1
|
Guo Y, Quirk K, Kelley DH, Thomas JH. Advection and diffusion in perivascular and extracellular spaces in the brain. J R Soc Interface 2025; 22:20250010. [PMID: 40393523 DOI: 10.1098/rsif.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 05/22/2025] Open
Abstract
Knowledge of the relative importance of advection and diffusion in clearing waste from the brain has been elusive, especially concerning the extracellular space (ECS). With local and global computational models of the mouse brain, we explore how the presence or absence of advection in the ECS affects solute transport. Without advection in the ECS, clearance would occur by diffusion into flowing cerebrospinal fluid in perivascular spaces (PVSs) or elsewhere, but we find this process to be severely limited by build-up of solute in the PVSs. We simulate flow in the ECS driven by a pressure drop between arteriole and venule PVSs, which enhances clearance considerably. To assess the relative importance of advection and diffusion, we introduce a local Péclet number [Formula: see text], a dimensionless scalar field. For our simulations, [Formula: see text] through much of the ECS but [Formula: see text] near PVSs near the brain surface. This local dominance of advection in the ECS establishes a clearance mechanism markedly different from that produced by diffusion alone. In network simulations that explore different parameter values and efflux routes, the pressures needed to drive the PVS flows measured in vivo are unrealistically large for most cases lacking ECS flow. Collectively, our models indicate that a flow in the ECS is necessary to explain experimental measurements and maintain homeostasis.
Collapse
Affiliation(s)
- Yisen Guo
- Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Keelin Quirk
- Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Douglas H Kelley
- Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - John H Thomas
- Mechanical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
2
|
Yousofvand R, Tithof J. Numerical Simulations Reveal Complementary Function of Blood-Brain Barrier and Glymphatic Transport in the Brain. PHYSICAL REVIEW LETTERS 2025; 134:138403. [PMID: 40250376 DOI: 10.1103/physrevlett.134.138403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 02/24/2025] [Indexed: 04/20/2025]
Abstract
The brain accounts for approximately 20% of metabolism and, as a result, generates protein waste which requires efficient clearance. Failure to clear such waste leads to formation of toxic protein aggregates implicated in a variety of neurodegenerative diseases, including Alzheimer's and Parkinson's. The blood-brain barrier and the glymphatic system are two parallel transport pathways that remove waste from the brain, but very few studies have investigated their interactions or complementary function. Herein, we develop a Lattice Boltzmann simulation of waste clearance from an idealized segment of brain tissue and test the effects of selectively activating or deactivating each pathway. We model clearance of the peptide amyloid-β, long recognized as critical in Alzheimer's pathology, and calibrate our model against limited experimental data. This approach uncovers critical parameters that have eluded prior experimental measurement. Our study also reveals complementary functionality of the blood-brain barrier and glymphatic system that are likely generic features applicable to the transport of large molecules (e.g., proteins) in the brain.
Collapse
Affiliation(s)
- Reza Yousofvand
- University of Minnesota, Department of Mechanical Engineering, Minneapolis, Minnesota 55455, USA
| | - Jeffrey Tithof
- University of Minnesota, Department of Mechanical Engineering, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
3
|
Wang M, Xiao L, Shi Y, Wu Y, Huang X, Wu Y, Xu Y, Bai L, Pan W, Zhang J, Wang W. Whole-brain 3D imaging of dopaminergic neurons and glial cells in the mouse model of Parkinson's disease induced by 6-OHDA. Front Aging Neurosci 2025; 17:1503168. [PMID: 40201545 PMCID: PMC11975956 DOI: 10.3389/fnagi.2025.1503168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Objective Parkinson's disease (PD) is the second most common neurodegenerative disease. Current understanding of the abnormal neural network in PD is limited, which may be one of the reasons for the lack of effective treatments. Tissue-clearing techniques allow visualization of neurons and gliocytes that form the structural basis of the abnormal neuronal network, thus enabling a deeper understanding of the pathological neuronal network in PD and contributing to the study of therapeutic strategies. The aim of this study was to create pathological maps of PD and perform 3D visualization of the neural network. Methods We induced the PD model using 6-OHDA and a predesigned rotation test. We then performed tissue-clearing and 3D imaging of the whole-brain and brain slices of the mice using SHIELD and CUBIC. Results The rotation test showed that the 6-OHDA group had a significant increase than the sham group. SHIELD results showed a significant reduction in tyrosine hydroxylase (TH) signals in the substantia nigra (SN) + ventral tegmental area (VTA) and caudate putamen (CPu) regions in the 6-OHDA group compared to the sham group. Additionally, we performed 3D imaging and reconstruction of astrocytes, microglia, dopaminergic neurons, and blood vessels in the SN + VTA to visualize the neuronal network. Conclusion This study performed 3D imaging of the composition and spatial arrangement of neuronal vascular units at both macroscopic and microscopic levels, laying the foundation for the creation of a whole-brain pathological map of PD. It also provides a basis for exploring unknown neural circuits and visualizing them.
Collapse
Affiliation(s)
- Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linglong Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifeng Shi
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yaping Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Xinyuejia Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangyang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Bai
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Sun YR, Lv QK, Liu JY, Wang F, Liu CF. New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases. Neurobiol Dis 2025; 205:106791. [PMID: 39778750 DOI: 10.1016/j.nbd.2025.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Neurodegenerative diseases (ND) are characterized by the accumulation of aggregated proteins. The glymphatic system, through its rapid exchange mechanisms between cerebrospinal fluid (CSF) and interstitial fluid (ISF), facilitates the movement of metabolic substances within the brain, serving functions akin to those of the peripheral lymphatic system. This emerging waste clearance mechanism offers a novel perspective on the removal of pathological substances in ND. This article elucidates recent discoveries regarding the glymphatic system and updates relevant concepts within its model. It discusses the potential roles of the glymphatic system in ND, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple system atrophy (MSA), and proposes the glymphatic system as a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Yan-Rui Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake hospital affilicated to Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Tsitsos FN, Batts AJ, Jimenez DA, Li C, Ji R, Bae S, Theodorou A, Gorman SL, Konofagou EE. Characterization of Microbubble Cavitation in Theranostic Ultrasound-mediated Blood-Brain Barrier Opening and Gene Delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633644. [PMID: 39896565 PMCID: PMC11785052 DOI: 10.1101/2025.01.17.633644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Rationale The characterization of microbubble activity has proven critical in assessing the safety and efficacy of ultrasound-mediated blood-brain barrier (BBB) opening and drug and gene delivery. In this study, we build upon our previous work on theranostic ultrasound (ThUS)-mediated BBB opening (ThUS-BBBO) and conduct for the first time a comprehensive characterization of the role of microbubble cavitation in ThUS-BBBO, as well as its impact on gene delivery with adeno-associated viruses (AAV). Methods A repurposed imaging phased array was used throughout the study to generate focused transmits and record microbubble activity through high-resolution power cavitation imaging (PCI). The cavitation of microbubbles under ThUS pulses was first characterized in flow phantom using pulse lengths ranging from 1.5 to 20 cycles and under varying microbubble flow rates using a separate single-element transducer a passive cavitation detector (PCD). A comprehensive in vivo study in mice was then conducted to characterize the in vivo microbubble activity under ThUS and correlate the resulting cavitation with AAV-mediated transgene delivery and expression. The transcranial microbubble activity was first detected in two mice using a PCD, to confirm the findings of the flow phantom study. Next, three mouse studies were conducted to evaluate the relationship between cavitation and AAV delivery; one with three different microbubble size distributions using polydisperse and size-isolated microbubbles, one with variable burst length and burst repetition frequency, and one with different AAV serotypes and injection doses. Electronic beam steering was used to induce bilateral BBB opening with 1.5 cycle on the left and 10 cycles on the right hemisphere. Cavitation dose was correlated with BBB opening volume, AAV transgene expression was evaluated with immunofluorescence staining and histological safety was assessed with T2* imaging and Hematoxylin and Eosin staining. Results Frequency domain analysis in the phantoms revealed a broadband-cavitation dominance at the shorter pulse lengths, while harmonic cavitation components are significantly increased for longer pulses. The PCD was better at detecting higher frequency harmonics, while the signal received by the theranostic array was more broadband dominated. Analysis of signals in the time domain showed that the longer pulses induce higher microbubble collapse compared to short pulses. In the transcranial in vivo experiments, the PCD was able to detect increased harmonic cavitation for 10-cycle pulses. The microbubble study showed that 3-5 μm microbubbles resulted in the largest cavitation doses, BBBO volumes and AAV transgene expression compared to the smaller microbubble sizes. The burst sequence study revealed that the sequences with shorter bursts and faster burst repetition frequencies induce larger BBBO volumes and AAV transduction due to faster microbubble replenishment in the focal volume. Increased erythrocyte extravasation was observed on the hemisphere sonicated with 10-cycle pulses. Transgene expression was also increased with injection dose, without notable side effects during the three-week survival period. Finally, AAV9 was shown to be the serotype with the highest transduction efficiency compared to AAV2 and AAV5 at the same injected dose. Conclusions This is the first comprehensive study into the microbubble cavitation under theranostic ultrasound. The phantom and in vivo studies show that the mechanism of ThUS-BBBO is mainly transient cavitation dominant, as microbubble collapse increases with pulse length despite the increased harmonic frequency response. Increased cavitation dose resulted in larger BBBO volumes and transgene expression in vivo . While ThUS induced microhemorrhage for most of the studied conditions, it did not have an impact on the survival and behavior of the mice.
Collapse
|
6
|
Yu T, Zhong X, Li D, Zhu J, Tuchin VV, Zhu D. Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo. Adv Drug Deliv Rev 2024; 215:115470. [PMID: 39481483 DOI: 10.1016/j.addr.2024.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Advanced optical imaging provides a powerful tool for the structural and functional analysis of tissues with high resolution and contrast, but the imaging performance decreases as light propagates deeper into the tissue. Tissue optical clearing technique demonstrates an innovative way to realize deep-tissue imaging and have emerged substantially in the last two decades. Here, we briefly reviewed the basic principles of tissue optical clearing techniques in the view of delivery strategies via either free diffusion or external forces-driven advection, and the commonly-used optical techniques for monitoring kinetics of clearing agents in tissue, as well as their ex vivo to in vivo applications in multiple biomedical research fields. With future efforts on the even distribution of both clearing agents and probes, excavation of more effective clearing agents, and automation of tissue clearing processes, tissue optical clearing should provide more insights into the fundamental questions in biological events clinical diagnostics.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiang Zhong
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Valery V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov 410012, Russia; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk 634050, Russia; Institute of Precision Mechanics and Control, FRS "Saratov Scientific Centre of the RAS", Saratov 410028, Russia
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
7
|
Uroz M, Stoddard AE, Sutherland BP, Courbot O, Oria R, Li L, Ravasio CR, Ngo MT, Yang J, Tefft JB, Eyckmans J, Han X, Elosegui-Artola A, Weaver VM, Chen CS. Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option. Nat Cell Biol 2024; 26:2144-2153. [PMID: 39448802 DOI: 10.1038/s41556-024-01532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
In brain metastasis, cancer cells remain in close contact with the existing vasculature and can use vessels as migratory paths-a process known as vessel co-option. However, the mechanisms regulating this form of migration are poorly understood. Here we use ex vivo brain slices and an organotypic in vitro model for vessel co-option to show that cancer cell invasion along brain vasculature is driven by the difference in stiffness between vessels and the brain parenchyma. Imaging analysis indicated that cells move along the basal surface of vessels by adhering to the basement membrane extracellular matrix. We further show that vessel co-option is enhanced by both the stiffness of brain vasculature, which reinforces focal adhesions through a talin-dependent mechanism, and the softness of the surrounding environment that permits cellular movement. Our work reveals a mechanosensing mechanism that guides cell migration in response to the tissue's intrinsic mechanical heterogeneity, with implications in cancer invasion and metastasis.
Collapse
Affiliation(s)
- Marina Uroz
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Amy E Stoddard
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bryan P Sutherland
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Olivia Courbot
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King's College London, London, UK
| | - Roger Oria
- Department of Surgery, University of California, San Francisco, CA, USA
- Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
| | - Linqing Li
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, USA
| | - Cara R Ravasio
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mai T Ngo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jinling Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Juliann B Tefft
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King's College London, London, UK
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, CA, USA
- Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
| |
Collapse
|
8
|
Quirk K, Boster KAS, Tithof J, Kelley DH. A brain-wide solute transport model of the glymphatic system. J R Soc Interface 2024; 21:20240369. [PMID: 39439312 PMCID: PMC11496954 DOI: 10.1098/rsif.2024.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Brain waste is largely cleared via diffusion and advection in cerebrospinal fluid (CSF). CSF flows through a pathway referred to as the glymphatic system, which is also being targeted for delivering drugs to the brain. Despite the importance of solute transport, no brain-wide models for predicting clearance and delivery through perivascular pathways and adjacent parenchyma existed. We devised such a model by upgrading an existing model of CSF flow in the mouse brain to additionally solve advection-diffusion equations, thereby estimating solute transport. We simulated steady-state transport of 3 kDa dextran injected proximal to the perivascular space (PVS) of the middle cerebral artery, mimicking in vivo experiments. We performed a sensitivity analysis of 11 biological properties of PVSs and brain parenchyma by repeatedly simulating solute transport with varying parameter values. Parameter combinations that led to a large total pressure gradient, poor CSF perfusion or a steep solute gradient were deemed unrealistic. Solute concentrations in parenchyma were most sensitive to changes in pial PVS size, as this parameter linearly affects volume flow rates. We also found that realistic transport requires both highly permeable penetrating PVSs and high-resistance parenchyma. This study highlights the potential of brain-wide models to provide insights into solute transport processes.
Collapse
Affiliation(s)
- Keelin Quirk
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN55455, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| |
Collapse
|
9
|
Cao X, Li X, Li M, Sun J, Gao Z, Li X, Li Q, Shao Z, Fan C, Sun J. Light-Sheet Microscopic Imaging of Whole-Mouse Vascular Network with Fluorescent Microsphere Perfusion. ACS Biomater Sci Eng 2024; 10:5609-5616. [PMID: 38775700 DOI: 10.1021/acsbiomaterials.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Visualizing the whole vascular network system is crucial for understanding the pathogenesis of specific diseases and devising targeted therapeutic interventions. Although the combination of light sheet microscopy and tissue-clearing methods has emerged as a promising approach for investigating the blood vascular network, leveraging the spatial resolution down to the capillary level and the ability to image centimeter-scale samples remains difficult. Especially, as the resolution improves, the issue of photobleaching outside the field of view poses a challenge to image the whole vascular network of adult mice at capillary resolution. Here, we devise a fluorescent microsphere vascular perfusion method to enable labeling of the whole vascular network in adult mice, which overcomes the photobleaching limit during the imaging of large samples. Moreover, by combining the utilization of a large-scale light-sheet microscope and tissue clearing protocols for whole-mouse samples, we achieve the capillary-level imaging resolution (3.2 × 3.2 × 6.5 μm) of the whole vascular network with dimensions of 45 × 15 × 82 mm in adult mice. This method thus holds great potential to deliver mesoscopic resolution images of various tissue organs for whole-animal imaging.
Collapse
Affiliation(s)
- Xiaojie Cao
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xiaoyan Li
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Min Li
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jiawei Sun
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Zhaoshuai Gao
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xiaowei Li
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Qian Li
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Zhifeng Shao
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Chunhai Fan
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jielin Sun
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
10
|
Annio G, Holm S, Mangin G, Penney J, Bacquët R, Mustapha R, Darwish O, Wittgenstein AS, Schregel K, Vilgrain V, Paradis V, Sølna K, Nordsletten DA, Sinkus R. Making sense of scattering: Seeing microstructure through shear waves. SCIENCE ADVANCES 2024; 10:eadp3363. [PMID: 39083612 PMCID: PMC11290519 DOI: 10.1126/sciadv.adp3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The physics of shear waves traveling through matter carries fundamental insights into its structure, for instance, quantifying stiffness for disease characterization. However, the origin of shear wave attenuation in tissue is currently not properly understood. Attenuation is caused by two phenomena: absorption due to energy dissipation and scattering on structures such as vessels fundamentally tied to the material's microstructure. Here, we present a scattering theory in conjunction with magnetic resonance imaging, which enables the unraveling of a material's innate constitutive and scattering characteristics. By overcoming a three-order-of-magnitude scale difference between wavelength and average intervessel distance, we provide noninvasively a macroscopic measure of vascular architecture. The validity of the theory is demonstrated through simulations, phantoms, in vivo mice, and human experiments and compared against histology as gold standard. Our approach expands the field of imaging by using the dispersion properties of shear waves as macroscopic observable proxies for deciphering the underlying ultrastructures.
Collapse
Affiliation(s)
- Giacomo Annio
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Sverre Holm
- Department of Physics, University of Oslo, Oslo, Norway
| | - Gabrielle Mangin
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
| | - Jake Penney
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
| | | | - Rami Mustapha
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Omar Darwish
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | | | - Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Valérie Vilgrain
- Department of Radiology, Beaujon Hospital, Clichy, France
- Inflammation Research Center, CRI, U1149, National Institute for Health and Medical Research (INSERM), Paris, France
| | - Valérie Paradis
- Inflammation Research Center, CRI, U1149, National Institute for Health and Medical Research (INSERM), Paris, France
- Department of Pathology, Beaujon Hospital, Clichy, France
| | - Knut Sølna
- Department of Mathematics, University of California at Irvine, Irvine, CA, USA
| | - David Alexander Nordsletten
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ralph Sinkus
- Laboratory of Vascular Translation Science, LVTS, U1148, National Institute for Health and Medical Research (INSERM), Paris, France
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
11
|
Yao Y, Chen Y, Tomer R, Silver R. Capillary connections between sensory circumventricular organs and adjacent parenchyma enable local volume transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605849. [PMID: 39211092 PMCID: PMC11361043 DOI: 10.1101/2024.07.30.605849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins (Dorland 2020). Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain. The first was discovered almost a century ago and connects the median eminence to the anterior pituitary gland (Popa & Fielding 1930). The second was discovered a few years ago, and links the suprachiasmatic nucleus to the organum vasculosum of the lamina terminalis, a sensory circumventricular organ (CVO) (Yao et al. 2021). Sensory CVOs bear neuronal receptors for sensing signals in the fluid milieu (McKinley et al. 2003). They line the surface of brain ventricles and bear fenestrated capillaries, thereby lacking blood brain barriers. It is not known whether the other sensory CVOs, namely the subfornical organ (SFO), and area postrema (AP) form portal neurovascular connections with nearby parenchymal tissue. This has been difficult to establish as the structures lie at the midline and protrude into the ventricular space. To preserve the integrity of the vasculature of CVOs and their adjacent neuropil, we combined iDISCO clearing and light-sheet microscopy to acquire volumetric images of blood vessels. The results indicate that there is a portal pathway linking the capillary vessels of the SFO and the posterior septal nuclei, namely the septofimbrial nucleus and the triangular nucleus of the septum. Unlike the latter arrangement, the AP and the nucleus of the solitary tract share their capillary beds. Taken together, the results reveal that all three sensory circumventricular organs bear specialized capillary connections to adjacent neuropil, providing a direct route for diffusible signals to travel from their source to their targets.
Collapse
|
12
|
Yoshimoto A, Morikawa S, Kato E, Takeuchi H, Ikegaya Y. Top-down brain circuits for operant bradycardia. Science 2024; 384:1361-1368. [PMID: 38900870 DOI: 10.1126/science.adl3353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Heart rate (HR) can be voluntarily regulated when individuals receive real-time feedback. In a rat model of HR biofeedback, the neocortex and medial forebrain bundle were stimulated as feedback and reward, respectively. The rats reduced their HR within 30 minutes, achieving a reduction of approximately 50% after 5 days of 3-hour feedback. The reduced HR persisted for at least 10 days after training while the rats exhibited anxiolytic behavior and an elevation in blood erythrocyte count. This bradycardia was prevented by inactivating anterior cingulate cortical (ACC) neurons projecting to the ventromedial thalamic nucleus (VMT). Theta-rhythm stimulation of the ACC-to-VMT pathway replicated the bradycardia. VMT neurons projected to the dorsomedial hypothalamus (DMH) and DMH neurons projected to the nucleus ambiguus, which innervates parasympathetic neurons in the heart.
Collapse
Affiliation(s)
- Airi Yoshimoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shota Morikawa
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Eriko Kato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruki Takeuchi
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Hu Y, Limaye A, Lu J. 3D revisualization: a new method to revisit segmented data. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240375. [PMID: 39100145 PMCID: PMC11296200 DOI: 10.1098/rsos.240375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 08/06/2024]
Abstract
3D visualization and segmentation are increasingly widely used in physical, biological and medical science, facilitating advanced investigative methodologies. However, the integration and reproduction of segmented volumes or results across the spectrum of mainstream 3D visualization platforms remain hindered by compatibility constraints. These barriers not only challenge the replication of findings but also obstruct the process of cross-validating the accuracy of 3D visualization outputs. To address this gap, we developed an innovative revisualization method implemented within the open-source framework of Drishti, a 3D visualization software. Leveraging four animal samples alongside three mainstream 3D visualization platforms as case studies, our method demonstrates the seamless transferability of segmented results into Drishti. This capability effectively fosters a new avenue for authentication and enhanced scrutiny of segmented data. By facilitating this interoperability, our approach underscores the potential for significant advancements in accuracy validation and collaborative research efforts across diverse scientific domains.
Collapse
Affiliation(s)
- Yuzhi Hu
- CT Lab, Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT2601, Australia
| | - Ajay Limaye
- National Computational Infrastructure, Building 143, Corner of Ward Road and Garran 7 Road, Ward Rd, Canberra, ACT2601, Australia
| | - Jing Lu
- Key Laboratory of Vertebrate Evolution & Human Origins of China, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing100044, People’s Republic of China
- CAS Center for Excellence in Life & Paleoenvironment, Chinese Academy of Science, Beijing100044, People’s Republic of China
| |
Collapse
|
14
|
Wu Y, Ke J, Ye S, Shan LL, Xu S, Guo SF, Li MT, Qiao TC, Peng ZY, Wang YL, Liu MY, Wang H, Feng JF, Han Y. 3D Visualization of Whole Brain Vessels and Quantification of Vascular Pathology in a Chronic Hypoperfusion Model Causing White Matter Damage. Transl Stroke Res 2024; 15:659-671. [PMID: 37222915 DOI: 10.1007/s12975-023-01157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
Chronic cerebral hypoperfusion is an important pathological factor in many neurodegenerative diseases, such as cerebral small vessel disease (CSVD). One of the most used animal models for chronic cerebral hypoperfusion is the bilateral common carotid artery stenosis (BCAS) mouse. For the therapy of CSVD and other diseases, it will be beneficial to understand the pathological alterations of the BCAS mouse, particularly vascular pathological changes. A mouse model of BCAS was used, and 8 weeks later, cognitive function of the mice was examined by using novel object recognition test and eight-arm radial maze test. 11.7 T magnetic resonance imaging (MRI) and luxol fast blue staining were used to evaluate the injury of the corpus callosum (CC), anterior commissure (AC), internal capsule (IC), and optic tract (Opt) in the cerebral white matter of mice. Three-dimensional vascular images of the whole brain of mice were acquired using fluorescence micro-optical sectioning tomography (fMOST) with a high resolution of 0.32 × 0.32 × 1.00 μm3. Then, the damaged white matter regions were further extracted to analyze the vessel length density, volume fraction, tortuosity, and the number of vessels of different internal diameters. The mouse cerebral caudal rhinal vein was also extracted and analyzed for its branch number and divergent angle in this study. BCAS modeling for 8 weeks resulted in impaired spatial working memory, reduced brain white matter integrity, and myelin degradation in mice, and CC showed the most severe white matter damage. 3D revascularization of the whole mouse brain showed that the number of large vessels was reduced and the number of small vessels was increased in BCAS mice. Further analysis revealed that the vessel length density and volume fraction in the damaged white matter region of BCAS mice were significantly reduced, and the vascular lesions were most noticeable in the CC. At the same time, the number of small vessels in the above white matter regions was significantly reduced, while the number of microvessels was significantly increased in BCAS mice, and the vascular tortuosity was also significantly increased. In addition, the analysis of caudal rhinal vein extraction revealed that the number of branches and the average divergent angle in BCAS mice were significantly reduced. The BCAS modeling for 8 weeks will lead to vascular lesions in whole brain of mice, and the caudal nasal vein was also damaged, while BCAS mice mainly mitigated the damages by increasing microvessels. What is more, the vascular lesions in white matter of mouse brain can cause white matter damage and spatial working memory deficit. These results provide evidence for the vascular pathological alterations caused by chronic hypoperfusion.
Collapse
Affiliation(s)
- Yang Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Jia Ke
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Song Ye
- Wuhan OE-Bio Co., Ltd., G2 zone, Future City 999, Gaoxin boulevard East Lake High-Tech Development zone, Wuhan, 430074, China
| | - Li-Li Shan
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Shuai Xu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 825 Zhangheng Road, Shanghai, 200127, China
| | - Shu-Fen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Meng-Ting Li
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Tian-Ci Qiao
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Zheng-Yu Peng
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Yi-Lin Wang
- Georgetown Preparatory School, Washington, DC, USA
| | - Ming-Yuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 825 Zhangheng Road, Shanghai, 200127, China.
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 825 Zhangheng Road, Shanghai, 200127, China.
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
| |
Collapse
|
15
|
Deng Y, Zhu J, Liu X, Dai J, Yu T, Zhu D. A robust vessel-labeling pipeline with high tissue clearing compatibility for 3D mapping of vascular networks. iScience 2024; 27:109730. [PMID: 38706842 PMCID: PMC11068851 DOI: 10.1016/j.isci.2024.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The combination of vessel-labeling, tissue-clearing, and light-sheet imaging techniques provides a potent tool for accurately mapping vascular networks, enabling the assessment of vascular remodeling in vascular-related disorders. However, most vascular labeling methods face challenges such as inadequate labeling efficiency or poor compatibility with current tissue clearing technology, which significantly undermines the image quality. To address this limitation, we introduce a vessel-labeling pipeline, termed Ultralabel, which relies on a specially designed dye hydrogel containing lysine-fixable dextran and gelatins for double enhancement. Ultralabel demonstrates not only excellent vessel-labeling capability but also strong compatibility with all tissue clearing methods tested, which outperforms other vessel-labeling methods. Consequently, Ultralabel enables fine mapping of vascular networks in diverse organs, as well as multi-color labeling alongside other labeling techniques. Ultralabel should provide a robust and user-friendly method for obtaining 3D vascular networks in different biomedical applications.
Collapse
Affiliation(s)
- Yating Deng
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Junyao Dai
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
16
|
Xie DF, Crouzet C, LoPresti K, Wang Y, Robinson C, Jones W, Muqolli F, Fang C, Cribbs DH, Fisher M, Choi B. Semi-automated protocol to quantify and characterize fluorescent three-dimensional vascular images. PLoS One 2024; 19:e0289109. [PMID: 38753706 PMCID: PMC11098357 DOI: 10.1371/journal.pone.0289109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/11/2023] [Indexed: 05/18/2024] Open
Abstract
The microvasculature facilitates gas exchange, provides nutrients to cells, and regulates blood flow in response to stimuli. Vascular abnormalities are an indicator of pathology for various conditions, such as compromised vessel integrity in small vessel disease and angiogenesis in tumors. Traditional immunohistochemistry enables the visualization of tissue cross-sections containing exogenously labeled vasculature. Although this approach can be utilized to quantify vascular changes within small fields of view, it is not a practical way to study the vasculature on the scale of whole organs. Three-dimensional (3D) imaging presents a more appropriate method to visualize the vascular architecture in tissue. Here we describe the complete protocol that we use to characterize the vasculature of different organs in mice encompassing the methods to fluorescently label vessels, optically clear tissue, collect 3D vascular images, and quantify these vascular images with a semi-automated approach. To validate the automated segmentation of vascular images, one user manually segmented one hundred random regions of interest across different vascular images. The automated segmentation results had an average sensitivity of 83±11% and an average specificity of 91±6% when compared to manual segmentation. Applying this procedure of image analysis presents a method to reliably quantify and characterize vascular networks in a timely fashion. This procedure is also applicable to other methods of tissue clearing and vascular labels that generate 3D images of microvasculature.
Collapse
Affiliation(s)
- Danny F. Xie
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Christian Crouzet
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Krystal LoPresti
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Yuke Wang
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Christopher Robinson
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - William Jones
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
| | - Fjolla Muqolli
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
| | - Chuo Fang
- Department of Neurology, University of California-Irvine, Irvine, CA, United States of America
| | - David H. Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA, United States of America
| | - Mark Fisher
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Neurology, University of California-Irvine, Irvine, CA, United States of America
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA, United States of America
- Department of Pathology & Laboratory Medicine, University of California-Irvine, Irvine, CA, United States of America
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| |
Collapse
|
17
|
Takahashi-Yamashiro K, Miyazono K. Tissue clearing method in visualization of cancer progression and metastasis. Ups J Med Sci 2024; 129:10634. [PMID: 38716075 PMCID: PMC11075440 DOI: 10.48101/ujms.v129.10634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 05/24/2024] Open
Abstract
Since various imaging modalities have been developed, cancer metastasis can be detected from an early stage. However, limitations still exist, especially in terms of spatial resolution. Tissue-clearing technology has emerged as a new imaging modality in cancer research, which has been developed and utilized for a long time mainly in neuroscience field. This method enables us to detect cancer metastatic foci with single-cell resolution at whole mouse body/organ level. On top of that, 3D images of cancer metastasis of whole mouse organs make it easy to understand their characteristics. Recently, further applications of tissue clearing methods were reported in combination with reporter systems, labeling, and machine learning. In this review, we would like to provide an overview of this technique and current applications in cancer research and discuss their potentials and limitations.
Collapse
Affiliation(s)
- Kei Takahashi-Yamashiro
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Cancer Invasion and Metastasis, Institute for Medical Sciences, RIKEN, Yokohama City, Kanagawa, Japan
| |
Collapse
|
18
|
Yang X, He D, Li Y, Li C, Wang X, Zhu X, Sun H, Xu Y. Deep learning-based vessel extraction in 3D confocal microscope images of cleared human glioma tissues. BIOMEDICAL OPTICS EXPRESS 2024; 15:2498-2516. [PMID: 38633068 PMCID: PMC11019690 DOI: 10.1364/boe.516541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024]
Abstract
Comprehensive visualization and accurate extraction of tumor vasculature are essential to study the nature of glioma. Nowadays, tissue clearing technology enables 3D visualization of human glioma vasculature at micron resolution, but current vessel extraction schemes cannot well cope with the extraction of complex tumor vessels with high disruption and irregularity under realistic conditions. Here, we developed a framework, FineVess, based on deep learning to automatically extract glioma vessels in confocal microscope images of cleared human tumor tissues. In the framework, a customized deep learning network, named 3D ResCBAM nnU-Net, was designed to segment the vessels, and a novel pipeline based on preprocessing and post-processing was developed to refine the segmentation results automatically. On the basis of its application to a practical dataset, we showed that the FineVess enabled extraction of variable and incomplete vessels with high accuracy in challenging 3D images, better than other traditional and state-of-the-art schemes. For the extracted vessels, we calculated vascular morphological features including fractal dimension and vascular wall integrity of different tumor grades, and verified the vascular heterogeneity through quantitative analysis.
Collapse
Affiliation(s)
- Xiaodu Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China
| | - Dian He
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China
| | - Chenyang Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyue Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xingzheng Zhu
- Institute of Applied Artificial Intelligence of the Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen Polytechnic University, Shenzhen, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Yingying Xu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China
| |
Collapse
|
19
|
Murakami E, Nakamori M, Nakatani K, Shibata T, Tainaka K. Intracerebral Distribution of CAG Repeat-Binding Small Molecule Visualized by Whole-Brain Imaging. Bioconjug Chem 2023; 34:2187-2193. [PMID: 37948852 DOI: 10.1021/acs.bioconjchem.3c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Understanding the pharmacokinetics of drug candidates of interest in the brain and evaluating drug delivery to the brain are important for developing drugs targeting the brain. Previously, we demonstrated that a CAG repeat-binding small molecule, naphthyridine-azaquinolone (NA), resulted in repeat contraction in mouse models of dentatorubral-pallidoluysian atrophy and Huntington's disease caused by aberrant expansion of CAG repeats. However, the intracerebral distribution and drug deliverability of NA remain unclear. Here, we report three-dimensional whole-brain imaging of an externally administered small molecule using tissue clearing and light sheet fluorescence microscopy (LSFM). We designed and synthesized an Alexa594-labeled NA derivative with a primary amine for whole-brain imaging (NA-Alexa594-NH2), revealing the intracerebral distribution of NA-Alexa594-NH2 after intraparenchymal and intracerebroventricular administrations by whole-brain imaging combined with tissue clearing and LSFM. We also clarified that intranasally administered NA-Alexa594-NH2 was delivered into the brain via multiple nose-to-brain pathways by tracking the time-dependent change in the intracerebral distribution. Whole-brain imaging of small molecules by tissue clearing and LSFM is useful for elucidating not only the intracerebral distribution but also the drug delivery pathways into the brain.
Collapse
Affiliation(s)
- Eitaro Murakami
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka 567-0047, Japan
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka 567-0047, Japan
| | - Tomonori Shibata
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka 567-0047, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
20
|
Nguyen JN, Mohan EC, Pandya G, Ali U, Tan C, Kofler JK, Shapiro L, Marrelli SP, Chauhan A. CD13 facilitates immune cell migration and aggravates acute injury but promotes chronic post-stroke recovery. J Neuroinflammation 2023; 20:232. [PMID: 37817190 PMCID: PMC10566099 DOI: 10.1186/s12974-023-02918-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023] Open
Abstract
INTRODUCTION Acute stroke leads to the activation of myeloid cells. These cells express adhesion molecules and transmigrate to the brain, thereby aggravating injury. Chronically after stroke, repair processes, including angiogenesis, are activated and enhance post-stroke recovery. Activated myeloid cells express CD13, which facilitates their migration into the site of injury. However, angiogenic blood vessels which play a role in recovery also express CD13. Overall, the specific contribution of CD13 to acute and chronic stroke outcomes is unknown. METHODS CD13 expression was estimated in both mice and humans after the ischemic stroke. Young (8-12 weeks) male wild-type and global CD13 knockout (KO) mice were used for this study. Mice underwent 60 min of middle cerebral artery occlusion (MCAO) followed by reperfusion. For acute studies, the mice were euthanized at either 24- or 72 h post-stroke. For chronic studies, the Y-maze, Barnes maze, and the open field were performed on day 7 and day 28 post-stroke. Mice were euthanized at day 30 post-stroke and the brains were collected for assessment of inflammation, white matter injury, tissue loss, and angiogenesis. Flow cytometry was performed on days 3 and 7 post-stroke to quantify infiltrated monocytes and neutrophils and CXCL12/CXCR4 signaling. RESULTS Brain CD13 expression and infiltrated CD13+ monocytes and neutrophils increased acutely after the stroke. The brain CD13+lectin+ blood vessels increased on day 15 after the stroke. Similarly, an increase in the percentage area CD13 was observed in human stroke patients at the subacute time after stroke. Deletion of CD13 resulted in reduced infarct volume and improved neurological recovery after acute stroke. However, CD13KO mice had significantly worse memory deficits, amplified gliosis, and white matter damage compared to wild-type animals at chronic time points. CD13-deficient mice had an increased percentage of CXCL12+cells but a reduced percentage of CXCR4+cells and decreased angiogenesis at day 30 post-stroke. CONCLUSIONS CD13 is involved in the trans-migration of monocytes and neutrophils after stroke, and acutely, led to decreased infarct size and improved behavioral outcomes. However, loss of CD13 led to reductions in post-stroke angiogenesis by reducing CXCL12/CXCR4 signaling.
Collapse
Affiliation(s)
- Justin N Nguyen
- University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Eric C Mohan
- University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Gargee Pandya
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Uzma Ali
- Baylor University, Waco, TX, USA
| | - Chunfeng Tan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Linda Shapiro
- Center for Vascular Biology, The University of Connecticut Health Center, Farmington, CT, USA
| | - Sean P Marrelli
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA.
| |
Collapse
|
21
|
Jin BH, Woo J, Lee M, Ku S, Moon HS, Ryu SJ, Hyun YM, Park JY, Kuh SU, Cho YE. Optimization of the optical transparency of bones by PACT-based passive tissue clearing. Exp Mol Med 2023; 55:2190-2204. [PMID: 37779150 PMCID: PMC10618275 DOI: 10.1038/s12276-023-01089-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2023] Open
Abstract
Recent developments in tissue clearing methods such as the passive clearing technique (PACT) have allowed three-dimensional analysis of biological structures in whole, intact tissues, thereby providing a greater understanding of spatial relationships and biological circuits. Nonetheless, the issues that remain in maintaining structural integrity and preventing tissue expansion/shrinkage with rapid clearing still inhibit the wide application of these techniques in hard bone tissues, such as femurs and tibias. Here, we present an optimized PACT-based bone-clearing method, Bone-mPACT+, that protects biological structures. Bone-mPACT+ and four different decalcifying procedures were tested for their ability to improve bone tissue clearing efficiency without sacrificing optical transparency; they rendered nearly all types of bone tissues transparent. Both mouse and rat bones were nearly transparent after the clearing process. We also present a further modification, the Bone-mPACT+ Advance protocol, which is specifically optimized for processing the largest and hardest rat bones for easy clearing and imaging using established tissue clearing methods.
Collapse
Affiliation(s)
- Byung-Ho Jin
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, International ST Mary´s Hospital, College of Medicine, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Jiwon Woo
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Biomedical Research Institute, Biohedron, Seoul, 06230, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Mirae Lee
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Hyung Seok Moon
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
| | - Seung Jun Ryu
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Daejeon Eulji Medical Center, Eulji University, Daejeon, 35233, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jeong-Yoon Park
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Uk Kuh
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
- Biomedical Research Center, Gangnam Severance Hospital, Seoul, 06230, Republic of Korea
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong Eun Cho
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
- College of Medicine, Yonsei University Graduate School, Seoul, 03722, Republic of Korea.
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Neurosurgery, Wiltse Memorial Hospital, Suwon-si, Gyeonggi-do, 16480, Republic of Korea.
| |
Collapse
|
22
|
Wu Y, Yang Z, Liu M, Han Y. Application of fluorescence micro-optical sectioning tomography in the cerebrovasculature and applicable vascular labeling methods. Brain Struct Funct 2023; 228:1619-1627. [PMID: 37481741 DOI: 10.1007/s00429-023-02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
Fluorescence micro-optical sectioning tomography (fMOST) is a three-dimensional (3d) imaging method at the mesoscopic level. The whole-brain of mice can be imaged at a high resolution of 0.32 × 0.32 × 1.00 μm3. It is useful for revealing the fine morphology of intact organ tissue, even for positioning the single vessel connected with a complicated vascular network across different brain regions in the whole mouse brain. Featuring its 3d visualization of whole-brain cross-scale connections, fMOST has a vast potential to decipher brain function and diseases. This article begins with the background of fMOST technology including a widespread 3D imaging methods comparison and the basic technical principal illustration, followed by the application of fMOST in cerebrovascular research and relevant vascular labeling techniques applicable to different scenarios.
Collapse
Affiliation(s)
- Yang Wu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Zidong Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 825 Zhangheng Road, Shanghai, 200127, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
| |
Collapse
|
23
|
Yoshida S, Kreger AM, Gittes GK. Intra-amniotic sildenafil treatment improves lung blood flow and pulmonary hypertension in congenital diaphragmatic hernia rats. Front Bioeng Biotechnol 2023; 11:1195623. [PMID: 37545896 PMCID: PMC10399963 DOI: 10.3389/fbioe.2023.1195623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Pulmonary hypertension associated with congenital diaphragmatic hernia (CDH) is a critical factor in determining prognosis. We propose that intra-amniotic sildenafil administration is an effective prenatal therapy for CDH-induced pulmonary hypertension. To assess the efficacy of this treatment, we administered sildenafil to nitrofen-induced congenital diaphragmatic hernia fetuses and control fetuses via an intra-amniotic injection after a laparotomy on the pregnant dam at either E13.5 or E15.5. Intra-amniotic sildenafil treatment attenuated peripheral vascular muscularization, enhanced pulmonary blood flow, and increased the ratio of pulmonary artery size to aortic size in congenital diaphragmatic hernia fetuses after both E13.5 and E15.5 treatments. E13.5-treated congenital diaphragmatic hernia fetuses showed a higher and more prolonged expression of cyclic guanosine monophosphate (cGMP)-dependent protein kinase and more production of vascular endothelial growth factor, resulting in a significant improvement in lung architecture. The E13.5-treated congenital diaphragmatic hernia fetuses also had an increase in lung weight-to-body weight ratio and an improved fetal survival. Intra-amniotic sildenafil treatment did not show any detectable negative effects in control fetuses. Intra-amniotic sildenafil treatment for rats attenuates CDH-induced pulmonary hypertension and enhanced peripheral pulmonary blood flow. Moreover, early intervention may be preferable to better accelerate lung development and improve prognosis. Direct sildenafil administration via an intra-amniotic injection may be a promising option in congenital diaphragmatic hernia prenatal therapy.
Collapse
|
24
|
Zhu J, Liu X, Xu J, Deng Y, Wang P, Liu Z, Yang Q, Li D, Yu T, Zhu D. A versatile vessel casting method for fine mapping of vascular networks using a hydrogel-based lipophilic dye solution. CELL REPORTS METHODS 2023; 3:100407. [PMID: 36936073 PMCID: PMC10014313 DOI: 10.1016/j.crmeth.2023.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/11/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Efficient labeling of the vasculature is important for understanding the organization of vascular networks. Here, we propose VALID, a vessel-labeling method that enables visualization of vascular networks with tissue clearing and light-sheet microscopy. VALID transforms traditional lipophilic dye solution into hydrogel by introducing gelatin and restrains the dye aggregation, resulting in complete and uniform vessel-labeling patterns with high signal-to-background ratios. VALID also enhances the compatibility of lipophilic dyes with solvent-based tissue-clearing protocols, which was hard to achieve previously. Using VALID, we combined lipophilic dyes with solvent-based tissue-clearing techniques to perform 3D reconstructions of vasculature within mouse brain and spinal cord. We also employed VALID for 3D visualization and quantification of microvascular damage in a middle cerebral artery occlusion mouse model. VALID should provide a simple, cost-effective vessel-labeling protocol that would significantly widen the applications of lipophilic dyes in research on cerebrovascular complications.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jianyi Xu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Pingfu Wang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Qihang Yang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
25
|
Melton HJ, Zhang Z, Wu C. SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.02.23285208. [PMID: 36798253 PMCID: PMC9934719 DOI: 10.1101/2023.02.02.23285208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transcriptome-wide association studies (TWAS) integrate gene expression prediction models and genome-wide association studies (GWAS) to identify gene-trait associations. The power of TWAS is determined by the sample size of GWAS and the accuracy of the expression prediction model. Here, we present a new method, the Summary-level Unified Method for Modeling Integrated Transcriptome using Functional Annotations (SUMMIT-FA), that improves the accuracy of gene expression prediction by leveraging functional annotation resources and a large expression quantitative trait loci (eQTL) summary-level dataset. We build gene expression prediction models using SUMMIT-FA with a comprehensive functional database MACIE and the eQTL summary-level data from the eQTLGen consortium. By applying the resulting models to GWASs for 24 complex traits and exploring it through a simulation study, we show that SUMMIT-FA improves the accuracy of gene expression prediction models in whole blood, identifies significantly more gene-trait associations, and improves predictive power for identifying "silver standard" genes compared to several benchmark methods.
Collapse
Affiliation(s)
- Hunter J. Melton
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Bei J, Miranda-Morales EG, Gan Q, Qiu Y, Husseinzadeh S, Liew JY, Chang Q, Krishnan B, Gaitas A, Yuan S, Felicella M, Qiu WQ, Fang X, Gong B. Circulating Exosomes from Alzheimer's Disease Suppress Vascular Endothelial-Cadherin Expression and Induce Barrier Dysfunction in Recipient Brain Microvascular Endothelial Cell. J Alzheimers Dis 2023; 95:869-885. [PMID: 37661885 DOI: 10.3233/jad-230347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Blood-brain barrier (BBB) breakdown is a crucial aspect of Alzheimer's disease (AD) progression. Dysfunction in BBB is primarily caused by impaired tight junction and adherens junction proteins in brain microvascular endothelial cells (BMECs). The role of adherens junctions in AD-related BBB dysfunction remains unclear. Exosomes from senescent cells have unique characteristics and contribute to modulating the phenotype of recipient cells. However, it remains unknown if and how these exosomes cause BMEC dysfunction in AD. OBJECTIVE This study aimed to investigate the impact of AD circulating exosomes on brain endothelial dysfunction. METHODS Exosomes were isolated from sera of AD patients and age- and sex-matched cognitively normal controls using size-exclusion chromatography. The study measured the biomechanical nature of BMECs' endothelial barrier, the lateral binding forces between live BMECs. Paracellular expressions of the key adherens junction protein vascular endothelial (VE)-cadherin were visualized in BMEC cultures and a 3D BBB model using human BMECs and pericytes. VE-cadherin signals were also examined in brain tissues from AD patients and normal controls. RESULTS Circulating exosomes from AD patients reduced VE-cadherin expression levels and impaired barrier function in recipient BMECs. Immunostaining analysis demonstrated that AD exosomes damaged VE-cadherin integrity in a 3D microvascular tubule formation model. The study found that AD exosomes weakened BBB integrity depending on their RNA content. Additionally, diminished microvascular VE-cadherin expression was observed in AD brains compared to controls. CONCLUSION These findings highlight the significant role of circulating exosomes from AD patients in damaging adherens junctions of recipient BMECs, dependent on exosomal RNA.
Collapse
Affiliation(s)
- Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ernesto G Miranda-Morales
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Qini Gan
- Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sorosh Husseinzadeh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Yi Liew
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Balaji Krishnan
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subo Yuan
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michelle Felicella
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wei Qiao Qiu
- Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Xiang Fang
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
27
|
Abdellah M, Cantero JJG, Guerrero NR, Foni A, Coggan JS, Calì C, Agus M, Zisis E, Keller D, Hadwiger M, Magistretti PJ, Markram H, Schürmann F. Ultraliser: a framework for creating multiscale, high-fidelity and geometrically realistic 3D models for in silico neuroscience. Brief Bioinform 2022; 24:6847753. [PMID: 36434788 PMCID: PMC9851302 DOI: 10.1093/bib/bbac491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022] Open
Abstract
Ultraliser is a neuroscience-specific software framework capable of creating accurate and biologically realistic 3D models of complex neuroscientific structures at intracellular (e.g. mitochondria and endoplasmic reticula), cellular (e.g. neurons and glia) and even multicellular scales of resolution (e.g. cerebral vasculature and minicolumns). Resulting models are exported as triangulated surface meshes and annotated volumes for multiple applications in in silico neuroscience, allowing scalable supercomputer simulations that can unravel intricate cellular structure-function relationships. Ultraliser implements a high-performance and unconditionally robust voxelization engine adapted to create optimized watertight surface meshes and annotated voxel grids from arbitrary non-watertight triangular soups, digitized morphological skeletons or binary volumetric masks. The framework represents a major leap forward in simulation-based neuroscience, making it possible to employ high-resolution 3D structural models for quantification of surface areas and volumes, which are of the utmost importance for cellular and system simulations. The power of Ultraliser is demonstrated with several use cases in which hundreds of models are created for potential application in diverse types of simulations. Ultraliser is publicly released under the GNU GPL3 license on GitHub (BlueBrain/Ultraliser). SIGNIFICANCE There is crystal clear evidence on the impact of cell shape on its signaling mechanisms. Structural models can therefore be insightful to realize the function; the more realistic the structure can be, the further we get insights into the function. Creating realistic structural models from existing ones is challenging, particularly when needed for detailed subcellular simulations. We present Ultraliser, a neuroscience-dedicated framework capable of building these structural models with realistic and detailed cellular geometries that can be used for simulations.
Collapse
Affiliation(s)
- Marwan Abdellah
- Corresponding authors. Marwan Abdellah, Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland. E-mail: ; Felix Schürmann, Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland. E-mail:
| | | | - Nadir Román Guerrero
- Blue Brain Project (BBP) École Polytecnique Fédérale de Lausanne (EPFL) Geneva, Switzerland
| | - Alessandro Foni
- Blue Brain Project (BBP) École Polytecnique Fédérale de Lausanne (EPFL) Geneva, Switzerland
| | - Jay S Coggan
- Blue Brain Project (BBP) École Polytecnique Fédérale de Lausanne (EPFL) Geneva, Switzerland
| | - Corrado Calì
- Biological and Environmental Sciences and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal, Saudi Arabia,Neuroscience Institute Cavalieri Ottolenghi (NICO) Orbassano, Italy,Department of Neuroscience, University of Torino Torino, Italy
| | - Marco Agus
- Visual Computing Center King Abdullah University of Science and Technology (KAUST) Thuwal, Saudi Arabia,College of Science and Engineering Hamad Bin Khalifa University Doha, Qatar
| | - Eleftherios Zisis
- Blue Brain Project (BBP) École Polytecnique Fédérale de Lausanne (EPFL) Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project (BBP) École Polytecnique Fédérale de Lausanne (EPFL) Geneva, Switzerland
| | - Markus Hadwiger
- Visual Computing Center King Abdullah University of Science and Technology (KAUST) Thuwal, Saudi Arabia
| | - Pierre J Magistretti
- Biological and Environmental Sciences and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal, Saudi Arabia
| | - Henry Markram
- Blue Brain Project (BBP) École Polytecnique Fédérale de Lausanne (EPFL) Geneva, Switzerland
| | - Felix Schürmann
- Corresponding authors. Marwan Abdellah, Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland. E-mail: ; Felix Schürmann, Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland. E-mail:
| |
Collapse
|
28
|
Zhou Q, Nozdriukhin D, Chen Z, Glandorf L, Hofmann UAT, Reiss M, Tang L, Deán‐Ben XL, Razansky D. Depth-Resolved Localization Microangiography in the NIR-II Window. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204782. [PMID: 36403231 PMCID: PMC9811471 DOI: 10.1002/advs.202204782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Detailed characterization of microvascular alterations requires high-resolution 3D imaging methods capable of providing both morphological and functional information. Existing optical microscopy tools are routinely used for microangiography, yet offer suboptimal trade-offs between the achievable field of view and spatial resolution with the intense light scattering in biological tissues further limiting the achievable penetration depth. Herein, a new approach for volumetric deep-tissue microangiography based on stereovision combined with super-resolution localization imaging is introduced that overcomes the spatial resolution limits imposed by light diffusion and optical diffraction in wide-field imaging configurations. The method capitalizes on localization and tracking of flowing fluorescent particles in the second near-infrared window (NIR-II, ≈1000-1700 nm), with the third (depth) dimension added by triangulation and stereo-matching of images acquired with two short-wave infrared cameras operating in a dual-view mode. The 3D imaging capability enabled with the proposed method facilitates a detailed visualization of microvascular networks and an accurate blood flow quantification. Experiments performed in tissue-mimicking phantoms demonstrate that high resolution is preserved up to a depth of 4 mm in a turbid medium. Transcranial microangiography of the entire murine cortex and penetrating vessels is further demonstrated at capillary level resolution.
Collapse
Affiliation(s)
- Quanyu Zhou
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Zhenyue Chen
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Lukas Glandorf
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Urs A. T. Hofmann
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Lin Tang
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Xosé Luís Deán‐Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| |
Collapse
|
29
|
Zhu J, Deng Y, Yu T, Liu X, Li D, Zhu D. Optimal combinations of fluorescent vessel labeling and tissue clearing methods for three-dimensional visualization of vasculature. NEUROPHOTONICS 2022; 9:045008. [PMID: 36466188 PMCID: PMC9709454 DOI: 10.1117/1.nph.9.4.045008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Visualization of intact vasculatures is crucial to understanding the pathogeneses of different neurological and vascular diseases. Although various fluorescent vessel labeling methods have been used in combination with tissue clearing for three-dimensional (3D) visualization of different vascular networks, little has been done to quantify the labeling effect of each vessel labeling routine, as well as their applicability alongside various clearing protocols, making it difficult to select an optimal combination for finely constructing different vasculatures. Therefore, it is necessary to systematically assess the overall performance of these common vessel labeling methods combined with different tissue-clearing protocols. AIM A comprehensive evaluation of the labeling quality of various vessel labeling routines in different organs, as well as their applicability alongside various clearing protocols, were performed to find the optimal combinations for 3D reconstruction of vascular networks with high quality. APPROACH Four commonly-used vessel labeling techniques and six typical tissue optical clearing approaches were selected as candidates for the systematic evaluation. RESULTS The vessel labeling efficiency, vessel labeling patterns, and compatibility of each vessel labeling method with different tissue-clearing protocols were quantitatively evaluated and compared. Based on the comprehensive evaluation results, the optimal combinations were selected for 3D reconstructions of vascular networks in several organs, including mouse brain, liver, and kidney. CONCLUSIONS This study provides valuable insight on selecting the proper pipelines for 3D visualization of vascular networks, which may facilitate understanding of the underlying mechanisms of various neurovascular diseases.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics–MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics–Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Optics Valley Laboratory, Wuhan, Hubei, China
| |
Collapse
|
30
|
Takahashi K, Abe K, Kubota SI, Fukatsu N, Morishita Y, Yoshimatsu Y, Hirakawa S, Kubota Y, Watabe T, Ehata S, Ueda HR, Shimamura T, Miyazono K. An analysis modality for vascular structures combining tissue-clearing technology and topological data analysis. Nat Commun 2022; 13:5239. [PMID: 36097010 PMCID: PMC9468184 DOI: 10.1038/s41467-022-32848-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The blood and lymphatic vasculature networks are not yet fully understood even in mouse because of the inherent limitations of imaging systems and quantification methods. This study aims to evaluate the usefulness of the tissue-clearing technology for visualizing blood and lymphatic vessels in adult mouse. Clear, unobstructed brain/body imaging cocktails and computational analysis (CUBIC) enables us to capture the high-resolution 3D images of organ- or area-specific vascular structures. To evaluate these 3D structural images, signals are first classified from the original captured images by machine learning at pixel base. Then, these classified target signals are subjected to topological data analysis and non-homogeneous Poisson process model to extract geometric features. Consequently, the structural difference of vasculatures is successfully evaluated in mouse disease models. In conclusion, this study demonstrates the utility of CUBIC for analysis of vascular structures and presents its feasibility as an analysis modality in combination with 3D images and mathematical frameworks.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ko Abe
- Laboratory of Medical Statistics, Pharmaceutical Science, Faculty of Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashi-Nada-ku, Kobe, Hyogo, 658-8558, Japan
| | - Shimpei I Kubota
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Noriaki Fukatsu
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuhiro Yoshimatsu
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Satoshi Hirakawa
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3125, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
31
|
Boster KAS, Tithof J, Cook DD, Thomas JH, Kelley DH. Sensitivity analysis on a network model of glymphatic flow. J R Soc Interface 2022; 19:20220257. [PMID: 35642425 PMCID: PMC9156905 DOI: 10.1098/rsif.2022.0257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
Intracranial cerebrospinal and interstitial fluid (ISF) flow and solute transport have important clinical implications, but limited in vivo access to the brain interior leaves gaping holes in human understanding of the nature of these neurophysiological phenomena. Models can address some gaps, but only insofar as model inputs are accurate. We perform a sensitivity analysis using a Monte Carlo approach on a lumped-parameter network model of cerebrospinal and ISF in perivascular and extracellular spaces in the murine brain. We place bounds on model predictions given the uncertainty in input parameters. Péclet numbers for transport in penetrating perivascular spaces (PVSs) and within the parenchyma are separated by at least two orders of magnitude. Low permeability in penetrating PVSs requires unrealistically large driving pressure and/or results in poor perfusion and are deemed unlikely. The model is most sensitive to the permeability of penetrating PVSs, a parameter whose value is largely unknown, highlighting an important direction for future experiments. Until the value of the permeability of penetrating PVSs is more accurately measured, the uncertainty of any model that includes flow in penetrating PVSs is so large that absolute numbers have little meaning and practical application is limited.
Collapse
Affiliation(s)
- Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas D. Cook
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
32
|
Kugler EC, Rampun A, Chico TJA, Armitage PA. Analytical Approaches for the Segmentation of the Zebrafish Brain Vasculature. Curr Protoc 2022; 2:e443. [PMID: 35617469 DOI: 10.1002/cpz1.443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With advancements in imaging techniques, data visualization allows new insights into fundamental biological processes of development and disease. However, although biomedical science is heavily reliant on imaging data, interpretation of datasets is still often based on subjective visual assessment rather than rigorous quantitation. This overview presents steps to validate image processing and segmentation using the zebrafish brain vasculature data acquired with light sheet fluorescence microscopy as a use case. Blood vessels are of particular interest to both medical and biomedical science. Specific image enhancement filters have been developed that enhance blood vessels in imaging data prior to segmentation. Using the Sato enhancement filter as an example, we discuss how filter application can be evaluated and optimized. Approaches from the medical field such as simulated, experimental, and augmented datasets can be used to gain the most out of the data at hand. Using such datasets, we provide an overview of how biologists and data analysts can assess the accuracy, sensitivity, and robustness of their segmentation approaches that allow extraction of objects from images. Importantly, even after optimization and testing of a segmentation workflow (e.g., from a particular reporter line to another or between immunostaining processes), its generalizability is often limited, and this can be tested using double-transgenic reporter lines. Lastly, due to the increasing importance of deep learning networks, a comparative approach can be adopted to study their applicability to biological datasets. In summary, we present a broad methodological overview ranging from image enhancement to segmentation with a mixed approach of experimental, simulated, and augmented datasets to assess and validate vascular segmentation using the zebrafish brain vasculature as an example. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. HIGHLIGHTS: Simulated, experimental, and augmented datasets provide an alternative to overcome the lack of segmentation gold standards and phantom models for zebrafish cerebrovascular segmentation. Direct generalization of a segmentation approach to the data for which it was not optimized (e.g., different transgenics or antibody stainings) should be treated with caution. Comparison of different deep learning segmentation methods can be used to assess their applicability to data. Here, we show that the zebrafish cerebral vasculature can be segmented with U-Net-based architectures, which outperform SegNet architectures.
Collapse
Affiliation(s)
- Elisabeth C Kugler
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, Greater London.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom.,Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sheffield, United Kingdom
| | - Andrik Rampun
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom.,Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sheffield, United Kingdom
| | - Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom.,Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sheffield, United Kingdom
| | - Paul A Armitage
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield, United Kingdom.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, United Kingdom.,Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sheffield, United Kingdom
| |
Collapse
|
33
|
Tithof J, Boster KA, Bork PA, Nedergaard M, Thomas JH, Kelley DH. A network model of glymphatic flow under different experimentally-motivated parametric scenarios. iScience 2022; 25:104258. [PMID: 35521514 PMCID: PMC9062681 DOI: 10.1016/j.isci.2022.104258] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Flow of cerebrospinal fluid (CSF) through perivascular spaces (PVSs) in the brain delivers nutrients, clears metabolic waste, and causes edema formation. Brain-wide imaging cannot resolve PVSs, and high-resolution methods cannot access deep tissue. However, theoretical models provide valuable insight. We model the CSF pathway as a network of hydraulic resistances, using published parameter values. A few parameters (permeability of PVSs and the parenchyma, and dimensions of PVSs and astrocyte endfoot gaps) have wide uncertainties, so we focus on the limits of their ranges by analyzing different parametric scenarios. We identify low-resistance PVSs and high-resistance parenchyma as the only scenario that satisfies three essential criteria: that the flow be driven by a small pressure drop, exhibit good CSF perfusion throughout the cortex, and exhibit a substantial increase in flow during sleep. Our results point to the most important parameters, such as astrocyte endfoot gap dimensions, to be measured in future experiments. We model the CSF pathway as a network of hydraulic resistances Predictions are bracketed by analyzing parametric scenarios for unknown parameters Low-resistance PVSs and high-resistance parenchyma produce realistic flows Astrocyte endfoot gap size is among the important parameters to be measured
Collapse
Affiliation(s)
- Jeffrey Tithof
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis 55455, MN, USA
- Corresponding author
| | - Kimberly A.S. Boster
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| | - Peter A.R. Bork
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Copenhagen, Denmark
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester 14642, NY, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| |
Collapse
|
34
|
Yin X, Zhang X, Zhang J, Yang W, Sun X, Zhang H, Gao Z, Jiang H. High-Resolution Digital Panorama of Multiple Structures in Whole Brain of Alzheimer's Disease Mice. Front Neurosci 2022; 16:870520. [PMID: 35516801 PMCID: PMC9067162 DOI: 10.3389/fnins.2022.870520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022] Open
Abstract
Simultaneously visualizing Amyloid-β (Aβ) plaque with its surrounding brain structures at the subcellular level in the intact brain is essential for understanding the complex pathology of Alzheimer's disease, but is still rarely achieved due to the technical limitations. Combining the micro-optical sectioning tomography (MOST) system, whole-brain Nissl staining, and customized image processing workflow, we generated a whole-brain panorama of Alzheimer's disease mice without specific labeling. The workflow employed the steps that include virtual channel splitting, feature enhancement, iso-surface rendering, direct volume rendering, and feature fusion to extract and reconstruct the different signals with distinct gray values and morphologies. Taking advantage of this workflow, we found that the denser-distribution areas of Aβ plaques appeared with relatively more somata and smaller vessels, but show a dissimilar distributing pattern with nerve tracts. In addition, the entorhinal cortex and adjacent subiculum regions present the highest density and biggest diameter of plaques. The neuronal processes in the vicinity of these Aβ plaques showed significant structural alternation such as bending or abrupt branch ending. The capillaries inside or adjacent to the plaques were observed with abundant distorted micro-vessels and abrupt ending. Depicting Aβ plaques, somata, nerve processes and tracts, and blood vessels simultaneously, this panorama enables us for the first time, to analyze how the Aβ plaques interact with capillaries, somata, and processes at a submicron resolution of 3D whole-brain scale, which reveals potential pathological effects of Aβ plaques from a new cross-scale view. Our approach opens a door to routine systematic studies of complex interactions among brain components in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Xianzhen Yin
- Center for MOST and Image Fusion Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
- *Correspondence: Xianzhen Yin
| | - Xiaochuan Zhang
- Center for MOST and Image Fusion Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weicheng Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xian Sun
- Center for MOST and Image Fusion Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Haiyan Zhang
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, China
- Zhaobing Gao
| | - Hualiang Jiang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Hualiang Jiang
| |
Collapse
|
35
|
Zeng C, Chen Z, Yang H, Fan Y, Fei L, Chen X, Zhang M. Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. Int J Biol Sci 2022; 18:552-571. [PMID: 35002509 PMCID: PMC8741851 DOI: 10.7150/ijbs.64373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022] Open
Abstract
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.
Collapse
Affiliation(s)
- Chudai Zeng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Lujing Fei
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Xinghang Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| |
Collapse
|
36
|
Woo J, Lee EY, Lee M, Ku S, Park JY, Cho YE. Comparative Analyses of Clearing Efficacies of Tissue Clearing Protocols by Using a Punching Assisted Clarity Analysis. Front Bioeng Biotechnol 2022; 9:784626. [PMID: 35155401 PMCID: PMC8831720 DOI: 10.3389/fbioe.2021.784626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 02/03/2023] Open
Abstract
The advent of tissue clearing methods, in conjunction with novel high-resolution imaging techniques, has enabled the visualization of three-dimensional structures with unprecedented depth and detail. Although a variety of clearing protocols have been developed, little has been done to quantify their efficacies in a systematic, reproducible fashion. Here, we present two simple assays, Punching-Assisted Clarity Analysis (PACA)-Light and PACA-Glow, which use easily accessible spectroscopy and gel documentation systems to quantify the transparency of multiple cleared tissues simultaneously. We demonstrate the use of PACA-Light and PACA-Glow to compare twenty-eight tissue clearing protocols on rodent brains. We also show that regional differences exist in tissue transparency in the rodent brain, with cerebellar tissue consistently achieving lower clearing levels compared to the prefrontal or cerebral cortex across all protocols. This represents the largest comparative study of tissue clearing protocols to date, made possible by the high-throughput nature of our PACA platforms.
Collapse
Affiliation(s)
- Jiwon Woo
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Biohedron Therapeutics Co., Ltd., Seoul, South Korea
| | - Eunice Yoojin Lee
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Mirae Lee
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Jeong-Yoon Park
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Eun Cho
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Biomedical Research Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
37
|
An CZ, Li CQ, Song LB, He YF, Chen W, Liu B, Zhao YD. A simple fluorescent strategy for liver capillary labeling with carbon quantum dot-lectin nanoprobe. Analyst 2022; 147:1952-1960. [DOI: 10.1039/d1an02364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on lycopersicon esculentum lectin that can target vascular endothelial cells and carbon quantum dots, we designed a carbon-based probe for the fluorescence labeling and imaging of hepatic blood vessels of liver tissue sections.
Collapse
Affiliation(s)
- Chang-Zhi An
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Chao-Qing Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Lai-Bo Song
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yan-Fei He
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| |
Collapse
|
38
|
Na M, Kim K, Oh K, Choi HJ, Ha C, Chang S. Sodium Cholate-Based Active Delipidation for Rapid and Efficient Clearing and Immunostaining of Deep Biological Samples. SMALL METHODS 2022; 6:e2100943. [PMID: 35041279 DOI: 10.1002/smtd.202100943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Indexed: 06/14/2023]
Abstract
Recent surges of optical clearing provided anatomical maps to understand structure-function relationships at organ scale. Detergent-mediated lipid removal enhances optical clearing and allows efficient penetration of antibodies inside tissues, and sodium dodecyl sulfate (SDS) is the most common choice for this purpose. SDS, however, forms large micelles and has a low critical micelle concentration (CMC). Theoretically, detergents that form smaller micelles and higher CMC should perform better but these have remained mostly unexplored. Here, SCARF, a sodium cholate (SC)-based active delipidation method, is developed for better clearing and immunolabeling of thick tissues or whole organs. It is found that SC has superior properties to SDS as a detergent but has serious problems; precipitation and browning. These limitations are overcome by using the ion-conductive film to confine SC while enabling high conductivity. SCARF renders orders of magnitude faster tissue transparency than the SDS-based method, while excellently preserving the endogenous fluorescence, and enables much efficient penetration of a range of antibodies, thus revealing structural details of various organs including sturdy post-mortem human brain tissues at the cellular resolution. Thus, SCARF represents a robust and superior alternative to the SDS-based clearing methods and is expected to facilitate the 3D morphological mapping of various organs.
Collapse
Affiliation(s)
- Myeongsu Na
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Kitae Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Kyoungjoon Oh
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Hyung Jin Choi
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - ChangMan Ha
- Research Division and Brain Research Core Facility, Korea Brain Research Institute, Daegu, 41068, South Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| |
Collapse
|
39
|
Matsuo-Dapaah J, Lee MSJ, Ishii KJ, Tainaka K, Coban C. Using a new three-dimensional CUBIC tissue-clearing method to examine the brain during experimental cerebral malaria. Int Immunol 2021; 33:587-594. [PMID: 34455438 DOI: 10.1093/intimm/dxab060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/28/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening complication of the malaria disease caused by Plasmodium falciparum infection and is responsible for the death of half a million people annually. The molecular pathogenesis underlying CM in humans is not completely understood, although sequestration of infected erythrocytes in cerebral microvessels is thought to play a major role. In contrast, experimental cerebral malaria (ECM) models in mice have been thought to be distinct from human CM, and are mainly caused by inflammatory mediators. Here, to understand the spatial distribution and the potential sequestration of parasites in the whole-brain microvessels during a mouse model of ECM, we utilized the new tissue-clearing method CUBIC (Clear, Unobstructed, Brain/Body Imaging Cocktails and Computational analysis) with light-sheet fluorescent microscopy (LSFM), and reconstructed images in three dimensions (3D). We demonstrated significantly greater accumulation of Plasmodium berghei ANKA (PbANKA) parasites in the olfactory bulb (OB) of mice, compared with the other parts of the brain, including the cerebral cortex, cerebellum and brainstem. Furthermore, we show that PbANKA parasites preferentially accumulate in the brainstem when the OB is surgically removed. This study therefore not only highlights a successful application of CUBIC tissue-clearing technology to visualize the whole brain and its microvessels during ECM, but it also shows CUBIC's future potential for visualizing pathological events in the whole ECM brain at the cellular level, an achievement that would greatly advance our understanding of human cerebral malaria.
Collapse
Affiliation(s)
- Julia Matsuo-Dapaah
- Division of Malaria Immunology, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Michelle Sue Jann Lee
- Division of Malaria Immunology, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), University of Tokyo, Tokyo, Japan
| | - Ken J Ishii
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Division of Vaccine Science, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, Institute of Medical Science (IMSUT), University of Tokyo, Tokyo, Japan.,Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,International Vaccine Design Center, Institute of Medical Science (IMSUT), University of Tokyo, Tokyo, Japan.,Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| |
Collapse
|
40
|
Zhu J, Liu X, Deng Y, Li D, Yu T, Zhu D. Tissue optical clearing for 3D visualization of vascular networks: A review. Vascul Pharmacol 2021; 141:106905. [PMID: 34506969 DOI: 10.1016/j.vph.2021.106905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Reconstruction of the vasculature of intact tissues/organs down to the capillary level is essential for understanding the development and remodeling of vascular networks under physiological and pathological conditions. Optical imaging techniques can provide sufficient resolution to distinguish small vessels with several microns, but the imaging depth is somewhat limited due to the high light scattering of opaque tissue. Recently, various tissue optical clearing methods have been developed to overcome light attenuation and improve the imaging depth both for ex-vivo and in-vivo visualizations. Tissue clearing combined with vessel labeling techniques and advanced optical tomography enables successful mapping of the vasculature of different tissues/organs, as well as dynamically monitoring vessel function under normal and pathological conditions. Here, we briefly introduce the commonly-used labeling strategies for entire vascular networks, the current tissue optical clearing techniques available for various tissues, as well as the advanced optical imaging techniques for fast, high-resolution structural and functional imaging for blood vessels. We also discuss the applications of these techniques in the 3D visualization of vascular networks in normal tissues, and the vascular remodeling in several typical pathological models in clinical research. This review is expected to provide valuable insights for researchers to study the potential mechanisms of various vessel-associated diseases using tissue optical clearing pipeline.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
41
|
Liu J, Kashima T, Morikawa S, Noguchi A, Ikegaya Y, Matsumoto N. Molecular Characterization of Superficial Layers of the Presubiculum During Development. Front Neuroanat 2021; 15:662724. [PMID: 34234650 PMCID: PMC8256428 DOI: 10.3389/fnana.2021.662724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The presubiculum, a subarea of the parahippocampal region, plays a critical role in spatial navigation and spatial representation. An outstanding aspect of presubicular spatial codes is head-direction selectivity of the firing of excitatory neurons, called head-direction cells. Head-direction selectivity emerges before eye-opening in rodents and is maintained in adulthood through neurophysiological interactions between excitatory and inhibitory neurons. Although the presubiculum has been physiologically profiled in terms of spatial representation during development, the histological characteristics of the developing presubiculum are poorly understood. We found that the expression of vesicular glutamate transporter 2 (VGluT2) could be used to delimit the superficial layers of the presubiculum, which was identified using an anterograde tracer injected into the anterior thalamic nucleus (ATN). Thus, we immunostained slices from mice ranging in age from neonates to adults using an antibody against VGluT2 to evaluate the VGluT2-positive area, which was identified as the superficial layers of the presubiculum, during development. We also immunostained the slices using antibodies against parvalbumin (PV) and somatostatin (SOM) and found that in the presubicular superficial layers, PV-positive neurons progressively increased in number during development, whereas SOM-positive neurons exhibited no increasing trend. In addition, we observed repeating patch structures in presubicular layer III from postnatal days 12. The abundant expression of VGluT2 suggests that the presubicular superficial layers are regulated primarily by VGluT2-mediated excitatory neurotransmission. Moreover, developmental changes in the densities of PV- and SOM-positive interneurons and the emergence of the VGluT2-positive patch structures during adolescence may be associated with the functional development of spatial codes in the superficial layers of the presubiculum.
Collapse
Affiliation(s)
- Jiayan Liu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuhiko Kashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shota Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Suita City, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Hartung G, Badr S, Mihelic S, Dunn A, Cheng X, Kura S, Boas DA, Kleinfeld D, Alaraj A, Linninger AA. Mathematical synthesis of the cortical circulation for the whole mouse brain-part II: Microcirculatory closure. Microcirculation 2021; 28:e12687. [PMID: 33615601 DOI: 10.1111/micc.12687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
Recent advancements in multiphoton imaging and vascular reconstruction algorithms have increased the amount of data on cerebrovascular circulation for statistical analysis and hemodynamic simulations. Experimental observations offer fundamental insights into capillary network topology but mainly within a narrow field of view typically spanning a small fraction of the cortical surface (less than 2%). In contrast, larger-resolution imaging modalities, such as computed tomography (CT) or magnetic resonance imaging (MRI), have whole-brain coverage but capture only larger blood vessels, overlooking the microscopic capillary bed. To integrate data acquired at multiple length scales with different neuroimaging modalities and to reconcile brain-wide macroscale information with microscale multiphoton data, we developed a method for synthesizing hemodynamically equivalent vascular networks for the entire cerebral circulation. This computational approach is intended to aid in the quantification of patterns of cerebral blood flow and metabolism for the entire brain. In part I, we described the mathematical framework for image-guided generation of synthetic vascular networks covering the large cerebral arteries from the circle of Willis through the pial surface network leading back to the venous sinuses. Here in part II, we introduce novel procedures for creating microcirculatory closure that mimics a realistic capillary bed. We demonstrate our capability to synthesize synthetic vascular networks whose morphometrics match empirical network graphs from three independent state-of-the-art imaging laboratories using different image acquisition and reconstruction protocols. We also successfully synthesized twelve vascular networks of a complete mouse brain hemisphere suitable for performing whole-brain blood flow simulations. Synthetic arterial and venous networks with microvascular closure allow whole-brain hemodynamic predictions. Simulations across all length scales will potentially illuminate organ-wide supply and metabolic functions that are inaccessible to models reconstructed from image data with limited spatial coverage.
Collapse
Affiliation(s)
- Grant Hartung
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shoale Badr
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Samuel Mihelic
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Xiaojun Cheng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Sreekanth Kura
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - David Kleinfeld
- Department of Physics, University of California San Diego, San Diego, California, USA
| | - Ali Alaraj
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Andreas A Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
43
|
Xie W, Gong XT, Cheng X, Cao J, Zhao J, Zhang HL, Zhang S. LIMPID: a versatile method for visualization of brain vascular networks. Biomater Sci 2021; 9:2658-2669. [PMID: 33595547 DOI: 10.1039/d0bm01817a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visualization of cerebrovascular networks is crucial for understanding the pathogenesis of many neurological diseases. Recently developed optical clearing techniques offer opportunities in deep tissue imaging, and have been successfully applied in many research studies. The development of nanotechnology enables the labeling of brain vessels with functionalized micro/nanoparticles embedded with fluorescent dyes. We herein report an efficient method, named LIMPID (Labeled and Interlinked Micro/nanoparticles for Imaging and Delipidation), specific for the precise fluorescence imaging of vascular networks in clearing-treated tissues. This robust vessel labeling technique replaces conventional fluorescence dyes with functionalized polymer micro/nanoparticles that are able to cross-link with polyacrylamide to form dense hydrogels in vessels. LIMPID shows high-robustness during the clearing process without sacrificing fluorescence signals and clearing performance. LIMPID enables three dimension (3D) visualization of elaborate vascular networks in mouse brains and is compatible with other fluorescence-labeling techniques. We have successfully applied this method to acquire cortical vasculature images simultaneously with the neurons or microglia, as well as to evaluate vascular damage in a mouse model of stroke. The LIMPID method provides a novel tool for the precise analysis of vascular dysfunction and vascular diseases.
Collapse
Affiliation(s)
- Wenguang Xie
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Advanced optical methods combined with various probes pave the way toward molecular imaging within living cells. However, major challenges are associated with the need to enhance the imaging resolution even further to the subcellular level for the imaging of larger tissues, as well as for in vivo studies. High scattering and absorption of opaque tissues limit the penetration of light into deep tissues and thus the optical imaging depth. Tissue optical clearing technique provides an innovative way to perform deep-tissue imaging. Recently, various optical clearing methods have been developed, which provide tissue clearing based on similar physical principles via different chemical approaches. Here, we introduce the mechanisms of the current clearing methods from fundamental physical and chemical perspectives, including the main physical principle, refractive index matching via various chemical approaches, such as dissociation of collagen, delipidation, decalcification, dehydration, and hyperhydration, to reduce scattering, as well as decolorization to reduce absorption.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
45
|
Avilov SV. Navigating across multi-dimensional space of tissue clearing parameters. Methods Appl Fluoresc 2021; 9:022001. [PMID: 33592593 DOI: 10.1088/2050-6120/abe6fb] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optical tissue clearing refers to physico-chemical treatments which make thick biological samples transparent by removal of refractive index gradients and light absorbing substances. Although tissue clearing was first reported in 1914, it was not widely used in light microscopy until 21th century, because instrumentation of that time did not permit to acquire and handle images of thick (mm to cm) samples as whole. Rapid progress in optical instrumentation, computers and software over the last decades made micrograph acquisition of centimeter-thick samples feasible. This boosted tissue clearing use and development. Numerous diverse protocols have been developed. They use organic solvents or water-miscible substances, such as detergents and chaotropic agents; some protocols require application of electric field or perfusion with special devices. There is no 'best-for-all' tissue clearing method. Depending on the case, one or another protocol is more suitable. Most of protocols require days or even weeks to complete, thus choosing an unsuitable protocol may cause an important waste of time. Several inter-dependent parameters should be taken into account to choose a tissue clearing protocol, such as: (1) required image quality (resolution, contrast, signal to noise ratio etc), (2) nature and size of the sample, (3) type of labels, (4) characteristics of the available instrumentation, (5) budget, (6) time budget, and (7) feasibility. Present review focusses on the practical aspects of various tissue clearing techniques. It is aimed to help non-experts to choose tissue clearing techniques which are optimal for their particular cases.
Collapse
Affiliation(s)
- Sergiy V Avilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
46
|
Liu JTC, Glaser AK, Bera K, True LD, Reder NP, Eliceiri KW, Madabhushi A. Harnessing non-destructive 3D pathology. Nat Biomed Eng 2021; 5:203-218. [PMID: 33589781 PMCID: PMC8118147 DOI: 10.1038/s41551-020-00681-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
High-throughput methods for slide-free three-dimensional (3D) pathological analyses of whole biopsies and surgical specimens offer the promise of modernizing traditional histology workflows and delivering improvements in diagnostic performance. Advanced optical methods now enable the interrogation of orders of magnitude more tissue than previously possible, where volumetric imaging allows for enhanced quantitative analyses of cell distributions and tissue structures that are prognostic and predictive. Non-destructive imaging processes can simplify laboratory workflows, potentially reducing costs, and can ensure that samples are available for subsequent molecular assays. However, the large size of the feature-rich datasets that they generate poses challenges for data management and computer-aided analysis. In this Perspective, we provide an overview of the imaging technologies that enable 3D pathology, and the computational tools-machine learning, in particular-for image processing and interpretation. We also discuss the integration of various other diagnostic modalities with 3D pathology, along with the challenges and opportunities for clinical adoption and regulatory approval.
Collapse
Affiliation(s)
- Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Nicholas P Reder
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kevin W Eliceiri
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH, USA.
| |
Collapse
|
47
|
Noguchi A, Ikegaya Y, Matsumoto N. In Vivo Whole-Cell Patch-Clamp Methods: Recent Technical Progress and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:1448. [PMID: 33669656 PMCID: PMC7922023 DOI: 10.3390/s21041448] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Brain functions are fundamental for the survival of organisms, and they are supported by neural circuits consisting of a variety of neurons. To investigate the function of neurons at the single-cell level, researchers often use whole-cell patch-clamp recording techniques. These techniques enable us to record membrane potentials (including action potentials) of individual neurons of not only anesthetized but also actively behaving animals. This whole-cell recording method enables us to reveal how neuronal activities support brain function at the single-cell level. In this review, we introduce previous studies using in vivo patch-clamp recording techniques and recent findings primarily regarding neuronal activities in the hippocampus for behavioral function. We further discuss how we can bridge the gap between electrophysiology and biochemistry.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (A.N.); (Y.I.)
| |
Collapse
|
48
|
Segawa K, Blumenthal Y, Yamawaki Y, Ohtsuki G. A Destruction Model of the Vascular and Lymphatic Systems in the Emergence of Psychiatric Symptoms. BIOLOGY 2021; 10:34. [PMID: 33419067 PMCID: PMC7825436 DOI: 10.3390/biology10010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 01/02/2023]
Abstract
The lymphatic system is important for antigen presentation and immune surveillance. The lymphatic system in the brain was originally introduced by Giovanni Mascagni in 1787, while the rediscovery of it by Jonathan Kipnis and Kari Kustaa Alitalo now opens the door for a new interpretation of neurological diseases and therapeutic applications. The glymphatic system for the exchanges of cerebrospinal fluid (CSF) and interstitial fluid (ISF) is associated with the blood-brain barrier (BBB), which is involved in the maintenance of immune privilege and homeostasis in the brain. Recent notions from studies of postmortem brains and clinical studies of neurodegenerative diseases, infection, and cerebral hemorrhage, implied that the breakdown of those barrier systems and infiltration of activated immune cells disrupt the function of both neurons and glia in the parenchyma (e.g., modulation of neurophysiological properties and maturation of myelination), which causes the abnormality in the functional connectivity of the entire brain network. Due to the vulnerability, such dysfunction may occur in developing brains as well as in senile or neurodegenerative diseases and may raise the risk of emergence of psychosis symptoms. Here, we introduce this hypothesis with a series of studies and cellular mechanisms.
Collapse
Affiliation(s)
- Kohei Segawa
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| | - Yukari Blumenthal
- Urology Department at Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road Cambridge, Cambridge CB2 0QQ, UK;
| | - Yuki Yamawaki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| |
Collapse
|
49
|
Liang X, Luo H. Optical Tissue Clearing: Illuminating Brain Function and Dysfunction. Theranostics 2021; 11:3035-3051. [PMID: 33537072 PMCID: PMC7847687 DOI: 10.7150/thno.53979] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue optical clearing technology has been developing rapidly in the past decade due to advances in microscopy equipment and various labeling techniques. Consistent modification of primary methods for optical tissue transparency has allowed observation of the whole mouse body at single-cell resolution or thick tissue slices at the nanoscale level, with the final aim to make intact primate and human brains or thick human brain tissues optically transparent. Optical clearance combined with flexible large-volume tissue labeling technology can not only preserve the anatomical structure but also visualize multiple molecular information from intact samples in situ. It also provides a new strategy for studying complex tissues, which is of great significance for deciphering the functional structure of healthy brains and the mechanisms of neurological pathologies. In this review, we briefly introduce the existing optical clearing technology and discuss its application in deciphering connection and structure, brain development, and brain diseases. Besides, we discuss the standard computational analysis tools for large-scale imaging dataset processing and information extraction. In general, we hope that this review will provide a valuable reference for researchers who intend to use optical clearing technology in studying the brain.
Collapse
Affiliation(s)
- Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| |
Collapse
|
50
|
Yang C, Yu Y, Wang X, Wang Q, Shang L. Cellular fluidic-based vascular networks for tissue engineering. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|