1
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Hadisurya M, Tao WA, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA polymerase II productive elongation. Cell Rep 2024; 43:114877. [PMID: 39412992 PMCID: PMC11625021 DOI: 10.1016/j.celrep.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Signal-dependent RNA polymerase II (RNA Pol II) productive elongation is an integral component of gene transcription, including that of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating RNA Pol II overcomes nucleosomal barriers. Using RNAi, three degraders, and several small-molecule inhibitors, we show that the mammalian switch/sucrose non-fermentable (SWI/SNF) complex of neurons (neuronal BRG1/BRM-associated factor or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc. The nBAF complex facilitates promoter-proximal RNA Pol II pausing and signal-dependent RNA Pol II recruitment (loading) and, importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent RNA Pol II. Mechanistically, RNA Pol II elongation is mediated by activity-induced nBAF assembly (especially ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of RNA Pol II transcription and reveal mechanisms underlying activity-induced RNA Pol II elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
Affiliation(s)
- Karen G Cornejo
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Andie Venegas
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Morgan H Sono
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Madeline Door
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Brenda Gutierrez-Ruiz
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Lucy B Karabedian
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Supratik G Nandi
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
2
|
Uebbing S, Kocher AA, Baumgartner M, Ji Y, Bai S, Xing X, Nottoli T, Noonan JP. Evolutionary Innovations in Conserved Regulatory Elements Associate With Developmental Genes in Mammals. Mol Biol Evol 2024; 41:msae199. [PMID: 39302728 PMCID: PMC11465374 DOI: 10.1093/molbev/msae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
Transcriptional enhancers orchestrate cell type- and time point-specific gene expression programs. Genetic variation within enhancer sequences is an important contributor to phenotypic variation including evolutionary adaptations and human disease. Certain genes and pathways may be more prone to regulatory evolution than others, with different patterns across diverse organisms, but whether such patterns exist has not been investigated at a sufficient scale. To address this question, we identified signatures of accelerated sequence evolution in conserved enhancer elements throughout the mammalian phylogeny at an unprecedented scale. While different genes and pathways were enriched for regulatory evolution in different parts of the tree, we found a striking overall pattern of pleiotropic genes involved in gene regulatory and developmental processes being enriched for accelerated enhancer evolution. These genes were connected to more enhancers than other genes, which was the basis for having an increased amount of sequence acceleration over all their enhancers combined. We provide evidence that sequence acceleration is associated with turnover of regulatory function. Detailed study of one acceleration event in an enhancer of HES1 revealed that sequence evolution led to a new activity domain in the developing limb that emerged concurrently with the evolution of digit reduction in hoofed mammals. Our results provide evidence that enhancer evolution has been a frequent contributor to regulatory innovation at conserved developmental signaling genes in mammals.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biology, Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Xiaojun Xing
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Corrigendum to "Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control" [New Biotechnol 79 (2024) 1-19]. N Biotechnol 2024; 84:30-36. [PMID: 39332183 DOI: 10.1016/j.nbt.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
4
|
Niechoda A, Roslan M, Milewska K, Szoka P, Maciorowska K, Holownia A. Signalling Pathways of Inflammation and Cancer in Human Mononuclear Cells: Effect of Nanoparticle Air Pollutants. Cells 2024; 13:1367. [PMID: 39195257 PMCID: PMC11352816 DOI: 10.3390/cells13161367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Fine inhalable particulate matter (PM) triggers an inflammatory response in the airways and activates mononuclear cells, mediators of tissue homeostasis, and tumour-promoting inflammation. We have assessed ex vivo responses of human monocytes and monocyte-derived macrophages to standardised air pollutants: carbon black, urban dust, and nanoparticulate carbon black, focusing on their pro-inflammatory and DNA-damaging properties. None of the PM (100 μg/mL/24 h) was significantly toxic to the cells, aside from inducing oxidative stress, fractional DNA damage, and inhibiting phagocytosis. TNFα was only slightly increased. PM nanoparticles increase the expression and activate DNA-damage-related histone H2A.X as well as pro-inflammatory NF-κB. We have shown that the urban dust stimulates the pathway of DNA damage/repair via the selective post-translational phosphorylation of H2A.X while nanoparticulate carbon black increases inflammation via activation of NF-κB. Moreover, the inflammatory response to lipopolysaccharide was significantly stronger in macrophages pre-exposed to urban dust or nanoparticulate carbon black. Our data show that airborne nanoparticles induce PM-specific, epigenetic alterations in the subsets of cultured mononuclear cells, which may be quantified using binary fluorescence scatterplots. Such changes intercede with inflammatory signalling and highlight important molecular and cell-specific epigenetic mechanisms of tumour-promoting inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Holownia
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (A.N.); (M.R.); (K.M.); (P.S.); (K.M.)
| |
Collapse
|
5
|
Saito T, Wang S, Ohkawa K, Ohara H, Kondo S. Deep learning with a small dataset predicts chromatin remodelling contribution to winter dormancy of apple axillary buds. TREE PHYSIOLOGY 2024; 44:tpae072. [PMID: 38905284 DOI: 10.1093/treephys/tpae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
Epigenetic changes serve as a cellular memory for cumulative cold recognition in both herbaceous and tree species, including bud dormancy. However, most studies have discussed predicted chromatin structure with respect to histone marks. In the present study, we investigated the structural dynamics of bona fide chromatin to determine how plants recognize prolonged chilling during the initial stage of bud dormancy. The vegetative axillary buds of the 'Fuji' apple, which shows typical low temperature-dependent, but not photoperiod, dormancy induction, were used for the chromatin structure and transcriptional change analyses. The results were integrated using a deep-learning model and interpreted using statistical models, including Bayesian estimation. Although our model was constructed using a small dataset of two time points, chromatin remodelling due to random changes was excluded. The involvement of most nucleosome structural changes in transcriptional changes and the pivotal contribution of cold-driven circadian rhythm-dependent pathways regulated by the mobility of cis-regulatory elements were predicted. These findings may help to develop potential genetic targets for breeding species with less bud dormancy to overcome the effects of short winters during global warming. Our artificial intelligence concept can improve epigenetic analysis using a small dataset, especially in non-model plants with immature genome databases.
Collapse
Affiliation(s)
- Takanori Saito
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Shanshan Wang
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Katsuya Ohkawa
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Hitoshi Ohara
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa-no-ha 277-0882, Japan
| | - Satoru Kondo
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| |
Collapse
|
6
|
Shi X, Guo S, Duan Q, Zhang W, Gao S, Jing W, Jiang G, Kong X, Li P, Li Y, Teng C, Xu X, Chen S, Nian B, Li Z, Zhong C, Yang X, Zhu G, Du Y, Zhang D, Jin G. Detection and characterization of pancreatic and biliary tract cancers using cell-free DNA fragmentomics. J Exp Clin Cancer Res 2024; 43:145. [PMID: 38750539 PMCID: PMC11094938 DOI: 10.1186/s13046-024-03067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Plasma cell-free DNA (cfDNA) fragmentomics has demonstrated significant differentiation power between cancer patients and healthy individuals, but little is known in pancreatic and biliary tract cancers. The aim of this study is to characterize the cfDNA fragmentomics in biliopancreatic cancers and develop an accurate method for cancer detection. METHODS One hundred forty-seven patients with biliopancreatic cancers and 71 non-cancer volunteers were enrolled, including 55 patients with cholangiocarcinoma, 30 with gallbladder cancer, and 62 with pancreatic cancer. Low-coverage whole-genome sequencing (median coverage: 2.9 ×) was performed on plasma cfDNA. Three cfDNA fragmentomic features, including fragment size, end motif and nucleosome footprint, were subjected to construct a stacked machine learning model for cancer detection. Integration of carbohydrate antigen 19-9 (CA19-9) was explored to improve model performance. RESULTS The stacked model presented robust performance for cancer detection (area under curve (AUC) of 0.978 in the training cohort, and AUC of 0.941 in the validation cohort), and remained consistent even when using extremely low-coverage sequencing depth of 0.5 × (AUC: 0.905). Besides, our method could also help differentiate biliopancreatic cancer subtypes. By integrating the stacked model and CA19-9 to generate the final detection model, a high accuracy in distinguishing biliopancreatic cancers from non-cancer samples with an AUC of 0.995 was achieved. CONCLUSIONS Our model demonstrated ultrasensitivity of plasma cfDNA fragementomics in detecting biliopancreatic cancers, fulfilling the unmet accuracy of widely-used serum biomarker CA19-9, and provided an affordable way for accurate noninvasive biliopancreatic cancer screening in clinical practice.
Collapse
Affiliation(s)
- Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Qiaonan Duan
- Department of Clinical and Translational Medicine, 3D Medicines Inc, 158 Xin Junhuan Road, Pujiang Hi-Tech Park, Shanghai, 201114, China
| | - Wei Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc, 158 Xin Junhuan Road, Pujiang Hi-Tech Park, Shanghai, 201114, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Wei Jing
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Guojuan Jiang
- Department of Clinical and Translational Medicine, 3D Medicines Inc, 158 Xin Junhuan Road, Pujiang Hi-Tech Park, Shanghai, 201114, China
| | - Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Penghao Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yikai Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Chuanqi Teng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiaoya Xu
- Department of Clinical and Translational Medicine, 3D Medicines Inc, 158 Xin Junhuan Road, Pujiang Hi-Tech Park, Shanghai, 201114, China
| | - Sheng Chen
- Department of Clinical and Translational Medicine, 3D Medicines Inc, 158 Xin Junhuan Road, Pujiang Hi-Tech Park, Shanghai, 201114, China
| | - Baoning Nian
- Department of Clinical and Translational Medicine, 3D Medicines Inc, 158 Xin Junhuan Road, Pujiang Hi-Tech Park, Shanghai, 201114, China
| | - Zhikuan Li
- Department of Clinical and Translational Medicine, 3D Medicines Inc, 158 Xin Junhuan Road, Pujiang Hi-Tech Park, Shanghai, 201114, China
| | - Chaoliang Zhong
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiaolu Yang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Guangyu Zhu
- Department of Interventional Radiology and Vascular Surgery, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu Province, 210009, China.
| | - Yiqi Du
- Department of Gastroenterology, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Dadong Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc, 158 Xin Junhuan Road, Pujiang Hi-Tech Park, Shanghai, 201114, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
7
|
Basurto-Cayuela L, Guerrero-Martínez JA, Gómez-Marín E, Sánchez-Escabias E, Escaño-Maestre M, Ceballos-Chávez M, Reyes JC. SWI/SNF-dependent genes are defined by their chromatin landscape. Cell Rep 2024; 43:113855. [PMID: 38427563 DOI: 10.1016/j.celrep.2024.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
SWI/SNF complexes are evolutionarily conserved, ATP-dependent chromatin remodeling machines. Here, we characterize the features of SWI/SNF-dependent genes using BRM014, an inhibitor of the ATPase activity of the complexes. We find that SWI/SNF activity is required to maintain chromatin accessibility and nucleosome occupancy for most enhancers but not for most promoters. SWI/SNF activity is needed for expression of genes with low to medium levels of expression that have promoters with (1) low chromatin accessibility, (2) low levels of active histone marks, (3) high H3K4me1/H3K4me3 ratio, (4) low nucleosomal phasing, and (5) enrichment in TATA-box motifs. These promoters are mostly occupied by the canonical Brahma-related gene 1/Brahma-associated factor (BAF) complex. These genes are surrounded by SWI/SNF-dependent enhancers and mainly encode signal transduction, developmental, and cell identity genes (with almost no housekeeping genes). Machine-learning models trained with different chromatin characteristics of promoters and their surrounding regulatory regions indicate that the chromatin landscape is a determinant for establishing SWI/SNF dependency.
Collapse
Affiliation(s)
- Laura Basurto-Cayuela
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José A Guerrero-Martínez
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Elena Gómez-Marín
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Elena Sánchez-Escabias
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Escaño-Maestre
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Ceballos-Chávez
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José C Reyes
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain.
| |
Collapse
|
8
|
Uebbing S, Kocher AA, Baumgartner M, Ji Y, Bai S, Xing X, Nottoli T, Noonan JP. Evolutionary innovation in conserved regulatory elements across the mammalian tree of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578197. [PMID: 38352419 PMCID: PMC10862883 DOI: 10.1101/2024.01.31.578197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Transcriptional enhancers orchestrate cell type- and time point-specific gene expression programs. Evolution of enhancer sequences can alter target gene expression without causing detrimental misexpression in other contexts. It has long been thought that this modularity allows evolutionary changes in enhancers to escape pleiotropic constraints, which is especially important for evolutionary constrained developmental patterning genes. However, there is still little data supporting this hypothesis. Here we identified signatures of accelerated evolution in conserved enhancer elements across the mammalian phylogeny. We found that pleiotropic genes involved in gene regulatory and developmental processes were enriched for accelerated sequence evolution within their enhancer elements. These genes were associated with an excess number of enhancers compared to other genes, and due to this they exhibit a substantial degree of sequence acceleration over all their enhancers combined. We provide evidence that sequence acceleration is associated with turnover of regulatory function. We studied one acceleration event in depth and found that its sequence evolution led to the emergence of a new enhancer activity domain that may be involved in the evolution of digit reduction in hoofed mammals. Our results provide tangible evidence that enhancer evolution has been a frequent contributor to modifications involving constrained developmental signaling genes in mammals.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Present address: Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Yale School of Medicine, New Haven CT, USA
| | - Xiaojun Xing
- Yale Genome Editing Center, Yale School of Medicine, New Haven CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Yale School of Medicine, New Haven CT, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven CT, USA
- Wu Tsai Institute, Yale University, New Haven CT, USA
| |
Collapse
|
9
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA Polymerase II productive elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573688. [PMID: 38234780 PMCID: PMC10793463 DOI: 10.1101/2023.12.30.573688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Signal-dependent RNA Polymerase II (Pol2) productive elongation is an integral component of gene transcription, including those of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating Pol2 overcome nucleosomal barriers. Using RNAi, three degraders, and several small molecule inhibitors, we show that the mammalian SWI/SNF complex of neurons (neuronal BAF, or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc . The nBAF complex facilitates promoter-proximal Pol2 pausing, signal-dependent Pol2 recruitment (loading), and importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent Pol2. Mechanistically, Pol2 elongation is mediated by activity-induced nBAF assembly (especially, ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of Pol2 transcription and reveal mechanisms underlying activity-induced Pol2 elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
|
10
|
Li S, Zeng W, Ni X, Liu Q, Li W, Stackpole ML, Zhou Y, Gower A, Krysan K, Ahuja P, Lu DS, Raman SS, Hsu W, Aberle DR, Magyar CE, French SW, Han SHB, Garon EB, Agopian VG, Wong WH, Dubinett SM, Zhou XJ. Comprehensive tissue deconvolution of cell-free DNA by deep learning for disease diagnosis and monitoring. Proc Natl Acad Sci U S A 2023; 120:e2305236120. [PMID: 37399400 PMCID: PMC10334733 DOI: 10.1073/pnas.2305236120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Plasma cell-free DNA (cfDNA) is a noninvasive biomarker for cell death of all organs. Deciphering the tissue origin of cfDNA can reveal abnormal cell death because of diseases, which has great clinical potential in disease detection and monitoring. Despite the great promise, the sensitive and accurate quantification of tissue-derived cfDNA remains challenging to existing methods due to the limited characterization of tissue methylation and the reliance on unsupervised methods. To fully exploit the clinical potential of tissue-derived cfDNA, here we present one of the largest comprehensive and high-resolution methylation atlas based on 521 noncancer tissue samples spanning 29 major types of human tissues. We systematically identified fragment-level tissue-specific methylation patterns and extensively validated them in orthogonal datasets. Based on the rich tissue methylation atlas, we develop the first supervised tissue deconvolution approach, a deep-learning-powered model, cfSort, for sensitive and accurate tissue deconvolution in cfDNA. On the benchmarking data, cfSort showed superior sensitivity and accuracy compared to the existing methods. We further demonstrated the clinical utilities of cfSort with two potential applications: aiding disease diagnosis and monitoring treatment side effects. The tissue-derived cfDNA fraction estimated from cfSort reflected the clinical outcomes of the patients. In summary, the tissue methylation atlas and cfSort enhanced the performance of tissue deconvolution in cfDNA, thus facilitating cfDNA-based disease detection and longitudinal treatment monitoring.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
| | - Weihua Zeng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
| | - Xiaohui Ni
- EarlyDiagnostics Inc., Los Angeles, CA90095
| | - Qiao Liu
- Department of Statistics, Stanford University, Stanford, CA94305
| | - Wenyuan Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
- Institute for Quantitative & Computational Biosciences, University of California at Los Angeles, Los Angeles, CA90095
| | - Mary L. Stackpole
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
- EarlyDiagnostics Inc., Los Angeles, CA90095
| | - Yonggang Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
| | - Arjan Gower
- Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA90095
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA90095
- Veterans Administration (VA) Greater Los Angeles Health Care System, Los Angeles, CA90073
| | - Preeti Ahuja
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
| | - David S. Lu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA90095
| | - Steven S. Raman
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA90095
- Department of Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA90095
| | - William Hsu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA90095
| | - Denise R. Aberle
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Clara E. Magyar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA90095
| | - Samuel W. French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA90095
| | - Steven-Huy B. Han
- Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA90095
| | - Edward B. Garon
- Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA90095
| | - Vatche G. Agopian
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA90095
- Department of Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA90095
| | - Wing Hung Wong
- Department of Statistics, Stanford University, Stanford, CA94305
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
| | - Steven M. Dubinett
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
- Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA90095
- Veterans Administration (VA) Greater Los Angeles Health Care System, Los Angeles, CA90073
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA90095
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA90095
| | - Xianghong Jasmine Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA90095
- Institute for Quantitative & Computational Biosciences, University of California at Los Angeles, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA90095
| |
Collapse
|
11
|
De Sarkar N, Patton RD, Doebley AL, Hanratty B, Adil M, Kreitzman AJ, Sarthy JF, Ko M, Brahma S, Meers MP, Janssens DH, Ang LS, Coleman IM, Bose A, Dumpit RF, Lucas JM, Nunez TA, Nguyen HM, McClure HM, Pritchard CC, Schweizer MT, Morrissey C, Choudhury AD, Baca SC, Berchuck JE, Freedman ML, Ahmad K, Haffner MC, Montgomery RB, Corey E, Henikoff S, Nelson PS, Ha G. Nucleosome Patterns in Circulating Tumor DNA Reveal Transcriptional Regulation of Advanced Prostate Cancer Phenotypes. Cancer Discov 2023; 13:632-653. [PMID: 36399432 PMCID: PMC9976992 DOI: 10.1158/2159-8290.cd-22-0692] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/01/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcription regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for mixed clinical phenotypes. Although phenotype classification is typically assessed by IHC or transcriptome profiling from tumor biopsies, we demonstrate that ctDNA provides comparable results with diagnostic advantages for precision oncology. SIGNIFICANCE This study provides insights into the dynamics of nucleosome positioning and gene regulation associated with cancer phenotypes that can be ascertained from ctDNA. New methods for classification in phenotype mixtures extend the utility of ctDNA beyond assessments of somatic DNA alterations with important implications for molecular classification and precision oncology. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Navonil De Sarkar
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Pathology and Prostate Cancer Center of Excellence, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert D. Patton
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Anna-Lisa Doebley
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington
- Medical Scientist Training Program, University of Washington, Seattle, Washington
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Mohamed Adil
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Adam J. Kreitzman
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jay F. Sarthy
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Minjeong Ko
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sandipan Brahma
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Michael P. Meers
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lisa S. Ang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Arnab Bose
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ruth F. Dumpit
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jared M. Lucas
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Talina A. Nunez
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Holly M. Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | | | - Colin C. Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Michael T. Schweizer
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Atish D. Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sylvan C. Baca
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Matthew L. Freedman
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - R. Bruce Montgomery
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Corresponding Authors: Gavin Ha, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-2802; E-mail: ; and Peter S. Nelson, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-3377; E-mail:
| | - Gavin Ha
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Corresponding Authors: Gavin Ha, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-2802; E-mail: ; and Peter S. Nelson, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-3377; E-mail:
| |
Collapse
|
12
|
Stroynowska-Czerwinska AM, Klimczak M, Pastor M, Kazrani AA, Misztal K, Bochtler M. Clustered PHD domains in KMT2/MLL proteins are attracted by H3K4me3 and H3 acetylation-rich active promoters and enhancers. Cell Mol Life Sci 2023; 80:23. [PMID: 36598580 PMCID: PMC9813062 DOI: 10.1007/s00018-022-04651-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
Histone lysine-specific methyltransferase 2 (KMT2A-D) proteins, alternatively called mixed lineage leukemia (MLL1-4) proteins, mediate positive transcriptional memory. Acting as the catalytic subunits of human COMPASS-like complexes, KMT2A-D methylate H3K4 at promoters and enhancers. KMT2A-D contain understudied highly conserved triplets and a quartet of plant homeodomains (PHDs). Here, we show that all clustered (multiple) PHDs localize to the well-defined loci of H3K4me3 and H3 acetylation-rich active promoters and enhancers. Surprisingly, we observe little difference in binding pattern between PHDs from promoter-specific KMT2A-B and enhancer-specific KMT2C-D. Fusion of the KMT2A CXXC domain to the PHDs drastically enhances their preference for promoters over enhancers. Hence, the presence of CXXC domains in KMT2A-B, but not KMT2C-D, may explain the promoter/enhancer preferences of the full-length proteins. Importantly, targets of PHDs overlap with KMT2A targets and are enriched in genes involved in the cancer pathways. We also observe that PHDs of KMT2A-D are mutated in cancer, especially within conserved folding motifs (Cys4HisCys2Cys/His). The mutations cause a domain loss-of-function. Taken together, our data suggest that PHDs of KMT2A-D guide the full-length proteins to active promoters and enhancers, and thus play a role in positive transcriptional memory.
Collapse
Affiliation(s)
| | - Magdalena Klimczak
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Michal Pastor
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Asgar Abbas Kazrani
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Katarzyna Misztal
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
13
|
Johnston AD, Ross JP, Ma C, Fung KYC, Locke WJ. Epigenetic liquid biopsies for minimal residual disease, what's around the corner? Front Oncol 2023; 13:1103797. [PMID: 37081990 PMCID: PMC10110851 DOI: 10.3389/fonc.2023.1103797] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Liquid biopsy assays for minimal residual disease (MRD) are used to monitor and inform oncological treatment and predict the risk of relapse in cancer patients. To-date, most MRD assay development has focused on targeting somatic mutations. However, epigenetic changes are more frequent and universal than genetic alterations in cancer and circulating tumor DNA (ctDNA) retains much of these changes. Here, we review the epigenetic signals that can be used to detect MRD, including DNA methylation alterations and fragmentation patterns that differentiate ctDNA from noncancerous circulating cell-free DNA (ccfDNA). We then summarize the current state of MRD monitoring; highlight the advantages of epigenetics over genetics-based approaches; and discuss the emerging paradigm of assaying both genetic and epigenetic targets to monitor treatment response, detect disease recurrence, and inform adjuvant therapy.
Collapse
|
14
|
Dombrowski M, Engeholm M, Dienemann C, Dodonova S, Cramer P. Histone H1 binding to nucleosome arrays depends on linker DNA length and trajectory. Nat Struct Mol Biol 2022; 29:493-501. [PMID: 35581345 PMCID: PMC9113941 DOI: 10.1038/s41594-022-00768-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/01/2022] [Indexed: 01/17/2023]
Abstract
Throughout the genome, nucleosomes often form regular arrays that differ in nucleosome repeat length (NRL), occupancy of linker histone H1 and transcriptional activity. Here, we report cryo-EM structures of human H1-containing tetranucleosome arrays with four physiologically relevant NRLs. The structures show a zig-zag arrangement of nucleosomes, with nucleosomes 1 and 3 forming a stack. H1 binding to stacked nucleosomes depends on the NRL, whereas H1 always binds to the non-stacked nucleosomes 2 and 4. Short NRLs lead to altered trajectories of linker DNA, and these altered trajectories sterically impair H1 binding to the stacked nucleosomes in our structures. As the NRL increases, linker DNA trajectories relax, enabling H1 contacts and binding. Our results provide an explanation for why arrays with short NRLs are depleted of H1 and suited for transcription, whereas arrays with long NRLs show full H1 occupancy and can form transcriptionally silent heterochromatin regions. Cryo-EM structures of human H1-containing tetranucleosome arrays with distinct, physiological nucleosome repeat lengths reveal that nucleosomes assume a zig-zag arrangement and H1 binds to stacked nucleosomes with longer linker DNA.
Collapse
Affiliation(s)
- Marco Dombrowski
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Maik Engeholm
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Svetlana Dodonova
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany. .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
15
|
Vanderstichele A, Busschaert P, Landolfo C, Olbrecht S, Coosemans A, Froyman W, Loverix L, Concin N, Braicu EI, Wimberger P, Van Nieuwenhuysen E, Han SN, Van Gorp T, Venken T, Heremans R, Neven P, Bourne T, Van Calster B, Timmerman D, Lambrechts D, Vergote I. Nucleosome footprinting in plasma cell-free DNA for the pre-surgical diagnosis of ovarian cancer. NPJ Genom Med 2022; 7:30. [PMID: 35484288 PMCID: PMC9050708 DOI: 10.1038/s41525-022-00300-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
Fragmentation patterns of plasma cell-free DNA (cfDNA) are known to reflect nucleosome positions of cell types contributing to cfDNA. Based on cfDNA fragmentation patterns, the deviation in nucleosome footprints was quantified between diagnosed ovarian cancer patients and healthy individuals. Multinomial modeling was subsequently applied to capture these deviations in a per sample nucleosome footprint score. Validation was performed in 271 cfDNAs pre-surgically collected from women with an adnexal mass. We confirmed that nucleosome scores were elevated in invasive carcinoma patients, but not in patients with benign or borderline disease. Combining nucleosome scores with chromosomal instability scores assessed in the same cfDNA improved prediction of malignancy. Nucleosome scores were, however, more reliable to predict non-high-grade serous ovarian tumors, which are characterized by low chromosomal instability. These data highlight that compared to chromosomal instability, nucleosome footprinting provides a complementary and more generic read-out for pre-surgical diagnosis of invasive disease in women with adnexal masses.
Collapse
Affiliation(s)
- Adriaan Vanderstichele
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium
| | - Pieter Busschaert
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Chiara Landolfo
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Queen Charlotte's and Chelsea Hospital, Imperial College, London, UK
| | - Siel Olbrecht
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium
| | - An Coosemans
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Immunovar Research Group, KU Leuven, Leuven, Belgium
| | - Wouter Froyman
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Liselore Loverix
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium.,VIB Center for Cancer Biology, Leuven, Belgium
| | - Nicole Concin
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
| | - Elena Ioana Braicu
- Department of Gynecology, Campus Virchow, Charité, Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pauline Wimberger
- National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Els Van Nieuwenhuysen
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Sileny N Han
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Toon Van Gorp
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Tom Venken
- VIB Center for Cancer Biology, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ruben Heremans
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Tom Bourne
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ben Van Calster
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dirk Timmerman
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium. .,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | - Ignace Vergote
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.,Department of Oncology, KU Leuven, Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Differences in RNA polymerase II complexes and their interactions with surrounding chromatin on human and cytomegalovirus genomes. Nat Commun 2022; 13:2006. [PMID: 35422111 PMCID: PMC9010409 DOI: 10.1038/s41467-022-29739-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
Interactions of the RNA polymerase II (Pol II) preinitiation complex (PIC) and paused early elongation complexes with the first downstream (+1) nucleosome are thought to be functionally important. However, current methods are limited for investigating these relationships, both for cellular chromatin and the human cytomegalovirus (HCMV) genome. Digestion with human DNA fragmentation factor (DFF) before immunoprecipitation (DFF-ChIP) precisely revealed both similarities and major differences in PICs driven by TBP on the host genome in comparison with PICs driven by TBP or the viral-specific, late initiation factor UL87 on the viral genome. Host PICs and paused Pol II complexes are frequently found in contact with the +1 nucleosome and paused Pol II can also be found in a complex involved in the initial invasion of the +1 nucleosome. In contrast, viral transcription complexes have very limited nucleosomal interactions, reflecting a relative lack of chromatinization of transcriptionally active regions of HCMV genomes. Here the authors digested chromatin with DNA fragmentation factor (DFF) prior to chromatin immunoprecipitation (DFF-ChIP) to depict transcription complex interactions with neighboring nucleosomes in cells. Applying this method to human cytomegalovirus (HMCV)-infected cells, they find that the viral genome is underchromatinized, leading to fewer transcription complex interactions with nucleosomes.
Collapse
|
17
|
Asthana A, Ramanan P, Hirschi A, Guiley KZ, Wijeratne TU, Shelansky R, Doody MJ, Narasimhan H, Boeger H, Tripathi S, Müller GA, Rubin SM. The MuvB complex binds and stabilizes nucleosomes downstream of the transcription start site of cell-cycle dependent genes. Nat Commun 2022; 13:526. [PMID: 35082292 PMCID: PMC8792015 DOI: 10.1038/s41467-022-28094-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression. The MuvB protein complex regulates genes that are differentially expressed through the cell cycle, yet its precise molecular function has remained unclear. Here the authors reveal MuvB associates with the nucleosome adjacent to the transcription start site of cell-cycle genes and that the tight positioning of this nucleosome correlates with MuvB-dependent gene repression.
Collapse
Affiliation(s)
- Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Parameshwaran Ramanan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Alexander Hirschi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Robert Shelansky
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Michael J Doody
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Haritha Narasimhan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
18
|
Xu B, Li X, Gao X, Jia Y, Liu J, Li F, Zhang Z. DeNOPA: decoding nucleosome positions sensitively with sparse ATAC-seq data. Brief Bioinform 2021; 23:6454261. [PMID: 34875002 DOI: 10.1093/bib/bbab469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
As the basal bricks, the dynamics and arrangement of nucleosomes orchestrate the higher architecture of chromatin in a fundamental way, thereby affecting almost all nuclear biology processes. Thanks to its rather simple protocol, assay for transposase-accessible chromatin using sequencing (ATAC)-seq has been rapidly adopted as a major tool for chromatin-accessible profiling at both bulk and single-cell levels; however, to picture the arrangement of nucleosomes per se remains a challenge with ATAC-seq. In the present work, we introduce a novel ATAC-seq analysis toolkit, named decoding nucleosome organization profile based on ATAC-seq data (deNOPA), to predict nucleosome positions. Assessments showed that deNOPA outperformed state-of-the-art tools with ultra-sparse ATAC-seq data, e.g. no more than 0.5 fragment per base pair. The remarkable performance of deNOPA was fueled by the short fragment reads, which compose nearly half of sequenced reads in the ATAC-seq libraries and are commonly discarded by state-of-the-art nucleosome positioning tools. However, we found that the short fragment reads enrich information on nucleosome positions and that the linker regions were predicted by reads from both short and long fragments using Gaussian smoothing. Last, using deNOPA, we showed that the dynamics of nucleosome organization may not directly couple with chromatin accessibility in the cis-regulatory regions when human cells respond to heat shock stimulation. Our deNOPA provides a powerful tool with which to analyze the dynamics of chromatin at nucleosome position level with ultra-sparse ATAC-seq data.
Collapse
Affiliation(s)
- Bingxiang Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaoli Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaomeng Gao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yan Jia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Jing Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Feifei Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
19
|
A Comprehensive Toolbox to Analyze Enhancer-Promoter Functions. Methods Mol Biol 2021. [PMID: 34382181 DOI: 10.1007/978-1-0716-1597-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Knowledge in gene transcription and chromatin regulation has been intensely studied for decades, but thanks to next-generation sequencing (NGS) techniques there has been a major leap forward in the last few years. Historically, identification of specific enhancer elements has led to the identification of master transcription factors (TFs) in the 1990s. Genetic and biochemical experiments have identified the key regulators controlling RNA polymerase II (RNAPII) transcription and structurally analyses have elucidated detailed mechanisms. NGS and the development of chromatin immunoprecipitation (ChIP) have accelerated the gain of knowledge in the recent years. By now, we have a dazzling wealth of techniques that are currently used to put gene expression into a genome-wide context. This book is an attempt to assemble useful protocols for many researchers within and nearby research areas. In general, these innovative techniques focus on enhancer and promoter studies. The techniques should also be of interest for related fields such as DNA repair and replication.
Collapse
|
20
|
Barnes T, Korber P. The Active Mechanism of Nucleosome Depletion by Poly(dA:dT) Tracts In Vivo. Int J Mol Sci 2021; 22:ijms22158233. [PMID: 34360997 PMCID: PMC8347975 DOI: 10.3390/ijms22158233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
Poly(dA:dT) tracts cause nucleosome depletion in many species, e.g., at promoters and replication origins. Their intrinsic biophysical sequence properties make them stiff and unfavorable for nucleosome assembly, as probed by in vitro nucleosome reconstitution. The mere correlation between nucleosome depletion over poly(dA:dT) tracts in in vitro reconstituted and in in vivo chromatin inspired an intrinsic nucleosome exclusion mechanism in vivo that is based only on DNA and histone properties. However, we compile here published and new evidence that this correlation does not reflect mechanistic causation. (1) Nucleosome depletion over poly(dA:dT) in vivo is not universal, e.g., very weak in S. pombe. (2) The energy penalty for incorporating poly(dA:dT) tracts into nucleosomes is modest (<10%) relative to ATP hydrolysis energy abundantly invested by chromatin remodelers. (3) Nucleosome depletion over poly(dA:dT) is much stronger in vivo than in vitro if monitored without MNase and (4) actively maintained in vivo. (5) S. cerevisiae promoters evolved a strand-biased poly(dA) versus poly(dT) distribution. (6) Nucleosome depletion over poly(dA) is directional in vivo. (7) The ATP dependent chromatin remodeler RSC preferentially and directionally displaces nucleosomes towards 5′ of poly(dA). Especially distribution strand bias and displacement directionality would not be expected for an intrinsic mechanism. Together, this argues for an in vivo mechanism where active and species-specific read out of intrinsic sequence properties, e.g., by remodelers, shapes nucleosome organization.
Collapse
|
21
|
Markus BM, Waldman BS, Lorenzi HA, Lourido S. High-Resolution Mapping of Transcription Initiation in the Asexual Stages of Toxoplasma gondii. Front Cell Infect Microbiol 2021; 10:617998. [PMID: 33553008 PMCID: PMC7854901 DOI: 10.3389/fcimb.2020.617998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is a common parasite of humans and animals, causing life-threatening disease in the immunocompromized, fetal abnormalities when contracted during gestation, and recurrent ocular lesions in some patients. Central to the prevalence and pathogenicity of this protozoan is its ability to adapt to a broad range of environments, and to differentiate between acute and chronic stages. These processes are underpinned by a major rewiring of gene expression, yet the mechanisms that regulate transcription in this parasite are only partially characterized. Deciphering these mechanisms requires a precise and comprehensive map of transcription start sites (TSSs); however, Toxoplasma TSSs have remained incompletely defined. To address this challenge, we used 5'-end RNA sequencing to genomically assess transcription initiation in both acute and chronic stages of Toxoplasma. Here, we report an in-depth analysis of transcription initiation at promoters, and provide empirically-defined TSSs for 7603 (91%) protein-coding genes, of which only 1840 concur with existing gene models. Comparing data from acute and chronic stages, we identified instances of stage-specific alternative TSSs that putatively generate mRNA isoforms with distinct 5' termini. Analysis of the nucleotide content and nucleosome occupancy around TSSs allowed us to examine the determinants of TSS choice, and outline features of Toxoplasma promoter architecture. We also found pervasive divergent transcription at Toxoplasma promoters, clustered within the nucleosomes of highly-symmetrical phased arrays, underscoring chromatin contributions to transcription initiation. Corroborating previous observations, we asserted that Toxoplasma 5' leaders are among the longest of any eukaryote studied thus far, displaying a median length of approximately 800 nucleotides. Further highlighting the utility of a precise TSS map, we pinpointed motifs associated with transcription initiation, including the binding sites of the master regulator of chronic-stage differentiation, BFD1, and a novel motif with a similar positional arrangement present at 44% of Toxoplasma promoters. This work provides a critical resource for functional genomics in Toxoplasma, and lays down a foundation to study the interactions between genomic sequences and the regulatory factors that control transcription in this parasite.
Collapse
Affiliation(s)
- Benedikt M. Markus
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Benjamin S. Waldman
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
22
|
MNase Profiling of Promoter Chromatin in Salmonella typhimurium-Stimulated GM12878 Cells Reveals Dynamic and Response-Specific Nucleosome Architecture. G3-GENES GENOMES GENETICS 2020; 10:2171-2178. [PMID: 32404364 PMCID: PMC7341138 DOI: 10.1534/g3.120.401266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleosome is the primary unit of chromatin structure and commonly imputed as a regulator of nuclear events, although the exact mechanisms remain unclear. Recent studies have shown that certain nucleosomes can have different sensitivities to micrococcal nuclease (MNase) digestion, resulting in the release of populations of nucleosomes dependent on the concentration of MNase. Mapping MNase sensitivity of nucleosomes at transcription start sites genome-wide reveals an important functional nucleosome organization that correlates with gene expression levels and transcription factor binding. In order to understand nucleosome distribution and sensitivity dynamics during a robust genome response, we mapped nucleosome position and sensitivity using multiple concentrations of MNase. We used the innate immune response as a model system to understand chromatin-mediated regulation. Herein we demonstrate that stimulation of a human lymphoblastoid cell line (GM12878) with heat-killed Salmonella typhimurium (HKST) results in changes in nucleosome sensitivity to MNase. We show that the HKST response alters the sensitivity of -1 nucleosomes at highly expressed promoters. Finally, we correlate the increased sensitivity with response-specific transcription factor binding. These results indicate that nucleosome sensitivity dynamics reflect the cellular response to HKST and pave the way for further studies that will deepen our understanding of the specificity of genome response.
Collapse
|