1
|
Wu EJ, Kandalkar AT, Ehrmann JF, Tong AB, Zhang J, Cong Q, Wu H. A structural atlas of death domain fold proteins reveals their versatile roles in biology and function. Proc Natl Acad Sci U S A 2025; 122:e2426986122. [PMID: 39977327 PMCID: PMC11874512 DOI: 10.1073/pnas.2426986122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Death domain fold (DDF) superfamily proteins are critically important players in pathways of cell death and inflammation. DDFs are often essential scaffolding domains in receptors, adaptors, or effectors of these pathways by mediating homo- and hetero-oligomerization including helical filament assembly. At the downstream ends of these pathways, effector oligomerization by DDFs brings the enzyme domains into proximity for their dimerization and activation. Hundreds of structures of these domains have been solved. However, a comprehensive understanding of DDFs is lacking. In this article, we report the curation of a DDF structural atlas as a public website (deathdomain.org) and deduce the common and distinct principles of DDF-mediated oligomerization among the four families (death domain or DD, death effector domain or DED, caspase recruitment domain or CARD, and pyrin domain or PYD). We further annotate DDFs genome-wide based on AlphaFold-predicted models and protein sequences. These studies reveal mechanistic rules for this widely distributed domain superfamily.
Collapse
Affiliation(s)
- Emily J. Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Saratoga High School, Saratoga, CA95070
| | - Ankita T. Kandalkar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Biology, College of Science, Northeastern University, Boston, MA02115
| | - Julian F. Ehrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Alexander B. Tong
- Jason L. Choy Laboratory of Single-Molecule Biophysics, Institute for Quantitative Biosciences, Chemistry Graduate Group, University of California, Berkeley, CA94720
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Biology, College of Science, Northeastern University, Boston, MA02115
| |
Collapse
|
2
|
Bez P, Ceraudo M, Vianello F, Rattazzi M, Scarpa R. Where AIRE we now? Where AIRE we going? Curr Opin Allergy Clin Immunol 2024; 24:448-456. [PMID: 39440452 PMCID: PMC11537476 DOI: 10.1097/aci.0000000000001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
PURPOSE OF REVIEW The purpose of the review is to describe the most recent advancement in understanding of the pivotal role of autoimmune regulator ( AIRE ) gene expression in central and peripheral tolerance, and the implications of its impairment in the genetic and pathogenesis of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) manifestations with insight into possible treatment options. RECENT FINDINGS AIRE gene expression has an important role of central and peripheral tolerance. Different AIRE gene mutations cause APECED, whereas polymorphisms and some variants may be implicated in development of other more frequently autoimmune diseases. Impaired negative T cell selection, reduction of T regulatory function, altered germinal center response, activated B cells and production of autoantibodies explain the development of autoimmunity in APECED. Recent data suggest that an excessive interferon-γ response may be the primer driver of the associated organ damage. Therefore, Janus kinase (JAK)-inhibitors may be promising therapies for treatment of broad spectrum of manifestations. SUMMARY AIRE has a pivotal role in immune tolerance. Disruption of this delicate equilibrium results in complex immune perturbation, ranging from severe autoimmunity, like APECED, to more common organ-specific disorders. Therefore, a deeper understanding of the correlation between AIRE function and clinical phenotype is warranted given the potential translational implication in clinical practice.
Collapse
Affiliation(s)
- Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso
| | - Martina Ceraudo
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso
- Deparment of Medicine (DIMED)
| | - Fabrizio Vianello
- Hematology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Marcello Rattazzi
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso
- Deparment of Medicine (DIMED)
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso
- Deparment of Medicine (DIMED)
| |
Collapse
|
3
|
Waterfield MR, Anderson MS. A balancing act in the control of self-antigen expression. Nat Immunol 2024; 25:1520-1521. [PMID: 39169235 DOI: 10.1038/s41590-024-01940-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Affiliation(s)
- Michael R Waterfield
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Huoh YS, Zhang Q, Törner R, Baca SC, Arthanari H, Hur S. Mechanism for controlled assembly of transcriptional condensates by Aire. Nat Immunol 2024; 25:1580-1592. [PMID: 39169234 PMCID: PMC11362013 DOI: 10.1038/s41590-024-01922-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Transcriptional condensates play a crucial role in gene expression and regulation, yet their assembly mechanisms remain poorly understood. Here, we report a multi-layered mechanism for condensate assembly by autoimmune regulator (Aire), an essential transcriptional regulator that orchestrates gene expression reprogramming for central T cell tolerance. Aire condensates assemble on enhancers, stimulating local transcriptional activities and connecting disparate inter-chromosomal loci. This functional condensate formation hinges upon the coordination between three Aire domains: polymerization domain caspase activation recruitment domain (CARD), histone-binding domain (first plant homeodomain (PHD1)), and C-terminal tail (CTT). Specifically, CTT binds coactivators CBP/p300, recruiting Aire to CBP/p300-rich enhancers and promoting CARD-mediated condensate assembly. Conversely, PHD1 binds to the ubiquitous histone mark H3K4me0, keeping Aire dispersed throughout the genome until Aire nucleates on enhancers. Our findings showed that the balance between PHD1-mediated suppression and CTT-mediated stimulation of Aire polymerization is crucial to form transcriptionally active condensates at target sites, providing new insights into controlled polymerization of transcriptional regulators.
Collapse
Affiliation(s)
- Yu-San Huoh
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Qianxia Zhang
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ricarda Törner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sun Hur
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Dziulko AK, Allen H, Chuong EB. An endogenous retrovirus regulates tumor-specific expression of the immune transcriptional regulator SP140. Hum Mol Genet 2024; 33:1454-1464. [PMID: 38751339 PMCID: PMC11305685 DOI: 10.1093/hmg/ddae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 07/26/2024] Open
Abstract
Speckled Protein 140 (SP140) is a chromatin reader with critical roles regulating immune cell transcriptional programs, and SP140 splice variants are associated with immune diseases including Crohn's disease, multiple sclerosis, and chronic lymphocytic leukemia. SP140 expression is currently thought to be restricted to immune cells. However, by analyzing human transcriptomic datasets from a wide range of normal and cancer cell types, we found recurrent cancer-specific expression of SP140, driven by an alternative intronic promoter derived from an intronic endogenous retrovirus (ERV). The ERV belongs to the primate-specific LTR8B family and is regulated by oncogenic mitogen-activated protein kinase (MAPK) signaling. The ERV drives expression of multiple cancer-specific isoforms, including a nearly full-length isoform that retains all the functional domains of the full-length canonical isoform and is also localized within the nucleus, consistent with a role in chromatin regulation. In a fibrosarcoma cell line, silencing the cancer-specific ERV promoter of SP140 resulted in increased sensitivity to interferon-mediated cytotoxicity and dysregulation of multiple genes. Our findings implicate aberrant ERV-mediated SP140 expression as a novel mechanism contributing to immune gene dysregulation in a wide range of cancer cells.
Collapse
Affiliation(s)
- Adam K Dziulko
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| | - Holly Allen
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| |
Collapse
|
6
|
Miller CN, Waterfield MR, Gardner JM, Anderson MS. Aire in Autoimmunity. Annu Rev Immunol 2024; 42:427-53. [PMID: 38360547 PMCID: PMC11774315 DOI: 10.1146/annurev-immunol-090222-101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.
Collapse
Affiliation(s)
- Corey N Miller
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| | - Michael R Waterfield
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - James M Gardner
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Surgery, University of California, San Francisco, California, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
7
|
Nicholson KR, Cronin RM, Prest RJ, Menon AR, Yang Y, Jennisch MK, Champion MM, Tobin DM, Champion PA. The antagonistic transcription factors, EspM and EspN, regulate the ESX-1 secretion system in M. marinum. mBio 2024; 15:e0335723. [PMID: 38445877 PMCID: PMC11005418 DOI: 10.1128/mbio.03357-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
Bacterial pathogens use protein secretion systems to transport virulence factors and regulate gene expression. Among pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium marinum, the ESAT-6 system 1 (ESX-1) secretion is crucial for host interaction. Secretion of protein substrates by the ESX-1 secretion system disrupts phagosomes, allowing mycobacteria cytoplasmic access during macrophage infections. Deletion or mutation of the ESX-1 system attenuates mycobacterial pathogens. Pathogenic mycobacteria respond to the presence or absence of the ESX-1 system in the cytoplasmic membrane by altering transcription. Under laboratory conditions, the EspM repressor and WhiB6 activator control transcription of specific ESX-1-responsive genes, including the ESX-1 substrate genes. However, deleting the espM or whiB6 gene does not phenocopy the deletion of the ESX-1 substrate genes during macrophage infection by M. marinum. In this study, we identified EspN, a critical transcription factor whose activity is masked by the EspM repressor under laboratory conditions. In the absence of EspM, EspN activates transcription of whiB6 and ESX-1 genes during both laboratory growth and macrophage infection. EspN is also independently required for M. marinum growth within and cytolysis of macrophages, similar to the ESX-1 genes, and for disease burden in a zebrafish larval model of infection. These findings suggest that EspN and EspM coordinate to counterbalance the regulation of the ESX-1 system and support mycobacterial pathogenesis.IMPORTANCEPathogenic mycobacteria, which are responsible for tuberculosis and other long-term diseases, use the ESX-1 system to transport proteins that control the host response to infection and promote bacterial survival. In this study, we identify an undescribed transcription factor that controls the expression of ESX-1 genes and is required for both macrophage and animal infection. However, this transcription factor is not the primary regulator of ESX-1 genes under standard laboratory conditions. These findings identify a critical transcription factor that likely controls expression of a major virulence pathway during infection, but whose effect is not detectable with standard laboratory strains and growth conditions.
Collapse
Affiliation(s)
- Kathleen R. Nicholson
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel M. Cronin
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca J. Prest
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Aruna R. Menon
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yuwei Yang
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Madeleine K. Jennisch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Patricia A. Champion
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
8
|
Soltysova A, Begerova P, Jakic K, Kozics K, Sramkova M, Meese E, Smolkova B, Gabelova A. Genome-wide DNA methylome and transcriptome changes induced by inorganic nanoparticles in human kidney cells after chronic exposure. Cell Biol Toxicol 2023; 39:1939-1956. [PMID: 34973136 PMCID: PMC10547624 DOI: 10.1007/s10565-021-09680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
The unique physicochemical properties make inorganic nanoparticles (INPs) an exciting tool in diagnosis and disease management. However, as INPs are relatively difficult to fully degrade and excrete, their unintended accumulation in the tissue might result in adverse health effects. Herein, we provide a methylome-transcriptome framework for chronic effects of INPs, commonly used in biomedical applications, in human kidney TH-1 cells. Renal clearance is one of the most important routes of nanoparticle excretion; therefore, a detailed evaluation of nanoparticle-mediated nephrotoxicity is an important task. Integrated analysis of methylome and transcriptome changes induced by INPs (PEG-AuNPs, Fe3O4NPs, SiO2NPs, and TiO2NPs) revealed significantly deregulated genes with functional classification in immune response, DNA damage, and cancer-related pathways. Although most deregulated genes were unique to individual INPs, a relatively high proportion of them encoded the transcription factors. Interestingly, FOS hypermethylation inversely correlating with gene expression was associated with all INPs exposures. Our study emphasizes the need for a more comprehensive investigation of INPs' biological safety, especially after chronic exposure.
Collapse
Affiliation(s)
- Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 04, Bratislava, Slovakia
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Patricia Begerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Kristina Jakic
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Katarina Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Sramkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
9
|
Kagan JC, Rothenberg EV, Weiss A, Rudensky AY, Smale ST. Cold Spring Harbor Laboratory 2022: emerging insights and viewpoints in immunology. Trends Immunol 2023; 44:248-255. [PMID: 36907684 DOI: 10.1016/j.it.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
Some of the current and former organizers of the Cold Spring Harbor Laboratory (CSHL) 'Gene Expression and Signaling in the Immune System' (GESIS) meeting offer opinions on emerging questions in immunology, discussing the strong value of this recurring scientific meeting in the field.
Collapse
Affiliation(s)
- Jonathan C Kagan
- Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Arthur Weiss
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Stephen T Smale
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
The EspN transcription factor is an infection-dependent regulator of the ESX-1 system in M. marinum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528779. [PMID: 36824794 PMCID: PMC9948972 DOI: 10.1101/2023.02.15.528779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Bacterial pathogens use protein secretion systems to translocate virulence factors into the host and to control bacterial gene expression. The ESX-1 (ESAT-6 system 1) secretion system facilitates disruption of the macrophage phagosome during infection, enabling access to the cytoplasm, and regulates widespread gene expression in the mycobacterial cell. The transcription factors contributing to the ESX-1 transcriptional network during mycobacterial infection are not known. We showed that the EspM and WhiB6 transcription factors regulate the ESX-1 transcriptional network in vitro but are dispensable for macrophage infection by Mycobacterium marinum . In this study, we used our understanding of the ESX-1 system to identify EspN, a critical transcription factor that controls expression of the ESX-1 genes during infection, but whose effect is not detectable under standard laboratory growth conditions. Under laboratory conditions, EspN activity is masked by the EspM repressor. In the absence of EspM, we found that EspN is required for ESX-1 function because it activates expression of the whiB6 transcription factor gene, and specific ESX-1 substrate and secretory component genes. Unlike the other transcription factors that regulate ESX-1, EspN is required for M. marinum growth within and cytolysis of macrophages, and for disease burden in a zebrafish larval model of infection. These findings demonstrate that EspN is an infection-dependent regulator of the ESX-1 transcriptional network, which is essential for mycobacterial pathogenesis. Moreover, our findings suggest that ESX-1 expression is controlled by a genetic switch that responds to host specific signals. Importance Pathogenic mycobacteria cause acute and long-term diseases, including human tuberculosis. The ESX-1 system transports proteins that control the host response to infection and promotes bacterial survival. Although ESX-1 transports proteins, it also controls gene expression in the bacteria. In this study, we identify an undescribed transcription factor that controls the expression of ESX-1 genes, and is required for both macrophage and animal infection. However, this transcription factor is not the primary regulator of ESX-1 genes under standard laboratory conditions. These findings identify a critical transcription factor that controls expression of a major virulence pathway during infection, but whose effect is not detectable with standard laboratory strains and growth conditions.
Collapse
|
11
|
Dall'Agnese A, Platt JM, Zheng MM, Friesen M, Dall'Agnese G, Blaise AM, Spinelli JB, Henninger JE, Tevonian EN, Hannett NM, Lazaris C, Drescher HK, Bartsch LM, Kilgore HR, Jaenisch R, Griffith LG, Cisse II, Jeppesen JF, Lee TI, Young RA. The dynamic clustering of insulin receptor underlies its signaling and is disrupted in insulin resistance. Nat Commun 2022; 13:7522. [PMID: 36473871 PMCID: PMC9727033 DOI: 10.1038/s41467-022-35176-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor (IR) signaling is central to normal metabolic control and is dysregulated in metabolic diseases such as type 2 diabetes. We report here that IR is incorporated into dynamic clusters at the plasma membrane, in the cytoplasm and in the nucleus of human hepatocytes and adipocytes. Insulin stimulation promotes further incorporation of IR into these dynamic clusters in insulin-sensitive cells but not in insulin-resistant cells, where both IR accumulation and dynamic behavior are reduced. Treatment of insulin-resistant cells with metformin, a first-line drug used to treat type 2 diabetes, can rescue IR accumulation and the dynamic behavior of these clusters. This rescue is associated with metformin's role in reducing reactive oxygen species that interfere with normal dynamics. These results indicate that changes in the physico-mechanical features of IR clusters contribute to insulin resistance and have implications for improved therapeutic approaches.
Collapse
Affiliation(s)
| | - Jesse M Platt
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ming M Zheng
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Giuseppe Dall'Agnese
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Medicine, University of Udine, Udine, 33100, Italy
| | - Alyssa M Blaise
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | | | - Erin N Tevonian
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | - Hannah K Drescher
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Lea M Bartsch
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Henry R Kilgore
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ibrahim I Cisse
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jacob F Jeppesen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Global Drug Discovery, Novo Nordisk, Copenhagen, Denmark
| | - Tong I Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Fraschilla I, Amatullah H, Rahman RU, Jeffrey KL. Immune chromatin reader SP140 regulates microbiota and risk for inflammatory bowel disease. Cell Host Microbe 2022; 30:1370-1381.e5. [PMID: 36130593 PMCID: PMC10266544 DOI: 10.1016/j.chom.2022.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Inflammatory bowel disease (IBD) is driven by host genetics and environmental factors, including commensal microorganisms. Speckled Protein 140 (SP140) is an immune-restricted chromatin "reader" that is associated with Crohn's disease (CD), multiple sclerosis (MS), and chronic lymphocytic leukemia (CLL). However, the disease-causing mechanisms of SP140 remain undefined. Here, we identify an immune-intrinsic role for SP140 in regulating phagocytic defense responses to prevent the expansion of inflammatory bacteria. Mice harboring altered microbiota due to hematopoietic Sp140 deficiency exhibited severe colitis that was transmissible upon cohousing and ameliorated with antibiotics. Loss of SP140 results in blooms of Proteobacteria, including Helicobacter in Sp140-/- mice and Enterobacteriaceae in humans bearing the CD-associated SP140 loss-of-function variant. Phagocytes from patients with the SP140 loss-of-function variant and Sp140-/- mice exhibited altered antimicrobial defense programs required for control of pathobionts. Thus, mutations within this epigenetic reader may constitute a predisposing event in human diseases provoked by microbiota.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hajera Amatullah
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Raza-Ur Rahman
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kate L Jeffrey
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Massachusetts Institute of Technology Center for Microbiome, Informatics and Therapeutics, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Benlaribi R, Gou Q, Takaba H. Thymic self-antigen expression for immune tolerance and surveillance. Inflamm Regen 2022; 42:28. [PMID: 36056452 PMCID: PMC9440513 DOI: 10.1186/s41232-022-00211-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
T cells are a group of lymphocytes that play a central role in the immune system, notably, eliminating pathogens and attacking cancer while being tolerant of the self. Elucidating how immune tolerance is ensured has become a significant research issue for understanding the pathogenesis of autoimmune diseases as well as cancer immunity. T cell immune tolerance is established mainly in the thymic medulla by the removal of self-responsive T cells and the generation of regulatory T cells, this process depends mainly on the expression of a variety of tissue restricted antigens (TRAs) by medullary thymic epithelial cells (mTECs). The expression of TRAs is known to be regulated by at least two independent factors, Fezf2 and Aire, which play non-redundant and complementary roles by different mechanisms. In this review, we introduce the molecular logic of thymic self-antigen expression that underlies T cell selection for the prevention of autoimmunity and the establishment of immune surveillance.
Collapse
Affiliation(s)
- Rayene Benlaribi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Qiao Gou
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Amatullah H, Fraschilla I, Digumarthi S, Huang J, Adiliaghdam F, Bonilla G, Wong LP, Rivard ME, Beauchamp C, Mercier V, Goyette P, Sadreyev RI, Anthony RM, Rioux JD, Jeffrey KL. Epigenetic reader SP140 loss of function drives Crohn's disease due to uncontrolled macrophage topoisomerases. Cell 2022; 185:3232-3247.e18. [PMID: 35952671 PMCID: PMC9442451 DOI: 10.1016/j.cell.2022.06.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/07/2022] [Accepted: 06/27/2022] [Indexed: 01/19/2023]
Abstract
How mis-regulated chromatin directly impacts human immune disorders is poorly understood. Speckled Protein 140 (SP140) is an immune-restricted PHD and bromodomain-containing epigenetic "reader," and SP140 loss-of-function mutations associate with Crohn's disease (CD), multiple sclerosis (MS), and chronic lymphocytic leukemia (CLL). However, the relevance of these mutations and mechanisms underlying SP140-driven pathogenicity remains unexplored. Using a global proteomic strategy, we identified SP140 as a repressor of topoisomerases (TOPs) that maintains heterochromatin and macrophage fate. In humans and mice, SP140 loss resulted in unleashed TOP activity, de-repression of developmentally silenced genes, and ultimately defective microbe-inducible macrophage transcriptional programs and bacterial killing that drive intestinal pathology. Pharmacological inhibition of TOP1/2 rescued these defects. Furthermore, exacerbated colitis was restored with TOP1/2 inhibitors in Sp140-/- mice, but not wild-type mice, in vivo. Collectively, we identify SP140 as a TOP repressor and reveal repurposing of TOP inhibition to reverse immune diseases driven by SP140 loss.
Collapse
Affiliation(s)
- Hajera Amatullah
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Isabella Fraschilla
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Sreehaas Digumarthi
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Julie Huang
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Fatemeh Adiliaghdam
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Gracia Bonilla
- Department of Molecular Biology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | - Ruslan I Sadreyev
- Department of Molecular Biology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Rioux
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Kate L Jeffrey
- Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
van Laar GG, van Hamburg JP, Tas SW. Extrathymic AIRE-expressing cells: Friends or foes in autoimmunity and cancer? Clin Exp Rheumatol 2022; 21:103141. [PMID: 35840039 DOI: 10.1016/j.autrev.2022.103141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022]
Abstract
Auto-immune regulator (AIRE) is a transcription factor that is mainly known for its crucial role in the thymus. Here, AIRE ensures central tolerance by promoting the expression of peripheral tissue antigens in thymic epithelial cells, which is essential for the negative selection of autoreactive T cells. Intriguingly, AIRE expressing cells have recently been identified in other tissues outside the thymus as well. However, the exact function of these extrathymic AIRE expressing cells (eTACs) remains largely enigmatic. Human eTACs are mainly found in secondary lymphoid tissues under homeostatic conditions, but are also found in pathologies such as the inflamed tissues of patients with autoimmune diseases and in various cancer tissues. eTACs have been demonstrated to express dendritic cell (DC)-like markers, such as MHCII, CD40 and CD127, but also CCR7, IDO and PD-L1. Interestingly, eTACs lack high expression of co-stimulatory molecules, such as CD80 or CD86. In mice, different types of peripheral AIRE expressing cells have been described, including cells with an innate lymphoid cell-like phenotype and antigen presenting cell (APC) function. These findings suggest that eTACs are APCs with the possibility to modulate or inhibit immune responses, which is confirmed by functional murine studies demonstrating the ability of eTACs to induce tolerance in autoreactive T cells. The potential immunomodulatory function of eTACs makes them promising targets to restore tolerance in autoimmunity or improve immunotherapy in cancer settings. Yet, this requires a better understanding of these cells and the molecular mechanisms involved. In this review we aim to summarize the current knowledge and understanding of eTACs, including their putative roles in health and disease.
Collapse
Affiliation(s)
- Gustaaf G van Laar
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Jan Piet van Hamburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Netherlands.
| |
Collapse
|
16
|
Cranston T, Boon H, Olesen MK, Ryan FJ, Shears D, London R, Rostom H, Elajnaf T, Thakker RV, Hannan FM. Spectrum of germline AIRE mutations causing APS-1 and familial hypoparathyroidism. Eur J Endocrinol 2022; 187:111-122. [PMID: 35521792 PMCID: PMC9175554 DOI: 10.1530/eje-21-0730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
Abstract
Objective The autoimmune polyendocrine syndrome type 1 (APS-1) is an autosomal recessive disorder characterised by immune dysregulation and autoimmune endocrine gland destruction. APS-1 is caused by biallelic mutations affecting the autoimmune regulator (AIRE) gene on chromosome 21q22.3, which facilitates immunological self-tolerance. The objective was to investigate >300 probands with suspected APS-1 or isolated hypoparathyroidism for AIRE abnormalities. Methods Probands were assessed by DNA sequence analysis. Novel variants were characterised using 3D modelling of the AIRE protein. Restriction enzyme and microsatellite analysis were used to investigate for uniparental isodisomy. Results Biallelic AIRE mutations were identified in 35 probands with APS-1 and 5 probands with isolated hypoparathyroidism. These included a novel homozygous p.(His14Pro) mutation, predicted to disrupt the N-terminal caspase activation recruitment domain of the AIRE protein. Furthermore, an apparently homozygous AIRE mutation, p.Leu323fs, was identified in an APS-1 proband, who is the child of non-consanguineous asymptomatic parents. Microsatellite analysis revealed that the proband inherited two copies of the paternal mutant AIRE allele due to uniparental isodisomy. Hypoparathyroidism was the most common endocrine manifestation in AIRE mutation-positive probands and >45% of those harbouring AIRE mutations had at least two diseases out of the triad of candidiasis, hypoparathyroidism, and hypoadrenalism. In contrast, type 1 diabetes and hypothyroidism occurred more frequently in AIRE mutation-negative probands with suspected APS-1. Around 30% of AIRE mutation-negative probands with isolated hypoparathyroidism harboured mutations in other hypoparathyroid genes. Conclusions This study of a large cohort referred for AIRE mutational analysis expands the spectrum of genetic abnormalities causing APS-1.
Collapse
Affiliation(s)
- Treena Cranston
- Oxford Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Hannah Boon
- Oxford Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Mie K Olesen
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Fiona J Ryan
- Paediatric Endocrinology, Children's Hospital, John Radcliffe Hospital, Oxford, UK
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford, UK
| | - Rosemary London
- Paediatric Endocrinology, Children's Hospital, John Radcliffe Hospital, Oxford, UK
| | - Hussam Rostom
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Taha Elajnaf
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Fadil M Hannan
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Kaiser C, Bradu A, Gamble N, Caldwell JA, Koh AS. AIRE in context: Leveraging chromatin plasticity to trigger ectopic gene expression. Immunol Rev 2022; 305:59-76. [PMID: 34545959 PMCID: PMC9250823 DOI: 10.1111/imr.13026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
The emergence of antigen receptor diversity in clonotypic lymphocytes drove the evolution of a novel gene, Aire, that enabled the adaptive immune system to discriminate foreign invaders from self-constituents. AIRE functions in the epithelial cells of the thymus to express genes highly restricted to alternative cell lineages. This somatic plasticity facilitates the selection of a balanced repertoire of T cells that protects the host from harmful self-reactive clones, yet maintains a wide range of affinities for virtually any foreign antigen. Here, we review the latest understanding of AIRE's molecular actions with a focus on its interplay with chromatin. We argue that AIRE is a multi-valent chromatin effector that acts late in the transcription cycle to modulate the activity of previously poised non-coding regulatory elements of tissue-specific genes. We postulate a role for chromatin instability-caused in part by ATP-dependent chromatin remodeling-that variably sets the scope of the accessible landscape on which AIRE can act. We highlight AIRE's intrinsic repressive function and its relevance in providing feedback control. We synthesize these recent advances into a putative model for the mechanistic modes by which AIRE triggers ectopic transcription for immune repertoire selection.
Collapse
Affiliation(s)
- Caroline Kaiser
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Alexandra Bradu
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Noah Gamble
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Jason A. Caldwell
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Andrew S. Koh
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Karvonen E, Krohn KJE, Ranki A, Hau A. Generation and Characterization of iPS Cells Derived from APECED Patients for Gene Correction. Front Endocrinol (Lausanne) 2022; 13:794327. [PMID: 35432216 PMCID: PMC9010864 DOI: 10.3389/fendo.2022.794327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
APECED (Autoimmune-Polyendocrinopathy-Candidiasis-Ectodermal-Dystrophy) is a severe and incurable multiorgan autoimmune disease caused by mutations in the AIRE (autoimmune regulator) gene. Without functional AIRE, the development of central and peripheral immune tolerance is severely impaired allowing the accumulation of autoreactive immune cells in the periphery. This leads to multiple endocrine and non-endocrine autoimmune disorders and mucocutaneous candidiasis in APECED patients. Recent studies have suggested that AIRE also has novel functions in stem cells and contributes to the regulatory network of pluripotency. In preparation of therapeutic gene correction, we generated and assessed patient blood cell-derived iPSCs, potentially suitable for cell therapy in APECED. Here, we describe APECED-patient derived iPSCs's properties, expression of AIRE as well as classical stem cell markers by qPCR and immunocytochemistry. We further generated self-aggregated EBs of the iPSCs. We show that APECED patient-derived iPSCs and EBs do not have any major proliferative or apoptotic defects and that they express all the classical pluripotency markers similarly to healthy person iPSCs. The results suggest that the common AIRE R257X truncation mutation does not affect stem cell properties and that APECED iPSCs can be propagated in vitro and used for subsequent gene-correction. This first study on APECED patient-derived iPSCs validates their pluripotency and confirms their ability for differentiation and potential therapeutic use.
Collapse
Affiliation(s)
- Eira Karvonen
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical Research Institute Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - Kai J. E. Krohn
- Clinical Research Institute Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical Research Institute Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - Annika Hau
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical Research Institute Helsinki University Central Hospital (HUCH), Helsinki, Finland
- *Correspondence: Annika Hau,
| |
Collapse
|
19
|
Martinez-Ruíz GU, Morales-Sánchez A, Bhandoola A. Transcriptional and epigenetic regulation in thymic epithelial cells. Immunol Rev 2022; 305:43-58. [PMID: 34750841 PMCID: PMC8766885 DOI: 10.1111/imr.13034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
The thymus is required for the development of both adaptive and innate-like T cell subsets. There is keen interest in manipulating thymic function for therapeutic purposes in circumstances of autoimmunity, immunodeficiency, and for purposes of immunotherapy. Within the thymus, thymic epithelial cells play essential roles in directing T cell development. Several transcription factors are known to be essential for thymic epithelial cell development and function, and a few transcription factors have been studied in considerable detail. However, the role of many other transcription factors is less well understood. Further, it is likely that roles exist for other transcription factors not yet known to be important in thymic epithelial cells. Recent progress in understanding of thymic epithelial cell heterogeneity has provided some new insight into transcriptional requirements in subtypes of thymic epithelial cells. However, it is unknown whether progenitors of thymic epithelial cells exist in the adult thymus, and consequently, developmental relationships linking putative precursors with differentiated cell types are poorly understood. While we do not presently possess a clear understanding of stage-specific requirements for transcription factors in thymic epithelial cells, new single-cell transcriptomic and epigenomic technologies should enable rapid progress in this field. Here, we review our current knowledge of transcription factors involved in the development, maintenance, and function of thymic epithelial cells, and the mechanisms by which they act.
Collapse
Affiliation(s)
- Gustavo Ulises Martinez-Ruíz
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Abigail Morales-Sánchez
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Goldfarb Y, Givony T, Kadouri N, Dobeš J, Peligero-Cruz C, Zalayat I, Damari G, Dassa B, Ben-Dor S, Gruper Y, Oftedal BE, Bratland E, Erichsen MM, Berger A, Avin A, Nevo S, Haljasorg U, Kuperman Y, Ulman A, Haffner-Krausz R, Porat Z, Atasoy U, Leshkowitz D, Husebye ES, Abramson J. Mechanistic dissection of dominant AIRE mutations in mouse models reveals AIRE autoregulation. J Exp Med 2021; 218:e20201076. [PMID: 34477806 PMCID: PMC8421262 DOI: 10.1084/jem.20201076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/07/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
The autoimmune regulator (AIRE) is essential for the establishment of central tolerance and prevention of autoimmunity. Interestingly, different AIRE mutations cause autoimmunity in either recessive or dominant-negative manners. Using engineered mouse models, we establish that some monoallelic mutants, including C311Y and C446G, cause breakdown of central tolerance. By using RNAseq, ATACseq, ChIPseq, and protein analyses, we dissect the underlying mechanisms for their dominancy. Specifically, we show that recessive mutations result in a lack of AIRE protein expression, while the dominant mutations in both PHD domains augment the expression of dysfunctional AIRE with altered capacity to bind chromatin and induce gene expression. Finally, we demonstrate that enhanced AIRE expression is partially due to increased chromatin accessibility of the AIRE proximal enhancer, which serves as a docking site for AIRE binding. Therefore, our data not only elucidate why some AIRE mutations are recessive while others dominant, but also identify an autoregulatory mechanism by which AIRE negatively modulates its own expression.
Collapse
Affiliation(s)
- Yael Goldfarb
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Dobeš
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Itay Zalayat
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Golda Damari
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Gruper
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Bergithe E. Oftedal
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | | | - Amund Berger
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Ayelet Avin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Nevo
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Uku Haljasorg
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ziv Porat
- Flow Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ulus Atasoy
- Division of Allergy and Immunology, University of Michigan, Ann Arbor, MI
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Eystein S. Husebye
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Haukeland University and Hospital, Bergen, Norway
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Chen J, Lu T, Liu C, Zhao Y, Huang A, Hu X, Li M, Xiang R, Feng M, Lu H. Autoimmune polyglandular syndrome type 1 with diabetes insipidus: a case report. BMC Endocr Disord 2021; 21:154. [PMID: 34344344 PMCID: PMC8336383 DOI: 10.1186/s12902-021-00822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare monogenic inherited disease caused by mutations of the autoimmune regulator gene (AIRE). The three major components of this syndrome are chronic mucocutaneous candidiasis, hypoparathyroidism and adrenocortical insufficiency. CASE PRESENTATION We report a 20-year-old male who was clinically diagnosed with APS-1 at the age of 15. He was admitted to our department this time for suffering from polyuria and polydipsia for 6 months and was finally diagnosed with diabetes insipidus. Whole-exome sequencing (WES) revealed a novel compound heterozygous mutation of the AIRE gene -the c.239 T > G (p.Val80Gly) variant on one allele and the copy number variant (CNV) of 21q22.3(chr21:45,670,150-45,706,528)*1 on the other. CONCLUSIONS This case suggests that diabetes insipidus is a rare component of APS-1 and expands the variety of mutations on AIRE gene.
Collapse
Affiliation(s)
- JiaQi Chen
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Ting Lu
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - ChenXiao Liu
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Yun Zhao
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - AiJie Huang
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - XingNa Hu
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Min Li
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Rong Xiang
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Min Feng
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - HongHong Lu
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China.
| |
Collapse
|
22
|
Ji DX, Witt KC, Kotov DI, Margolis SR, Louie A, Chevée V, Chen KJ, Gaidt MM, Dhaliwal HS, Lee AY, Nishimura SL, Zamboni DS, Kramnik I, Portnoy DA, Darwin KH, Vance RE. Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons. eLife 2021; 10:e67290. [PMID: 34151776 PMCID: PMC8248984 DOI: 10.7554/elife.67290] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/20/2021] [Indexed: 12/18/2022] Open
Abstract
Type I interferons (IFNs) are essential for anti-viral immunity, but often impair protective immune responses during bacterial infections. An important question is how type I IFNs are strongly induced during viral infections, and yet are appropriately restrained during bacterial infections. The Super susceptibility to tuberculosis 1 (Sst1) locus in mice confers resistance to diverse bacterial infections. Here we provide evidence that Sp140 is a gene encoded within the Sst1 locus that represses type I IFN transcription during bacterial infections. We generated Sp140-/- mice and found that they are susceptible to infection by Legionella pneumophila and Mycobacterium tuberculosis. Susceptibility of Sp140-/- mice to bacterial infection was rescued by crosses to mice lacking the type I IFN receptor (Ifnar-/-). Our results implicate Sp140 as an important negative regulator of type I IFNs that is essential for resistance to bacterial infections.
Collapse
Affiliation(s)
- Daisy X Ji
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Kristen C Witt
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Dmitri I Kotov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Shally R Margolis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Alexander Louie
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Victoria Chevée
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Katherine J Chen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Moritz M Gaidt
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | | | - Angus Y Lee
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| | - Stephen L Nishimura
- Department of Pathology, University of California, San FranciscoSan FranciscoUnited States
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São PauloSão PauloBrazil
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Department of Medicine (Pulmonary Center), and Department of Microbiology, Boston University School of MedicineBostonUnited States
| | - Daniel A Portnoy
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - K Heran Darwin
- Department of Microbiology, New York University Grossman School of MedicineNew YorkUnited States
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
23
|
Sharifinejad N, Zaki-Dizaji M, Tebyanian S, Zainaldain H, Jamee M, Rizvi FS, Hosseinzadeh S, Fayyaz F, Hamedifar H, Sabzevari A, Matloubi M, Heropolitańska-Pliszka E, Aghamahdi F, Abolhassani H, Azizi G. Clinical, immunological, and genetic features in 938 patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED): a systematic review. Expert Rev Clin Immunol 2021; 17:807-817. [PMID: 33957837 DOI: 10.1080/1744666x.2021.1925543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a rare inborn immune error characterized by a triad of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism (HP), and adrenal insufficiency (ADI).Methods: Literature search was conducted in PubMed, Web of Science, and Scopus databases using related keywords, and included studies were systematically evaluated.Results: We reviewed 938 APECED patients and the classic triad of APECED was detected in 57.3% (460 of 803) of patients. CMC (82.5%) was reported as the earliest, HP (84.2%) as the most prevalent, and ADI (72.2%) as the latest presentation within the classic triad. A broad spectrum of non-triad involvements has also been reported; mainly included ectodermal dystrophy (64.5%), infections (58.7%), gastrointestinal disorders (52.0%), gonadal failure (42.0%), neurologic involvements (36.4%), and ocular manifestations (34.3%). A significant positive correlation was detected between certain tissue-specific autoantibodies and particular manifestations including ADI and HP. Neutralizing autoantibodies were detected in at least 60.0% of patients. Nonsense and/or frameshift insertion-deletion mutations were detected in 73.8% of patients with CMC, 70.9% of patients with HP, and 74.6% of patients with primary ADI.Conclusion: Besides penetrance diversity, our review revealed a diverse affected ethnicity (mainly from Italy followed by Finland and Ireland). APECED can initially present in adolescence as 5.2% of the patients were older than 18 years at the disease onset. According to the variety of clinical conditions, which in the majority of patients appear gradually over time, clinical management deserves a separate analysis.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Shafi Tebyanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Zainaldain
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Fatema Sadaat Rizvi
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Soheila Hosseinzadeh
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Farimah Fayyaz
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran.,CinnaGen Research and Production Co., Alborz, Iran
| | - Araz Sabzevari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Orchid Pharmed Company, Tehran, Iran
| | - Mojdeh Matloubi
- Medical Immunology Department, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | - Fatemeh Aghamahdi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatric Endocrinology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
24
|
Huoh YS, Hur S. Death domain fold proteins in immune signaling and transcriptional regulation. FEBS J 2021; 289:4082-4097. [PMID: 33905163 DOI: 10.1111/febs.15901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Death domain fold (DDF) superfamily comprises of the death domain (DD), death effector domain (DED), caspase activation recruitment domain (CARD), and pyrin domain (PYD). By utilizing a conserved mode of interaction involving six distinct surfaces, a DDF serves as a building block that can densely pack into homomultimers or filaments. Studies of immune signaling components have revealed that DDF-mediated filament formation plays a central role in mediating signal transduction and amplification. The unique ability of DDFs to self-oligomerize upon external signals and induce oligomerization of partner molecules underlies key processes in many innate immune signaling pathways, as exemplified by RIG-I-like receptor signalosome and inflammasome assembly. Recent studies showed that DDFs are not only limited to immune signaling pathways, but also are involved with transcriptional regulation and other biological processes. Considering that DDF annotation still remains a challenge, the current list of DDFs and their functions may represent just the tip of the iceberg within the full spectrum of DDF biology. In this review, we discuss recent advances in our understanding of DDF functions, structures, and assembly architectures with a focus on CARD- and PYD-containing proteins. We also discuss areas of future research and the potential relationship of DDFs with biomolecular condensates formed by liquid-liquid phase separation (LLPS).
Collapse
Affiliation(s)
- Yu-San Huoh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| |
Collapse
|
25
|
Bacchetta R, Weinberg K. Thymic origins of autoimmunity-lessons from inborn errors of immunity. Semin Immunopathol 2021; 43:65-83. [PMID: 33532929 PMCID: PMC7925499 DOI: 10.1007/s00281-020-00835-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
During their intrathymic development, nascent T cells are empowered to protect against pathogens and to be operative for a life-long acceptance of self. While autoreactive effector T (Teff) cell progenitors are eliminated by clonal deletion, the intrathymic mechanisms by which thymic regulatory T cell (tTreg) progenitors maintain specificity for self-antigens but escape deletion to exert their regulatory functions are less well understood. Both tTreg and Teff development and selection result from finely coordinated interactions between their clonotypic T cell receptors (TCR) and peptide/MHC complexes expressed by antigen-presenting cells, such as thymic epithelial cells and thymic dendritic cells. tTreg function is dependent on expression of the FOXP3 transcription factor, and induction of FOXP3 gene expression by tTreg occurs during their thymic development, particularly within the thymic medulla. While initial expression of FOXP3 is downstream of TCR activation, constitutive expression is fixed by interactions with various transcription factors that are regulated by other extracellular signals like TCR and cytokines, leading to epigenetic modification of the FOXP3 gene. Most of the understanding of the molecular events underlying tTreg generation is based on studies of murine models, whereas gaining similar insight in the human system has been very challenging. In this review, we will elucidate how inborn errors of immunity illuminate the critical non-redundant roles of certain molecules during tTreg development, shedding light on how their abnormal development and function cause well-defined diseases that manifest with autoimmunity alone or are associated with states of immune deficiency and autoinflammation.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA.
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Lokey Stem Cell Research Building 265 Campus Drive, West Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|