MeCP2 for these processes. We observed that spatial learning triggers a wide-range of alternative splicing events in transcripts associated with structural and functional remodeling and that virus-mediated knockdown of MeCP2 impairs learning-dependent post-transcriptional responses of mature hippocampal neurons. Furthermore, we found that MeCP2 preferentially affected the splicing modalities intron retention and exon skipping and guided the alternative splicing of distinct set of genes in baseline conditions and after learning. Lastly, comparative analysis of the MeCP2-regulated transcriptome with the alternatively spliced mRNA pool, revealed that MeCP2 disruption alters the relative abundance of alternatively spliced isoforms without affecting the overall mRNA levels. Taken together, our findings reveal that adult hippocampal MeCP2 is required to finetune alternative splicing events in basal conditions, as well as in response to spatial learning. This study provides new insight into how MeCP2 regulates brain function, particularly cognitive abilities, and sheds light onto the pathophysiological mechanisms of Rett syndrome, that is characterized by intellectual disability and caused by mutations in the Mecp2 gene.
Collapse
Affiliation(s)
- David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.,Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Lukas Frank
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant (Heidelberg University), Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
38
|
Brito DVC, Gulmez Karaca K, Kupke J, Mudlaff F, Zeuch B, Gomes R, Lopes LV, Oliveira AMM. Modeling human age-associated increase in Gadd45γ expression leads to spatial recognition memory impairments in young adult mice. Neurobiol Aging 2020; 94:281-286. [PMID: 32711258 DOI: 10.1016/j.neurobiolaging.2020.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/22/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022]
Abstract
Aging is associated with the progressive decay of cognitive function. Hippocampus-dependent processes, such as the formation of spatial memory, are particularly vulnerable to aging. Currently, the molecular mechanisms responsible for age-dependent cognitive decline are largely unknown. Here, we investigated the expression and function of the growth arrest DNA damage gamma (Gadd45γ) during aging and cognition. We report that Gadd45γ expression is increased in the hippocampus of aged humans and that Gadd45γ overexpression in the young adult mouse hippocampus compromises cognition. Moreover, Gadd45γ overexpression in hippocampal neurons disrupted cAMP response element-binding protein signaling and the expression of well-established activity-regulated genes. This work shows that Gadd45γ expression is tightly controlled in the hippocampus and its disruption may be a mechanism contributing to age-related cognitive impairments observed in humans.
Collapse
Affiliation(s)
- David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Franziska Mudlaff
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Benjamin Zeuch
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany; Directors' Research, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rui Gomes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Luísa V Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
39
|
Borodinova AA, Balaban PM. Epigenetic Regulation as a Basis for Long-Term Changes in the Nervous System: In Search of Specificity Mechanisms. BIOCHEMISTRY (MOSCOW) 2020; 85:994-966. [DOI: 10.1134/s0006297920090023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Adaptive long-term changes in the functioning of nervous system (plasticity, memory) are not written in the genome, but are directly associated with the changes in expression of many genes comprising epigenetic regulation. Summarizing the known data regarding the role of epigenetics in regulation of plasticity and memory, we would like to highlight several key aspects. (i) Different chromatin remodeling complexes and DNA methyltransferases can be organized into high-order multiprotein repressor complexes that are cooperatively acting as the “molecular brake pads”, selectively restricting transcriptional activity of specific genes at rest. (ii) Relevant physiological stimuli induce a cascade of biochemical events in the activated neurons resulting in translocation of different signaling molecules (protein kinases, NO-containing complexes) to the nucleus. (iii) Stimulus-specific nitrosylation and phosphorylation of different epigenetic factors is linked to a decrease in their enzymatic activity or changes in intracellular localization that results in temporary destabilization of the repressor complexes. (iv) Removing “molecular brakes” opens a “critical time window” for global and local epigenetic changes, triggering specific transcriptional programs and modulation of synaptic connections efficiency. It can be assumed that the reversible post-translational histone modifications serve as the basis of plastic changes in the neural network. On the other hand, DNA methylation and methylation-dependent 3D chromatin organization can serve a stable molecular basis for long-term maintenance of plastic changes and memory.
Collapse
|
40
|
Creighton SD, Stefanelli G, Reda A, Zovkic IB. Epigenetic Mechanisms of Learning and Memory: Implications for Aging. Int J Mol Sci 2020; 21:E6918. [PMID: 32967185 PMCID: PMC7554829 DOI: 10.3390/ijms21186918] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The neuronal epigenome is highly sensitive to external events and its function is vital for producing stable behavioral outcomes, such as the formation of long-lasting memories. The importance of epigenetic regulation in memory is now well established and growing evidence points to altered epigenome function in the aging brain as a contributing factor to age-related memory decline. In this review, we first summarize the typical role of epigenetic factors in memory processing in a healthy young brain, then discuss the aspects of this system that are altered with aging. There is general agreement that many epigenetic marks are modified with aging, but there are still substantial inconsistencies in the precise nature of these changes and their link with memory decline. Here, we discuss the potential source of age-related changes in the epigenome and their implications for therapeutic intervention in age-related cognitive decline.
Collapse
Affiliation(s)
- Samantha D. Creighton
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
| | - Gilda Stefanelli
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
| | - Anas Reda
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S, Canada;
| | - Iva B. Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (S.D.C.); (G.S.)
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S, Canada;
| |
Collapse
|
41
|
Zovkic IB. Epigenetics and memory: an expanded role for chromatin dynamics. Curr Opin Neurobiol 2020; 67:58-65. [PMID: 32905876 DOI: 10.1016/j.conb.2020.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
Nearly two decades of research on epigenetic mechanisms in the brain have demonstrated that epigenetic marks that were once thought to be relatively static are dynamically and reversibly regulated in the brain during memory formation. Here, we focus on new research that has further expanded the dynamic nature of chromatin in memory formation through three key mechanisms. First, we discuss the emerging role of histone variants, which undergo learning-induced turnover or exchange, a process in which one histone type replaces another in chromatin. Next, we focus on chromatin remodeling complexes, which are tightly intertwined with all aspects of chromatin regulation and as such, can reposition or evict nucleosomes to promote transcriptional induction, and mediate histone variant exchange. Finally, we discuss how differential distribution of histone marks to localized narrow genomic regions and/or broadly distributed chromatin domains impact transcriptional outcomes and memory formation. Together, these studies mark a shift toward unraveling the complexity of chromatin function in memory and offer new strategies for fine tuning transcriptional outcomes to modify longevity, specificity and strength of memories.
Collapse
Affiliation(s)
- Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
42
|
Cui D, Mesaros A, Burdeos G, Voigt I, Giavalisco P, Hinze Y, Purrio M, Neumaier B, Drzezga A, Obata Y, Endepols H, Xu X. Dnmt3a2/Dnmt3L Overexpression in the Dopaminergic System of Mice Increases Exercise Behavior through Signaling Changes in the Hypothalamus. Int J Mol Sci 2020; 21:ijms21176297. [PMID: 32878077 PMCID: PMC7504350 DOI: 10.3390/ijms21176297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022] Open
Abstract
Dnmt3a2, a de novo DNA methyltransferase, is induced by neuronal activity and participates in long-term memory formation with the increased expression of synaptic plasticity genes. We wanted to determine if Dnmt3a2 with its partner Dnmt3L may influence motor behavior via the dopaminergic system. To this end, we generated a mouse line, Dnmt3a2/3LDat/wt, with dopamine transporter (DAT) promotor driven Dnmt3a2/3L overexpression. The mice were studied with behavioral paradigms (e.g., cylinder test, open field, and treadmill), brain slice patch clamp recordings, ex vivo metabolite analysis, and in vivo positron emission tomography (PET) using the dopaminergic tracer 6-[18F]FMT. The results showed that spontaneous activity and exercise performance were enhanced in Dnmt3a2/3LDat/wt mice compared to Dnmt3a2/3Lwt/wt controls. Dopaminergic substantia nigra pars compacta neurons of Dnmt3a2/3LDat/wt animals displayed a higher fire frequency and excitability. However, dopamine concentration was not increased in the striatum, and dopamine metabolite concentration was even significantly decreased. Striatal 6-[18F]FMT uptake, reflecting aromatic L-amino acid decarboxylase activity, was the same in Dnmt3a2/3LDat/wt mice and controls. [18F]FDG PET showed that hypothalamic metabolic activity was tightly linked to motor behavior in Dnmt3a2/3LDat/wt mice. Furthermore, dopamine biosynthesis and motor-related metabolic activity were correlated in the hypothalamus. Our findings suggest that Dnmt3a2/3L, when overexpressed in dopaminergic neurons, modulates motor performance via activation of the nigrostriatal pathway. This does not involve increased dopamine synthesis.
Collapse
Affiliation(s)
- Di Cui
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
- Correspondence: (D.C.); (X.X.)
| | - Andrea Mesaros
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Gregor Burdeos
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Hermann-Rodewald Street, 9, 24118 Kiel, Germany
| | - Ingo Voigt
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Yvonne Hinze
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Martin Purrio
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Bernd Neumaier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany; (B.N.); (H.E.)
- Institute for Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Köln, Germany;
| | - Yayoi Obata
- Department of Bioscience, Tokyo University of Agriculture, Faculty of Life Sciences, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan;
| | - Heike Endepols
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany; (B.N.); (H.E.)
- Institute for Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Köln, Germany;
| | - Xiangru Xu
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
- Department of Anesthesiology, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06519, USA
- Correspondence: (D.C.); (X.X.)
| |
Collapse
|