1
|
Guerin LN, Scott TJ, Yap JA, Johansson A, Puddu F, Charlesworth T, Yang Y, Simmons AJ, Lau KS, Ihrie RA, Hodges E. Temporally discordant chromatin accessibility and DNA demethylation define short- and long-term enhancer regulation during cell fate specification. Cell Rep 2025; 44:115680. [PMID: 40349339 DOI: 10.1016/j.celrep.2025.115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025] Open
Abstract
Chromatin and DNA modifications mediate the transcriptional activity of lineage-specifying enhancers, but recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are prerequisites for transcription. To understand this paradox, we established a highly resolved timeline of their dynamics during neural progenitor cell differentiation. We discovered that, while complete demethylation appears delayed relative to shorter-lived chromatin changes for thousands of enhancers, DNA demethylation actually initiates with 5-hydroxymethylation before appreciable accessibility and transcription factor occupancy is observed. The extended timeline of DNA demethylation creates temporal discordance appearing as heterogeneity in enhancer regulatory states. Few regions ever gain methylation, and resulting enhancer hypomethylation persists long after chromatin activities have dissipated. We demonstrate that the temporal methylation status of CpGs (mC/hmC/C) predicts past, present, and future chromatin accessibility using machine learning models. Thus, chromatin and DNA methylation collaborate on different timescales to shape short- and long-term enhancer regulation during cell fate specification.
Collapse
Affiliation(s)
- Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Timothy J Scott
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jacqueline A Yap
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Fabio Puddu
- Biomodal, Chesterford Research Park, Cambridge CB10 1XL, UK
| | | | - Yilin Yang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pediatrics - Section of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Cipta NO, Zeng Y, Wong KW, Zheng ZH, Yi Y, Warrier T, Teo JZ, Teo JHJ, Kok YJ, Bi X, Taneja R, Ong DST, Xu J, Ginhoux F, Li H, Liou YC, Loh YH. Rewiring of SINE-MIR enhancer topology and Esrrb modulation in expanded and naive pluripotency. Genome Biol 2025; 26:107. [PMID: 40296153 PMCID: PMC12036290 DOI: 10.1186/s13059-025-03577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The interplay between 3D genomic structure and transposable elements (TE) in regulating cell state-specific gene expression program is largely unknown. Here, we explore the utilization of TE-derived enhancers in naïve and expanded pluripotent states by integrative analysis of genome-wide Hi-C-defined enhancer interactions, H3K27ac HiChIP profiling and CRISPR-guided TE proteomics landscape. RESULTS We find that short interspersed nuclear elements (SINEs) are the more involved TEs in the active chromatin and 3D genome architecture. In particular, mammalian-wide interspersed repeat (MIR), a SINE family member, is highly associated with naïve-specific genomic interactions compared to the expanded state. Primarily, in the naïve pluripotent state, MIR enhancer is co-opted by ESRRB for naïve-specific gene expression program. This ESRRB and MIR enhancer interaction is crucial for the formation of loops that build a network of enhancers and super-enhancers regulating pluripotency genes. We demonstrate that loss of a ESRRB-bound MIR enhancer impairs self-renewal. We also find that MIR is co-bound by structural protein complex, ESRRB-YY1, in the naïve pluripotent state. CONCLUSIONS Altogether, our study highlights the topological regulation of ESRRB on MIR in the naïve potency state.
Collapse
Affiliation(s)
- Nadia Omega Cipta
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Yingying Zeng
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ka Wai Wong
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Zi Hao Zheng
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
- Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore
| | - Yao Yi
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Tushar Warrier
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Jian Zhou Teo
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Jia Hao Jackie Teo
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
- Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore
| | - Yee Jiun Kok
- Proteomics Group, Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), Singapore, 138668, Singapore
| | - Xuezhi Bi
- Proteomics Group, Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), Singapore, 138668, Singapore
| | - Reshma Taneja
- Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jian Xu
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- NUS Graduate School's Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore, Singapore.
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore.
- NUS Graduate School's Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore, Singapore.
| |
Collapse
|
3
|
Waite JB, Boytz R, Traeger AR, Lind TM, Lumbao-Conradson K, Torigoe SE. A suboptimal OCT4-SOX2 binding site facilitates the naïve-state specific function of a Klf4 enhancer. PLoS One 2024; 19:e0311120. [PMID: 39348365 PMCID: PMC11441684 DOI: 10.1371/journal.pone.0311120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Enhancers have critical functions in the precise, spatiotemporal control of transcription during development. It is thought that enhancer grammar, or the characteristics and arrangements of transcription factor binding sites, underlie the specific functions of developmental enhancers. In this study, we sought to identify grammatical constraints that direct enhancer activity in the naïve state of pluripotency, focusing on the enhancers for the naïve-state specific gene, Klf4. Using a combination of biochemical tests, reporter assays, and endogenous mutations in mouse embryonic stem cells, we have studied the binding sites for the transcription factors OCT4 and SOX2. We have found that the three Klf4 enhancers contain suboptimal OCT4-SOX2 composite binding sites. Substitution with a high-affinity OCT4-SOX2 binding site in Klf4 enhancer E2 rescued enhancer function and Klf4 expression upon loss of the ESRRB and STAT3 binding sites. We also observed that the low-affinity of the OCT4-SOX2 binding site is crucial to drive the naïve-state specific activities of Klf4 enhancer E2. Altogether, our work suggests that the affinity of OCT4-SOX2 binding sites could facilitate enhancer functions in specific states of pluripotency.
Collapse
Affiliation(s)
- Jack B Waite
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - RuthMabel Boytz
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| | - Alexis R Traeger
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Torrey M Lind
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Koya Lumbao-Conradson
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Sharon E Torigoe
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| |
Collapse
|
4
|
Castillo H, Hanna P, Sachs LM, Buisine N, Godoy F, Gilbert C, Aguilera F, Muñoz D, Boisvert C, Debiais-Thibaud M, Wan J, Spicuglia S, Marcellini S. Xenopus tropicalis osteoblast-specific open chromatin regions reveal promoters and enhancers involved in human skeletal phenotypes and shed light on early vertebrate evolution. Cells Dev 2024; 179:203924. [PMID: 38692409 DOI: 10.1016/j.cdev.2024.203924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
While understanding the genetic underpinnings of osteogenesis has far-reaching implications for skeletal diseases and evolution, a comprehensive characterization of the osteoblastic regulatory landscape in non-mammalian vertebrates is still lacking. Here, we compared the ATAC-Seq profile of Xenopus tropicalis (Xt) osteoblasts to a variety of non mineralizing control tissues, and identified osteoblast-specific nucleosome free regions (NFRs) at 527 promoters and 6747 distal regions. Sequence analyses, Gene Ontology, RNA-Seq and ChIP-Seq against four key histone marks confirmed that the distal regions correspond to bona fide osteogenic transcriptional enhancers exhibiting a shared regulatory logic with mammals. We report 425 regulatory regions conserved with human and globally associated to skeletogenic genes. Of these, 35 regions have been shown to impact human skeletal phenotypes by GWAS, including one trps1 enhancer and the runx2 promoter, two genes which are respectively involved in trichorhinophalangeal syndrome type I and cleidocranial dysplasia. Intriguingly, 60 osteoblastic NFRs also align to the genome of the elephant shark, a species lacking osteoblasts and bone tissue. To tackle this paradox, we chose to focus on dlx5 because its conserved promoter, known to integrate regulatory inputs during mammalian osteogenesis, harbours an osteoblast-specific NFR in both frog and human. Hence, we show that dlx5 is expressed in Xt and elephant shark odontoblasts, supporting a common cellular and genetic origin of bone and dentine. Taken together, our work (i) unravels the Xt osteogenic regulatory landscape, (ii) illustrates how cross-species comparisons harvest data relevant to human biology and (iii) reveals that a set of genes including bnc2, dlx5, ebf3, mir199a, nfia, runx2 and zfhx4 drove the development of a primitive form of mineralized skeletal tissue deep in the vertebrate lineage.
Collapse
Affiliation(s)
- Héctor Castillo
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile.
| | - Patricia Hanna
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - Laurent M Sachs
- UMR7221, Physiologie Moléculaire et Adaptation, CNRS, MNHN, Paris Cedex 05, France
| | - Nicolas Buisine
- UMR7221, Physiologie Moléculaire et Adaptation, CNRS, MNHN, Paris Cedex 05, France
| | - Francisco Godoy
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 12 route 128, 91190 Gif-sur-Yvette, France
| | - Felipe Aguilera
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - David Muñoz
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile
| | - Catherine Boisvert
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Jing Wan
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labelisée LIGUE contre le Cancer, Marseille, France
| | - Salvatore Spicuglia
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labelisée LIGUE contre le Cancer, Marseille, France
| | - Sylvain Marcellini
- Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Chile.
| |
Collapse
|
5
|
Guerin LN, Scott TJ, Yap JA, Johansson A, Puddu F, Charlesworth T, Yang Y, Simmons AJ, Lau KS, Ihrie RA, Hodges E. Temporally discordant chromatin accessibility and DNA demethylation define short and long-term enhancer regulation during cell fate specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609789. [PMID: 39253426 PMCID: PMC11383056 DOI: 10.1101/2024.08.27.609789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Epigenetic mechanisms govern the transcriptional activity of lineage-specifying enhancers; but recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are prerequisites for transcription. To understand this paradox, we established a highly-resolved timeline of DNA demethylation, chromatin accessibility, and transcription factor occupancy during neural progenitor cell differentiation. We show thousands of enhancers undergo rapid, transient accessibility changes associated with distinct periods of transcription factor expression. However, most DNA methylation changes are unidirectional and delayed relative to chromatin dynamics, creating transiently discordant epigenetic states. Genome-wide detection of 5-hydroxymethylcytosine further revealed active demethylation begins ahead of chromatin and transcription factor activity, while enhancer hypomethylation persists long after these activities have dissipated. We demonstrate that these timepoint specific methylation states predict past, present and future chromatin accessibility using machine learning models. Thus, chromatin and DNA methylation collaborate on different timescales to mediate short and long-term enhancer regulation during cell fate specification.
Collapse
Affiliation(s)
- Lindsey N. Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy J. Scott
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jacqueline A. Yap
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Fabio Puddu
- biomodal, Chesterford Research Park, Cambridge, UK
| | | | - Yilin Yang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J. Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S. Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rebecca A. Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
6
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
7
|
Luo S, Luo Y, Wang Z, Yin H, Wu Q, Du X, Xie X. Super-enhancer mediated upregulation of MYEOV suppresses ferroptosis in lung adenocarcinoma. Cancer Lett 2024; 589:216811. [PMID: 38490328 DOI: 10.1016/j.canlet.2024.216811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Super-enhancers (SEs) exerted a crucial role in regulating the transcription of oncogenes across various malignancies while the roles of SEs driven genes and the core regulatory elements remain elusive in LUAD. In this study, cancer-specific-SE-genes of lung adenocarcinoma (LUAD) were profiled through H3K27ac ChIP-seq data of cancer cell lines and normal lung tissues, which enriched in in biological processes and pathways integral to the pathophysiology of LUAD. Based on this study, LUAD cells were susceptible to SEs inhibitors, with a reduction of cell proliferation as well as an elevation of apoptosis upon JQ1 or THZ1 intervention. Moreover, the integration of SEs landscapes, CRISPRi, ChIP-PCR, Hi-C data analysis and dual-luciferase reporter assays revealed that myeloma overexpressed gene (MYEOV) was aberrantly overexpressed in LUAD via transcriptional activation by the core SE elements. Functionally, the knockdown of MYEOV undermined cell proliferation in vitro and tumor growth in vivo. In addition, the knockdown of MYEOV generated a prominent ferroptotic phenotype, characterized by elevation of intracellular ferrous iron, reactive oxygen species and lipid peroxidation, together with alteration in marker proteins (SLC7A11, GPX4, FTH1, and ACSL4). Instead, the overexpression of MYEOV accelerated cell proliferation and abrogated ferroptosis. Clinically, the overexpression of MYEOV was observed in LUAD tissues indicating a poor prognosis in patients with LUAD. Mechanistically, SMPD1-induced autophagic degradation of GPX4 assumed a crucial role in the process of ferroptosis triggered by MYEOV knockdown. Serving as an oncogene repressing ferroptosis, promoting proliferation as well as shortening survival in LUAD, SEs-mediated activation of MYEOV might distinguish as a promising therapeutic target.
Collapse
Affiliation(s)
- Shuimei Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yang Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ziming Wang
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Haofeng Yin
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing Wu
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiaowei Du
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China.
| |
Collapse
|
8
|
Schulz M, Teissandier A, De La Mata Santaella E, Armand M, Iranzo J, El Marjou F, Gestraud P, Walter M, Kinston S, Göttgens B, Greenberg MVC, Bourc'his D. DNA methylation restricts coordinated germline and neural fates in embryonic stem cell differentiation. Nat Struct Mol Biol 2024; 31:102-114. [PMID: 38177678 DOI: 10.1038/s41594-023-01162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/26/2023] [Indexed: 01/06/2024]
Abstract
As embryonic stem cells (ESCs) transition from naive to primed pluripotency during early mammalian development, they acquire high DNA methylation levels. During this transition, the germline is specified and undergoes genome-wide DNA demethylation, while emergence of the three somatic germ layers is preceded by acquisition of somatic DNA methylation levels in the primed epiblast. DNA methylation is essential for embryogenesis, but the point at which it becomes critical during differentiation and whether all lineages equally depend on it is unclear. Here, using culture modeling of cellular transitions, we found that DNA methylation-free mouse ESCs with triple DNA methyltransferase knockout (TKO) progressed through the continuum of pluripotency states but demonstrated skewed differentiation abilities toward neural versus other somatic lineages. More saliently, TKO ESCs were fully competent for establishing primordial germ cell-like cells, even showing temporally extended and self-sustained capacity for the germline fate. By mapping chromatin states, we found that neural and germline lineages are linked by a similar enhancer dynamic upon exit from the naive state, defined by common sets of transcription factors, including methyl-sensitive ones, that fail to be decommissioned in the absence of DNA methylation. We propose that DNA methylation controls the temporality of a coordinated neural-germline axis of the preferred differentiation route during early development.
Collapse
Affiliation(s)
- Mathieu Schulz
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Aurélie Teissandier
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | | | - Mélanie Armand
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Julian Iranzo
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Fatima El Marjou
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Pierre Gestraud
- INSERM U900, MINES ParisTech, Institut Curie, PSL Research University, Paris, France
| | | | - Sarah Kinston
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Deborah Bourc'his
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|
9
|
Mozhui K, Kim H, Villani F, Haghani A, Sen S, Horvath S. Pleiotropic influence of DNA methylation QTLs on physiological and ageing traits. Epigenetics 2023; 18:2252631. [PMID: 37691384 PMCID: PMC10496549 DOI: 10.1080/15592294.2023.2252631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is influenced by genetic and non-genetic factors. Here, we chart quantitative trait loci (QTLs) that modulate levels of methylation at highly conserved CpGs using liver methylome data from mouse strains belonging to the BXD family. A regulatory hotspot on chromosome 5 had the highest density of trans-acting methylation QTLs (trans-meQTLs) associated with multiple distant CpGs. We refer to this locus as meQTL.5a. Trans-modulated CpGs showed age-dependent changes and were enriched in developmental genes, including several members of the MODY pathway (maturity onset diabetes of the young). The joint modulation by genotype and ageing resulted in a more 'aged methylome' for BXD strains that inherited the DBA/2J parental allele at meQTL.5a. Further, several gene expression traits, body weight, and lipid levels mapped to meQTL.5a, and there was a modest linkage with lifespan. DNA binding motif and protein-protein interaction enrichment analyses identified the hepatic nuclear factor, Hnf1a (MODY3 gene in humans), as a strong candidate. The pleiotropic effects of meQTL.5a could contribute to variations in body size and metabolic traits, and influence CpG methylation and epigenetic ageing that could have an impact on lifespan.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hyeonju Kim
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Scott TJ, Hansen TJ, McArthur E, Hodges E. Cross-tissue patterns of DNA hypomethylation reveal genetically distinct histories of cell development. BMC Genomics 2023; 24:623. [PMID: 37858046 PMCID: PMC10588161 DOI: 10.1186/s12864-023-09622-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Establishment of DNA methylation (DNAme) patterns is essential for balanced multi-lineage cellular differentiation, but exactly how these patterns drive cellular phenotypes is unclear. While > 80% of CpG sites are stably methylated, tens of thousands of discrete CpG loci form hypomethylated regions (HMRs). Because they lack DNAme, HMRs are considered transcriptionally permissive, but not all HMRs actively regulate genes. Unlike promoter HMRs, a subset of non-coding HMRs is cell type-specific and enriched for tissue-specific gene regulatory functions. Our data further argues not only that HMR establishment is an important step in enforcing cell identity, but also that cross-cell type and spatial HMR patterns are functionally informative of gene regulation. RESULTS To understand the significance of non-coding HMRs, we systematically dissected HMR patterns across diverse human cell types and developmental timepoints, including embryonic, fetal, and adult tissues. Unsupervised clustering of 126,104 distinct HMRs revealed that levels of HMR specificity reflects a developmental hierarchy supported by enrichment of stage-specific transcription factors and gene ontologies. Using a pseudo-time course of development from embryonic stem cells to adult stem and mature hematopoietic cells, we find that most HMRs observed in differentiated cells (~ 60%) are established at early developmental stages and accumulate as development progresses. HMRs that arise during differentiation frequently (~ 35%) establish near existing HMRs (≤ 6 kb away), leading to the formation of HMR clusters associated with stronger enhancer activity. Using SNP-based partitioned heritability from GWAS summary statistics across diverse traits and clinical lab values, we discovered that genetic contribution to trait heritability is enriched within HMRs. Moreover, the contribution of heritability to cell-relevant traits increases with both increasing HMR specificity and HMR clustering, supporting the role of distinct HMR subsets in regulating normal cell function. CONCLUSIONS Our results demonstrate that the entire HMR repertoire within a cell-type, rather than just the cell type-specific HMRs, stores information that is key to understanding and predicting cellular phenotypes. Ultimately, these data provide novel insights into how DNA hypo-methylation provides genetically distinct historical records of a cell's journey through development, highlighting HMRs as functionally distinct from other epigenomic annotations.
Collapse
Affiliation(s)
- Timothy J Scott
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Emily Hodges
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Li Q, Liu X, Wen J, Chen X, Xie B, Zhao Y. Enhancer RNAs: mechanisms in transcriptional regulation and functions in diseases. Cell Commun Signal 2023; 21:191. [PMID: 37537618 PMCID: PMC10398997 DOI: 10.1186/s12964-023-01206-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023] Open
Abstract
In recent years, increasingly more non-coding RNAs have been detected with the development of high-throughput sequencing technology, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), small nucleolar RNAs (snoRNAs), and piwi-interacting RNA (piRNAs). The discovery of enhancer RNAs (eRNAs) in 2010 has further broadened the range of non-coding RNAs revealed. eRNAs are non-coding RNA molecules produced by the transcription of DNA cis-acting elements, enhancer fragments. Recent studies revealed that the transcription of eRNAs may be a biological marker responding to enhancer activity that can participate in the regulation of coding gene transcription. In this review, we discussed the biological characteristics of eRNAs, their functions in transcriptional regulation, the regulation factors of eRNAs production, and the research progress of eRNAs in different diseases. Video Abstract.
Collapse
Affiliation(s)
- Qianhui Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangdong Province, Guangzhou City, 510150, People's Republic of China
| | - Xin Liu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangdong Province, Guangzhou City, 510150, People's Republic of China
| | - Jingtao Wen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangdong Province, Guangzhou City, 510150, People's Republic of China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangdong Province, Guangzhou City, 510150, People's Republic of China
| | - Bumin Xie
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangdong Province, Guangzhou City, 510150, People's Republic of China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangdong Province, Guangzhou City, 510150, People's Republic of China.
| |
Collapse
|
12
|
Lauria A, Meng G, Proserpio V, Rapelli S, Maldotti M, Polignano IL, Anselmi F, Incarnato D, Krepelova A, Donna D, Levra Levron C, Donati G, Molineris I, Neri F, Oliviero S. DNMT3B supports meso-endoderm differentiation from mouse embryonic stem cells. Nat Commun 2023; 14:367. [PMID: 36690616 PMCID: PMC9871038 DOI: 10.1038/s41467-023-35938-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
The correct establishment of DNA methylation patterns during mouse early development is essential for cell fate specification. However, the molecular targets as well as the mechanisms that determine the specificity of the de novo methylation machinery during differentiation are not completely elucidated. Here we show that the DNMT3B-dependent DNA methylation of key developmental regulatory regions at epiblast-like cells (EpiLCs) provides an epigenetic priming that ensures flawless commitment at later stages. Using in vitro stem cell differentiation and loss of function experiments combined with high-throughput genome-wide bisulfite-, bulk-, and single cell RNA-sequencing we dissected the specific role of DNMT3B in cell fate. We identify DNMT3B-dependent regulatory elements on the genome which, in Dnmt3b knockout (3BKO), impair the differentiation into meso-endodermal (ME) progenitors and redirect EpiLCs towards the neuro-ectodermal lineages. Moreover, ectopic expression of DNMT3B in 3BKO re-establishes the DNA methylation of the master regulator Sox2 super-enhancer, downmodulates its expression, and restores the expression of ME markers. Taken together, our data reveal that DNMT3B-dependent methylation at the epiblast stage is essential for the priming of the meso-endodermal lineages and provide functional characterization of the de novo DNMTs during EpiLCs lineage determination.
Collapse
Affiliation(s)
- Andrea Lauria
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Guohua Meng
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Valentina Proserpio
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Stefania Rapelli
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Mara Maldotti
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Isabelle Laurence Polignano
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Francesca Anselmi
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Anna Krepelova
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Daniela Donna
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Chiara Levra Levron
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Ivan Molineris
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy
| | - Francesco Neri
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy.
- Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy.
| |
Collapse
|
13
|
Super-enhancers conserved within placental mammals maintain stem cell pluripotency. Proc Natl Acad Sci U S A 2022; 119:e2204716119. [PMID: 36161929 DOI: 10.1073/pnas.2204716119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolution in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in placental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of pluripotency as well as species-specific modulation of the pluripotency-associated regulatory networks in mammals.
Collapse
|
14
|
Sukparangsi W, Morganti E, Lowndes M, Mayeur H, Weisser M, Hammachi F, Peradziryi H, Roske F, Hölzenspies J, Livigni A, Godard BG, Sugahara F, Kuratani S, Montoya G, Frankenberg SR, Mazan S, Brickman JM. Evolutionary origin of vertebrate OCT4/POU5 functions in supporting pluripotency. Nat Commun 2022; 13:5537. [PMID: 36130934 PMCID: PMC9492771 DOI: 10.1038/s41467-022-32481-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/30/2022] [Indexed: 12/31/2022] Open
Abstract
The support of pluripotent cells over time is an essential feature of development. In eutherian embryos, pluripotency is maintained from naïve states in peri-implantation to primed pluripotency at gastrulation. To understand how these states emerged, we reconstruct the evolutionary trajectory of the Pou5 gene family, which contains the central pluripotency factor OCT4. By coupling evolutionary sequence analysis with functional studies in mouse embryonic stem cells, we find that the ability of POU5 proteins to support pluripotency originated in the gnathostome lineage, prior to the generation of two paralogues, Pou5f1 and Pou5f3 via gene duplication. In osteichthyans, retaining both genes, the paralogues differ in their support of naïve and primed pluripotency. The specialization of these duplicates enables the diversification of function in self-renewal and differentiation. By integrating sequence evolution, cell phenotypes, developmental contexts and structural modelling, we pinpoint OCT4 regions sufficient for naïve pluripotency and describe their adaptation over evolutionary time.
Collapse
Affiliation(s)
- Woranop Sukparangsi
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark.,Department of Biology, Faculty of Science, Burapha University, Chon Buri, Thailand
| | - Elena Morganti
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Molly Lowndes
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Hélène Mayeur
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, F-66650, Banyuls sur Mer, France
| | - Melanie Weisser
- Structural Molecular Biology Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Fella Hammachi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Hanna Peradziryi
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Fabian Roske
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Jurriaan Hölzenspies
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Alessandra Livigni
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Benoit Gilbert Godard
- CNRS, Sorbonne Université, UPMC Univ Paris 06, FR2424, Development and Evolution of Vertebrates Group, Station Biologique, F-29688, Roscoff, France.,CNRS, Sorbonne Université, Laboratoire de Biologie du Développement de Villefranche, UMR7009, F-06234, Villefranche sur Mer, France
| | - Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | | | - Sylvie Mazan
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, F-66650, Banyuls sur Mer, France.
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark.
| |
Collapse
|
15
|
Super enhancers as master gene regulators in the pathogenesis of hematologic malignancies. Biochim Biophys Acta Rev Cancer 2022; 1877:188697. [PMID: 35150791 DOI: 10.1016/j.bbcan.2022.188697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Transcriptional deregulation of multiple oncogenes, tumor suppressors and survival pathways is a cancer cell hallmark. Super enhancers (SE) are long stretches of active enhancers in close linear proximity that ensure extraordinarily high expression levels of key genes associated with cell lineage, function and survival. SE landscape is intrinsically prone to changes and reorganization during the course of normal cell differentiation. This functional plasticity is typically utilized by cancer cells, which remodel their SE landscapes to ensure oncogenic transcriptional reprogramming. Multiple recent studies highlighted structural genetic mechanisms in non-coding regions that create new SE or hijack already existing ones. In addition, alterations in abundance/activity of certain SE-associated proteins or certain viral infections can elicit new super enhancers and trigger SE-driven transcriptional changes. For these reasons, SE profiling emerged as a powerful tool for discovering the core transcriptional regulatory circuits in tumor cells. This, in turn, provides new insights into cancer cell biology, and identifies main nodes of key cellular pathways to be potentially targeted. Since SEs are susceptible to inhibition, their disruption results in exponentially amassing 'butterfly' effect on gene expression and cell function. Moreover, many of SE elements are druggable, opening new therapeutic opportunities. Indeed, SE targeting drugs have been studied preclinically in various hematologic malignancies with promising effects. Herein, we review the unique features of SEs, present different cis- and trans-acting mechanisms through which hematologic tumor cells acquire SEs, and finally, discuss the potential of SE targeting in the therapy of hematologic malignancies.
Collapse
|
16
|
Structure and Function of TET Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:239-267. [DOI: 10.1007/978-3-031-11454-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Bian E, Chen X, Cheng L, Cheng M, Chen Z, Yue X, Zhang Z, Chen J, Sun L, Huang K, Huang C, Fang Z, Zhao B, Li J. Super-enhancer-associated TMEM44-AS1 aggravated glioma progression by forming a positive feedback loop with Myc. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:337. [PMID: 34696771 PMCID: PMC8543865 DOI: 10.1186/s13046-021-02129-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 01/05/2023]
Abstract
Background Long non-coding RNAs (lncRNAs) have been considered as one type of gene expression regulator for cancer development, but it is not clear how these are regulated. This study aimed to identify a specific lncRNA that promotes glioma progression. Methods RNA sequencing (RNA-seq) and quantitative real-time PCR were performed to screen differentially expressed genes. CCK-8, transwell migration, invasion assays, and a mouse xenograft model were performed to determine the functions of TMEM44-AS1. Co-IP, ChIP, Dual-luciferase reporter assays, RNA pulldown, and RNA immunoprecipitation assays were performed to study the molecular mechanism of TMEM44-AS1 and the downstream target. Results We identified a novel lncRNA TMEM44-AS1, which was aberrantly expressed in glioma tissues, and that increased TMEM44-AS1 expression was correlated with malignant progression and poor survival for patients with glioma. Expression of TMEM44-AS1 increased the proliferation, colony formation, migration, and invasion of glioma cells. Knockdown of TMEM44-AS1 in glioma cells reduced cell proliferation, colony formation, migration and invasion, and tumor growth in a nude mouse xenograft model. Mechanistically, TMEM44-AS1 is directly bound to the SerpinB3, and sequentially activated Myc and EGR1/IL-6 signaling; Myc transcriptionally induced TMEM44-AS1 and directly bound to the promoter and super-enhancer of TMEM44-AS1, thus forming a positive feedback loop with TMEM44-AS. Further studies demonstrated that Myc interacts with MED1 regulates the super-enhancer of TMEM44-AS1. More importantly, a novel small-molecule Myc inhibitor, Myci975, alleviated TMEM44-AS1-promoted the growth of glioma cells. Conclusions Our study implicates a crucial role of the TMEM44-AS1-Myc axis in glioma progression and provides a possible anti-glioma therapeutic agent. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02129-9.
Collapse
Affiliation(s)
- Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China. .,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China.
| | - Xueran Chen
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Li Cheng
- School of pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhengwei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Jie Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Libo Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Kebing Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Cheng Huang
- School of pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhiyou Fang
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China. .,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China.
| | - Jun Li
- School of pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
18
|
Festuccia N, Owens N, Chervova A, Dubois A, Navarro P. The combined action of Esrrb and Nr5a2 is essential for murine naïve pluripotency. Development 2021; 148:271840. [PMID: 34397088 PMCID: PMC8451941 DOI: 10.1242/dev.199604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The maintenance of pluripotency in mouse embryonic stem cells (ESCs) is governed by the action of an interconnected network of transcription factors. Among them, only Oct4 and Sox2 have been shown to be strictly required for the self-renewal of ESCs and pluripotency, particularly in culture conditions in which differentiation cues are chemically inhibited. Here, we report that the conjunct activity of two orphan nuclear receptors, Esrrb and Nr5a2, parallels the importance of that of Oct4 and Sox2 in naïve mouse ESCs. By occupying a large common set of regulatory elements, these two factors control the binding of Oct4, Sox2 and Nanog to DNA. Consequently, in their absence the pluripotency network collapses and the transcriptome is substantially deregulated, leading to the differentiation of ESCs. Altogether, this work identifies orphan nuclear receptors, previously thought to be performing supportive functions, as a set of core regulators of naïve pluripotency. Summary: Esrrb and Nr5a2, two orphan nuclear receptors, are identified as essential regulators of pluripotency in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Nicola Festuccia
- Regulatory Dynamics and Cell Identity, MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.,Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Nick Owens
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Almira Chervova
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Agnès Dubois
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Pablo Navarro
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| |
Collapse
|
19
|
Liu Y, Yamane J, Tanaka A, Fujibuchi W, Yamashita JK. AMPK activation reverts mouse epiblast stem cells to naive state. iScience 2021; 24:102783. [PMID: 34308289 PMCID: PMC8283141 DOI: 10.1016/j.isci.2021.102783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Despite increasing knowledge on primed and naive pluripotency, the cell signaling that regulates the pluripotency type in stem cells remains not fully understood. Here we show that AMP kinase (AMPK) activators can induce the reversion of primed mouse epiblast stem cells (mEpiSCs) to the naive pluripotent state. The addition of AMPK activators alone or together with leukemia inhibitory factor to primed mEpiSCs induced the appearance of naive-like cells. After passaging in naive culture conditions, the colony morphology, protein expression, and global gene expression profiles indicated the naive state, as did germline transmission ability. Loss-of-function and gain-of-function studies suggested that p38 is a critical downstream target in AMPK activation. Finally, single-cell RNA sequencing analysis revealed that the reversion process through AMPK signaling passes an intermediate naive-like population. In conclusion, the AMPK pathway is a critical driving force in the reversion of primed to naive pluripotency.
Collapse
Affiliation(s)
- Yajing Liu
- The Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Junko Yamane
- The Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Akito Tanaka
- The Department of Animal Research Facility, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Wataru Fujibuchi
- The Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Jun K. Yamashita
- The Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
20
|
Zhang J, Yue W, Zhou Y, Liao M, Chen X, Hua J. Super enhancers-Functional cores under the 3D genome. Cell Prolif 2021; 54:e12970. [PMID: 33336467 PMCID: PMC7848964 DOI: 10.1111/cpr.12970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Complex biochemical reactions take place in the nucleus all the time. Transcription machines must follow the rules. The chromatin state, especially the three-dimensional structure of the genome, plays an important role in gene regulation and expression. The super enhancers are important for defining cell identity in mammalian developmental processes and human diseases. It has been shown that the major components of transcriptional activation complexes are recruited by super enhancer to form phase-separated condensates. We summarize the current knowledge about super enhancer in the 3D genome. Furthermore, a new related transcriptional regulation model from super enhancer is outlined to explain its role in the mammalian cell progress.
Collapse
Affiliation(s)
- Juqing Zhang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| | - Wei Yue
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| | - Yaqi Zhou
- College of Life ScienceNorthwest A&F UniversityYanglingChina
| | - Mingzhi Liao
- College of Life ScienceNorthwest A&F UniversityYanglingChina
| | - Xingqi Chen
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Jinlian Hua
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
21
|
Ehrlich KC, Baribault C, Ehrlich M. Epigenetics of Muscle- and Brain-Specific Expression of KLHL Family Genes. Int J Mol Sci 2020; 21:E8394. [PMID: 33182325 PMCID: PMC7672584 DOI: 10.3390/ijms21218394] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
KLHL and the related KBTBD genes encode components of the Cullin-E3 ubiquitin ligase complex and typically target tissue-specific proteins for degradation, thereby affecting differentiation, homeostasis, metabolism, cell signaling, and the oxidative stress response. Despite their importance in cell function and disease (especially, KLHL40, KLHL41, KBTBD13, KEAP1, and ENC1), previous studies of epigenetic factors that affect transcription were predominantly limited to promoter DNA methylation. Using diverse tissue and cell culture whole-genome profiles, we examined 17 KLHL or KBTBD genes preferentially expressed in skeletal muscle or brain to identify tissue-specific enhancer and promoter chromatin, open chromatin (DNaseI hypersensitivity), and DNA hypomethylation. Sixteen of the 17 genes displayed muscle- or brain-specific enhancer chromatin in their gene bodies, and most exhibited specific intergenic enhancer chromatin as well. Seven genes were embedded in super-enhancers (particularly strong, tissue-specific clusters of enhancers). The enhancer chromatin regions typically displayed foci of DNA hypomethylation at peaks of open chromatin. In addition, we found evidence for an intragenic enhancer in one gene upregulating expression of its neighboring gene, specifically for KLHL40/HHATL and KLHL38/FBXO32 gene pairs. Many KLHL/KBTBD genes had tissue-specific promoter chromatin at their 5' ends, but surprisingly, two (KBTBD11 and KLHL31) had constitutively unmethylated promoter chromatin in their 3' exons that overlaps a retrotransposed KLHL gene. Our findings demonstrate the importance of expanding epigenetic analyses beyond the 5' ends of genes in studies of normal and abnormal gene regulation.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Center for Biomedical Informatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Carl Baribault
- Center for Research and Scientific Computing (CRSC), Tulane University Information Technology, Tulane University, New Orleans, LA 70112, USA;
| | - Melanie Ehrlich
- Center for Biomedical Informatics and Genomics, Tulane Cancer Center, Hayward Genetics Program, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
22
|
Gardini ES, Chen GG, Fiacco S, Mernone L, Willi J, Turecki G, Ehlert U. Differential ESR1 Promoter Methylation in the Peripheral Blood-Findings from the Women 40+ Healthy Aging Study. Int J Mol Sci 2020; 21:E3654. [PMID: 32455834 PMCID: PMC7279168 DOI: 10.3390/ijms21103654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background Estrogen receptor α (ERα) contributes to maintaining biological processes preserving health during aging. DNA methylation changes of ERα gene (ESR1) were established as playing a direct role in the regulation of ERα levels. In this study, we hypothesized decreased DNA methylation of ESR1 associated with postmenopause, lower estradiol (E2) levels, and increased age among healthy middle-aged and older women. Methods We assessed DNA methylation of ESR1 promoter region from dried blood spots (DBSs) and E2 from saliva samples in 130 healthy women aged 40-73 years. Results We found that postmenopause and lower E2 levels were associated with lower DNA methylation of a distal regulatory region, but not with DNA methylation of proximal promoters. Conclusion Our results indicate that decreased methylation of ESR1 cytosine-phosphate-guanine island (CpGI) shore may be associated with conditions of lower E2 in older healthy women.
Collapse
Affiliation(s)
- Elena S. Gardini
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Gary G. Chen
- Douglas Hospital Research Center, McGill University, Montreal, QC H4H 1R3, Canada; (G.G.C.); (G.T.)
| | - Serena Fiacco
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Laura Mernone
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Jasmine Willi
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Gustavo Turecki
- Douglas Hospital Research Center, McGill University, Montreal, QC H4H 1R3, Canada; (G.G.C.); (G.T.)
| | - Ulrike Ehlert
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| |
Collapse
|