1
|
MacAinsh M, Muhammedkutty FNK, Prasad R, Zhou HX. Membrane Association of Intrinsically Disordered Proteins. Annu Rev Biophys 2025; 54:275-302. [PMID: 39952269 PMCID: PMC12055482 DOI: 10.1146/annurev-biophys-070124-092816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
It is now clear that membrane association of intrinsically disordered proteins or intrinsically disordered regions regulates many cellular processes, such as membrane targeting of Src family kinases and ion channel gating. Residue-specific characterization by nuclear magnetic resonance spectroscopy, molecular dynamics simulations, and other techniques has shown that polybasic motifs and amphipathic helices are the main drivers of membrane association; sequence-based prediction of residue-specific membrane association propensity has become possible. Membrane association facilitates protein-protein interactions and protein aggregation-these effects are due to reduced dimensionality but are similar to those afforded by condensate formation via liquid-liquid phase separation (LLPS). LLPS at the membrane surface provides a powerful means for recruiting and clustering proteins, as well as for membrane remodeling.
Collapse
Affiliation(s)
- Matthew MacAinsh
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
| | | | - Ramesh Prasad
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois, Chicago, Illinois, USA;
- Department of Physics, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
2
|
Bush MJ, Casu B, Schlimpert S. Dividing lines: compartmentalisation and division in Streptomyces. Curr Opin Microbiol 2025; 85:102611. [PMID: 40300397 DOI: 10.1016/j.mib.2025.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
Bacteria display diverse strategies for cell division, exemplified by the multicellular life cycle of Streptomyces, a genus within the Actinomycetota phylum. Filamentous growing Streptomyces utilise two distinct division modes: during vegetative growth, nonconstricting cross-walls divide the mycelial network into long multinucleate compartments, while during reproductive growth, sporulation septation results in a 'multiple division event' that produces dozens of unigenomic spores that can separate and disperse in the environment. The cellular mechanisms governing these two types of cell division in Streptomyces are inherently complex and present specific biological challenges that involve core cell division proteins and several genus-specific factors. This review highlights recent advances and open questions in our understanding of Streptomyces cell biology, with a focus on key cell division components and the interplay of the chromosome with the division machinery, enabling these organisms to grow as multicellular filaments and form unicellular spores.
Collapse
Affiliation(s)
- Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; Centre for Microbial Interactions, Norwich Research Park, Norwich NR4 7UG, UK.
| | - Bastien Casu
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; Centre for Microbial Interactions, Norwich Research Park, Norwich NR4 7UG, UK.
| |
Collapse
|
3
|
Kasai T, Tahara YO, Miyata M, Shiomi D. Spiroplasma eriocheiris FtsZ assembles the ring-like structure assisted by SepF. J Biol Chem 2025; 301:108373. [PMID: 40043954 PMCID: PMC11987601 DOI: 10.1016/j.jbc.2025.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 03/30/2025] Open
Abstract
The FtsZ protein is involved in bacterial cell division. In cell-walled bacteria, such as Bacillus subtilis, FtsZ forms a ring-like structure, called the Z ring, at the cell division site and acts as a scaffold for cell wall synthesis. The inhibition of cell wall synthesis in B. subtilis has been shown to interfere with the function of the Z ring, causing a loss in cell division control. Spiroplasma, a cell wall-less bacterium, lacks most of the genes involved in cell division; however, the ftsZ gene remains conserved. The function of Spiroplasma eriocheiris FtsZ (SeFtsZ) remains to be determined. In the present study, we analyzed the biochemical characteristics of SeFtsZ. Purified SeFtsZ demonstrated lower polymerization capacity and GTPase activity than FtsZ from Escherichia coli and B. subtilis. We also investigated the relationship between SeFtsZ and SeSepF, which anchors FtsZ to the cell membrane, and found that SeSepF did not contribute to the stability of FtsZ filaments, unlike the B. subtilis SepF. SeFtsZ and SeSepF were produced in E. coli L-forms, where cell wall synthesis was inhibited. SeFtsZ formed ring-like structures in cell wall-less E. coli cells, suggesting that SeFtsZ forms Z rings and is involved in cell division independently of cell wall synthesis.
Collapse
Affiliation(s)
- Taishi Kasai
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Yuhei O Tahara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan; The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan; The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| | - Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan.
| |
Collapse
|
4
|
Dendene S, Xue S, Mohammedi R, Vieillard A, Nicoud Q, Valette O, Frascella A, Bonnardel A, Le Bars R, Bourge M, Mergaert P, Brilli M, Alunni B, Biondi EG. Sinorhizobium meliloti FcrX coordinates cell cycle and division during free-living growth and symbiosis by a ClpXP-dependent mechanism. Proc Natl Acad Sci U S A 2025; 122:e2412367122. [PMID: 40073061 PMCID: PMC11929396 DOI: 10.1073/pnas.2412367122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/30/2024] [Indexed: 03/14/2025] Open
Abstract
Sinorhizobium meliloti is a soil bacterium that establishes a nitrogen-fixing symbiosis within root nodules of legumes. In this symbiosis, S. meliloti undergoes a drastic cellular change leading to a terminally differentiated form, called bacteroid, characterized by genome endoreduplication, increased cell size, and high membrane permeability. Bacterial cell cycle (mis)regulation is at the heart of this differentiation process. In free-living cells, the master regulator CtrA ensures the progression of cell cycle by activating cell division (controlled by FtsZ) and inhibiting DNA replication, while on the other hand the so far poorly unknown downregulation of CtrA and FtsZ is essential for bacteroid differentiation. Here, we combine cell biology, biochemistry, and bacterial genetics to understand the functions of FcrX, a factor that controls both CtrA and FtsZ in free-living growth and in symbiosis. Depletion of the essential gene fcrX led to abnormally high levels of FtsZ and CtrA and minicell formation. Using multiple complementary techniques, we showed that FcrX may interact with FtsZ and CtrA. Moreover, fcrX transcription is directly controlled by CtrA itself and the FcrX protein displays a cell cycle-dependent pattern. We showed further that FcrX also binds the degradosome complex ClpXP and its adaptors CpdR1 and RcdA, and that CtrA degradation efficiency depends on FcrX. We further showed that, despite weak homology with FliJ-like proteins, only FcrX proteins from closely related species are able to complement S. meliloti fcrX function. Finally, deregulation of FcrX showed abnormal symbiotic behaviors in plants suggesting a putative role of this factor during bacteroid differentiation.
Collapse
Affiliation(s)
- Sara Dendene
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Shuanghong Xue
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Roza Mohammedi
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Adam Vieillard
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Quentin Nicoud
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Odile Valette
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Angela Frascella
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Anna Bonnardel
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Romain Le Bars
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Mickaël Bourge
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Peter Mergaert
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Milan20122, Italy
| | - Benoît Alunni
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Emanuele G. Biondi
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| |
Collapse
|
5
|
Rossello J, Rivera B, Anzibar Fialho M, Augusto I, Gil M, Forrellad MA, Bigi F, Rodríguez Taño A, Urdániz E, Piuri M, Miranda K, Wehenkel AM, Alzari PM, Malacrida L, Durán R. FhaA plays a key role in mycobacterial polar elongation and asymmetric growth. mBio 2025; 16:e0252624. [PMID: 39835815 PMCID: PMC11898655 DOI: 10.1128/mbio.02526-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Mycobacteria, including pathogens like Mycobacterium tuberculosis, exhibit unique growth patterns and cell envelope structures that challenge our understanding of bacterial physiology. This study sheds light on FhaA, a conserved protein in Mycobacteriales, revealing its pivotal role in coordinating cell envelope biogenesis and asymmetric growth. The elucidation of the FhaA interactome in living mycobacterial cells reveals its participation in the protein network orchestrating cell envelope biogenesis and cell elongation/division. By manipulating FhaA levels, we uncovered its influence on cell morphology, cell envelope organization, and the localization of peptidoglycan biosynthesis machinery. Notably, fhaA deletion disrupted the characteristic asymmetric growth of mycobacteria, highlighting its importance in maintaining this distinctive feature. Our findings position FhaA as a key regulator in a complex protein network, orchestrating the asymmetric distribution and activity of cell envelope biosynthetic machinery. This work not only advances our understanding of mycobacterial growth mechanisms but also identifies FhaA as a potential target for future studies on cell envelope biogenesis and bacterial growth regulation. These insights into the fundamental biology of mycobacteria may pave the way for novel approaches to combat mycobacterial infections addressing the ongoing challenge of diseases like tuberculosis in global health. IMPORTANCE Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, remains a global health concern. Unlike most well-studied model bacilli, mycobacteria possess a distinctive and complex cell envelope, as well as an asymmetric polar growth mode. However, the proteins and mechanisms that drive cell asymmetric elongation in these bacteria are still not well understood. This study sheds light on the role of the protein FhaA in this process. Our findings demonstrate that FhaA localizes at the septum and asymmetrically to the poles, with a preference for the fast-growing pole. Furthermore, we showed that FhaA is essential for population heterogeneity and asymmetric polar elongation and plays a role in the precise subcellular localization of the cell wall biosynthesis machinery. Mycobacterial asymmetric elongation results in a physiologically heterogeneous bacterial population which is important for pathogenicity and response to antibiotics, stressing the relevance of identifying new factors involved in these still poorly characterized processes.
Collapse
Affiliation(s)
- Jessica Rossello
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
- Advanced Bioimaging Unit, UdelaR and Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Bernardina Rivera
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Ingrid Augusto
- Precision Medicine Research Centre, Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magdalena Gil
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marina Andrea Forrellad
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, CICVyA, Hurlingham, Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, CICVyA, Hurlingham, Buenos Aires, Argentina
| | - Azalia Rodríguez Taño
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
- Programa de Posgrado, Facultad de Química, UdelaR, Montevideo, Uruguay
| | - Estefanía Urdániz
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Kildare Miranda
- Precision Medicine Research Centre, Carlos Chagas Filho Institute of Biophysics and National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anne Marie Wehenkel
- Institut Pasteur, Université Paris Cité, Bacterial Cell Cycle Mechanisms Unit, Paris, France
| | - Pedro M. Alzari
- Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, Paris, France
| | - Leonel Malacrida
- Advanced Bioimaging Unit, UdelaR and Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, UdelaR, Montevideo, Uruguay
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
6
|
Bhattacharya D, King A, McKnight L, Horigian P, Eswara PJ. GpsB interacts with FtsZ in multiple species and may serve as an accessory Z-ring anchor. Mol Biol Cell 2025; 36:ar10. [PMID: 39602291 PMCID: PMC11742113 DOI: 10.1091/mbc.e24-07-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Bacterial cytokinesis commences when a tubulin-like GTPase, FtsZ, forms a Z-ring to mark the division site. Synchronized movement of Z-ring filaments and peptidoglycan synthesis along the axis of division generates a division septum to separate the daughter cells. Thus, FtsZ needs to be linked to the peptidoglycan synthesis machinery. GpsB is a highly conserved protein among species of the Firmicutes phylum known to regulate peptidoglycan synthesis. Previously, we showed that Staphylococcus aureus GpsB directly binds to FtsZ by recognizing a signature sequence in its C-terminal tail (CTT) region. As the GpsB recognition sequence is also present in Bacillus subtilis, we speculated that GpsB may interact with FtsZ in this organism. Earlier reports revealed that disruption of gpsB and ftsA or gpsB and ezrA is deleterious. Given that both FtsA and EzrA also target the CTT of FtsZ for interaction, we hypothesized that in the absence of other FtsZ partners, GpsB-FtsZ interaction may become apparent. Our data confirm that is the case, and reveal that GpsB interacts with FtsZ in multiple species and stimulates the GTPase activity of the latter. Moreover, it appears that GpsB may serve as an accessory Z-ring anchor such as when FtsA, one of the main anchors, is absent.
Collapse
Affiliation(s)
| | - Asher King
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620
| | - Lily McKnight
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620
| | - Pilar Horigian
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620
| | - Prahathees J. Eswara
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620
- Center for Antimicrobial Resistance, University of South Florida, Tampa, FL 33620
| |
Collapse
|
7
|
Chimileski S, Borisy GG, Dewhirst FE, Mark Welch JL. Tip extension and simultaneous multiple fission in a filamentous bacterium. Proc Natl Acad Sci U S A 2024; 121:e2408654121. [PMID: 39226354 PMCID: PMC11406273 DOI: 10.1073/pnas.2408654121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Organisms display an immense variety of shapes, sizes, and reproductive strategies. At microscopic scales, bacterial cell morphology and growth dynamics are adaptive traits that influence the spatial organization of microbial communities. In one such community-the human dental plaque biofilm-a network of filamentous Corynebacterium matruchotii cells forms the core of bacterial consortia known as hedgehogs, but the processes that generate these structures are unclear. Here, using live-cell time-lapse microscopy and fluorescent D-amino acids to track peptidoglycan biosynthesis, we report an extraordinary example of simultaneous multiple division within the domain Bacteria. We show that C. matruchotii cells elongate at one pole through tip extension, similar to the growth strategy of soil-dwelling Streptomyces bacteria. Filaments elongate rapidly, at rates more than five times greater than other closely related bacterial species. Following elongation, many septa form simultaneously, and each cell divides into 3 to 14 daughter cells, depending on the length of the mother filament. The daughter cells then nucleate outgrowth of new thinner vegetative filaments, generating the classic "whip handle" morphology of this taxon. Our results expand the known diversity of bacterial cell cycles and help explain how this filamentous bacterium can compete for space, access nutrients, and form important interspecies interactions within dental plaque.
Collapse
Affiliation(s)
- Scott Chimileski
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA02543
| | - Gary G. Borisy
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA02543
- Department of Microbiology, American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Floyd E. Dewhirst
- Department of Microbiology, American Dental Association Forsyth Institute, Cambridge, MA02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Jessica L. Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA02543
- Department of Microbiology, American Dental Association Forsyth Institute, Cambridge, MA02142
| |
Collapse
|
8
|
Sogues A, Sleutel M, Petit J, Megrian D, Bayan N, Wehenkel AM, Remaut H. Cryo-EM structure and polar assembly of the PS2 S-layer of Corynebacterium glutamicum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611363. [PMID: 39282302 PMCID: PMC11398520 DOI: 10.1101/2024.09.05.611363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The polar-growing Corynebacteriales have a complex cell envelope architecture characterized by the presence of a specialized outer membrane composed of mycolic acids. In some Corynebacteriales, this mycomembrane is further supported by a proteinaceous surface layer or 'S-layer', whose function, structure and mode of assembly remain largely enigmatic. Here, we isolated ex vivo PS2 S-layers from the industrially important Corynebacterium glutamicum and determined its atomic structure by 3D cryoEM reconstruction. PS2 monomers consist of a six-helix bundle 'core', a three-helix bundle 'arm', and a C-terminal transmembrane (TM) helix. The PS2 core oligomerizes into hexameric units anchored in the mycomembrane by a channel-like coiled-coil of the TM helices. The PS2 arms mediate trimeric lattice contacts, crystallizing the hexameric units into an intricate semipermeable lattice. Using pulse-chase live cell imaging, we show that the PS2 lattice is incorporated at the poles, coincident with the actinobacterial elongasome. Finally, phylogenetic analysis shows a paraphyletic distribution and dispersed chromosomal location of PS2 in Corynebacteriales as a result of multiple recombination events and losses. These findings expand our understanding of S-layer biology and enable applications of membrane-supported self-assembling bioengineered materials.
Collapse
Affiliation(s)
- Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mike Sleutel
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Julienne Petit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Microbiology Unit, F-75015 Paris, France
| | - Daniela Megrian
- Bioinformatics Unit, Institut Pasteur de Montevideo, 11200 Montevideo, Uruguay
| | - Nicolas Bayan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anne Marie Wehenkel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
9
|
Meyer FM, Bramkamp M. Cell wall synthesizing complexes in Mycobacteriales. Curr Opin Microbiol 2024; 79:102478. [PMID: 38653035 DOI: 10.1016/j.mib.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Fabian M Meyer
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
| |
Collapse
|
10
|
Nußbaum P, Kureisaite-Ciziene D, Bellini D, van der Does C, Kojic M, Taib N, Yeates A, Tourte M, Gribaldo S, Loose M, Löwe J, Albers SV. Proteins containing photosynthetic reaction centre domains modulate FtsZ-based archaeal cell division. Nat Microbiol 2024; 9:698-711. [PMID: 38443575 DOI: 10.1038/s41564-024-01600-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024]
Abstract
Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea.
Collapse
Affiliation(s)
- Phillip Nußbaum
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Chris van der Does
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marko Kojic
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Najwa Taib
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anna Yeates
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Maxime Tourte
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Martin Loose
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Liu W, Zhang C, Zhang H, Ma S, Deng J, Wang D, Chang Z, Yang J. Molecular basis for curvature formation in SepF polymerization. Proc Natl Acad Sci U S A 2024; 121:e2316922121. [PMID: 38381790 PMCID: PMC10907229 DOI: 10.1073/pnas.2316922121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 02/23/2024] Open
Abstract
The self-assembly of proteins into curved structures plays an important role in many cellular processes. One good example of this phenomenon is observed in the septum-forming protein (SepF), which forms polymerized structures with uniform curvatures. SepF is essential for regulating the thickness of the septum during bacteria cell division. In Bacillus subtilis, SepF polymerization involves two distinct interfaces, the β-β and α-α interfaces, which define the assembly unit and contact interfaces, respectively. However, the mechanism of curvature formation in this step is not yet fully understood. In this study, we employed solid-state NMR (SSNMR) to compare the structures of cyclic wild-type SepF assemblies with linear assemblies resulting from a mutation of G137 on the β-β interface. Our results demonstrate that while the sequence differences arise from the internal assembly unit, the dramatic changes in the shape of the assemblies depend on the α-α interface between the units. We further provide atomic-level insights into how the angular variation of the α2 helix on the α-α interface affects the curvature of the assemblies, using a combination of SSNMR, cryo-electron microscopy, and simulation methods. Our findings shed light on the shape control of protein assemblies and emphasize the importance of interhelical contacts in retaining curvature.
Collapse
Affiliation(s)
- Wenjing Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Chang Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Huawei Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, People’s Republic of China
- Southern University of Science and Technology, Shenzhen518055, People’s Republic of China
| | - Shaojie Ma
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Daping Wang
- Southern University of Science and Technology, Shenzhen518055, People’s Republic of China
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Ziwei Chang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan430081, People’s Republic of China
| |
Collapse
|
12
|
Valladares A, Picossi S, Corrales-Guerrero L, Herrero A. The role of SepF in cell division and diazotrophic growth in the multicellular cyanobacterium Anabaena sp. strain PCC 7120. Microbiol Res 2023; 277:127489. [PMID: 37716126 DOI: 10.1016/j.micres.2023.127489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The cyanobacterium Anabaena forms filaments of cells that grow by intercalary cell division producing adjoined daughter cells connected by septal junction protein complexes that provide filament cohesion and intercellular communication, representing a genuine case of bacterial multicellularity. In spite of their diderm character, cyanobacterial genomes encode homologs of SepF, a protein normally found in Gram-positive bacteria. In Anabaena, SepF is an essential protein that localized to the cell division ring and the intercellular septa. Overexpression of sepF had detrimental effects on growth, provoking conspicuous alterations in cell morphology that resemble the phenotype of mutants impaired in cell division, and altered the localization of the division-ring. SepF interacted with FtsZ and with the essential FtsZ tether ZipN. Whereas SepF from unicellular bacteria generally induces the bundling of FtsZ filaments, Anabaena SepF inhibited FtsZ bundling, reducing the thickness of the toroidal aggregates formed by FtsZ alone and eventually preventing FtsZ polymerization. Thus, in Anabaena SepF appears to have an essential role in cell division by limiting the polymerization of FtsZ to allow the correct formation and localization of the Z-ring. Expression of sepF is downregulated during heterocyst differentiation, likely contributing to the inhibition of Z-ring formation in heterocysts. Finally, the localization of SepF in intercellular septa and its interaction with the septal-junction related proteins SepJ and SepI suggest a role of SepF in the formation or stability of the septal complexes that mediate cell-cell adhesion and communication, processes that are key for the multicellular behavior of Anabaena.
Collapse
Affiliation(s)
- A Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - S Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - L Corrales-Guerrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - A Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
13
|
Wang S, Chen X, Jin X, Gu F, Jiang W, Qi Q, Liang Q. Creating Polyploid Escherichia Coli and Its Application in Efficient L-Threonine Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302417. [PMID: 37749873 PMCID: PMC10625114 DOI: 10.1002/advs.202302417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Indexed: 09/27/2023]
Abstract
Prokaryotic genomes are generally organized in haploid. In synthetic biological research, efficient chassis cells must be constructed to produce bio-based products. Here, the essential division of the ftsZ gene to create functional polyploid E. coli is regulated. The artificial polyploid E. coli containing 2-4 chromosomes is confirmed through PCR amplification, terminator localization, and flow cytometry. The polyploid E. coli exhibits a larger cell size, and its low pH tolerance and acetate resistance are stronger than those of haploid E. coli. Transcriptome analysis shows that the genes of the cell's main functional pathways are significantly upregulated in the polyploid E. coli. These advantages of the polyploid E. coli results in the highest reported L-threonine yield (160.3 g L-1 ) in fed-batch fermentation to date. In summary, an easy and convenient method for constructing polyploid E. coli and demonstrated its application in L-threonine production is developed. This work provides a new approach for creating an excellent host strain for biochemical production and studying the evolution of prokaryotes and their chromosome functions.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Xuanmu Chen
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Xin Jin
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Fei Gu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Wei Jiang
- Research Center of Basic MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Quanfeng Liang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| |
Collapse
|
14
|
Martinez M, Petit J, Leyva A, Sogues A, Megrian D, Rodriguez A, Gaday Q, Ben Assaya M, Portela MM, Haouz A, Ducret A, Grangeasse C, Alzari PM, Durán R, Wehenkel AM. Eukaryotic-like gephyrin and cognate membrane receptor coordinate corynebacterial cell division and polar elongation. Nat Microbiol 2023; 8:1896-1910. [PMID: 37679597 PMCID: PMC10522489 DOI: 10.1038/s41564-023-01473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
The order Corynebacteriales includes major industrial and pathogenic Actinobacteria such as Corynebacterium glutamicum or Mycobacterium tuberculosis. These bacteria have multi-layered cell walls composed of the mycolyl-arabinogalactan-peptidoglycan complex and a polar growth mode, thus requiring tight coordination between the septal divisome, organized around the tubulin-like protein FtsZ, and the polar elongasome, assembled around the coiled-coil protein Wag31. Here, using C. glutamicum, we report the discovery of two divisome members: a gephyrin-like repurposed molybdotransferase (Glp) and its membrane receptor (GlpR). Our results show how cell cycle progression requires interplay between Glp/GlpR, FtsZ and Wag31, showcasing a crucial crosstalk between the divisome and elongasome machineries that might be targeted for anti-mycobacterial drug discovery. Further, our work reveals that Corynebacteriales have evolved a protein scaffold to control cell division and morphogenesis, similar to the gephyrin/GlyR system that mediates synaptic signalling in higher eukaryotes through network organization of membrane receptors and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Mariano Martinez
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Julienne Petit
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Alejandro Leyva
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adrià Sogues
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniela Megrian
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Azalia Rodriguez
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Quentin Gaday
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Mathildeb Ben Assaya
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Maria Magdalena Portela
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ahmed Haouz
- Plate-forme de cristallographie, C2RT-Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Adrien Ducret
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, Lyon, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, Lyon, France
| | - Pedro M Alzari
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Anne Marie Wehenkel
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France.
| |
Collapse
|
15
|
Naha A, Haeusser DP, Margolin W. Anchors: A way for FtsZ filaments to stay membrane bound. Mol Microbiol 2023; 120:525-538. [PMID: 37503768 PMCID: PMC10593102 DOI: 10.1111/mmi.15067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 07/29/2023]
Abstract
Most bacteria use the tubulin homolog FtsZ to organize their cell division. FtsZ polymers initially assemble into mobile complexes that circle around a ring-like structure at the cell midpoint, followed by the recruitment of other proteins that will constrict the cytoplasmic membrane and synthesize septal peptidoglycan to divide the cell. Despite the need for FtsZ polymers to associate with the membrane, FtsZ lacks intrinsic membrane binding ability. Consequently, FtsZ polymers have evolved to interact with the membrane through adaptor proteins that both bind FtsZ and the membrane. Here, we discuss recent progress in understanding the functions of these FtsZ membrane tethers. Some, such as FtsA and SepF, are widely conserved and assemble into varied oligomeric structures bound to the membrane through an amphipathic helix. Other less-conserved proteins, such as EzrA and ZipA, have transmembrane domains, make extended structures, and seem to bind to FtsZ through two separate interactions. This review emphasizes that most FtsZs use multiple membrane tethers with overlapping functions, which not only attach FtsZ polymers to the membrane but also organize them in specific higher-order structures that can optimize cell division activity. We discuss gaps in our knowledge of these concepts and how future studies can address them.
Collapse
Affiliation(s)
- Arindam Naha
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| | - Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| |
Collapse
|
16
|
Smrt ST, Escobar CA, Dey S, Cross TA, Zhou HX. An Arg/Ala-rich helix in the N-terminal region of M. tuberculosis FtsQ is a potential membrane anchor of the Z-ring. Commun Biol 2023; 6:311. [PMID: 36959324 PMCID: PMC10036325 DOI: 10.1038/s42003-023-04686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
Mtb infects a quarter of the worldwide population. Most drugs for treating tuberculosis target cell growth and division. With rising drug resistance, it becomes ever more urgent to better understand Mtb cell division. This process begins with the formation of the Z-ring via polymerization of FtsZ and anchoring of the Z-ring to the inner membrane. Here we show that the transmembrane protein FtsQ is a potential membrane anchor of the Mtb Z-ring. In the otherwise disordered cytoplasmic region of FtsQ, a 29-residue, Arg/Ala-rich α-helix is formed that interacts with upstream acidic residues in solution and with acidic lipids at the membrane surface. This helix also binds to the GTPase domain of FtsZ, with implications for drug binding and Z-ring formation.
Collapse
Affiliation(s)
- Sean T Smrt
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Cristian A Escobar
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Souvik Dey
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Timothy A Cross
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA.
- Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
17
|
Models versus pathogens: how conserved is the FtsZ in bacteria? Biosci Rep 2023; 43:232502. [PMID: 36695643 PMCID: PMC9939409 DOI: 10.1042/bsr20221664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.
Collapse
|
18
|
Martinez M, Petit J, Leyva A, Sogues A, Megrian D, Rodriguez A, Gaday Q, Ben Assaya M, Portela M, Haouz A, Ducret A, Grangeasse C, Alzari PM, Durán R, Wehenkel A. Eukaryotic-like gephyrin and cognate membrane receptor coordinate corynebacterial cell division and polar elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526586. [PMID: 36778425 PMCID: PMC9915583 DOI: 10.1101/2023.02.01.526586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The order Corynebacteriales includes major industrial and pathogenic actinobacteria such as Corynebacterium glutamicum or Mycobacterium tuberculosis . Their elaborate multi-layered cell wall, composed primarily of the mycolyl-arabinogalactan-peptidoglycan complex, and their polar growth mode impose a stringent coordination between the septal divisome, organized around the tubulin-like protein FtsZ, and the polar elongasome, assembled around the tropomyosin-like protein Wag31. Here, we report the identification of two new divisome members, a gephyrin-like repurposed molybdotransferase (GLP) and its membrane receptor (GLPR). We show that the interplay between the GLPR/GLP module, FtsZ and Wag31 is crucial for orchestrating cell cycle progression. Our results provide a detailed molecular understanding of the crosstalk between two essential machineries, the divisome and elongasome, and reveal that Corynebacteriales have evolved a protein scaffold to control cell division and morphogenesis similar to the gephyrin/GlyR system that in higher eukaryotes mediates synaptic signaling through network organization of membrane receptors and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- M. Martinez
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - J. Petit
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Leyva
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Sogues
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - D. Megrian
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Rodriguez
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Q. Gaday
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - M. Ben Assaya
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - M. Portela
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Haouz
- Plate-forme de cristallographie, C2RT-Institut Pasteur, CNRS, UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Ducret
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - C. Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - P. M. Alzari
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - R. Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Wehenkel
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| |
Collapse
|
19
|
Dey S, Zhou HX. Membrane Tethering of SepF, a Membrane Anchor for the Mycobacterium tuberculosis Z-ring. J Mol Biol 2022; 434:167817. [PMID: 36087777 PMCID: PMC9992448 DOI: 10.1016/j.jmb.2022.167817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
Bacterial cell division begins with the formation of the Z-ring via polymerization of FtsZ and the localization of Z-ring beneath the inner membrane through membrane anchors. In Mycobacterium tuberculosis (Mtb), SepF is one such membrane anchor, but our understanding of the underlying mechanism is very limited. Here we used molecular dynamics simulations to characterize how SepF itself, a water-soluble protein, tethers to acidic membranes that mimic the Mtb inner membrane. In addition to an amphipathic helix (residues 1-12) at the N-terminus, membrane binding also occurs through two stretches of positively charged residues (Arg27-Arg37 and Arg95-Arg107) in the long linker preceding the FtsZ-binding core domain (residues 128-218). The additional interactions via the disordered linker stabilize the membrane tethering of SepF, and keep the core domain of SepF and hence the attached Z-ring close to the membrane. The resulting membrane proximity of the Z-ring in turn enables its interactions with and thus recruitment of two membrane proteins, FtsW and CrgA, at the late stage of cell division.
Collapse
Affiliation(s)
- Souvik Dey
- Department of Chemistry, University of Illinois at Chicago, IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, IL 60607, USA; Department of Physics, University of Illinois at Chicago, IL 60607, USA.
| |
Collapse
|
20
|
Qin S, Hicks A, Dey S, Prasad R, Zhou HX. ReSMAP: Web Server for Predicting Residue-Specific Membrane-Association Propensities of Intrinsically Disordered Proteins. MEMBRANES 2022; 12:773. [PMID: 36005688 PMCID: PMC9416665 DOI: 10.3390/membranes12080773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The functional processes of many proteins involve the association of their intrinsically disordered regions (IDRs) with acidic membranes. We have identified the membrane-association characteristics of IDRs using extensive molecular dynamics (MD) simulations and validated them with NMR spectroscopy. These studies have led to not only deep insight into functional mechanisms of IDRs but also to intimate knowledge regarding the sequence determinants of membrane-association propensities. Here we turned this knowledge into a web server called ReSMAP, for predicting the residue-specific membrane-association propensities from IDR sequences. The membrane-association propensities are calculated from a sequence-based partition function, trained on the MD simulation results of seven IDRs. Robustness of the prediction is demonstrated by leaving one IDR out of the training set. We anticipate there will be many applications for the ReSMAP web server, including rapid screening of IDR sequences for membrane association.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alan Hicks
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Souvik Dey
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
21
|
Zhang C, Liu W, Deng J, Ma S, Chang Z, Yang J. Structural Insights into the Interaction between Bacillus subtilis SepF Assembly and FtsZ by Solid-State NMR Spectroscopy. J Phys Chem B 2022; 126:5219-5230. [PMID: 35799411 DOI: 10.1021/acs.jpcb.2c02810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In many species of Gram-positive bacteria, SepF participated in the membrane tethering of FtsZ Z-ring during bacteria division. However, atomic-level details of interaction between SepF and FtsZ in an assembled state are lacking. Here, by combining solid-state NMR (SSNMR) with biochemical analyses, the interaction of Bacillus subtilis SepF and the C-terminal domain (CTD) of FtsZ was investigated. We obtained near complete chemical shift assignments of SepF and determined the structural model of the SepF monomer. Interaction with FtsZ-CTD caused further packing of SepF rings, and SSNMR experiments revealed the affected residues locating at α1, α2, β3, and β4 of SepF. Solution NMR experiments of dimeric SepF constructed by point mutation strategy proved a prerequisite role of α-α interface formation in SepF for FtsZ binding. Overall, our results provide structural insights into the mechanisms of SepF-FtsZ interaction for better understanding the function of SepF in bacteria.
Collapse
Affiliation(s)
- Chang Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.,National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Wenjing Liu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Shaojie Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.,National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Ziwei Chang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.,National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
22
|
Abstract
Microscopy image analysis has recently made enormous progress both in terms of accuracy and speed thanks to machine learning methods and improved computational resources. This greatly facilitates the online adaptation of microscopy experimental plans using real-time information of the observed systems and their environments. Applications in which reactiveness is needed are multifarious. Here we report MicroMator, an open and flexible software for defining and driving reactive microscopy experiments. It provides a Python software environment and an extensible set of modules that greatly facilitate the definition of events with triggers and effects interacting with the experiment. We provide a pedagogic example performing dynamic adaptation of fluorescence illumination on bacteria, and demonstrate MicroMator’s potential via two challenging case studies in yeast to single-cell control and single-cell recombination, both requiring real-time tracking and light targeting at the single-cell level. In microscopy, applications in which reactiveness is needed are multifarious. Here the authors report MicroMator, a Python software package for reactive experiments, which they use for applications requiring real-time tracking and light-targeting at the single-cell level.
Collapse
|
23
|
Simple, efficient and thorough shotgun proteomic analysis with PatternLab V. Nat Protoc 2022; 17:1553-1578. [DOI: 10.1038/s41596-022-00690-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
|
24
|
The archaeal protein SepF is essential for cell division in Haloferax volcanii. Nat Commun 2021; 12:3469. [PMID: 34103513 PMCID: PMC8187382 DOI: 10.1038/s41467-021-23686-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
In most bacteria, cell division depends on the tubulin homolog FtsZ and other proteins, such as SepF, that form a complex termed the divisome. Cell division also depends on FtsZ in many archaea, but other components of the divisome are unknown. Here, we demonstrate that a SepF homolog plays important roles in cell division in Haloferax volcanii, a halophilic archaeon that is known to have two FtsZ homologs with slightly different functions (FtsZ1 and FtsZ2). SepF co-localizes with both FtsZ1 and FtsZ2 at midcell. Attempts to generate a sepF deletion mutant were unsuccessful, suggesting an essential role. Indeed, SepF depletion leads to severe cell division defects and formation of large cells. Overexpression of FtsZ1-GFP or FtsZ2-GFP in SepF-depleted cells results in formation of filamentous cells with a high number of FtsZ1 rings, while the number of FtsZ2 rings is not affected. Pull-down assays support that SepF interacts with FtsZ2 but not with FtsZ1, although SepF appears delocalized in the absence of FtsZ1. Archaeal SepF homologs lack a glycine residue known to be important for polymerization and function in bacteria, and purified H. volcanii SepF forms dimers, suggesting that polymerization might not be important for the function of archaeal SepF.
Collapse
|
25
|
Pende N, Sogues A, Megrian D, Sartori-Rupp A, England P, Palabikyan H, Rittmann SKMR, Graña M, Wehenkel AM, Alzari PM, Gribaldo S. SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system. Nat Commun 2021; 12:3214. [PMID: 34088904 PMCID: PMC8178401 DOI: 10.1038/s41467-021-23099-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Most archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.
Collapse
Affiliation(s)
- Nika Pende
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France
| | - Adrià Sogues
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France
| | - Daniela Megrian
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France
- École Doctorale Complexité du vivant, Sorbonne University, Paris, France
| | | | - Patrick England
- Plate-forme de biophysique moléculaire, C2RT-Institut Pasteur, CNRS, UMR 3528, Paris, France
| | - Hayk Palabikyan
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Martín Graña
- Bioinformatics Unit, Institut Pasteur of Montevideo, Montevideo, Uruguay
| | - Anne Marie Wehenkel
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France.
| | - Pedro M Alzari
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France.
| |
Collapse
|
26
|
Single-molecule imaging reveals that Z-ring condensation is essential for cell division in Bacillus subtilis. Nat Microbiol 2021; 6:553-562. [PMID: 33737746 PMCID: PMC8085161 DOI: 10.1038/s41564-021-00878-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
Although many components of the cell division machinery in bacteria have been identified1,2, the mechanisms by which they work together to divide the cell remain poorly understood. Key among these components is the tubulin FtsZ, which forms a Z ring at the midcell. FtsZ recruits the other cell division proteins, collectively called the divisome, and the Z ring constricts as the cell divides. We applied live-cell single-molecule imaging to describe the dynamics of the divisome in detail, and to evaluate the individual roles of FtsZ-binding proteins (ZBPs), specifically FtsA and the ZBPs EzrA, SepF and ZapA, in cytokinesis. We show that the divisome comprises two subcomplexes that move differently: stationary ZBPs that transiently bind to treadmilling FtsZ filaments, and a moving complex that includes cell wall synthases. Our imaging analyses reveal that ZBPs bundle FtsZ filaments together and condense them into Z rings, and that this condensation is necessary for cytokinesis.
Collapse
|
27
|
Abstract
The division and cell wall (dcw) cluster is a highly conserved region of the bacterial genome consisting of genes that encode several cell division and cell wall synthesis factors, including the central division protein FtsZ. The region immediately downstream of ftsZ encodes the ylm genes and is conserved across diverse lineages of Gram-positive bacteria and Cyanobacteria In some organisms, this region remains part of the dcw cluster, but in others, it appears as an independent operon. A well-studied protein coded from this region is the positive FtsZ regulator SepF (YlmF), which anchors FtsZ to the membrane. Recent developments have shed light on the importance of SepF in a range of species. Additionally, new studies are highlighting the importance of the other conserved genes in this neighborhood. In this minireview, we aim to bring together the current research linking the ylm region to cell division and highlight further questions surrounding these conserved genes.
Collapse
|
28
|
Hennart M, Panunzi LG, Rodrigues C, Gaday Q, Baines SL, Barros-Pinkelnig M, Carmi-Leroy A, Dazas M, Wehenkel AM, Didelot X, Toubiana J, Badell E, Brisse S. Population genomics and antimicrobial resistance in Corynebacterium diphtheriae. Genome Med 2020; 12:107. [PMID: 33246485 PMCID: PMC7694903 DOI: 10.1186/s13073-020-00805-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background Corynebacterium diphtheriae, the agent of diphtheria, is a genetically diverse bacterial species. Although antimicrobial resistance has emerged against several drugs including first-line penicillin, the genomic determinants and population dynamics of resistance are largely unknown for this neglected human pathogen. Methods Here, we analyzed the associations of antimicrobial susceptibility phenotypes, diphtheria toxin production, and genomic features in C. diphtheriae. We used 247 strains collected over several decades in multiple world regions, including the 163 clinical isolates collected prospectively from 2008 to 2017 in France mainland and overseas territories. Results Phylogenetic analysis revealed multiple deep-branching sublineages, grouped into a Mitis lineage strongly associated with diphtheria toxin production and a largely toxin gene-negative Gravis lineage with few toxin-producing isolates including the 1990s ex-Soviet Union outbreak strain. The distribution of susceptibility phenotypes allowed proposing ecological cutoffs for most of the 19 agents tested, thereby defining acquired antimicrobial resistance. Penicillin resistance was found in 17.2% of prospective isolates. Seventeen (10.4%) prospective isolates were multidrug-resistant (≥ 3 antimicrobial categories), including four isolates resistant to penicillin and macrolides. Homologous recombination was frequent (r/m = 5), and horizontal gene transfer contributed to the emergence of antimicrobial resistance in multiple sublineages. Genome-wide association mapping uncovered genetic factors of resistance, including an accessory penicillin-binding protein (PBP2m) located in diverse genomic contexts. Gene pbp2m is widespread in other Corynebacterium species, and its expression in C. glutamicum demonstrated its effect against several beta-lactams. A novel 73-kb C. diphtheriae multiresistance plasmid was discovered. Conclusions This work uncovers the dynamics of antimicrobial resistance in C. diphtheriae in the context of phylogenetic structure, biovar, and diphtheria toxin production and provides a blueprint to analyze re-emerging diphtheria. Supplementary information Supplementary information accompanies this paper at 10.1186/s13073-020-00805-7.
Collapse
Affiliation(s)
- Melanie Hennart
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Collège doctoral, Sorbonne Université, F-75005, Paris, France
| | - Leonardo G Panunzi
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Français de Bioinformatique, CNRS UMS 3601, Evry, France
| | - Carla Rodrigues
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Quentin Gaday
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université de Paris, F-75015, Paris, France
| | - Sarah L Baines
- Doherty Applied Microbial Genomics, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | | | - Annick Carmi-Leroy
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Melody Dazas
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Anne Marie Wehenkel
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS UMR 3528, Université de Paris, F-75015, Paris, France
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - Julie Toubiana
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France.,Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Université de Paris, Paris, France
| | - Edgar Badell
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France. .,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France.
| |
Collapse
|
29
|
Cohan MC, Pappu RV. Making the Case for Disordered Proteins and Biomolecular Condensates in Bacteria. Trends Biochem Sci 2020; 45:668-680. [PMID: 32456986 DOI: 10.1016/j.tibs.2020.04.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins/regions (IDPs/IDRs) contribute to a diverse array of molecular functions in eukaryotic systems. There is also growing recognition that membraneless biomolecular condensates, many of which are organized or regulated by IDPs/IDRs, can enable spatial and temporal regulation of complex biochemical reactions in eukaryotes. Motivated by these findings, we assess if (and how) membraneless biomolecular condensates and IDPs/IDRs are functionally involved in key cellular processes and molecular functions in bacteria. We summarize the conceptual underpinnings of condensate assembly and leverage these concepts by connecting them to recent findings that implicate specific types of condensates and IDPs/IDRs in important cellular level processes and molecular functions in bacterial systems.
Collapse
Affiliation(s)
- Megan C Cohan
- Department of Biomedical Engineering and Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|