1
|
Zhang X, Liu Y, Xu F, Zhou C, Lu K, Fang B, Wang L, Huang L, Xu Z. Protein arginine methyltransferase-6 regulates heterogeneous nuclear ribonucleoprotein-F expression and is a potential target for the treatment of neuropathic pain. Neural Regen Res 2025; 20:2682-2696. [PMID: 39503430 PMCID: PMC11801299 DOI: 10.4103/nrr.nrr-d-23-01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/20/2024] [Accepted: 02/18/2024] [Indexed: 02/08/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00029/figure1/v/2024-11-05T132919Z/r/image-tiff Protein arginine methyltransferase-6 participates in a range of biological functions, particularly RNA processing, transcription, chromatin remodeling, and endosomal trafficking. However, it remains unclear whether protein arginine methyltransferase-6 modifies neuropathic pain and, if so, what the mechanisms of this effect. In this study, protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model, chronic constriction injury model and bone cancer pain model, using immunohistochemistry, western blotting, immunoprecipitation, and label-free proteomic analysis. The results showed that protein arginine methyltransferase-6 mostly co-localized with β-tubulin III in the dorsal root ganglion, and that its expression decreased following spared nerve injury, chronic constriction injury and bone cancer pain. In addition, PRMT6 knockout (Prmt6-/-) mice exhibited pain hypersensitivity. Furthermore, the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression. Moreover, when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury, increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn, and the response to mechanical stimuli was enhanced. Mechanistically, protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F. Additionally, protein arginine methyltransferase-6-mediated modulation of heterogeneous nuclear ribonucleoprotein-F expression required amino acids 319 to 388, but not classical H3R2 methylation. These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target for the treatment of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yuqi Liu
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangxia Xu
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengcheng Zhou
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaimei Lu
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Fang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijuan Wang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lina Huang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zifeng Xu
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
2
|
Cho Y, Hwang JW, Bedford MT, Song DG, Kim SN, Kim YK. CARM1 regulates tubulin autoregulation through PI3KC2α R175 methylation. Cell Commun Signal 2025; 23:120. [PMID: 40045375 PMCID: PMC11884010 DOI: 10.1186/s12964-025-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/23/2025] [Indexed: 03/09/2025] Open
Abstract
Tubulin is crucial in several cellular processes, including intracellular organization, organelle transport, motility, and chromosome segregation. Intracellular tubulin concentration is tightly regulated by an autoregulation mechanism, in which excess free tubulin promotes tubulin mRNA degradation. However, the details of how changes in free tubulin levels initiate this autoregulation remain unclear. In this study, we identified coactivator-associated arginine methyltransferase 1 (CARM1)-phosphatidylinositol 3-kinase class 2α (PI3KC2α) axis as a novel regulator of tubulin autoregulation. CARM1 stabilizes PI3KC2α by methylating its R175 residue. Once PI3KC2α is not methylated, it becomes unstable, leading to decreased cellular levels. Loss of PI3KC2α results in the release of tetratricopeptide repeat domain 5 (TTC5), which initiates tubulin autoregulation. Thus, PI3KC2α, along with its CARM1-mediated arginine methylation, regulates the initiation of tubulin autoregulation. Additionally, disruption of the CARM1-PI3KC2α axis decreases intracellular tubulin levels, leading to a synergistic increase in the cytotoxicity of microtubule-targeting agents (MTAs). Taken together, our study demonstrates that the CARM1-PI3KC2α axis is a key regulator of TTC5-mediated tubulin autoregulation and that disrupting this axis enhances the anti-cancer activity of MTAs.
Collapse
Affiliation(s)
- Yena Cho
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jee Won Hwang
- College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dae-Geun Song
- Natural Products Research Institute, KIST Gangneung, Gangneung, 25451, Republic of Korea
- Division of Natural Product Applied Science, University of Science and Technology KIST School, Seoul, 02792, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, KIST Gangneung, Gangneung, 25451, Republic of Korea
- Division of Natural Product Applied Science, University of Science and Technology KIST School, Seoul, 02792, Republic of Korea
| | - Yong Kee Kim
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
- College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
3
|
Xu S, Long K, Wang T, Zhu Y, Zhang Y, Wang W. Opto-Epigenetic Regulation of Histone Arginine Asymmetric Dimethylation via Type I Protein Arginine Methyltransferase Inhibition. J Med Chem 2025; 68:4373-4381. [PMID: 39961800 PMCID: PMC11873949 DOI: 10.1021/acs.jmedchem.4c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/12/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Histone arginine asymmetric dimethylation, which is mainly catalyzed by type I protein arginine methyltransferases (PRMTs), is involved in broad biological and pathological processes. Recently, several type I PRMT inhibitors, such as MS023, have been developed to reverse the histone arginine dimethylation status in tumor cells, but extensive inhibition of type I PRMTs may cause side effects in normal tissues. Herein, we designed a photoactivatable MS023 prodrug (C-MS023) to achieve spatiotemporal inhibition of histone arginine asymmetric dimethylation. In vitro studies showed that C-MS023 exhibited reduced potency in inhibiting type I PRMTs. Importantly, visible light irradiation at 420 nm could trigger the photolysis of the prodrug, thereby liberating MS023 for effective downregulation of histone arginine asymmetric dimethylation and DNA replication-related transcriptomic activities. This opto-epigenetic small-molecule prodrug potentially aids in further research into the pathophysiological functions of type I PRMTs and the development of targeted epigenetic therapeutics.
Collapse
Affiliation(s)
- Shuting Xu
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory
of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research
Centre, The University of Hong Kong, Hong Kong 999077, China
| | - Kaiqi Long
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory
of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research
Centre, The University of Hong Kong, Hong Kong 999077, China
| | - Tianyi Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory
of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research
Centre, The University of Hong Kong, Hong Kong 999077, China
| | - Yangyang Zhu
- The
Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
- School
of Biomedical Sciences and Engineering, National Engineering Research
Center for Tissue Restoration and Reconstruction and Key Laboratory
of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yunjiao Zhang
- The
Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
- School
of Biomedical Sciences and Engineering, National Engineering Research
Center for Tissue Restoration and Reconstruction and Key Laboratory
of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| | - Weiping Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, China
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory
of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research
Centre, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
4
|
Peng J, Ni B, Li D, Cheng B, Yang R. Overview of the PRMT6 modulators in cancer treatment: Current progress and emerged opportunity. Eur J Med Chem 2024; 279:116857. [PMID: 39276585 DOI: 10.1016/j.ejmech.2024.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Protein Arginine Methyltransferase 6 (PRMT6) is a Type I PRMT enzyme that plays a role in the epigenetic regulation of gene expression by methylating histone and non-histone proteins. It is also involved in various cellular processes, including alternative splicing, DNA repair, and cell signaling. Furthermore, PRMT6 exerts multiple effects on cellular processes such as growth, migration, invasion, apoptosis, and drug resistance in various cancers, positioning it as a promising target for anti-tumor therapeutics. In this review, we initially provide an overview of the structure and biological functions of PRMT6, along with its association with cancer. Subsequently, we focus on recent progress in the design and development of modulators targeting PRMT6. This includes a comprehensive review of PRMT6 inhibitors (isoform-selective and non-selective), dual-target inhibitors based on PRMT6, PRMT6 covalent inhibitors, and PRMT6-targeting hydrophobic tagging (HyT) degraders, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and the clinical status of these modulators. Finally, we also provided the challenges and prospective directions for PRMT6 targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Jinjin Peng
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Bin Ni
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Deping Li
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China.
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Renze Yang
- Department of Pharmacy, First Affinity Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
5
|
Hong J, Li X, Hao Y, Xu H, Yu L, Meng Z, Zhang J, Zhu M. The PRMT6/STAT1/ACSL1 axis promotes ferroptosis in diabetic nephropathy. Cell Death Differ 2024; 31:1561-1575. [PMID: 39134684 PMCID: PMC11519485 DOI: 10.1038/s41418-024-01357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Hyperglycaemia-induced ferroptosis is a significant contributor to kidney dysfunction in diabetic nephropathy (DN) patients. In addition, targeting ferroptosis has clinical implications for the treatment of DN. However, effective therapeutic targets for ferroptosis have not been identified. In this study, we aimed to explore the precise role of protein arginine methyltransferase 6 (PRMT6) in regulating ferroptosis in DN. In the present study, we utilized a mouse DN model consisting of both wild-type and PRMT6-knockout (PRMT6-/-) mice. Transcriptomic and lipidomic analyses, along with various molecular biological methodologies, were used to determine the potential mechanism by which PRMT6 regulates ferroptosis in DN. Our results indicate that PRMT6 downregulation participates in kidney dysfunction and renal cell death via the modulation of ferroptosis in DN. Moreover, PRMT6 reduction induced lipid peroxidation by upregulating acyl-CoA synthetase long-chain family member 1 (ACSL1) expression, ultimately contributing to ferroptosis. Furthermore, we investigated the molecular mechanism by which PRMT6 interacts with signal transducer and activator of transcription 1 (STAT1) to jointly regulate ACSL1 transcription. Additionally, treatment with the STAT1-specific inhibitor fludarabine delayed DN progression. Furthermore, we observed that PRMT6 and STAT1 synergistically regulate ACSL1 transcription to mediate ferroptosis in hyperglycaemic cells. Our study demonstrated that PRMT6 and STAT1 comodulate ACSL1 transcription to induce the production of phospholipid-polyunsaturated fatty acids (PL-PUFAs), thus participating in ferroptosis in DN. These findings suggest that the PRMT6/STAT1/ACSL1 axis is a new therapeutic target for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Jia Hong
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yingxiang Hao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiao Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lang Yu
- Department of Anesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China
| | - Zhipeng Meng
- Department of Anesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China.
| | - Jianhai Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Minmin Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Chu W, Peng W, Lu Y, Liu Y, Li Q, Wang H, Wang L, Zhang B, Liu Z, Han L, Ma H, Yang H, Han C, Lu X. PRMT6 Epigenetically Drives Metabolic Switch from Fatty Acid Oxidation toward Glycolysis and Promotes Osteoclast Differentiation During Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403177. [PMID: 39120025 PMCID: PMC11516099 DOI: 10.1002/advs.202403177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Epigenetic regulation of metabolism profoundly influences cell fate commitment. During osteoclast differentiation, the activation of RANK signaling is accompanied by metabolic reprogramming, but the epigenetic mechanisms by which RANK signaling induces this reprogramming remain elusive. By transcriptional sequence and ATAC analysis, this study identifies that activation of RANK signaling upregulates PRMT6 by epigenetic modification, triggering a metabolic switching from fatty acids oxidation toward glycolysis. Conversely, Prmt6 deficiency reverses this shift, markedly reducing HIF-1α-mediated glycolysis and enhancing fatty acid oxidation. Consequently, PRMT6 deficiency or inhibitor impedes osteoclast differentiation and alleviates bone loss in ovariectomized (OVX) mice. At the molecular level, Prmt6 deficiency reduces asymmetric dimethylation of H3R2 at the promoters of genes including Ppard, Acox3, and Cpt1a, enhancing genomic accessibility for fatty acid oxidation. PRMT6 thus emerges as a metabolic checkpoint, mediating metabolic switch from fatty acid oxidation to glycolysis, thereby supporting osteoclastogenesis. Unveiling PRMT6's critical role in epigenetically orchestrating metabolic shifts in osteoclastogenesis offers a promising target for anti-resorptive therapy.
Collapse
Affiliation(s)
- Wenxiang Chu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Weilin Peng
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Yingying Lu
- Obstetrics and Gynecology HospitalFudan UniversityShanghai200011China
| | - Yishan Liu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Qisheng Li
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haibin Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Liang Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Bangke Zhang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Zhixiao Liu
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
| | - Lin Han
- Department of OrthopaedicsThird Affiliated Hospital of Naval Medical UniversityShanghai201805China
| | - Hongdao Ma
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haisong Yang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Chaofeng Han
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and Inflammation, Institute of ImmunologyNaval Medical UniversityShanghai200433China
| | - Xuhua Lu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| |
Collapse
|
7
|
Cho Y, Kim YK. CARM1 phosphorylation at S595 by p38γ MAPK drives ROS-mediated cellular senescence. Redox Biol 2024; 76:103344. [PMID: 39265499 PMCID: PMC11415932 DOI: 10.1016/j.redox.2024.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
CARM1 is predominantly localized in the nucleus and plays a pivotal role in maintaining mitochondrial homeostasis by regulating gene expression. It suppresses mitochondrial biogenesis by downregulating PGC-1α and TFAM expression, while promoting mitochondrial fission through increased DNM1L expression. Under oxidative stress, CARM1 translocates to the cytoplasm, where it directly methylates DRP1 and accelerates mitochondrial fission, enhancing reactive oxygen species (ROS) production. Cytoplasmic localization of CARM1 is facilitated by its phosphorylation at S595 by ROS-activated p38γ MAPK, creating a positive feedback loop. Consequently, cytoplasmic CARM1 contributes to cellular senescence by altering mitochondrial dynamics and increasing ROS levels. This observation was supported by the increased cytoplasmic CARM1 levels and disrupted mitochondrial dynamics in the transformed 10T1/2 cells. Moreover, CARM1 inhibitors not only inhibit the proliferation of cancer cells but also induce apoptotic death in senescent cells. These findings highlight the potential of CARM1 inhibitors, particularly those targeting cytoplasmic functions, as novel strategies for eliminating cancer and senescent cells.
Collapse
Affiliation(s)
- Yena Cho
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea; College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yong Kee Kim
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea; College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
8
|
Cho Y, Kim YK. ROS-mediated cytoplasmic localization of CARM1 induces mitochondrial fission through DRP1 methylation. Redox Biol 2024; 73:103212. [PMID: 38838552 PMCID: PMC11179627 DOI: 10.1016/j.redox.2024.103212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
The dynamic regulation of mitochondria through fission and fusion is essential for maintaining cellular homeostasis. In this study, we discovered a role of coactivator-associated arginine methyltransferase 1 (CARM1) in mitochondrial dynamics. CARM1 methylates specific residues (R403 and R634) on dynamin-related protein 1 (DRP1). Methylated DRP1 interacts with mitochondrial fission factor (Mff) and forms self-assembly on the outer mitochondrial membrane, thereby triggering fission, reducing oxygen consumption, and increasing reactive oxygen species (ROS) production. This sets in motion a feedback loop that facilitates the translocation of CARM1 from the nucleus to the cytoplasm, enhancing DRP1 methylation and ROS production through mitochondrial fragmentation. Consequently, ROS reinforces the CARM1-DRP1-ROS axis, resulting in cellular senescence. Depletion of CARM1 or DRP1 impedes cellular senescence by reducing ROS accumulation. The uncovering of the above-described mechanism fills a missing piece in the vicious cycle of ROS-induced senescence and contributes to a better understanding of the aging process.
Collapse
Affiliation(s)
- Yena Cho
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea; College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yong Kee Kim
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea; College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
9
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Wu X, Zhou Y, Xu H, Zhang X, Yao L, Li J, Li X. PRMT6-FOXO3A ATTENUATES APOPTOSIS BY UPREGULATING PARKIN EXPRESSION IN INTESTINAL ISCHEMIA-REPERFUSION INJURY. Shock 2024; 61:791-800. [PMID: 38323918 DOI: 10.1097/shk.0000000000002333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
ABSTRACT Intestinal ischemia-reperfusion injury (IIRI) is a serious disease with high morbidity and mortality. This study aims to investigate the potential regulatory mechanisms involving protein arginine methyltransferase 6 (PRMT6), Forkhead box O3a (FoxO3a), and Parkin in IIRI and elucidate their roles in mediating cell apoptosis. The IIRI animal model was established and confirmed using hematoxylin and eosin staining. Oxygen-glucose deprivation and reperfusion (OGD/R) cell model was established to mimic ischemic injury in vitro . Transient transfection was used to overexpress or knock down genes. Cell death or apoptosis was assessed by propidium iodide staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and flow cytometry. The expression of proteins was detected by western blot. The histopathology observed by hematoxylin and eosin staining suggested that the IIRI animal model was successfully established. Our findings revealed that IIRI resulted in increased Bax and decreased Bcl-2 levels. In vitro experiments showed that overexpression of Parkin decreased OGD/R injury and suppressed elevation of Bax/Bcl-2. PRMT6 regulated the methylation level of FoxO3a. Moreover, FoxO3a directly binds to Parkin, and FoxO3a overexpression reduced OGD/R-induced cell death and regulation of Parkin. Overexpression of PRMT6 can attenuate the downregulation of Parkin and elevation of Bax/Bcl-2 caused by OGD/R. Knockdown of PRMT6 promoted apoptosis in intestinal epithelial cells of OGD/R group, while PRMT6 overexpression exhibited the opposite effect. Notably, the levels of PRMT6, FoxO3a, and Parkin were decreased in IIRI mouse intestinal tissue. Knocking out PRMT6 causes a significant decrease in the lifespan of mice. Altogether, our results demonstrated that PRMT6 upregulated the expression of Parkin by regulating FoxO3a methylation level, attenuating the apoptosis induced by IIRI.
Collapse
Affiliation(s)
- Xinwan Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Yang X, Liu J, Liu W, Wu H, Wei Y, Guo X, Jia H, Can C, Wang D, Hu X, Ma D. circFAM193B interaction with PRMT6 regulates AML leukemia stem cells chemoresistance through altering the oxidative metabolism and lipid peroxidation. Leukemia 2024; 38:1057-1071. [PMID: 38424136 DOI: 10.1038/s41375-024-02189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Most forms of chemotherapy for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), as their underlying mechanisms remain unclear. Here, we have identified circFAM193B, which regulates the redox biology of LSCs and is associated with unfavorable outcomes in AML patients. In vitro and in vivo assays suggested that circFAM193B significantly inhibits LSCs chemotherapy resistance and AML progression. Knockdown circFAM193B enhances mitochondrial OXPHOS function and inhibits the accumulation of reactive oxygen species and lipid peroxidation mediated by chemotherapy, which protects AML cells from oxidative stress-induced cell death. Mechanistically, circFAM193B physically interacts with arginine methyltransferase PRMT6 catalytic domain and enhances the transcription efficiency of key lipid peroxidation factor ALOX15 by decreasing H3R2me2a modification. In summary, we have identified circFAM193B was downregulated in LSCs to promote the survival of LSC by modulating energy metabolism and the redox balance in the postchemotherapy persistence of LSC. Our studies provide a conceptual advance and biological insights regarding the drug resistance of LSCs via circRNA mediated PRMT6-deposited methylarginine signaling.
Collapse
MESH Headings
- Humans
- Protein-Arginine N-Methyltransferases/metabolism
- Protein-Arginine N-Methyltransferases/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Drug Resistance, Neoplasm
- Mice
- Animals
- Lipid Peroxidation
- Oxidative Stress
- Cell Line, Tumor
- Reactive Oxygen Species/metabolism
- Nuclear Proteins
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Wancheng Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Hanyang Wu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Yihong Wei
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiaodong Guo
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Hexiao Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Can Can
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Dongmei Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
12
|
Honda S, Hatamura M, Kunimoto Y, Ikeda S, Minami N. Chimeric PRMT6 protein produced by an endogenous retrovirus promoter regulates cell fate decision in mouse preimplantation embryos†. Biol Reprod 2024; 110:698-710. [PMID: 38196172 DOI: 10.1093/biolre/ioae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/11/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2024] Open
Abstract
Murine endogenous retrovirus with leucine tRNA primer, also known as MERVL, is expressed during zygotic genome activation in mammalian embryos. Here we show that protein arginine N-methyltransferase 6 (Prmt6) forms a chimeric transcript with MT2B2, one of the long terminal repeat sequences of murine endogenous retrovirus with leucine tRNA primer, and is translated into an elongated chimeric protein (PRMT6MT2B2) whose function differs from that of the canonical PRMT6 protein (PRMT6CAN) in mouse preimplantation embryos. Overexpression of PRMT6CAN in fibroblast cells increased asymmetric dimethylation of the third arginine residue of both histone H2A (H2AR3me2a) and histone H4 (H4R3me2a), while overexpression of PRMT6MT2B2 increased only H2AR3me2a. In addition, overexpression of PRMT6MT2B2 in one blastomere of mouse two-cell embryos promoted cell proliferation and differentiation of the blastomere into epiblast cells at the blastocyst stage, while overexpression of PRMT6CAN repressed cell proliferation. This is the first report of the translation of a chimeric protein (PRMT6MT2B2) in mouse preimplantation embryos. Our results suggest that analyzing chimeric transcripts with murine endogenous retrovirus with leucine tRNA primer will provide insight into the relationship between zygotic genome activation and subsequent intra- and extra-cellular lineage determination.
Collapse
Affiliation(s)
- Shinnosuke Honda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Maho Hatamura
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuri Kunimoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Zong Y, Weiss N, Wang K, Pagano AE, Heissel S, Perveen S, Huang J. Development of Complementary Photo-arginine/lysine to Promote Discovery of Arg/Lys hPTMs Interactomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307526. [PMID: 38298064 PMCID: PMC11005723 DOI: 10.1002/advs.202307526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Indexed: 02/02/2024]
Abstract
Arginine and lysine, frequently appearing as a pair on histones, have been proven to carry diverse modifications and execute various epigenetic regulatory functions. However, the most context-specific and transient effectors of these marks, while significant, have evaded study as detection methods have thus far not reached a standard to capture these ephemeral events. Herein, a pair of complementary photo-arginine/δ-photo-lysine (R-dz/K-dz) probes is developed and involve these into histone peptide, nucleosome, and chromatin substrates to capture and explore the interactomes of Arg and Lys hPTMs. By means of these developed tools, this study identifies that H3R2me2a can recruit MutS protein homolog 6 (MSH6), otherwise repelDouble PHD fingers 2 (DPF2), Retinoblastoma binding protein 4/7 (RBBP4/7). And it is disclosed that H3R2me2a inhibits the chromatin remodeling activity of the cBAF complex by blocking the interaction between DPF2 (one component of cBAF) and the nucleosome. In addition, the novel pairs of H4K5 PTMs and respective readers are highlighted, namely H4K5me-Lethal(3)malignant brain tumor-like protein 2 (L3MBTL2), H4K5me2-L3MBTL2, and H4K5acK8ac-YEATS domain-containing protein 4 (YEATS4). These powerful tools pave the way for future investigation of related epigenetic mechanisms including but not limited to hPTMs.
Collapse
Affiliation(s)
- Yu Zong
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew York10065USA
| | - Nicole Weiss
- Program of PharmacologyWeill Cornell Medical College of Cornell UniversityNew York10065USA
| | - Ke Wang
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew York10065USA
| | | | - Søren Heissel
- Proteomics Resource CenterRockefeller UniversityNew York10065USA
| | - Sumera Perveen
- Structural Genomics ConsortiumUniversity of TorontoTorontoM5S3H2Canada
| | - Jian Huang
- Department of Molecular BiologyPrinceton UniversityPrinceton08544USA
| |
Collapse
|
14
|
Han X, Ren C, Jiang A, Sun Y, Lu J, Ling X, Lu C, Yu Z. Arginine methylation of ALKBH5 by PRMT6 promotes breast tumorigenesis via LDHA-mediated glycolysis. Front Med 2024; 18:344-356. [PMID: 38466502 DOI: 10.1007/s11684-023-1028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/16/2023] [Indexed: 03/13/2024]
Abstract
ALKBH5 is a master regulator of N6-methyladenosine (m6A) modification, which plays a crucial role in many biological processes. Here, we show that ALKBH5 is required for breast tumor growth. Interestingly, PRMT6 directly methylates ALKBH5 at R283, which subsequently promotes breast tumor growth. Furthermore, arginine methylation of ALKBH5 by PRMT6 increases LDHA RNA stability via m6A demethylation, leading to increased aerobic glycolysis. Moreover, PRMT6-mediated ALKBH5 arginine methylation is confirmed in PRMT6-knockout mice. Collectively, these findings identify a PRMT6-ALKBH5-LDHA signaling axis as a novel target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Aifang Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Yonghong Sun
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Jiayi Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Xi Ling
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, 261053, China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
15
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
16
|
Kim SH, Haynes KA. Reader-Effectors as Actuators of Epigenome Editing. Methods Mol Biol 2024; 2842:103-127. [PMID: 39012592 DOI: 10.1007/978-1-0716-4051-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenome editing applications are gaining broader use for targeted transcriptional control as more enzymes with diverse chromatin-modifying functions are being incorporated into fusion proteins. Development of these fusion proteins, called epigenome editors, has outpaced the study of proteins that interact with edited chromatin. One type of protein that acts downstream of chromatin editing is the reader-effector, which bridges epigenetic marks with biological effects like gene regulation. As the name suggests, a reader-effector protein is generally composed of a reader domain and an effector domain. Reader domains directly bind epigenetic marks, while effector domains often recruit protein complexes that mediate transcription, chromatin remodeling, and DNA repair. In this chapter, we discuss the role of reader-effectors in driving the outputs of epigenome editing and highlight instances where abnormal and context-specific reader-effectors might impair the effects of epigenome editing. Lastly, we discuss how engineered reader-effectors may complement the epigenome editing toolbox to achieve robust and reliable gene regulation.
Collapse
Affiliation(s)
- Seong Hu Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
17
|
Barbachowska M, Arimondo PB. To target or not to target? The role of DNA and histone methylation in bacterial infections. Epigenetics 2023; 18:2242689. [PMID: 37731322 PMCID: PMC10515666 DOI: 10.1080/15592294.2023.2242689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/25/2023] [Indexed: 09/22/2023] Open
Abstract
Epigenetics describes chemical modifications of the genome that do not alter DNA sequence but participate in the regulation of gene expression and cellular processes such as proliferation, division, and differentiation of eukaryotic cell. Disruption of the epigenome pattern in a human cell is associated with different diseases, including infectious diseases. During infection pathogens induce epigenetic modifications in the host cell. This can occur by controlling expression of genes involved in immune response. That enables bacterial survival and replication within the host and evasion of the immune response. Methylation is an example of epigenetic modification that occurs on DNA and histones. Reasoning that DNA and histone methylation of human host cells plays a crucial role during pathogenesis, these modifications are promising targets for the development of alternative treatment strategies in infectious diseases. Here, we discuss the role of DNA and histone methyltransferases in human host cell upon bacterial infections. We further hypothesize that compounds targeting methyltransferases are tools to study epigenetics in the context of host-pathogen interactions and can open new avenues for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Magdalena Barbachowska
- Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Paris, France
- Universite Paris Cité, Ecole Doctorale MTCI, Paris, France
- Institut Pasteur, Pasteur- Paris University (PPU)- Oxford International Doctoral Program, Paris, France
| | - Paola B. Arimondo
- Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Paris, France
| |
Collapse
|
18
|
Yang D, He Y, Li R, Huang Z, Zhou Y, Shi Y, Deng Z, Wu J, Gao Y. Histone H3K79 methylation by DOT1L promotes Aurora B localization at centromeres in mitosis. Cell Rep 2023; 42:112885. [PMID: 37494186 DOI: 10.1016/j.celrep.2023.112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Centromere localization of the chromosome passenger complex (CPC) is paramount for achieving accurate sister chromosome segregation in mitosis. Although it has been widely recognized that the recruitment of CPC is directly regulated by two histone codes, phosphorylation of histone H3 at threonine 3 (H3T3ph) and phosphorylation of histone H2A at threonine 120 (H2AT120ph), the regulation of CPC localization by other histone codes remains elusive. We show that dysfunction of disruptor of telomeric silencing 1 like (DOT1L) leads to mislocation of the CPC in prometaphase, caused by disturbing the level of H3T3ph and its reader Survivin. This cascade is initiated by over-dephosphorylation of H3T3ph mediated by the phosphatase RepoMan-PP1, whose scaffold RepoMan translocalizes to chromosomes, while the level of H3K79me2/3 is diminished. Together, our findings uncover a biological function of DOT1L and H3K79 methylation in mitosis and give insight into how genomic stability is coordinated by different histone codes.
Collapse
Affiliation(s)
- Dan Yang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yanji He
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Renyan Li
- Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
| | - Zhenting Huang
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhou
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yingxu Shi
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhongliang Deng
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jingxian Wu
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yanfei Gao
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
19
|
Yang S, Luo Y, Yang M, Ni H, Yin H, Hu M, Liu M, Zhou J, Yang Y, Li D. Src inhibition induces mitotic arrest associated with chromosomal passenger complex. Cell Tissue Res 2023; 392:733-743. [PMID: 36988705 DOI: 10.1007/s00441-023-03765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
The non-receptor tyrosine kinase Src plays a key role in cell division, migration, adhesion, and survival. Src is overactivated in several cancers, where it transmits signals that promote cell survival, mitosis, and other important cancer hallmarks. Src is therefore a promising target in cancer therapy, but the underlying mechanisms are still uncertain. Here we show that Src is highly conserved across different species. Src expression increases during mitosis and is localized to the chromosomal passenger complex. Knockdown or inhibition of Src induces multipolar spindle formation, resulting in abnormal expression of the Aurora B and INCENP components of the chromosomal passenger complex. Molecular mechanism studies have found that Src interacts with and phosphorylates INCENP. This then leads to incorrect chromosome arrangement and segregation, resulting in cell division failure. Herein, Src and chromosomal passenger complex co-localize and Src inhibition impedes mitotic progression by inducing multipolar spindle formation. These findings provide novel insights into the molecular basis for using Src inhibitors to treat cancer.
Collapse
Affiliation(s)
- Song Yang
- Department of Cell Biology School of Basic Medical Sciences Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Youguang Luo
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China.
| | - Mulin Yang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Ming Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology, Universities of Shandong, Shandong Normal University, Jinan, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Collaborative Innovation Center of Cell Biology, Universities of Shandong, Shandong Normal University, Jinan, China
| | - Yunfan Yang
- Department of Cell Biology School of Basic Medical Sciences Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
20
|
PRMT6-CDC20 facilitates glioblastoma progression via the degradation of CDKN1B. Oncogene 2023; 42:1088-1100. [PMID: 36792756 PMCID: PMC10063447 DOI: 10.1038/s41388-023-02624-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
PRMT6, a type I arginine methyltransferase, di-methylates the arginine residues of both histones and non-histones asymmetrically. Increasing evidence indicates that PRMT6 plays a tumor mediator involved in human malignancies. Here, we aim to uncover the essential role and underlying mechanisms of PRMT6 in promoting glioblastoma (GBM) proliferation. Investigation of PRMT6 expression in glioma tissues demonstrated that PRMT6 is overexpressed, and elevated expression of PRMT6 is negatively correlated with poor prognosis in glioma/GBM patients. Silencing PRMT6 inhibited GBM cell proliferation and induced cell cycle arrest at the G0/G1 phase, while overexpressing PRMT6 had opposite results. Further, we found that PRMT6 attenuates the protein stability of CDKN1B by promoting its degradation. Subsequent mechanistic investigations showed that PRMT6 maintains the transcription of CDC20 by activating histone methylation mark (H3R2me2a), and CDC20 interacts with and destabilizes CDKN1B. Rescue experimental results confirmed that PRMT6 promotes the ubiquitinated degradation of CDKN1B and cell proliferation via CDC20. We also verified that the PRMT6 inhibitor (EPZ020411) could attenuate the proliferative effect of GBM cells. Our findings illustrate that PRMT6, an epigenetic mediator, promotes CDC20 transcription via H3R2me2a to mediate the degradation of CDKN1B to facilitate GBM progression. Targeting PRMT6-CDC20-CDKN1B axis might be a promising therapeutic strategy for GBM.
Collapse
|
21
|
Terconazole, an Azole Antifungal Drug, Increases Cytotoxicity in Antimitotic Drug-Treated Resistant Cancer Cells with Substrate-Specific P-gp Inhibitory Activity. Int J Mol Sci 2022; 23:ijms232213809. [PMID: 36430288 PMCID: PMC9696874 DOI: 10.3390/ijms232213809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Azole antifungal drugs have been shown to enhance the cytotoxicity of antimitotic drugs in P-glycoprotein (P-gp)-overexpressing-resistant cancer cells. Herein, we examined two azole antifungal drugs, terconazole (TCZ) and butoconazole (BTZ), previously unexplored in resistant cancers. We found that both TCZ and BTZ increased cytotoxicity in vincristine (VIC)-treated P-gp-overexpressing drug-resistant KBV20C cancer cells. Following detailed analysis, low-dose VIC + TCZ exerted higher cytotoxicity than co-treatment with VIC + BTZ. Furthermore, we found that VIC + TCZ could increase apoptosis and induce G2 arrest. Additionally, low-dose TCZ could be combined with various antimitotic drugs to increase their cytotoxicity in P-gp-overexpressing antimitotic drug-resistant cancer cells. Moreover, TCZ exhibited P-gp inhibitory activity, suggesting that the inhibitory activity of P-gp plays a role in sensitization afforded by VIC + TCZ co-treatment. We also evaluated the cytotoxicity of 12 azole antifungal drugs at low doses in drug-resistant cancer cells. VIC + TCZ, VIC + itraconazole, and VIC + posaconazole exhibited the strongest cytotoxicity in P-gp-overexpressing KBV20C and MCF-7/ADR-resistant cancer cells. These drugs exerted robust P-gp inhibitory activity, accompanied by calcein-AM substrate efflux. Given that azole antifungal drugs have long been used in clinics, our results, which reposition azole antifungal drugs for treating P-gp-overexpressing-resistant cancer, could be employed to treat patients with drug-resistant cancer rapidly.
Collapse
|
22
|
Liu Y, Yang H, Fang Y, Xing Y, Pang X, Li Y, Zhang Y, Liu Y. Function and inhibition of Haspin kinase: targeting multiple cancer therapies by antimitosis. J Pharm Pharmacol 2022; 75:445-465. [PMID: 36334086 DOI: 10.1093/jpp/rgac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Objectives
Haploid germ cell-specific nuclear protein kinase (Haspin) is a serine/threonine kinase as an atypical kinase, which is structurally distinct from conventional protein kinases.
Key findings
Functionally, Haspin is involved in important cell cycle progression, particularly in critical mitosis regulating centromeric sister chromatid cohesion during prophase and prometaphase, and subsequently ensuring proper chromosome alignment during metaphase and the normal chromosome segregation during anaphase. However, increasing evidence has demonstrated that Haspin is significantly upregulated in a variety of cancer cells in addition to normal proliferating somatic cells. Its knockdown or small molecule inhibition could prevent cancer cell growth and induce apoptosis by disrupting the regular mitotic progression. Given the specificity of its expressed tissues or cells and the uniqueness of its current known substrate, Haspin can be a promising target against cancer. Consequently, selective synthetic and natural inhibitors of Haspin have been widely developed to determine their inhibitory power for various cancer cells in vivo and in vitro.
Summary
Here our perspective includes a comprehensive review of the roles and structure of Haspin, its relatively potent and selective inhibitors and Haspin’s preliminary studies in a variety of cancers.
Collapse
Affiliation(s)
- Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yongsheng Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yantao Xing
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Xinxin Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yuanyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
23
|
The Roles of Histone Post-Translational Modifications in the Formation and Function of a Mitotic Chromosome. Int J Mol Sci 2022; 23:ijms23158704. [PMID: 35955838 PMCID: PMC9368973 DOI: 10.3390/ijms23158704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
During mitosis, many cellular structures are organized to segregate the replicated genome to the daughter cells. Chromatin is condensed to shape a mitotic chromosome. A multiprotein complex known as kinetochore is organized on a specific region of each chromosome, the centromere, which is defined by the presence of a histone H3 variant called CENP-A. The cytoskeleton is re-arranged to give rise to the mitotic spindle that binds to kinetochores and leads to the movement of chromosomes. How chromatin regulates different activities during mitosis is not well known. The role of histone post-translational modifications (HPTMs) in mitosis has been recently revealed. Specific HPTMs participate in local compaction during chromosome condensation. On the other hand, HPTMs are involved in CENP-A incorporation in the centromere region, an essential activity to maintain centromere identity. HPTMs also participate in the formation of regulatory protein complexes, such as the chromosomal passenger complex (CPC) and the spindle assembly checkpoint (SAC). Finally, we discuss how HPTMs can be modified by environmental factors and the possible consequences on chromosome segregation and genome stability.
Collapse
|
24
|
Li H, Chen H, Zhang X, Qi Y, Wang B, Cui Y, Ren J, Zhao Y, Chen Y, Zhu T, Wang Y, Yao L, Guo Y, Zhu H, Li Y, Situ C, Guo X. Global phosphoproteomic analysis identified key kinases regulating male meiosis in mouse. Cell Mol Life Sci 2022; 79:467. [PMID: 35930080 PMCID: PMC11071816 DOI: 10.1007/s00018-022-04507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
Meiosis, a highly conserved process in organisms from fungi to mammals, is subjected to protein phosphorylation regulation. Due to the low abundance of phosphorylation, there is a lack of systemic characterization of phosphorylation regulation of meiosis in mammals. Using the phosphoproteomic approach, we profiled large-scale phosphoproteome of purified primary spermatocytes undergoing meiosis I, and identified 14,660 phosphorylation sites in 4419 phosphoproteins. Kinase-substrate phosphorylation network analysis followed by in vitro meiosis study showed that CDK9 was essential for meiosis progression to metaphase I and had enriched substrate phosphorylation sites in proteins involved in meiotic cell cycle. In addition, histones and epigenetic factors were found to be widely phosphorylated. Among those, HASPIN was found to be essential for male fertility. Haspin knockout led to misalignment of chromosomes, apoptosis of metaphase spermatocytes and a decreased number of sperm by deregulation of H3T3ph, chromosomal passenger complex (CPC) and spindle assembly checkpoint (SAC). The complicated protein phosphorylation and its important regulatory functions in meiosis indicated that in-depth studies of phosphorylation-mediated signaling could help us elucidate the mechanisms of meiosis.
Collapse
Affiliation(s)
- Haojie Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Ren
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yichen Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Tianyu Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Liping Yao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
25
|
Flashner S, Swift M, Sowash A, Fahmy AN, Azizkhan-Clifford J. Transcription factor Sp1 regulates mitotic chromosome assembly and segregation. Chromosoma 2022; 131:175-191. [PMID: 35916925 PMCID: PMC9470683 DOI: 10.1007/s00412-022-00778-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Aneuploidy is a pervasive feature of cancer cells that results from chromosome missegregation. Several transcription factors have been associated with aneuploidy; however, no studies to date have demonstrated that mammalian transcription factors directly regulate chromosome segregation during mitosis. Here, we demonstrate that the ubiquitously expressed transcription factor specificity protein 1 (Sp1), which we have previously linked to aneuploidy, has a mitosis-specific role regulating chromosome segregation. We find that Sp1 localizes to mitotic centromeres and auxin-induced rapid Sp1 degradation at mitotic onset results in chromosome segregation errors and aberrant mitotic progression. Furthermore, rapid Sp1 degradation results in anomalous mitotic chromosome assembly characterized by loss of condensin complex I localization to mitotic chromosomes and chromosome condensation defects. Consistent with these defects, Sp1 degradation results in reduced chromosome passenger complex activity and histone H3 serine 10 phosphorylation during mitosis, which is essential for condensin complex I recruitment and chromosome condensation. Together, these data provide the first evidence of a mammalian transcription factor acting specifically during mitosis to regulate chromosome segregation.
Collapse
Affiliation(s)
- Samuel Flashner
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Michelle Swift
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Aislinn Sowash
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Alexander N Fahmy
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA.
| |
Collapse
|
26
|
Chen Z, Gan J, Wei Z, Zhang M, Du Y, Xu C, Zhao H. The Emerging Role of PRMT6 in Cancer. Front Oncol 2022; 12:841381. [PMID: 35311114 PMCID: PMC8931394 DOI: 10.3389/fonc.2022.841381] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that is involved in epigenetic regulation of gene expression through methylating histone or non-histone proteins, and other processes such as alternative splicing, DNA repair, cell proliferation and senescence, and cell signaling. In addition, PRMT6 also plays different roles in various cancers via influencing cell growth, migration, invasion, apoptosis, and drug resistant, which make PRMT6 an anti-tumor therapeutic target for a variety of cancers. As a result, many PRMT6 inhibitors are being utilized to explore their efficacy as potential drugs for various cancers. In this review, we summarize the current knowledge on the function and structure of PRMT6. At the same time, we highlight the role of PRMT6 in different cancers, including the differentiation of its promotive or inhibitory effects and the underlying mechanisms. Apart from the above, current research progress and the potential mechanisms of PRMT6 behind them were also summarized.
Collapse
Affiliation(s)
- Zhixian Chen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jianfeng Gan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhi Wei
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Mo Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Yan Du
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| | - Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| |
Collapse
|
27
|
Luna-Maldonado F, Andonegui-Elguera MA, Díaz-Chávez J, Herrera LA. Mitotic and DNA Damage Response Proteins: Maintaining the Genome Stability and Working for the Common Good. Front Cell Dev Biol 2021; 9:700162. [PMID: 34966733 PMCID: PMC8710681 DOI: 10.3389/fcell.2021.700162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular function is highly dependent on genomic stability, which is mainly ensured by two cellular mechanisms: the DNA damage response (DDR) and the Spindle Assembly Checkpoint (SAC). The former provides the repair of damaged DNA, and the latter ensures correct chromosome segregation. This review focuses on recently emerging data indicating that the SAC and the DDR proteins function together throughout the cell cycle, suggesting crosstalk between both checkpoints to maintain genome stability.
Collapse
Affiliation(s)
- Fernando Luna-Maldonado
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Marco A. Andonegui-Elguera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
28
|
Xu J, Richard S. Cellular pathways influenced by protein arginine methylation: Implications for cancer. Mol Cell 2021; 81:4357-4368. [PMID: 34619091 PMCID: PMC8571027 DOI: 10.1016/j.molcel.2021.09.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Arginine methylation is an influential post-translational modification occurring on histones, RNA binding proteins, and many other cellular proteins, affecting their function by altering their protein-protein and protein-nucleic acid interactions. Recently, a wealth of information has been gathered, implicating protein arginine methyltransferases (PRMTs), enzymes that deposit arginine methylation, in transcription, pre-mRNA splicing, DNA damage signaling, and immune signaling with major implications for cancer therapy, especially immunotherapy. This review summarizes this recent progress and the current state of PRMT inhibitors, some in clinical trials, as promising drug targets for cancer.
Collapse
Affiliation(s)
- Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, and Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, and Departments of Medicine, Human Genetics, and Biochemistry, McGill University, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
29
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
30
|
Structure, Activity and Function of the Protein Arginine Methyltransferase 6. Life (Basel) 2021; 11:life11090951. [PMID: 34575100 PMCID: PMC8470942 DOI: 10.3390/life11090951] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the protein arginine methyltransferase (PRMT) family methylate the arginine residue(s) of several proteins and regulate a broad spectrum of cellular functions. Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that asymmetrically dimethylates the arginine residues of numerous substrate proteins. PRMT6 introduces asymmetric dimethylation modification in the histone 3 at arginine 2 (H3R2me2a) and facilitates epigenetic regulation of global gene expression. In addition to histones, PRMT6 methylates a wide range of cellular proteins and regulates their functions. Here, we discuss (i) the biochemical aspects of enzyme kinetics, (ii) the structural features of PRMT6 and (iii) the diverse functional outcomes of PRMT6 mediated arginine methylation. Finally, we highlight how dysregulation of PRMT6 is implicated in various types of cancers and response to viral infections.
Collapse
|
31
|
A novel synthetic microtubule inhibitor exerts antiproliferative effects in multidrug resistant cancer cells and cancer stem cells. Sci Rep 2021; 11:10822. [PMID: 34031528 PMCID: PMC8144389 DOI: 10.1038/s41598-021-90337-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
The success of cancer chemotherapy is limited by multidrug resistance (MDR), which is mainly caused by P-glycoprotein (P-gp) overexpression. In the present study, we describe a novel microtubule inhibitor, 5-(N-methylmaleimid-3-yl)-chromone (SPC-160002), that can be used to overcome MDR. A synthetic chromone derivative, SPC-160002, showed a broad spectrum of anti-proliferative effects on various human cancer cells without affecting P-gp expression and its drug efflux function. Treatment with SPC-160002 arrested the cell cycle at the M phase, as evidenced using fluorescence-activated cell sorting analysis, and increased the levels of mitotic marker proteins, including cyclin B, pS10-H3, and chromosomal passenger complex. This mitotic arrest by SPC-160002 was mediated by promoting and stabilizing microtubule polymerization, similar to the mechanism observed in case of taxane-based drugs. Furthermore, SPC-160002 suppressed the growth and sphere-forming activity of cancer stem cells. Our data herein strongly suggest that SPC-160002, a novel microtubule inhibitor, can be used to overcome MDR and can serve as an attractive candidate for anticancer drugs.
Collapse
|
32
|
Hwang JW, Cho Y, Bae GU, Kim SN, Kim YK. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med 2021; 53:788-808. [PMID: 34006904 PMCID: PMC8178397 DOI: 10.1038/s12276-021-00613-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Protein methylation, a post-translational modification (PTM), is observed in a wide variety of cell types from prokaryotes to eukaryotes. With recent and rapid advancements in epigenetic research, the importance of protein methylation has been highlighted. The methylation of histone proteins that contributes to the epigenetic histone code is not only dynamic but is also finely controlled by histone methyltransferases and demethylases, which are essential for the transcriptional regulation of genes. In addition, many nonhistone proteins are methylated, and these modifications govern a variety of cellular functions, including RNA processing, translation, signal transduction, DNA damage response, and the cell cycle. Recently, the importance of protein arginine methylation, especially in cell cycle regulation and DNA repair processes, has been noted. Since the dysregulation of protein arginine methylation is closely associated with cancer development, protein arginine methyltransferases (PRMTs) have garnered significant interest as novel targets for anticancer drug development. Indeed, several PRMT inhibitors are in phase 1/2 clinical trials. In this review, we discuss the biological functions of PRMTs in cancer and the current development status of PRMT inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jee Won Hwang
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Yena Cho
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Gyu-Un Bae
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Su-Nam Kim
- grid.35541.360000000121053345Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451 Republic of Korea
| | - Yong Kee Kim
- grid.412670.60000 0001 0729 3748Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
33
|
Hamey JJ, Rakow S, Bouchard C, Senst JM, Kolb P, Bauer UM, Wilkins MR, Hart-Smith G. Systematic investigation of PRMT6 substrate recognition reveals broad specificity with a preference for an RG motif or basic and bulky residues. FEBS J 2021; 288:5668-5691. [PMID: 33764612 DOI: 10.1111/febs.15837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Protein arginine methyltransferase 6 (PRMT6) catalyses the asymmetric dimethylation of arginines on numerous substrate proteins within the human cell. In particular, PRMT6 methylates histone H3 arginine 2 (H3R2) which affects both gene repression and activation. However, the substrate specificity of PRMT6 has not been comprehensively analysed. Here, we systematically characterise the substrate recognition motif of PRMT6, finding that it has broad specificity and recognises the RG motif. Working with a H3 tail peptide as a template, on which we made 204 amino acid substitutions, we use targeted mass spectrometry to measure their effect on PRMT6 in vitro activity. We first show that PRMT6 methylates R2 and R8 in the H3 peptide, although H3R8 is methylated with lower efficiency and is not an in vivo PRMT6 substrate. We then quantify the effect of 194 of these amino acid substitutions on methylation at both H3R2 and H3R8. In both cases, we find that PRMT6 tolerates essentially any amino acid substitution in the H3 peptide, but that positively charged and bulky residues are preferred near the target arginine. We show that PRMT6 also has preference for glycine, but only in the position immediately following the target arginine. This indicates that PRMT6 recognises the RG motif rather than the RGG motif. We further confirm this preference for the RG motif on another PRMT6 substrate, histone H4R3. This broad specificity and recognition of RG rather than RGG are distinctive among the PRMT family and has implications for the development of drugs to selectively target PRMT6. DATABASES: Panorama Public (https://panoramaweb.org/PRMT6motif.url); ProteomeXchange (PXD016711).
Collapse
Affiliation(s)
- Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sinja Rakow
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Johanna M Senst
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Germany
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
34
|
Huang T, Yang Y, Song X, Wan X, Wu B, Sastry N, Horbinski CM, Zeng C, Tiek D, Goenka A, Liu F, Brennan CW, Kessler JA, Stupp R, Nakano I, Sulman EP, Nishikawa R, James CD, Zhang W, Xu W, Hu B, Cheng SY. PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells. Mol Cell 2021; 81:1276-1291.e9. [PMID: 33539787 PMCID: PMC7979509 DOI: 10.1016/j.molcel.2021.01.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.
Collapse
Affiliation(s)
- Tianzhi Huang
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yongyong Yang
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xuechao Wan
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bingli Wu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Namratha Sastry
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Craig M Horbinski
- Department of Pathology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chang Zeng
- Department of Preventive Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Cameron W Brennan
- Human Oncology and Pathogenesis Program, Department of Neurosurgery, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John A Kessler
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roger Stupp
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ichiro Nakano
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| | - Charles David James
- Department of Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Zhang X, Park JE, Kim EH, Hong J, Hwang KT, Kim YA, Jang CY. Wip1 controls the translocation of the chromosomal passenger complex to the central spindle for faithful mitotic exit. Cell Mol Life Sci 2021; 78:2821-2838. [PMID: 33067654 PMCID: PMC11072438 DOI: 10.1007/s00018-020-03665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Dramatic cellular reorganization in mitosis critically depends on the timely and temporal phosphorylation of a broad range of proteins, which is mediated by the activation of the mitotic kinases and repression of counteracting phosphatases. The mitosis-to-interphase transition, which is termed mitotic exit, involves the removal of mitotic phosphorylation by protein phosphatases. Although protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) drive this reversal in animal cells, the phosphatase network associated with ordered bulk dephosphorylation in mitotic exit is not fully understood. Here, we describe a new mitotic phosphatase relay in which Wip1/PPM1D phosphatase activity is essential for chromosomal passenger complex (CPC) translocation to the anaphase central spindle after release from the chromosome via PP1-mediated dephosphorylation of histone H3T3. Depletion of endogenous Wip1 and overexpression of the phosphatase-dead mutant disturbed CPC translocation to the central spindle, leading to failure of cytokinesis. While Wip1 was degraded in early mitosis, its levels recovered in anaphase and the protein functioned as a Cdk1-counteracting phosphatase at the anaphase central spindle and midbody. Mechanistically, Wip1 dephosphorylated Thr-59 in inner centromere protein (INCENP), which, subsequently bound to MKLP2 and recruited other components to the central spindle. Furthermore, Wip1 overexpression is associated with the overall survival rate of patients with breast cancer, suggesting that Wip1 not only functions as a weak oncogene in the DNA damage network but also as a tumor suppressor in mitotic exit. Altogether, our findings reveal that sequential dephosphorylation of mitotic phosphatases provides spatiotemporal regulation of mitotic exit to prevent tumor initiation and progression.
Collapse
Affiliation(s)
- Xianghua Zhang
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ji Eun Park
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Jihee Hong
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ki-Tae Hwang
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Young A Kim
- Department of Pathology, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Chang-Young Jang
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
36
|
Li Y, Qi D, Zhu B, Ye X. Analysis of m6A RNA Methylation-Related Genes in Liver Hepatocellular Carcinoma and Their Correlation with Survival. Int J Mol Sci 2021; 22:ijms22031474. [PMID: 33540684 PMCID: PMC7867233 DOI: 10.3390/ijms22031474] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) modification on RNA plays an important role in tumorigenesis and metastasis, which could change gene expression and even function at multiple levels such as RNA splicing, stability, translocation, and translation. In this study, we aim to conduct a comprehensive analysis on m6A RNA methylation-related genes, including m6A RNA methylation regulators and m6A RNA methylation-modified genes, in liver hepatocellular carcinoma, and their relationship with survival and clinical features. Data, which consist of the expression of widely reported m6A RNA methylation-related genes in liver hepatocellular carcinoma from The Cancer Genome Atlas (TCGA), were analyzed by one-way ANOVA, Univariate Cox regression, a protein–protein interaction network, gene enrichment analysis, feature screening, a risk prognostic model, correlation analysis, and consensus clustering analysis. In total, 405 of the m6A RNA methylation-related genes were found based on one-way ANOVA. Among them, DNA topoisomerase 2-alpha (TOP2A), exodeoxyribonuclease 1 (EXO1), ser-ine/threonine-protein kinase Nek2 (NEK2), baculoviral IAP repeat-containing protein 5 (BIRC5), hyaluronan mediated motility receptor (HMMR), structural maintenance of chromosomes protein 4 (SMC4), bloom syndrome protein (BLM), ca-sein kinase I isoform epsilon (CSNK1E), cytoskeleton-associated protein 5 (CKAP5), and inner centromere protein (INCENP), which were m6A RNA methylation-modified genes, were recognized as the hub genes based on the protein–protein interaction analysis. The risk prognostic model showed that gender, AJCC stage, grade, T, and N were significantly different between the subgroup with the high and low risk groups. The AUC, the evaluation parameter of the prediction model which was built by RandomForest, was 0.7. Furthermore, two subgroups were divided by consensus clustering analysis, in which stage, grade, and T differed. We identified the important genes expressed significantly among two clusters, including uridine-cytidine kinase 2 (UCK2), filensin (BFSP1), tubulin-specific chaperone D (TBCD), histone-lysine N-methyltransferase PRDM16 (PRDM16), phosphorylase b ki-nase regulatory subunit alpha (PHKA2), serine/threonine-protein kinase BRSK2 (BRSK2), Arf-GAP with coiled-coil (ACAP3), general transcription factor 3C polypep-tide 2 (GTF3C2), and guanine nucleotide exchange factor MSS4 (RABIF). In our study, the m6A RNA methylation-related genes in liver hepatocellular carcinoma were analyzed systematically, including the expression, interaction, function, and prognostic values, which provided an important theoretical basis for m6A RNA methylation in liver cancer. The nine important m6A-related genes could be prognostic markers in the survival time of patients.
Collapse
Affiliation(s)
- Yong Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Dandan Qi
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Baoli Zhu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.); (B.Z.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China;
- Correspondence: ; Tel.: +86-010-6480-7513
| |
Collapse
|
37
|
Chang T, Ryu D, Jo Y, Choi G, Min HS, Park Y. Calibration-free quantitative phase imaging using data-driven aberration modeling. OPTICS EXPRESS 2020; 28:34835-34847. [PMID: 33182943 DOI: 10.1364/oe.412009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
We present a data-driven approach to compensate for optical aberrations in calibration-free quantitative phase imaging (QPI). Unlike existing methods that require additional measurements or a background region to correct aberrations, we exploit deep learning techniques to model the physics of aberration in an imaging system. We demonstrate the generation of a single-shot aberration-corrected field image by using a U-net-based deep neural network that learns a translation between an optical field with aberrations and an aberration-corrected field. The high fidelity and stability of our method is demonstrated on 2D and 3D QPI measurements of various confluent eukaryotic cells and microbeads, benchmarking against the conventional method using background subtractions.
Collapse
|
38
|
Timofeev O, Koch L, Niederau C, Tscherne A, Schneikert J, Klimovich M, Elmshäuser S, Zeitlinger M, Mernberger M, Nist A, Osterburg C, Dötsch V, Hrabé de Angelis M, Stiewe T. Phosphorylation Control of p53 DNA-Binding Cooperativity Balances Tumorigenesis and Aging. Cancer Res 2020; 80:5231-5244. [PMID: 32873634 DOI: 10.1158/0008-5472.can-20-2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Posttranslational modifications are essential for regulating the transcription factor p53, which binds DNA in a highly cooperative manner to control expression of a plethora of tumor-suppressive programs. Here we show at the biochemical, cellular, and organismal level that the cooperative nature of DNA binding is reduced by phosphorylation of highly conserved serine residues (human S183/S185, mouse S180) in the DNA-binding domain. To explore the role of this inhibitory phosphorylation in vivo, new phosphorylation-deficient p53-S180A knock-in mice were generated. Chromatin immunoprecipitation sequencing and RNA sequencing studies of S180A knock-in cells demonstrated enhanced DNA binding and increased target gene expression. In vivo, this translated into a tissue-specific vulnerability of the bone marrow that caused depletion of hematopoietic stem cells and impaired proper regeneration of hematopoiesis after DNA damage. Median lifespan was significantly reduced by 20% from 709 days in wild type to only 568 days in S180A littermates. Importantly, lifespan was reduced by a loss of general fitness and increased susceptibility to age-related diseases, not by increased cancer incidence as often seen in other p53-mutant mouse models. For example, S180A knock-in mice showed markedly reduced spontaneous tumorigenesis and increased resistance to Myc-driven lymphoma and Eml4-Alk-driven lung cancer. Preventing phosphorylation of S183/S185 in human cells boosted p53 activity and allowed tumor cells to be killed more efficiently. Together, our data identify p53 DNA-binding domain phosphorylation as a druggable mechanism that balances tumorigenesis and aging. SIGNIFICANCE: These findings demonstrate that p53 tumor suppressor activity is reduced by DNA-binding domain phosphorylation to prevent aging and identify this phosphorylation as a potential target for cancer therapy.See related commentary by Horikawa, p. 5164.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany.
| | - Lukas Koch
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Constantin Niederau
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Alina Tscherne
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Jean Schneikert
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Maria Klimovich
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Marie Zeitlinger
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University Marburg, Marburg, Germany
| | | | | | - Martin Hrabé de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany. .,Genomics Core Facility, Philipps-University Marburg, Marburg, Germany
| | | |
Collapse
|
39
|
Salucci S, Battistelli M, Burattini S, Sbrana F, Falcieri E. Holotomographic microscopy: A new approach to detect apoptotic cell features. Microsc Res Tech 2020; 83:1464-1470. [PMID: 32681811 DOI: 10.1002/jemt.23539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
Holotomographic (HT) microscopy, combines two techniques, holography and tomography, and, in this way, it allows to quantitatively and noninvasively investigate cells and thin tissue slices, by obtaining three-dimensional (3D) images and by monitoring inner morphological changes. HT has indeed two significant advantages: it is label-free and low-energy light passes through the specimen with minimal perturbation. Using quantitative phase imaging with optical diffraction tomography, it can produce 3D images by measuring the refraction index (RI). Therefore, based on RI values, HT can provide structural and chemical cell information, such as dry mass values, morphological changes, or cellular membrane dynamics. In this study, suspended and adherent culture cells have been processed for HT analyses. Some of them have been treated with known apoptotic drugs or pro-oxidant agents and cell response has been investigated both by conventional microscopic approaches and by HT. The ultrastructural and fluorescence images have been compared to those obtained by HT and their congruence has been discussed, with particular attention to apoptotic cell death and on correlated plasma membrane changes. HT appears a valid approach to further characterize well-known apoptotic features such as cell blebbing, chromatin condensation, micronuclei, and apoptotic bodies. Taken together, our data demonstrate that HT appears suitable to highlight suspended or adherent cell behavior under different conditions. In particular, this technique appears an important new tool to distinguish healthy cells from the apoptotic ones, as well as to monitor outer and inner cell changes in a rapid way and with a noninvasive, label-free, approach.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | | | - Sabrina Burattini
- Department of Biomolecular Sciences, Urbino University, Urbino, Italy
| | | | | |
Collapse
|