1
|
Roblin G, Moyen C, Fleurat‐Lessard P, Dédaldéchamp F. Rapid osmocontractile response of motor cells of Mimosa pudica pulvini induced by short light signals. Photochem Photobiol 2025; 101:728-745. [PMID: 39611264 PMCID: PMC12080878 DOI: 10.1111/php.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
The Mimosa pudica leaf has motor organs allowing movements driven by cell osmotic changes in the parenchyma cells in response to various stimuli. Short white light pulses induce rapid and large seismonastic-like movements (denoted "photostimulation") of the primary pulvini in various leaves within 120 s after the onset of light. An early event recorded is a wavelength-related modification of the plasma membrane difference: potential depolarization under white, blue, green, and red wavelengths, and hyperpolarization under far red wavelengths (and also in darkness). The photoreactivity of the pulvini is controlled by a circadian rhythm and modulated by the applied diurnal photoperiod cycle (photophase ranging from 6 to 18 h). The reactivity varied among plants and even between leaves on the same plant. The level of reactivity is related to the photon fluence rate in the range from 10 to 140 μmol m-2 s-1 under white light and to the experimental temperature in the range 15°C-35°C. An "accommodation" to light supply is evidenced by a modulation of the reactivity in relation to the schedule of light application under low fluence rates and the introduction of short darkness intervals during the first 30-s light pulse. The blue light-induced photostimulation is under phytochrome control.
Collapse
Affiliation(s)
- Gabriel Roblin
- Laboratoire EBI–Ecologie et Biologie des Interactions, UMR CNRS 7267Université de PoitiersPoitiersFrance
| | - Christelle Moyen
- Laboratoire de Chrono‐Environnement, UMR 6249 CNRS/UFC, Campus de la BouloieUniversité de Franche‐ComtéBesançonFrance
| | - Pierrette Fleurat‐Lessard
- Laboratoire EBI–Ecologie et Biologie des Interactions, UMR CNRS 7267Université de PoitiersPoitiersFrance
| | - Fabienne Dédaldéchamp
- Laboratoire EBI–Ecologie et Biologie des Interactions, UMR CNRS 7267Université de PoitiersPoitiersFrance
| |
Collapse
|
2
|
Sharma A, Samtani H, Laxmi A. Molecular dialogue between light and temperature signalling in plants: from perception to thermotolerance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:677-694. [PMID: 39167699 DOI: 10.1093/jxb/erae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Light and temperature are the two most variable environmental signals that regulate plant growth and development. Plants in the natural environment usually encounter warmer temperatures during the day and cooler temperatures at night, suggesting both light and temperature are closely linked signals. Due to global warming, it has become important to understand how light and temperature signalling pathways converge and regulate plant development. This review outlines the diverse mechanisms of light and temperature perception, and downstream signalling, with an emphasis on their integration and interconnection. Recent research has highlighted the regulation of thermomorphogenesis by photoreceptors and their downstream light signalling proteins under different light conditions, and circadian clock components at warm temperatures. Here, we comprehensively describe these studies and demonstrate their connection with plant developmental responses. We also explain how the gene signalling pathways of photomorphogenesis and thermomorphogenesis are interconnected with the heat stress response to mediate thermotolerance, revealing new avenues to manipulate plants for climate resilience. In addition, the role of sugars as signalling molecules between light and temperature signalling pathways is also highlighted. Thus, we envisage that such detailed knowledge will enhance the understanding of how plants perceive light and temperature cues simultaneously and bring about responses that help in their adaptation.
Collapse
Affiliation(s)
- Aishwarye Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Harsha Samtani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
3
|
Xu T, Patitaki E, Zioutopoulou A, Kaiserli E. Light and high temperatures control epigenomic and epitranscriptomic events in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2025; 83:102668. [PMID: 39586185 DOI: 10.1016/j.pbi.2024.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Light and temperature are two key environmental factors that control plant growth and adaptation by influencing biomolecular events. This review highlights the latest milestones on the role of light and high temperatures in modulating the epigenetic and epitranscriptomic landscape of Arabidopsis to trigger developmental and adaptive responses to a changing environment. Recent discoveries on how light and high temperature signals are integrated in the nucleus to modulate gene expression are discussed, as well as highlighting research gaps and future perspectives in further understanding how to promote plant resilience in times of climate change.
Collapse
Affiliation(s)
- Tianyuan Xu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eirini Patitaki
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anna Zioutopoulou
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
4
|
Hwang G, Lee T, Park J, Paik I, Lee N, Kim YJ, Song YH, Kim WY, Oh E. UV-B increases active phytochrome B to suppress thermomorphogenesis and enhance UV-B stress tolerance at high temperatures. PLANT COMMUNICATIONS 2025; 6:101142. [PMID: 39390743 PMCID: PMC11783897 DOI: 10.1016/j.xplc.2024.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Plants respond to slight increases in ambient temperature by altering their architecture, a phenomenon collectively termed thermomorphogenesis. Thermomorphogenesis helps mitigate the damage caused by potentially harmful high-temperature conditions and is modulated by multiple environmental factors. Among these factors, ultraviolet-B (UV-B) light has been shown to strongly suppress this response. However, the molecular mechanisms by which UV-B light regulates thermomorphogenesis and the physiological roles of the UV-B-mediated suppression remain poorly understood. Here, we show that UV-B light inhibits thermomorphogenesis through the UV RESISTANCE LOCUS8 (UVR8)-CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1)-phytochrome B (phyB)/LONG HYPOCOTYL IN FAR RED 1 (HFR1) signaling pathway. We found that cop1 mutants maintain high levels of active phyB at high temperatures. Extensive genetic analyses revealed that the increased levels of phyB, HFR1, and CRY1 in cop1 mutants redundantly reduce both the level and the activity of PHYTOCHROME INTERACTING FACTOR4 (PIF4), a key positive regulator in thermomorphogenesis, thereby repressing this growth response. In addition, we found that UV-B light inactivates COP1 to enhance phyB stability and increase its photobody number. The UV-B-stabilized active phyB, in concert with HFR1, inhibits thermomorphogenesis by interfering with PIF4 activity. We further demonstrate that increased levels of active phyB enhance UV-B tolerance by promoting flavonoid biosynthesis and inhibiting thermomorphogenic growth. Taken together, our results elucidate that UV-B increases the levels of active phyB and HFR1 by inhibiting COP1 to suppress PIF4-mediated growth responses, which is crucial for plant tolerance to UV-B stress at high temperatures.
Collapse
Affiliation(s)
- Geonhee Hwang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Taedong Lee
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jeonghyang Park
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Inyup Paik
- US Army Engineer Research and Development Center, Austin, TX 39180, USA
| | - Nayoung Lee
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Young Hun Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| |
Collapse
|
5
|
Casal JJ, Murcia G, Bianchimano L. Plant Thermosensors. Annu Rev Genet 2024; 58:135-158. [PMID: 38986032 DOI: 10.1146/annurev-genet-111523-102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Plants are exposed to temperature conditions that fluctuate over different time scales, including those inherent to global warming. In the face of these variations, plants sense temperature to adjust their functions and minimize the negative consequences. Transcriptome responses underlie changes in growth, development, and biochemistry (thermomorphogenesis and acclimation to extreme temperatures). We are only beginning to understand temperature sensation by plants. Multiple thermosensors convey complementary temperature information to a given signaling network to control gene expression. Temperature-induced changes in protein or transcript structure and/or in the dynamics of biomolecular condensates are the core sensing mechanisms of known thermosensors, but temperature impinges on their activities via additional indirect pathways. The diversity of plant responses to temperature anticipates that many new thermosensors and eventually novel sensing mechanisms will be uncovered soon.
Collapse
Affiliation(s)
- Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina; ,
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina;
| | - Germán Murcia
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina; ,
| | | |
Collapse
|
6
|
Zhu Z, Trenner J, Delker C, Quint M. Tracing the Evolutionary History of the Temperature-Sensing Prion-like Domain in EARLY FLOWERING 3 Highlights the Uniqueness of AtELF3. Mol Biol Evol 2024; 41:msae205. [PMID: 39391982 PMCID: PMC11523139 DOI: 10.1093/molbev/msae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Plants have evolved mechanisms to anticipate and adjust their growth and development in response to environmental changes. Understanding the key regulators of plant performance is crucial to mitigate the negative influence of global climate change on crop production. EARLY FLOWERING 3 (ELF3) is one such regulator playing a critical role in the circadian clock and thermomorphogenesis. In Arabidopsis thaliana, ELF3 contains a prion-like domain (PrLD) that acts as a thermosensor, facilitating liquid-liquid phase separation at high ambient temperatures. To assess the conservation of this function across the plant kingdom, we traced the evolutionary emergence of ELF3, with a focus on the presence of PrLDs. We found that the PrLD, primarily influenced by the length of polyglutamine (polyQ) repeats, is most prominent in Brassicales. Analyzing 319 natural A. thaliana accessions, we confirmed the previously described wide range of polyQ length variation in AtELF3, but found it to be only weakly associated with geographic origin, climate conditions, and classic temperature-responsive phenotypes. Interestingly, similar polyQ length variation was not observed in several other investigated Bassicaceae species. Based on these findings, available prediction tools and limited experimental evidence, we conclude that the emergence of PrLD, and particularly polyQ length variation, is unlikely to be a key driver of environmental adaptation. Instead, it likely adds an additional layer to ELF3's role in thermomorphogenesis in A. thaliana, with its relevance in other species yet to be confirmed.
Collapse
Affiliation(s)
- Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Maeda AE, Matsuo H, Muranaka T, Nakamichi N. Cold-induced degradation of core clock proteins implements temperature compensation in the Arabidopsis circadian clock. SCIENCE ADVANCES 2024; 10:eadq0187. [PMID: 39331704 PMCID: PMC11430399 DOI: 10.1126/sciadv.adq0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The period of circadian clocks is maintained at close to 24 hours over a broad range of physiological temperatures due to temperature compensation of period length. Here, we show that the quantitative control of the core clock proteins TIMING OF CAB EXPRESSION 1 [TOC1; also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1)] and PRR5 is crucial for temperature compensation in Arabidopsis thaliana. The prr5 toc1 double mutant has a shortened period at higher temperatures, resulting in weak temperature compensation. Low ambient temperature reduces amounts of PRR5 and TOC1. In low-temperature conditions, PRR5 and TOC1 interact with LOV KELCH PROTEIN 2 (LKP2), a component of the E3 ubiquitin ligase Skp, Cullin, F-box (SCF) complex. The lkp2 mutations attenuate low temperature-induced decrease of PRR5 and TOC1, and the mutants display longer period only at lower temperatures. Our findings reveal that the circadian clock maintains its period length despite ambient temperature fluctuations through temperature- and LKP2-dependent control of PRR5 and TOC1 abundance.
Collapse
Affiliation(s)
- Akari E. Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Hiromi Matsuo
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Tomoaki Muranaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Norihito Nakamichi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Jeon J, Rahman MM, Yang HW, Kim J, Gam HJ, Song JY, Jeong SW, Kim JI, Choi MG, Shin DH, Choi G, Shim D, Jung JH, Lee IJ, Jeon JS, Park YI. Modulation of warm temperature-sensitive growth using a phytochrome B dark reversion variant, phyB[G515E], in Arabidopsis and rice. J Adv Res 2024; 63:57-72. [PMID: 37926145 PMCID: PMC11379985 DOI: 10.1016/j.jare.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Ambient temperature-induced hypocotyl elongation in Arabidopsis seedlings is sensed by the epidermis-localized phytochrome B (phyB) and transduced into auxin biosynthesis via a basic helix-loop-helix transcription factor, phytochrome-interacting factor 4 (PIF4). Once synthesized, auxin travels down from the cotyledons to the hypocotyl, triggering hypocotyl cell elongation. Thus, the phyB-PIF4 module involved in thermosensing and signal transduction is a potential genetic target for engineering warm temperature-insensitive plants. OBJECTIVES This study aims to manipulate warm temperature-induced elongation of plants at the post-translational level using phyB variants with dark reversion, the expression of which is subjected to heat stress. METHODS The thermosensitive growth response of Arabidopsis was manipulated by expressing the single amino acid substitution variant of phyB (phyB[G515E]), which exhibited a lower dark reversion rate than wild-type phyB. Other variants with slow (phyB[G564E]) or rapid (phyB[S584F]) dark reversion or light insensitivity (phyB[G767R]) were also included in this study for comparison. Warming-induced transient expression of phyB variants was achieved using heat shock-inducible promoters. Arabidopsis PHYB[G515E] and PHYB[G564E] were also constitutively expressed in rice in an attempt to manipulate the heat sensitivity of a monocotyledonous plant species. RESULTS At an elevated temperature, Arabidopsis seedlings transiently expressing PHYB[G515E] under the control of a heat shock-inducible promoter exhibited shorter hypocotyls than those expressing PHYB and other PHYB variant genes. This warm temperature-insensitive growth was related to the lowered PIF4 and auxin responses. In addition, transgenic rice seedlings expressing Arabidopsis PHYB[G515E] and PHYB[G564E] showed warm temperature-insensitive shoot growth. CONCLUSION Transient expression of phyB variants with altered dark reversion rates could serve as an effective optogenetic technique for manipulating PIF4-auxin-mediated thermomorphogenic responses in plants.
Collapse
Affiliation(s)
- Jin Jeon
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Md Mizanor Rahman
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seok Won Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Il Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Myoung-Goo Choi
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dong-Ho Shin
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
9
|
Cheung AY. FERONIA: A Receptor Kinase at the Core of a Global Signaling Network. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:345-375. [PMID: 38424067 PMCID: PMC12034098 DOI: 10.1146/annurev-arplant-102820-103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Initially identified as a key regulator of female fertility in Arabidopsis, the FERONIA (FER) receptor kinase is now recognized as crucial for almost all aspects of plant growth and survival. FER partners with a glycosylphosphatidylinositol-anchored protein of the LLG family to act as coreceptors on the cell surface. The FER-LLG coreceptor interacts with different RAPID ALKALINIZATION FACTOR (RALF) peptide ligands to function in various growth and developmental processes and to respond to challenges from the environment. The RALF-FER-LLG signaling modules interact with molecules in the cell wall, cell membrane, cytoplasm, and nucleus and mediate an interwoven signaling network. Multiple FER-LLG modules, each anchored by FER or a FER-related receptor kinase, have been studied, illustrating the functional diversity and the mechanistic complexity of the FER family signaling modules. The challenges going forward are to distill from this complexity the unifying schemes where possible and attain precision and refinement in the knowledge of critical details upon which future investigations can be built. By focusing on the extensively characterized FER, this review provides foundational information to guide the next phase of research on FER in model as well as crop species and potential applications for improving plant growth and resilience.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
10
|
Willige BC, Yoo CY, Saldierna Guzmán JP. What is going on inside of phytochrome B photobodies? THE PLANT CELL 2024; 36:2065-2085. [PMID: 38511271 PMCID: PMC11132900 DOI: 10.1093/plcell/koae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 03/22/2024]
Abstract
Plants exhibit an enormous phenotypic plasticity to adjust to changing environmental conditions. For this purpose, they have evolved mechanisms to detect and measure biotic and abiotic factors in their surroundings. Phytochrome B exhibits a dual function, since it serves as a photoreceptor for red and far-red light as well as a thermosensor. In 1999, it was first reported that phytochromes not only translocate into the nucleus but also form subnuclear foci upon irradiation by red light. It took more than 10 years until these phytochrome speckles received their name; these foci were coined photobodies to describe unique phytochrome-containing subnuclear domains that are regulated by light. Since their initial discovery, there has been much speculation about the significance and function of photobodies. Their presumed roles range from pure experimental artifacts to waste deposits or signaling hubs. In this review, we summarize the newest findings about the meaning of phyB photobodies for light and temperature signaling. Recent studies have established that phyB photobodies are formed by liquid-liquid phase separation via multivalent interactions and that they provide diverse functions as biochemical hotspots to regulate gene expression on multiple levels.
Collapse
Affiliation(s)
- Björn Christopher Willige
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Chan Yul Yoo
- School of Biological Sciences, University of Utah, UT 84112, USA
| | - Jessica Paola Saldierna Guzmán
- Department of Soil and Crop Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
11
|
Park YJ, Nam BE, Park CM. Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:865-882. [PMID: 38116738 DOI: 10.1111/jipb.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Korea
| | - Bo Eun Nam
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
12
|
Li J, Song Y. Plant thermosensors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112025. [PMID: 38354752 DOI: 10.1016/j.plantsci.2024.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Plants dynamically regulate their genes expression and physiological outputs to adapt to changing temperatures. The underlying molecular mechanisms have been extensively studied in diverse plants and in multiple dimensions. However, the question of exactly how temperature is detected at molecular level to transform the physical information into recognizable intracellular signals remains continues to be one of the undetermined occurrences in plant science. Recent studies have provided the physical and biochemical mechanistic breakthrough of how temperature changes can influence molecular thermodynamically stability, thus changing molecular structures, activities, interaction and signaling transduction. In this review, we focus on the thermosensing mechanisms of recognized and potential plant thermosensors, to describe the multi-level thermal input system in plants. We also consider the attributes of a thermosensor on the basis of thermal-triggered changes in function, structure, and physical parameters. This study thus provides a reference for discovering more plant thermosensors and elucidating plant thermal adaptive mechanisms.
Collapse
Affiliation(s)
- Jihong Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuan Song
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China.
| |
Collapse
|
13
|
Du J, Kim K, Chen M. Distinguishing individual photobodies using Oligopaints reveals thermo-sensitive and -insensitive phytochrome B condensation at distinct subnuclear locations. Nat Commun 2024; 15:3620. [PMID: 38684657 PMCID: PMC11058242 DOI: 10.1038/s41467-024-47789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Photobodies (PBs) are membraneless subnuclear organelles that self-assemble via concentration-dependent liquid-liquid phase separation (LLPS) of the plant photoreceptor and thermosensor phytochrome B (PHYB). The current PHYB LLPS model posits that PHYB phase separates randomly in the nucleoplasm regardless of the cellular or nuclear context. Here, we established a robust Oligopaints method in Arabidopsis to determine the positioning of individual PBs. We show surprisingly that even in PHYB overexpression lines - where PHYB condensation would be more likely to occur randomly - PBs positioned at twelve distinct subnuclear locations distinguishable by chromocenter and nucleolus landmarks, suggesting that PHYB condensation occurs nonrandomly at preferred seeding sites. Intriguingly, warm temperatures reduce PB number by inducing the disappearance of specific thermo-sensitive PBs, demonstrating that individual PBs possess different thermosensitivities. These results reveal a nonrandom PB nucleation model, which provides the framework for the biogenesis of spatially distinct individual PBs with diverse environmental sensitivities within a single plant nucleus.
Collapse
Affiliation(s)
- Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Keunhwa Kim
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
14
|
Kim RJA, Fan D, He J, Kim K, Du J, Chen M. Photobody formation spatially segregates two opposing phytochrome B signaling actions of PIF5 degradation and stabilization. Nat Commun 2024; 15:3519. [PMID: 38664420 PMCID: PMC11045832 DOI: 10.1038/s41467-024-47790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Photoactivation of the plant photoreceptor and thermosensor phytochrome B (PHYB) triggers its condensation into subnuclear membraneless organelles named photobodies (PBs). However, the function of PBs in PHYB signaling remains frustratingly elusive. Here, we found that PHYB recruits PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) to PBs. Surprisingly, PHYB exerts opposing roles in degrading and stabilizing PIF5. Perturbing PB size by overproducing PHYB provoked a biphasic PIF5 response: while a moderate increase in PHYB enhanced PIF5 degradation, further elevating the PHYB level stabilized PIF5 by retaining more of it in enlarged PBs. Conversely, reducing PB size by dim light, which enhanced PB dynamics and nucleoplasmic PHYB and PIF5, switched the balance towards PIF5 degradation. Together, these results reveal that PB formation spatially segregates two antagonistic PHYB signaling actions - PIF5 stabilization in PBs and PIF5 degradation in the surrounding nucleoplasm - which could enable an environmentally sensitive, counterbalancing mechanism to titrate nucleoplasmic PIF5 and environmental responses.
Collapse
Affiliation(s)
- Ruth Jean Ae Kim
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - De Fan
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jiangman He
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Keunhwa Kim
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
15
|
Han R, Ma L, Terzaghi W, Guo Y, Li J. Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1893-1913. [PMID: 38289877 DOI: 10.1111/tpj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Kim RJA, Fan D, He J, Kim K, Du J, Chen M. Photobody formation spatially segregates two opposing phytochrome B signaling actions to titrate plant environmental responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.12.566724. [PMID: 38014306 PMCID: PMC10680666 DOI: 10.1101/2023.11.12.566724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Photoactivation of the plant photoreceptor and thermosensor phytochrome B (PHYB) triggers its condensation into subnuclear photobodies (PBs). However, the function of PBs remains frustratingly elusive. Here, we found that PHYB recruits PHYTOCHROME-INTERACTING FACTOR5 (PIF5) to PBs. Surprisingly, PHYB exerts opposing roles in degrading and stabilizing PIF5. Perturbing PB size by overproducing PHYB provoked a biphasic PIF5 response: while a moderate increase in PHYB enhanced PIF5 degradation, further elevating the PHYB level stabilized PIF5 by retaining more of it in enlarged PBs. These results reveal a PB-mediated light and temperature sensing mechanism, in which PHYB condensation confers the co-occurrence and competition of two antagonistic phase-separated PHYB signaling actions-PIF5 stabilization in PBs and PIF5 degradation in the surrounding nucleoplasm-thereby enabling an environmentally-sensitive counterbalancing mechanism to titrate nucleoplasmic PIF5 and its transcriptional output. This PB-enabled signaling mechanism provides a framework for regulating a plethora of PHYB-interacting signaling molecules in diverse plant environmental responses.
Collapse
Affiliation(s)
- Ruth Jean Ae Kim
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- These authors contributed equally
| | - De Fan
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- These authors contributed equally
| | - Jiangman He
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- These authors contributed equally
| | - Keunhwa Kim
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Current address: Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Seth P, Sebastian J. Plants and global warming: challenges and strategies for a warming world. PLANT CELL REPORTS 2024; 43:27. [PMID: 38163826 DOI: 10.1007/s00299-023-03083-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
KEY MESSAGE In this review, we made an attempt to create a holistic picture of plant response to a rising temperature environment and its impact by covering all aspects from temperature perception to thermotolerance. This comprehensive account describing the molecular mechanisms orchestrating these responses and potential mitigation strategies will be helpful for understanding the impact of global warming on plant life. Organisms need to constantly recalibrate development and physiology in response to changes in their environment. Climate change-associated global warming is amplifying the intensity and periodicity of these changes. Being sessile, plants are particularly vulnerable to variations happening around them. These changes can cause structural, metabolomic, and physiological perturbations, leading to alterations in the growth program and in extreme cases, plant death. In general, plants have a remarkable ability to respond to these challenges, supported by an elaborate mechanism to sense and respond to external changes. Once perceived, plants integrate these signals into the growth program so that their development and physiology can be modulated befittingly. This multifaceted signaling network, which helps plants to establish acclimation and survival responses enabled their extensive geographical distribution. Temperature is one of the key environmental variables that affect all aspects of plant life. Over the years, our knowledge of how plants perceive temperature and how they respond to heat stress has improved significantly. However, a comprehensive mechanistic understanding of the process still largely elusive. This review explores how an increase in the global surface temperature detrimentally affects plant survival and productivity and discusses current understanding of plant responses to high temperature (HT) and underlying mechanisms. We also highlighted potential resilience attributes that can be utilized to mitigate the impact of global warming.
Collapse
Affiliation(s)
- Pratyay Seth
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India
| | - Jose Sebastian
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India.
| |
Collapse
|
18
|
Du J, Chen M. Characterization of Thermoresponsive Photobody Dynamics. Methods Mol Biol 2024; 2795:95-104. [PMID: 38594531 DOI: 10.1007/978-1-0716-3814-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Photobodies (PBs) are subnuclear membraneless organelles that self-assemble via the condensation of the plant photoreceptor and thermosensor phytochrome B (phyB). Changes in the light and temperature environment directly modulate PB formation and maintenance by altering the number and size of PBs. In thermomorphogenesis, increases in the ambient temperature incrementally reduce the number of PBs, suggesting that individual PBs possess distinct thermostabilities. Here, we describe a detailed protocol for characterizing cell type-specific PB dynamics induced by warm temperatures in Arabidopsis.
Collapse
Affiliation(s)
- Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
19
|
Kwon Y, Kim C, Choi G. Isolation of Phytochrome B Photobodies. Methods Mol Biol 2024; 2795:113-122. [PMID: 38594533 DOI: 10.1007/978-1-0716-3814-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Phytochrome B (phyB), a plant photoreceptor, forms a membraneless organelle known as a photobody. Here, we present a protocol for the isolation of phyB photobodies through fluorescence-activated particle sorting from mature transgenic Arabidopsis leaves expressing phyB-GFP. This protocol involves the isolation of nuclei from frozen ground leaves using sucrose gradient centrifugation, the disruption of nuclear envelopes by sonication, and the subsequent isolation of phyB photobodies through fluorescence-activated particle sorting. We include experimental tips and notes for each step.
Collapse
Affiliation(s)
- Yongmin Kwon
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - Chanhee Kim
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, South Korea.
| |
Collapse
|
20
|
Fan D, Chen M. Dissection of Daytime and Nighttime Thermoresponsive Hypocotyl Elongation in Arabidopsis. Methods Mol Biol 2024; 2795:17-23. [PMID: 38594523 DOI: 10.1007/978-1-0716-3814-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Hypocotyl elongation in Arabidopsis is widely utilized as a readout for phytochrome B (phyB) signaling and thermomorphogenesis. Hypocotyl elongation is gated by the circadian clock and, therefore, it occurs at distinct times depending on day length or seasonal cues. In short-day conditions, hypocotyl elongation occurs mainly at the end of nighttime when phyB reverts to the inactive form. In contrast, in long-day conditions, hypocotyl elongation occurs during the daytime when phyB is in the photoactivated form. Warm temperatures can induce hypocotyl growth in both long-day and short-day conditions. However, the corresponding daytime and nighttime temperature responses reflect distinct underpinning mechanisms. Here, we describe assays for dissecting the mechanisms between daytime and nighttime thermoresponsive hypocotyl elongation.
Collapse
Affiliation(s)
- De Fan
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
21
|
Gao Q, Hu S, Wang X, Han F, Luo H, Liu Z, Kang C. The red/far-red light photoreceptor FvePhyB regulates tissue elongation and anthocyanin accumulation in woodland strawberry. HORTICULTURE RESEARCH 2023; 10:uhad232. [PMID: 38143485 PMCID: PMC10745270 DOI: 10.1093/hr/uhad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Light is an important environmental signal that influences plant growth and development. Among the photoreceptors, phytochromes can sense red/far-red light to coordinate various biological processes. However, their functions in strawberry are not yet known. In this study, we identified an EMS mutant, named P8, in woodland strawberry (Fragaria vesca) that showed greatly increased plant height and reduced anthocyanin content. Mapping-by-sequencing revealed that the causal mutation in FvePhyB leads to premature termination of translation. The light treatment assay revealed that FvePhyB is a bona fide red/far-red light photoreceptor, as it specifically inhibits hypocotyl length under red light. Transcriptome analysis showed that the FvePhyB mutation affects the expression levels of genes involved in hormone synthesis and signaling and anthocyanin biosynthesis in petioles and fruits. The srl mutant with a longer internode is caused by a mutation in the DELLA gene FveRGA1 (Repressor of GA1) in the gibberellin pathway. We found that the P8 srl double mutant has much longer internodes than srl, suggesting a synergistic role of FvePhyB and FveRGA1 in this process. Taken together, these results demonstrate the important role of FvePhyB in regulating plant architecture and anthocyanin content in woodland strawberry.
Collapse
Affiliation(s)
- Qi Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoqiang Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaoli Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Fu Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Huifeng Luo
- Institute of Horticulture, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
22
|
Bianchimano L, De Luca MB, Borniego MB, Iglesias MJ, Casal JJ. Temperature regulation of auxin-related gene expression and its implications for plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7015-7033. [PMID: 37422862 DOI: 10.1093/jxb/erad265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Twenty-five years ago, a seminal paper demonstrated that warm temperatures increase auxin levels to promote hypocotyl growth in Arabidopsis thaliana. Here we highlight recent advances in auxin-mediated thermomorphogenesis and identify unanswered questions. In the warmth, PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF7 bind the YUCCA8 gene promoter and, in concert with histone modifications, enhance its expression to increase auxin synthesis in the cotyledons. Once transported to the hypocotyl, auxin promotes cell elongation. The meta-analysis of expression of auxin-related genes in seedlings exposed to temperatures ranging from cold to hot shows complex patterns of response. Changes in auxin only partially account for these responses. The expression of many SMALL AUXIN UP RNA (SAUR) genes reaches a maximum in the warmth, decreasing towards both temperature extremes in correlation with the rate of hypocotyl growth. Warm temperatures enhance primary root growth, the response requires auxin, and the hormone levels increase in the root tip but the impacts on cell division and cell expansion are not clear. A deeper understanding of auxin-mediated temperature control of plant architecture is necessary to face the challenge of global warming.
Collapse
Affiliation(s)
- Luciana Bianchimano
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - María Belén De Luca
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María Belén Borniego
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María José Iglesias
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires C1428EHA, Argentina
| | - Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
23
|
Larran AS, Pajoro A, Qüesta JI. Is winter coming? Impact of the changing climate on plant responses to cold temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3175-3193. [PMID: 37438895 DOI: 10.1111/pce.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Climate change is causing alterations in annual temperature regimes worldwide. Important aspects of this include the reduction of winter chilling temperatures as well as the occurrence of unpredicted frosts, both significantly affecting plant growth and yields. Recent studies advanced the knowledge of the mechanisms underlying cold responses and tolerance in the model plant Arabidopsis thaliana. However, how these cold-responsive pathways will readjust to ongoing seasonal temperature variation caused by global warming remains an open question. In this review, we highlight the plant developmental programmes that depend on cold temperature. We focus on the molecular mechanisms that plants have evolved to adjust their development and stress responses upon exposure to cold. Covering both genetic and epigenetic aspects, we present the latest insights into how alternative splicing, noncoding RNAs and the formation of biomolecular condensates play key roles in the regulation of cold responses. We conclude by commenting on attractive targets to accelerate the breeding of increased cold tolerance, bringing up biotechnological tools that might assist in overcoming current limitations. Our aim is to guide the reflection on the current agricultural challenges imposed by a changing climate and to provide useful information for improving plant resilience to unpredictable cold regimes.
Collapse
Affiliation(s)
- Alvaro Santiago Larran
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| | - Alice Pajoro
- National Research Council, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Julia I Qüesta
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
24
|
Yang X, Guan H, Yang Y, Zhang Y, Su W, Song S, Liu H, Chen R, Hao Y. Extra- and intranuclear heat perception and triggering mechanisms in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1276649. [PMID: 37860244 PMCID: PMC10582638 DOI: 10.3389/fpls.2023.1276649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The escalating impact of global warming on crop yield and quality poses a significant threat to future food supplies. Breeding heat-resistant crop varieties holds promise, but necessitates a deeper understanding of the molecular mechanisms underlying plant heat tolerance. Recent studies have shed light on the initial events of heat perception in plants. In this review, we provide a comprehensive summary of the recent progress made in unraveling the mechanisms of heat perception and response in plants. Calcium ion (Ca2+), hydrogen peroxide (H2O2), and nitric oxide (NO) have emerged as key participants in heat perception. Furthermore, we discuss the potential roles of the NAC transcription factor NTL3, thermo-tolerance 3.1 (TT3.1), and Target of temperature 3 (TOT3) as thermosensors associated with the plasma membrane. Additionally, we explore the involvement of cytoplasmic HISTONE DEACETYLASE 9 (HDA9), mRNA encoding the phytochrome-interacting factor 7 (PIF7), and chloroplasts in mediating heat perception. This review also highlights the role of intranuclear transcriptional condensates formed by phytochrome B (phyB), EARLY FLOWERING 3 (ELF3), and guanylate-binding protein (GBP)-like GTPase 3 (GBPL3) in heat perception. Finally, we raise the unresolved questions in the field of heat perception that require further investigation in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Zhu J, Cao X, Deng X. Epigenetic and transcription factors synergistically promote the high temperature response in plants. Trends Biochem Sci 2023; 48:788-800. [PMID: 37393166 DOI: 10.1016/j.tibs.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/03/2023]
Abstract
Temperature is one of the main environmental cues affecting plant growth and development, and plants have evolved multiple mechanisms to sense and acclimate to high temperature. Emerging research has shown that transcription factors, epigenetic factors, and their coordination are essential for plant temperature responses and the resulting phenological adaptation. Here, we summarize recent advances in molecular and cellular mechanisms to understand how plants acclimate to high temperature and describe how plant meristems sense and integrate environmental signals. Furthermore, we lay out future directions for new technologies to reveal heterogeneous responses in different cell types thus improving plant environmental plasticity.
Collapse
Affiliation(s)
- Jiaping Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
26
|
Jung JH, Seo PJ, Oh E, Kim J. Temperature perception by plants. TRENDS IN PLANT SCIENCE 2023; 28:924-940. [PMID: 37045740 DOI: 10.1016/j.tplants.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Plants constantly face fluctuating ambient temperatures and must adapt to survive under stressful conditions. Temperature affects many aspects of plant growth and development through a complex network of transcriptional responses. Although temperature sensing is a crucial primary step in initiating transcriptional responses via Ca2+ and/or reactive oxygen species signaling, an understanding of how plants perceive temperature has remained elusive. However, recent studies have yielded breakthroughs in our understanding of temperature sensors and thermosensation mechanisms. We review recent findings on potential temperature sensors and emerging thermosensation mechanisms, including biomolecular condensate formation through phase separation in plants. We also compare the temperature perception mechanisms of plants with those of other organisms to provide insights into understanding temperature sensing by plants.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
27
|
Shi H, Zhong S. Light and temperature perceptions go through a phase separation. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102397. [PMID: 37295295 DOI: 10.1016/j.pbi.2023.102397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Accepted: 05/07/2023] [Indexed: 06/12/2023]
Abstract
Light and temperature are two distinct but closely linked environmental factors that profoundly affect plant growth and development. Biomolecular condensates are membraneless micron-scale compartments formed through liquid-liquid phase separation, which have been shown to be involved in a wide range of biological processes. In the last few years, biomolecular condensates are emerged to serve as phase separation-based sensors for plant sensing and/or responding to external environmental cues. This review summarizes the recently reported plant biomolecular condensates in sensing light and temperature signals. The current understanding of the biophysical properties and the action modes of phase separation-based environmental sensors are highlighted. Unresolved questions and possible challenges for future studies of phase-separation sensors are also discussed.
Collapse
Affiliation(s)
- Hui Shi
- College of Life Sciences, Capital Normal University, Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China.
| | - Shangwei Zhong
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
28
|
Sineshchekov VA. Two Distinct Molecular Types of Phytochrome A in Plants: Evidence of Existence and Implications for Functioning. Int J Mol Sci 2023; 24:ijms24098139. [PMID: 37175844 PMCID: PMC10179679 DOI: 10.3390/ijms24098139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Phytochrome (phy) system in plants comprising a small number of phytochromes with phyA and phyB as major ones is responsible for acquiring light information in the red-far-red region of the solar spectrum. It provides optimal strategy for plant development under changing light conditions throughout all its life cycle beginning from seed germination and seedling establishment to fruiting and plant senescence. The phyA was shown to participate in the regulation of this cycle which is especially evident at its early stages. It mediates three modes of reactions-the very low and low fluence responses (VLFR and LFR) and the high irradiance responses (HIR). The phyA is the sole light receptor in the far-red spectral region responsible for plant's survival under a dense plant canopy where light is enriched with the far-red component. Its appearance is believed to be one of the main factors of plants' successful evolution. So far, it is widely accepted that one molecular phyA species is responsible for its complex functional manifestations. In this review, the evidence of the existence of two distinct phyA types-major, light-labile and soluble phyA' and minor, relatively light-stable and amphiphilic phyA″-is presented as what may account for the diverse modes of phyA action.
Collapse
|
29
|
Sineshchekov VA. Two Distinct Molecular Types of Phytochrome A in Plants: Evidence of Existence and Implications for Functioning. Int J Mol Sci 2023; 24:8139. [DOI: https:/doi.org/10.3390/ijms24098139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Phytochrome (phy) system in plants comprising a small number of phytochromes with phyA and phyB as major ones is responsible for acquiring light information in the red—far-red region of the solar spectrum. It provides optimal strategy for plant development under changing light conditions throughout all its life cycle beginning from seed germination and seedling establishment to fruiting and plant senescence. The phyA was shown to participate in the regulation of this cycle which is especially evident at its early stages. It mediates three modes of reactions—the very low and low fluence responses (VLFR and LFR) and the high irradiance responses (HIR). The phyA is the sole light receptor in the far-red spectral region responsible for plant’s survival under a dense plant canopy where light is enriched with the far-red component. Its appearance is believed to be one of the main factors of plants′ successful evolution. So far, it is widely accepted that one molecular phyA species is responsible for its complex functional manifestations. In this review, the evidence of the existence of two distinct phyA types—major, light-labile and soluble phyA′ and minor, relatively light-stable and amphiphilic phyA″—is presented as what may account for the diverse modes of phyA action.
Collapse
|
30
|
Kim C, Kwon Y, Jeong J, Kang M, Lee GS, Moon JH, Lee HJ, Park YI, Choi G. Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. Nat Commun 2023; 14:1708. [PMID: 36973259 PMCID: PMC10042835 DOI: 10.1038/s41467-023-37421-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Phytochrome B (phyB) is a plant photoreceptor that forms a membraneless organelle called a photobody. However, its constituents are not fully known. Here, we isolated phyB photobodies from Arabidopsis leaves using fluorescence-activated particle sorting and analyzed their components. We found that a photobody comprises ~1,500 phyB dimers along with other proteins that could be classified into two groups: The first includes proteins that directly interact with phyB and localize to the photobody when expressed in protoplasts, while the second includes proteins that interact with the first group proteins and require co-expression of a first-group protein to localize to the photobody. As an example of the second group, TOPLESS interacts with PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) and localizes to the photobody when co-expressed with PCH1. Together, our results support that phyB photobodies include not only phyB and its primary interacting proteins but also its secondary interacting proteins.
Collapse
Affiliation(s)
- Chanhee Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Yongmin Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Jaehoon Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Minji Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Ga Seul Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
31
|
Ahn G, Park HJ, Jeong SY, Shin GI, Ji MG, Cha JY, Kim J, Kim MG, Yun DJ, Kim WY. HOS15 represses flowering by promoting GIGANTEA degradation in response to low temperature in Arabidopsis. PLANT COMMUNICATIONS 2023:100570. [PMID: 36864727 PMCID: PMC10363504 DOI: 10.1016/j.xplc.2023.100570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.
Collapse
Affiliation(s)
- Gyeongik Ahn
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Song Yi Jeong
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyeong-Im Shin
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myung Geun Ji
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeongsik Kim
- Faculty of Science Education and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Jin Yun
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Woe-Yeon Kim
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
32
|
Charles M, Edwards B, Ravishankar E, Calero J, Henry R, Rech J, Saravitz C, You W, Ade H, O’Connor B, Sederoff H. Emergent molecular traits of lettuce and tomato grown under wavelength-selective solar cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1087707. [PMID: 36909444 PMCID: PMC9999377 DOI: 10.3389/fpls.2023.1087707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The integration of semi-transparent organic solar cells (ST-OSCs) in greenhouses offers new agrivoltaic opportunities to meet the growing demands for sustainable food production. The tailored absorption/transmission spectra of ST-OSCs impacts the power generated as well as crop growth, development and responses to the biotic and abiotic environments. To characterize crop responses to ST-OSCs, we grew lettuce and tomato, traditional greenhouse crops, under three ST-OSC filters that create different light spectra. Lettuce yield and early tomato development are not negatively affected by the modified light environment. Our genomic analysis reveals that lettuce production exhibits beneficial traits involving nutrient content and nitrogen utilization while select ST-OSCs impact regulation of flowering initiation in tomato. These results suggest that ST-OSCs integrated into greenhouses are not only a promising technology for energy-neutral, sustainable and climate-change protected crop production, but can deliver benefits beyond energy considerations.
Collapse
Affiliation(s)
- Melodi Charles
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Eshwar Ravishankar
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories, North Carolina State University, Raleigh, NC, United States
| | - John Calero
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Reece Henry
- Department of Physics and Organic and Carbon Electronics Laboratories, North Carolina State University, Raleigh, NC, United States
| | - Jeromy Rech
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, United States
| | - Carole Saravitz
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, United States
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories, North Carolina State University, Raleigh, NC, United States
| | - Brendan O’Connor
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
33
|
Wang Q, Zhu Z. Light signaling-mediated growth plasticity in Arabidopsis grown under high-temperature conditions. STRESS BIOLOGY 2022; 2:53. [PMID: 37676614 PMCID: PMC10441904 DOI: 10.1007/s44154-022-00075-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 09/08/2023]
Abstract
Growing concern around global warming has led to an increase in research focused on plant responses to increased temperature. In this review, we highlight recent advances in our understanding of plant adaptation to high ambient temperature and heat stress, emphasizing the roles of plant light signaling in these responses. We summarize how high temperatures regulate plant cotyledon expansion and shoot and root elongation and explain how plants use light signaling to combat severe heat stress. Finally, we discuss several future avenues for this research and identify various unresolved questions within this field.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
34
|
Zhu T, van Zanten M, De Smet I. Wandering between hot and cold: temperature dose-dependent responses. TRENDS IN PLANT SCIENCE 2022; 27:1124-1133. [PMID: 35810070 DOI: 10.1016/j.tplants.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Plants in most natural habitats are exposed to a continuously changing environment, including fluctuating temperatures. Temperature variations can trigger acclimation or tolerance responses, depending on the severity of the signal. To guarantee food security under a changing climate, we need to fully understand how temperature response and tolerance are triggered and regulated. Here, we put forward the concept that responsiveness to temperature should be viewed in the context of dose-dependency. We discuss physiological, developmental, and molecular examples, predominantly from the model plant Arabidopsis thaliana, illustrating monophasic signaling responses across the physiological temperature gradient.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium.
| |
Collapse
|
35
|
Londoño Vélez V, Alquraish F, Tarbiyyah I, Rafique F, Mao D, Chodasiewicz M. Landscape of biomolecular condensates in heat stress responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1032045. [PMID: 36311142 PMCID: PMC9601738 DOI: 10.3389/fpls.2022.1032045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 06/06/2023]
Abstract
High temperature is one of the abiotic stresses that plants face and acts as a major constraint on crop production and food security. Plants have evolved several mechanisms to overcome challenging environments and respond to internal and external stimuli. One significant mechanism is the formation of biomolecular condensates driven by liquid-liquid phase separation. Biomolecular condensates have received much attention in the past decade, especially with regard to how plants perceive temperature fluctuations and their involvement in stress response and tolerance. In this review, we compile and discuss examples of plant biomolecular condensates regarding their composition, localization, and functions triggered by exposure to heat. Bioinformatic tools can be exploited to predict heat-induced biomolecular condensates. As the field of biomolecular condensates has emerged in the study of plants, many intriguing questions have arisen that have yet to be solved. Increased knowledge of biomolecular condensates will help in securing crop production and overcoming limitations caused by heat stress.
Collapse
|
36
|
Ronald J, Su C, Wang L, Davis SJ. Cellular localization of Arabidopsis EARLY FLOWERING3 is responsive to light quality. PLANT PHYSIOLOGY 2022; 190:1024-1036. [PMID: 35191492 PMCID: PMC9516731 DOI: 10.1093/plphys/kiac072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 05/13/2023]
Abstract
Circadian clocks facilitate the coordination of physiological and developmental processes to changing daily and seasonal cycles. A hub for environmental signaling pathways in the Arabidopsis (Arabidopsis thaliana) circadian clock is the evening complex (EC), a protein complex composed of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRYTHMO (LUX). Formation of the EC depends on ELF3, a scaffold protein that recruits the other components of the EC and chromatin remodeling enzymes to repress gene expression. Regulating the cellular distribution of ELF3 is thus an important mechanism in controlling its activity. Here, we determined that the cellular and sub-nuclear localization of ELF3 is responsive to red (RL) and blue light and that these two wavelengths have apparently competitive effects on where in the cell ELF3 localizes. We further characterized the RL response, revealing that at least two RL pathways influence the cellular localization of ELF3. One of these depends on the RL photoreceptor phytochrome B (phyB), while the second is at least partially independent of phyB activity. Finally, we investigated how changes in the cellular localization of ELF3 are associated with repression of EC target-gene expression. Our analyses revealed a complex effect whereby ELF3 is required for controlling RL sensitivity of morning-phased genes, but not evening-phased genes. Together, our findings establish a previously unknown mechanism through which light signaling influences ELF3 activity.
Collapse
Affiliation(s)
- James Ronald
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Chen Su
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
37
|
Muñoz-Díaz E, Sáez-Vásquez J. Nuclear dynamics: Formation of bodies and trafficking in plant nuclei. FRONTIERS IN PLANT SCIENCE 2022; 13:984163. [PMID: 36082296 PMCID: PMC9445803 DOI: 10.3389/fpls.2022.984163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 06/01/2023]
Abstract
The existence of the nucleus distinguishes prokaryotes and eukaryotes. Apart from containing most of the genetic material, the nucleus possesses several nuclear bodies composed of protein and RNA molecules. The nucleus is separated from the cytoplasm by a double membrane, regulating the trafficking of molecules in- and outwards. Here, we investigate the composition and function of the different plant nuclear bodies and molecular clues involved in nuclear trafficking. The behavior of the nucleolus, Cajal bodies, dicing bodies, nuclear speckles, cyclophilin-containing bodies, photobodies and DNA damage foci is analyzed in response to different abiotic stresses. Furthermore, we research the literature to collect the different protein localization signals that rule nucleocytoplasmic trafficking. These signals include the different types of nuclear localization signals (NLSs) for nuclear import, and the nuclear export signals (NESs) for nuclear export. In contrast to these unidirectional-movement signals, the existence of nucleocytoplasmic shuttling signals (NSSs) allows bidirectional movement through the nuclear envelope. Likewise, nucleolar signals are also described, which mainly include the nucleolar localization signals (NoLSs) controlling nucleolar import. In contrast, few examples of nucleolar export signals, called nucleoplasmic localization signals (NpLSs) or nucleolar export signals (NoESs), have been reported. The existence of consensus sequences for these localization signals led to the generation of prediction tools, allowing the detection of these signals from an amino acid sequence. Additionally, the effect of high temperatures as well as different post-translational modifications in nuclear and nucleolar import and export is discussed.
Collapse
Affiliation(s)
- Eduardo Muñoz-Díaz
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| | - Julio Sáez-Vásquez
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| |
Collapse
|
38
|
Nieto C, Catalán P, Luengo LM, Legris M, López-Salmerón V, Davière JM, Casal JJ, Ares S, Prat S. COP1 dynamics integrate conflicting seasonal light and thermal cues in the control of Arabidopsis elongation. SCIENCE ADVANCES 2022; 8:eabp8412. [PMID: 35984876 PMCID: PMC9390991 DOI: 10.1126/sciadv.abp8412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/07/2022] [Indexed: 05/19/2023]
Abstract
As the summer approaches, plants experience enhanced light inputs and warm temperatures, two environmental cues with an opposite morphogenic impact. Key components of this response are PHYTOCHROME B (phyB), EARLY FLOWERING 3 (ELF3), and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). Here, we used single and double mutant/overexpression lines to fit a mathematical model incorporating known interactions of these regulators. The fitted model recapitulates thermal growth of all lines used and correctly predicts thermal behavior of others not used in the fit. While thermal COP1 function is accepted to be independent of diurnal timing, our model shows that it acts at temperature signaling only during daytime. Defective response of cop1-4 mutants is epistatic to phyB-9 and elf3-8, indicating that COP1 activity is essential to transduce phyB and ELF3 thermosensory function. Our thermal model provides a unique toolbox to identify best allelic combinations enhancing climate change resilience of crops adapted to different latitudes.
Collapse
Affiliation(s)
- Cristina Nieto
- Centro Nacional de Biotecnologia (CNB), CSIC, Darwin 3, 28049 Madrid, Spain
- Centro de Recursos Fitogeneticos y Agricultura Sostenible (CRF-INIA), CSIC, Autovia A2, km 32, 28805 Alcala de Henares, Madrid, Spain
| | - Pablo Catalán
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganes, Madrid, Spain
| | - Luis Miguel Luengo
- Centro Nacional de Biotecnologia (CNB), CSIC, Darwin 3, 28049 Madrid, Spain
- Centro de Investigación en Agrigenomica (CRAG), CSIC-IRTA-UAB-UB, 08193 Cerdanyola, Barcelona, Spain
| | - Martina Legris
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
| | | | | | - Jorge J. Casal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1405 Buenos Aires, Argentina
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1417 Buenos Aires, Argentina
| | - Saúl Ares
- Centro Nacional de Biotecnologia (CNB), CSIC, Darwin 3, 28049 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Corresponding author. (S.A.); (S.P.)
| | - Salomé Prat
- Centro Nacional de Biotecnologia (CNB), CSIC, Darwin 3, 28049 Madrid, Spain
- Centro de Investigación en Agrigenomica (CRAG), CSIC-IRTA-UAB-UB, 08193 Cerdanyola, Barcelona, Spain
- Corresponding author. (S.A.); (S.P.)
| |
Collapse
|
39
|
Lee S, Huq E. Phase separation at the heart of "heat" sensing. Mol Cell 2022; 82:2916-2918. [PMID: 35985299 DOI: 10.1016/j.molcel.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
Phytochrome B is known as a receptor for both light and temperature signals. In this issue of Molecular Cell, Chen et al. (2022) show how these two environmental signals are perceived distinctly by a single photoreceptor through liquid-liquid phase separation (LLPS).
Collapse
Affiliation(s)
- Sanghwa Lee
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Delker C, Quint M, Wigge PA. Recent advances in understanding thermomorphogenesis signaling. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102231. [PMID: 35636376 DOI: 10.1016/j.pbi.2022.102231] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 05/26/2023]
Abstract
Plants show remarkable phenotypic plasticity and are able to adjust their morphology and development to diverse environmental stimuli. Morphological acclimation responses to elevated ambient temperatures are collectively termed thermomorphogenesis. In Arabidopsis thaliana, morphological changes are coordinated to a large extent by the transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), which in turn is regulated by several thermosensing mechanisms and modulators. Here, we review recent advances in the identification of factors that regulate thermomorphogenesis of Arabidopsis seedlings by affecting PIF4 expression and PIF4 activity. We summarize newly identified thermosensing mechanisms and highlight work on the emerging topic of organ- and tissue-specificity in the regulation of thermomorphogenesis.
Collapse
Affiliation(s)
- Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany.
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, D-06120, Halle (Saale), Germany
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
41
|
Park YJ, Kim JY, Park CM. SMAX1 potentiates phytochrome B-mediated hypocotyl thermomorphogenesis. THE PLANT CELL 2022; 34:2671-2687. [PMID: 35478037 PMCID: PMC9252492 DOI: 10.1093/plcell/koac124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 05/19/2023]
Abstract
Plant thermosensors help optimize plant development and architecture for ambient temperatures, and morphogenic adaptation to warm temperatures has been extensively studied in recent years. Phytochrome B (phyB)-mediated thermosensing and the gene regulatory networks governing thermomorphogenic responses are well understood at the molecular level. However, it is unknown how plants manage their responsiveness to fluctuating temperatures in inducing thermomorphogenic behaviors. Here, we demonstrate that SUPPRESSOR OF MAX2 1 (SMAX1), known as a karrikin signaling repressor, enhances the thermosensitivity of hypocotyl morphogenesis in Arabidopsis thaliana. Hypocotyl thermomorphogenesis was largely disrupted in SMAX1-deficient mutants. SMAX1 interacts with phyB to alleviate its suppressive effects on the transcription factor activity of PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), promoting hypocotyl thermomorphogenesis. Interestingly, the SMAX1 protein is slowly destabilized at warm temperatures, preventing hypocotyl overgrowth. Our findings indicate that the thermodynamic control of SMAX1 abundance serves as a molecular gatekeeper for phyB function in thermosensitizing PIF4-mediated hypocotyl morphogenesis.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | | |
Collapse
|
42
|
Chen D, Lyu M, Kou X, Li J, Yang Z, Gao L, Li Y, Fan LM, Shi H, Zhong S. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol Cell 2022; 82:3015-3029.e6. [PMID: 35728588 DOI: 10.1016/j.molcel.2022.05.026] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 01/03/2023]
Abstract
Light and temperature in plants are perceived by a common receptor, phytochrome B (phyB). How phyB distinguishes these signals remains elusive. Here, we report that phyB spontaneously undergoes phase separation to assemble liquid-like droplets. This capacity is driven by its C terminus through self-association, whereas the intrinsically disordered N-terminal extension (NTE) functions as a biophysical modulator of phase separation. Light exposure triggers a conformational change to subsequently alter phyB condensate assembly, while temperature sensation is directly mediated by the NTE to modulate the phase behavior of phyB droplets. Multiple signaling components are selectively incorporated into phyB droplets to form concentrated microreactors, allowing switch-like control of phyB signaling activity through phase transitions. Therefore, light and temperature cues are separately read out by phyB via allosteric changes and spontaneous phase separation, respectively. We provide a conceptual framework showing how the distinct but highly correlated physical signals are interpreted and sorted by one receptor.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mohan Lyu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoxia Kou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lulu Gao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yue Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Liu-Min Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China.
| |
Collapse
|
43
|
Ding Y, Yang S. Surviving and thriving: How plants perceive and respond to temperature stress. Dev Cell 2022; 57:947-958. [PMID: 35417676 DOI: 10.1016/j.devcel.2022.03.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
Abstract
The dramatic temperature fluctuations spurred by climate change inhibit plant growth and threaten crop productivity. Unraveling how plants defend themselves against temperature-stress-induced cellular impairment is not only a crucial fundamental issue but is also of critical importance for agricultural sustainability and food security. Here, we review recent developments in elucidating the molecular mechanisms used by plants to sense and respond to cold and heat stress at multiple levels. We also describe the trade-off between plant growth and responses to high and low temperatures. Finally, we discuss possible strategies that could be used to engineer temperature-stress-tolerant, high-yielding crops.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
44
|
Li X, Liang T, Liu H. How plants coordinate their development in response to light and temperature signals. THE PLANT CELL 2022; 34:955-966. [PMID: 34904672 PMCID: PMC8894937 DOI: 10.1093/plcell/koab302] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/06/2021] [Indexed: 05/12/2023]
Abstract
Light and temperature change constantly under natural conditions and profoundly affect plant growth and development. Light and warmer temperatures promote flowering, higher light intensity inhibits hypocotyl and petiole elongation, and warmer temperatures promote hypocotyl and petiole elongation. Moreover, exogenous light and temperature signals must be integrated with endogenous signals to fine-tune phytohormone metabolism and plant morphology. Plants perceive and respond to light and ambient temperature using common sets of factors, such as photoreceptors and multiple light signal transduction components. These highly structured signaling networks are critical for plant survival and adaptation. This review discusses how plants respond to variable light and temperature conditions using common elements to coordinate their development. Future directions for research on light and temperature signaling pathways are also discussed.
Collapse
Affiliation(s)
- Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tong Liang
- Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Author for correspondence:
| |
Collapse
|
45
|
Lu HP, Wang JJ, Wang MJ, Liu JX. Roles of plant hormones in thermomorphogenesis. STRESS BIOLOGY 2021; 1:20. [PMID: 37676335 PMCID: PMC10441977 DOI: 10.1007/s44154-021-00022-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 09/08/2023]
Abstract
Global warming has great impacts on plant growth and development, as well as ecological distribution. Plants constantly perceive environmental temperatures and adjust their growth and development programs accordingly to cope with the environment under non-lethal warm temperature conditions. Plant hormones are endogenous bioactive chemicals that play central roles in plant growth, developmental, and responses to biotic and abiotic stresses. In this review, we summarize the important roles of plant hormones, including auxin, brassinosteroids (BRs), Gibberellins (GAs), ethylene (ET), and jasmonates (JAs), in regulating plant growth under warm temperature conditions. This provides a picture on how plants sense and transduce the warm temperature signals to regulate downstream gene expression for controlling plant growth under warm temperature conditions via hormone biosynthesis and signaling pathways.
Collapse
Affiliation(s)
- Hai-Ping Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jing-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Mei-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
46
|
Ma L, Li X, Zhao Z, Hao Y, Shang R, Zeng D, Liu H. Light-Response Bric-A-Brack/Tramtrack/Broad proteins mediate cryptochrome 2 degradation in response to low ambient temperature. THE PLANT CELL 2021; 33:3610-3620. [PMID: 34463721 PMCID: PMC8643628 DOI: 10.1093/plcell/koab219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/26/2021] [Indexed: 05/20/2023]
Abstract
Cryptochromes (crys) are photolyase-like blue-light receptors first discovered in Arabidopsis thaliana and later identified in all major evolutionary lineages. Crys are involved in not only blue light responses but also in temperature responses; however, whether and how cry protein stability is regulated by temperature remains unknown. Here, we show that cry2 protein abundance is modulated by ambient temperature and cry2 protein is degraded under low ambient temperature via the 26S proteasome. Consistent with this, cry2 shows high levels of ubiquitination under low ambient temperatures. Interestingly, cry2 degradation at low ambient temperatures occurs only under blue light and not under red light or dark conditions, indicating blue-light-dependent degradation of cry2 at low ambient temperature. Furthermore, low ambient temperature promotes physical interaction of Light-Response Bric-a-Brack/Tramtrack/Broad (LRB) proteins with cry2 to modulate its ubiquitination and protein stability in response to ambient temperature. LRBs promote high-temperature-induced hypocotyl elongation by modulating the protein stability of cry2 protein. These results indicate that cry2 accumulation is regulated by not only blue light but also ambient temperature, and LRBs are responsible for cry2 degradation at low ambient temperature. The stabilization of cry2 by high temperature makes cry2 a better negative regulator of temperature responses.
Collapse
Affiliation(s)
- Libang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuhao Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruixin Shang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Desheng Zeng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
47
|
Zhu P, Lister C, Dean C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature 2021; 599:657-661. [PMID: 34732891 PMCID: PMC8612926 DOI: 10.1038/s41586-021-04062-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Plants use seasonal temperature cues to time the transition to reproduction. In Arabidopsis thaliana, winter cold epigenetically silences the floral repressor locus FLOWERING LOCUS C (FLC) through POLYCOMB REPRESSIVE COMPLEX 2 (PRC2)1. This vernalization process aligns flowering with spring. A prerequisite for silencing is transcriptional downregulation of FLC, but how this occurs in the fluctuating temperature regimes of autumn is unknown2-4. Transcriptional repression correlates with decreased local levels of histone H3 trimethylation at K36 (H3K36me3) and H3 trimethylation at K4 (H3K4me3)5,6, which are deposited during FRIGIDA (FRI)-dependent activation of FLC7-10. Here we show that cold rapidly promotes the formation of FRI nuclear condensates that do not colocalize with an active FLC locus. This correlates with reduced FRI occupancy at the FLC promoter and FLC repression. Warm temperature spikes reverse this process, buffering FLC shutdown to prevent premature flowering. The accumulation of condensates in the cold is affected by specific co-transcriptional regulators and cold induction of a specific isoform of the antisense RNA COOLAIR5,11. Our work describes the dynamic partitioning of a transcriptional activator conferring plasticity in response to natural temperature fluctuations, thus enabling plants to effectively monitor seasonal progression.
Collapse
Affiliation(s)
- Pan Zhu
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Clare Lister
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
48
|
Janda T, Prerostová S, Vanková R, Darkó É. Crosstalk between Light- and Temperature-Mediated Processes under Cold and Heat Stress Conditions in Plants. Int J Mol Sci 2021; 22:ijms22168602. [PMID: 34445308 PMCID: PMC8395339 DOI: 10.3390/ijms22168602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Extreme temperatures are among the most important stressors limiting plant growth and development. Results indicate that light substantially influences the acclimation processes to both low and high temperatures, and it may affect the level of stress injury. The interaction between light and temperature in the regulation of stress acclimation mechanisms is complex, and both light intensity and spectral composition play an important role. Higher light intensities may lead to overexcitation of the photosynthetic electron transport chain; while different wavelengths may act through different photoreceptors. These may induce various stress signalling processes, leading to regulation of stomatal movement, antioxidant and osmoregulation capacities, hormonal actions, and other stress-related pathways. In recent years, we have significantly expanded our knowledge in both light and temperature sensing and signalling. The present review provides a synthesis of results for understanding how light influences the acclimation of plants to extreme low or high temperatures, including the sensing mechanisms and molecular crosstalk processes.
Collapse
Affiliation(s)
- Tibor Janda
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
- Correspondence:
| | - Sylva Prerostová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Éva Darkó
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
| |
Collapse
|
49
|
Park YJ, Kim JY, Lee JH, Han SH, Park CM. External and Internal Reshaping of Plant Thermomorphogenesis. TRENDS IN PLANT SCIENCE 2021; 26:810-821. [PMID: 33583729 DOI: 10.1016/j.tplants.2021.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Plants dynamically adapt to changing temperatures to ensure propagation and reproductive success, among which morphogenic responses to warm temperatures have been extensively studied in recent years. As readily inferred from the cyclic co-oscillations of environmental cues in nature, plant thermomorphogenesis is coordinately reshaped by various external conditions. Accumulating evidence supports that internal and developmental cues also contribute to harmonizing thermomorphogenic responses. The external and internal reshaping of thermomorphogenesis is facilitated by versatile temperature sensing and interorgan communication processes, circadian and photoperiodic gating of thermomorphogenic behaviors, and their metabolic coordination. Here, we discuss recent advances in plant thermal responses with focus on the diel and seasonal reshaping of thermomorphogenesis and briefly explore its application to developing climate-smart crops.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
50
|
Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz SA. Hot topic: Thermosensing in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2018-2033. [PMID: 33314270 PMCID: PMC8358962 DOI: 10.1111/pce.13979] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 05/13/2023]
Abstract
Plants alter their morphology and cellular homeostasis to promote resilience under a variety of heat regimes. Molecular processes that underlie these responses have been intensively studied and found to encompass diverse mechanisms operating across a broad range of cellular components, timescales and temperatures. This review explores recent progress throughout this landscape with a particular focus on thermosensing in the model plant Arabidopsis. Direct temperature sensors include the photosensors phytochrome B and phototropin, the clock component ELF3 and an RNA switch. In addition, there are heat-regulated processes mediated by ion channels, lipids and lipid-modifying enzymes, taking place at the plasma membrane and the chloroplast. In some cases, the mechanism of temperature perception is well understood but in others, this remains an open question. Potential novel thermosensing mechanisms are based on lipid and liquid-liquid phase separation. Finally, future research directions of high temperature perception and signalling pathways are discussed.
Collapse
Affiliation(s)
- Scott Hayes
- Laboratory of Plant PhysiologyWageningen University & ResearchWageningenThe Netherlands
| | - Joëlle Schachtschabel
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| | - Michael Mishkind
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
- IOSNational Science FoundationAlexandriaVirginiaUSA
| | - Teun Munnik
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| | - Steven A. Arisz
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|