1
|
Krohn JH, Mamot A, Kaletta N, Qutbuddin Y, Schwille P. Fluorescence correlation spectroscopy for particle sizing: A notorious challenge. Biophys J 2025:S0006-3495(25)00171-7. [PMID: 40134216 DOI: 10.1016/j.bpj.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025] Open
Abstract
In many quantitative investigations of biological systems, including, e.g., the study of biomolecular interactions, assembly and disassembly, aggregation, micelle and vesicle formation, or drug encapsulation, accurate determination of particle sizes is of key interest. Fluorescence correlation spectroscopy (FCS), with its exceptional sensitivity for molecular diffusion properties, has long been proposed as a valuable method to size small, freely diffusible particles with superior precision. It is conceptually related to the more widespread particle sizing technique dynamic light scattering (DLS) but offers greater selectivity and sensitivity due to the use of fluorescence rather than scattered light. However, in spite of these apparent advantages, FCS has never become established as a biophysical routine for particle sizing. This is due to the fact that sensitivity can, under certain conditions, indeed be disadvantageous, as it renders the technique error prone and overly susceptible to signal disturbances. Here, we discuss the systematic challenges, as well as the advances made over the past decades, to employing FCS in polydisperse samples. The problematic role of large particles, a common issue in DLS and FCS, and the effect of fluorescent labeling are discussed in detail, along with strategies for respective error mitigation in experiments and data analysis. We expect this overview to guide future users in successfully applying FCS to their particle sizing problems in the hope of fostering a more widespread and routine use of FCS-based technology.
Collapse
Affiliation(s)
- Jan-Hagen Krohn
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany; Exzellenzcluster ORIGINS, Garching, Germany
| | - Adam Mamot
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nastasja Kaletta
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yusuf Qutbuddin
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany; Exzellenzcluster ORIGINS, Garching, Germany.
| |
Collapse
|
2
|
Valentino S, Ortega-Sandoval K, Houston KD, Houston JP. Correlating NAD(P)H lifetime shifts to tamoxifen resistance in breast cancer cells: A metabolic screening study with time-resolved flow cytometry. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2025; 18:2450020. [PMID: 39980603 PMCID: PMC11841857 DOI: 10.1142/s1793545824500202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Time-resolved flow cytometry (TRFC) was used to measure metabolic differences in estrogen receptor-positive breast cancer cells. This specialty cytometry technique measures fluorescence lifetimes as a single-cell parameter thereby providing a unique approach for high-throughput cell counting and screening. Differences in fluorescence lifetime were detected and this was associated with sensitivity to the commonly prescribed therapeutic tamoxifen. Differences in fluorescence lifetime are attributed to the binding states of the autofluorescent metabolite NAD(P)H. The function of NAD(P)H is well described and in general involves cycling from a reduced to oxidized state to facilitate electron transport for the conversion of pyruvate to lactate. NAD(P)H fluorescence lifetimes depend on the bound or unbound state of the metabolite, which also relates to metabolic transitions between oxidative phosphorylation and glycolysis. To determine if fundamental metabolic profiles differ for cells that are sensitive to tamoxifen compared to those that are resistant, large populations of MCF-7 breast cancer cells were screened and fluorescence lifetimes were quantified. Additionally, metabolic differences associated with tamoxifen sensitivity were measured with a Seahorse HS mini metabolic analyzer (Agilent Technologies Inc. Santa Clara, CA) and confocal imaging. Results show that tamoxifen-resistant breast cancer cells have increased utilization of glycolysis for energy production compared to tamoxifen-sensitive breast cancer cells. This work is impacting because it establishes an early step toward developing a reliable screening technology in which large cell censuses can be differentiated for drug sensitivity in a label-free fashion.
Collapse
Affiliation(s)
- Samantha Valentino
- Chemical and Materials Engineering, New Mexico State University 1040 S Horseshoe Dr., Las Cruces, NM 88003, USA
| | - Karla Ortega-Sandoval
- Chemical and Materials Engineering, New Mexico State University 1040 S Horseshoe Dr., Las Cruces, NM 88003, USA
| | - Kevin D. Houston
- Chemistry and Biochemistry, New Mexico State University 1175 N Horseshoe Dr., Las Cruces, NM 88003, USA
| | - Jessica P. Houston
- Chemical and Materials Engineering, New Mexico State University 1040 S Horseshoe Dr., Las Cruces, NM 88003, USA
| |
Collapse
|
3
|
Nguyen TN, Shalaby RA, Lee E, Kim SS, Ro Kim Y, Kim S, Je HS, Kwon HS, Chung E. Ultrafast optical imaging techniques for exploring rapid neuronal dynamics. NEUROPHOTONICS 2025; 12:S14608. [PMID: 40017464 PMCID: PMC11867703 DOI: 10.1117/1.nph.12.s1.s14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Optical neuroimaging has significantly advanced our understanding of brain function, particularly through techniques such as two-photon microscopy, which captures three-dimensional brain structures with sub-cellular resolution. However, traditional methods struggle to record fast, complex neuronal interactions in real time, which are crucial for understanding brain networks and developing treatments for neurological diseases such as Alzheimer's, Parkinson's, and chronic pain. Recent advancements in ultrafast imaging technologies, including kilohertz two-photon microscopy, light field microscopy, and event-based imaging, are pushing the boundaries of temporal resolution in neuroimaging. These techniques enable the capture of rapid neural events with unprecedented speed and detail. This review examines the principles, applications, and limitations of these technologies, highlighting their potential to revolutionize neuroimaging and improve the diagnose and treatment of neurological disorders. Despite challenges such as photodamage risks and spatial resolution trade-offs, integrating these approaches promises to enhance our understanding of brain function and drive future breakthroughs in neuroscience and medicine. Continued interdisciplinary collaboration is essential to fully leverage these innovations for advancements in both basic and clinical neuroscience.
Collapse
Affiliation(s)
- Tien Nhat Nguyen
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Reham A. Shalaby
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Eunbin Lee
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Sang Seong Kim
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Young Ro Kim
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts United States
- Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| | - Seonghoon Kim
- Tsinghua University, Institute for Brain and Cognitive Sciences, Beijing, China
- Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou, China
| | - Hyunsoo Shawn Je
- Duke-NUS Medical School, Program in Neuroscience and Behavioral Disorders, Singapore
| | - Hyuk-Sang Kwon
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
| | - Euiheon Chung
- Gwangju Institute of Science and Technology, Department of Biomedical Science and Engineering, Gwangju, Republic of Korea
- Gwangju Institute of Science and Technology, AI Graduate School, Gwangju, Republic of Korea
| |
Collapse
|
4
|
García S, Carmona-Santiago G, Jiménez-Sánchez A. Redefining Molecular Probes for Monitoring Subcellular Environment: A Perspective. Anal Chem 2024; 96:19183-19189. [PMID: 39576991 PMCID: PMC11635757 DOI: 10.1021/acs.analchem.4c05022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
The development of small-molecule fluorescent probes has revolutionized the monitoring of in vivo physicochemical parameters, offering unprecedented insights into biological processes. In this perspective, we critically examine recent advances and trends in the design and application of fluorescent probes for real-time in vivo monitoring of subcellular environments. Traditional concepts such as membrane potential, microviscosity, and micropolarity have been superseded by more biologically relevant parameters like membrane voltage, tension, and hydration, enhancing the accuracy of physiological assessments. This redefinition not only presents an evolved concept with broader applications in monitoring subcellular dynamics but also addresses the unmet needs of subcellular biology more effectively. We also highlight the limitations of commonly used probes in providing specific information about the redox environment, noting their nonspecificity to oxidants and the influence of various chemical interactions. These probes typically rely on free radical mechanisms and require metal catalysts to react with hydrogen peroxide. They include naphthalimide, fluorescein, BODIPY, rhodamine, cyanine cores to cover the UV-vis-near-infrared window. The motif of this perspective is to provide critical insights into trending fluorescent-based systems employed in real-time or in vivo physicochemical-responsive monitoring, thus aiming to inform and inspire further research in creating robust and efficient fluorescent probes for comprehensive in vivo monitoring applications.
Collapse
Affiliation(s)
- Santiago García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| | - Gustavo Carmona-Santiago
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| |
Collapse
|
5
|
Karpf S, Glöckner Burmeister N, Dubreil L, Ghosh S, Hollandi R, Pichon J, Leroux I, Henkel A, Lutz V, Jurkevičius J, Latshaw A, Kilin V, Kutscher T, Wiggert M, Saavedra-Villanueva O, Vogel A, Huber RA, Horvath P, Rouger K, Bonacina L. Harmonic Imaging of Stem Cells in Whole Blood at GHz Pixel Rate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401472. [PMID: 38863131 DOI: 10.1002/smll.202401472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/21/2024] [Indexed: 06/13/2024]
Abstract
The pre-clinical validation of cell therapies requires monitoring the biodistribution of transplanted cells in tissues of host organisms. Real-time detection of these cells in the circulatory system and identification of their aggregation state is a crucial piece of information, but necessitates deep penetration and fast imaging with high selectivity, subcellular resolution, and high throughput. In this study, multiphoton-based in-flow detection of human stem cells in whole, unfiltered blood is demonstrated in a microfluidic channel. The approach relies on a multiphoton microscope with diffractive scanning in the direction perpendicular to the flow via a rapidly wavelength-swept laser. Stem cells are labeled with metal oxide harmonic nanoparticles. Thanks to their strong and quasi-instantaneous second harmonic generation (SHG), an imaging rate in excess of 10 000 frames per second is achieved with pixel dwell times of 1 ns, a duration shorter than typical fluorescence lifetimes yet compatible with SHG. Through automated cell identification and segmentation, morphological features of each individual detected event are extracted and cell aggregates are distinguished from isolated cells. This combination of high-speed multiphoton microscopy and high-sensitivity SHG nanoparticle labeling in turbid media promises the detection of rare cells in the bloodstream for assessing novel cell-based therapies.
Collapse
Affiliation(s)
- Sebastian Karpf
- Institute of Biomedical Optics (BMO), University Of Luebeck, 23562, Luebeck, Germany
| | | | | | - Shayantani Ghosh
- Department of Applied Physics, Université de Genève, Rue de l'Ecole-de-Médecine, 20, Geneva, 1205, Switzerland
| | - Reka Hollandi
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, H-6726, Hungary
| | | | | | - Alessandra Henkel
- Institute of Biomedical Optics (BMO), University Of Luebeck, 23562, Luebeck, Germany
| | - Valerie Lutz
- Institute of Biomedical Optics (BMO), University Of Luebeck, 23562, Luebeck, Germany
| | - Jonas Jurkevičius
- Institute of Biomedical Optics (BMO), University Of Luebeck, 23562, Luebeck, Germany
| | - Alexandra Latshaw
- Department of Applied Physics, Université de Genève, Rue de l'Ecole-de-Médecine, 20, Geneva, 1205, Switzerland
| | - Vasyl Kilin
- Department of Applied Physics, Université de Genève, Rue de l'Ecole-de-Médecine, 20, Geneva, 1205, Switzerland
| | - Tonio Kutscher
- Institute of Biomedical Optics (BMO), University Of Luebeck, 23562, Luebeck, Germany
| | - Moritz Wiggert
- Department of Applied Physics, Université de Genève, Rue de l'Ecole-de-Médecine, 20, Geneva, 1205, Switzerland
| | | | - Alfred Vogel
- Institute of Biomedical Optics (BMO), University Of Luebeck, 23562, Luebeck, Germany
| | - Robert A Huber
- Institute of Biomedical Optics (BMO), University Of Luebeck, 23562, Luebeck, Germany
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, H-6726, Hungary
| | - Karl Rouger
- Oniris, INRAE, PAnther, Nantes, F-44307, France
| | - Luigi Bonacina
- Department of Applied Physics, Université de Genève, Rue de l'Ecole-de-Médecine, 20, Geneva, 1205, Switzerland
| |
Collapse
|
6
|
Kanno H, Hiramatsu K, Mikami H, Nakayashiki A, Yamashita S, Nagai A, Okabe K, Li F, Yin F, Tominaga K, Bicer OF, Noma R, Kiani B, Efa O, Büscher M, Wazawa T, Sonoshita M, Shintaku H, Nagai T, Braun S, Houston JP, Rashad S, Niizuma K, Goda K. High-throughput fluorescence lifetime imaging flow cytometry. Nat Commun 2024; 15:7376. [PMID: 39231964 PMCID: PMC11375057 DOI: 10.1038/s41467-024-51125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Flow cytometry is a vital tool in biomedical research and laboratory medicine. However, its accuracy is often compromised by undesired fluctuations in fluorescence intensity. While fluorescence lifetime imaging microscopy (FLIM) bypasses this challenge as fluorescence lifetime remains unaffected by such fluctuations, the full integration of FLIM into flow cytometry has yet to be demonstrated due to speed limitations. Here we overcome the speed limitations in FLIM, thereby enabling high-throughput FLIM flow cytometry at a high rate of over 10,000 cells per second. This is made possible by using dual intensity-modulated continuous-wave beam arrays with complementary modulation frequency pairs for fluorophore excitation and acquiring fluorescence lifetime images of rapidly flowing cells. Moreover, our FLIM system distinguishes subpopulations in male rat glioma and captures dynamic changes in the cell nucleus induced by an anti-cancer drug. FLIM flow cytometry significantly enhances cellular analysis capabilities, providing detailed insights into cellular functions, interactions, and environments.
Collapse
Grants
- R35 GM152076 NIGMS NIH HHS
- This work was supported by JSPS Core-to-Core Program (K. G.), JSPS KAKENHI Grant Numbers 19H05633 and 20H00317 (K. G.), Ogasawara Foundation (K. G.), Nakatani Foundation (K. G.), Konica Minolta Foundation (K. G.), Philipp Franz von Siebold Award (K. G.), Humboldt Association of Japan (K. G.), Precise Measurement Technology Promotion Foundation (H. M.), JST PRESTO (JPMJPR1878) (K. H.), JST FOREST (21470594) (K. H.), JSPS Gran-in-Aid for Scientific Research (B) (22538379) (K. H.), JSPS Grant-in-Aid for Young Scientists (20K15227) (K. H.), Research Foundation for Opto-Science and Technology (K. H.), JSPS KAKENHI Grant Numbers 21J10600 and 24K18149 (H. K.), Konica Minolta Light Future Incentive Award (H. K.). We thank Mayu Sehara for her help with the cell sample preparation. The manuscript underwent editing with the assistance of a large language model (LLM).
Collapse
Affiliation(s)
- Hiroshi Kanno
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- Department of Chemistry, Kyushu University, Fukuoka, Japan
| | - Hideharu Mikami
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- Research Institute for Electronic Science, Hokkaido University, Hokkaido, Japan
| | - Atsushi Nakayashiki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shota Yamashita
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Arata Nagai
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Fan Li
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Fei Yin
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Keita Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | - Ryohei Noma
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Bahareh Kiani
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Olga Efa
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Martin Büscher
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | | | - Hirofumi Shintaku
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jessica P Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.
- Institute of Technological Sciences, Wuhan University, Hubei, China.
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Kwapiszewska K. Physicochemical Perspective of Biological Heterogeneity. ACS PHYSICAL CHEMISTRY AU 2024; 4:314-321. [PMID: 39069985 PMCID: PMC11274282 DOI: 10.1021/acsphyschemau.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 07/30/2024]
Abstract
The vast majority of chemical processes that govern our lives occur within living cells. At the core of every life process, such as gene expression or metabolism, are chemical reactions that follow the fundamental laws of chemical kinetics and thermodynamics. Understanding these reactions and the factors that govern them is particularly important for the life sciences. The physicochemical environment inside cells, which can vary between cells and organisms, significantly impacts various biochemical reactions and increases the extent of population heterogeneity. This paper discusses using physical chemistry approaches for biological studies, including methods for studying reactions inside cells and monitoring their conditions. The potential for development in this field and possible new research areas are highlighted. By applying physical chemistry methodology to biochemistry in vivo, we may gain new insights into biology, potentially leading to new ways of controlling biochemical reactions.
Collapse
Affiliation(s)
- Karina Kwapiszewska
- Institute of Physical Chemistry, Polish
Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
8
|
Ordóñez L, Lenz AJM, Ipus E, Lancis J, Tajahuerce E. Single-pixel microscopy with optical sectioning. OPTICS EXPRESS 2024; 32:26038-26051. [PMID: 39538478 DOI: 10.1364/oe.523443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 11/16/2024]
Abstract
Imaging with single-pixel detectors offers a valuable alternative to the conventional focal plane array strategy, especially for wavelengths where silicon-based sensor arrays exhibit lower efficiency. However, the absence of optical sectioning remains a challenge in single-pixel microscopy. In this paper, we introduce a single-pixel microscope with optical sectioning capabilities by integrating single-pixel imaging (SPI) techniques with structured illumination microscopy (SIM) methods. A spatial light modulator positioned at the microscope's input port encodes a series of structured light patterns, which the microscope focuses onto a specific plane of the 3D sample. Simultaneously, a highly sensitive bucket detector captures the light reflected by the object. Optical sectioning is achieved through a high-frequency grating positioned at the microscope's output port, which is conjugated with the spatial light modulator. Utilizing SPI reconstruction techniques and SIM algorithms, our computational microscope produces high-quality 2D images without blurred out-of-focus regions. We validate the performance of the single-pixel microscope (SPM) by measuring the axial response function and acquiring images of various 3D samples in reflected bright-field configuration. Furthermore, we demonstrate the suitability of the optical setup for single-pixel fluorescence microscopy with optical sectioning.
Collapse
|
9
|
Park J, Gao L. Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2024; 30:101147. [PMID: 39086551 PMCID: PMC11290093 DOI: 10.1016/j.cossms.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool offering molecular specific insights into samples through the measurement of fluorescence decay time, with promising applications in diverse research fields. However, to acquire two-dimensional lifetime images, conventional FLIM relies on extensive scanning in both the spatial and temporal domain, resulting in much slower acquisition rates compared to intensity-based approaches. This problem is further magnified in three-dimensional imaging, as it necessitates additional scanning along the depth axis. Recent advancements have aimed to enhance the speed and three-dimensional imaging capabilities of FLIM. This review explores the progress made in addressing these challenges and discusses potential directions for future developments in FLIM instrumentation.
Collapse
Affiliation(s)
- Jongchan Park
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
10
|
Watanabe K, Inoue T. Arbitrary spectro-temporal pulse-shaping algorithm. OPTICS EXPRESS 2024; 32:10265-10273. [PMID: 38571242 DOI: 10.1364/oe.518991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Measurement applications in optical fields require arbitrary spectro-temporal pulse shaping. However, conventional pulse-shaping algorithms are limited to controlling only the shape of the temporal intensity waveform. To overcome this limitation, we introduce the concept of short-time Fourier transformation into the conventional iterative Fourier transform algorithm, enabling it to introduce spectro-temporal constraints using a spectrogram image as a target. We numerically demonstrate that the proposed algorithm can find an appropriate spectral phase modulation pattern to realize arbitrarily controlled spectro-temporal pulse waveforms by testing the algorithm with different spectro-temporal multi-pulse waveforms. The algorithm benefits from reducing computational costs for generating spectro-temporal waveforms.
Collapse
|
11
|
Houston JP, Valentino S, Bitton A. Fluorescence Lifetime Measurements and Analyses: Protocols Using Flow Cytometry and High-Throughput Microscopy. Methods Mol Biol 2024; 2779:323-351. [PMID: 38526793 DOI: 10.1007/978-1-0716-3738-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This chapter focuses on applications and protocols that involve the measurement of the fluorescence lifetime as an informative cytometric parameter. The timing of fluorescence decay has been well-studied for cell counting, sorting, and imaging. Therefore, provided herein is an overview of the techniques used, how they enhance cytometry protocols, and the modern techniques used for lifetime analysis. The background and theory behind fluorescence decay kinetic measurements in cells is first discussed followed by the history of the development of time-resolved flow cytometry. These sections are followed by a review of applications that benefit from the quantitative nature of fluorescence lifetimes as a photophysical trait. Lastly, perspectives on the modern ways in which the fluorescence lifetime is scanned at high throughputs which include high-speed microscopy and machine learning are provided.
Collapse
Affiliation(s)
- Jessica P Houston
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA.
| | - Samantha Valentino
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
12
|
Klufts M, Jiménez AM, Lotz S, Bashir MA, Pfeiffer T, Mlynek A, Wieser W, Chamorovskiy A, Bradu A, Podoleanu A, Huber R. 828 kHz retinal imaging with an 840 nm Fourier domain mode locked laser. BIOMEDICAL OPTICS EXPRESS 2023; 14:6493-6508. [PMID: 38420314 PMCID: PMC10898573 DOI: 10.1364/boe.504302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024]
Abstract
This paper presents a Fourier domain mode locked (FDML) laser centered around 840 nm. It features a bidirectional sweep repetition rate of 828 kHz and a spectral bandwidth of 40 nm. An axial resolution of ∼9.9 µm in water and a 1.4 cm sensitivity roll-off are achieved. Utilizing a complex master-slave (CMS) recalibration method and due to a sufficiently high sensitivity of 84.6 dB, retinal layers of the human eye in-vivo can be resolved during optical coherence tomography (OCT) examination. The developed FDML laser enables acquisition rates of 3D-volumes with a size of 200 × 100 × 256 voxels in under 100 milliseconds. Detailed information on the FDML implementation, its challenging design tasks, and OCT images obtained with the laser are presented in this paper.
Collapse
Affiliation(s)
- Marie Klufts
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| | | | - Simon Lotz
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| | | | | | | | | | | | - Adrian Bradu
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Adrian Podoleanu
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Robert Huber
- Institute of Biomedical Optics, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
13
|
Kutscher TF, Lamminger P, Gruber A, Leonhardt C, Hunold A, Huber RA, Karpf S. Pulsed swept-source FDML-MOPA laser with kilowatt picosecond pulses around 1550 nm. OPTICS LETTERS 2023; 48:6096-6099. [PMID: 38039200 DOI: 10.1364/ol.500943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Swept-source lasers are versatile light sources for spectroscopy, imaging, and microscopy. Swept-source-powered multiphoton microscopy can achieve high-speed, inertia-free point scanning with MHz line-scan rates. The recently introduced spectro-temporal laser imaging by diffractive excitation (SLIDE) technique employs swept-source lasers to achieve kilohertz imaging rates by using a swept-source laser in combination with a diffraction grating for point scanning. Multiphoton microscopy at a longer wavelength, especially in the shortwave infrared (SWIR) region, can have advantages in deep tissue penetration or applications in light detection and ranging (LiDAR). Here we present a swept-source laser around 1550 nm providing high-speed wavelength agility and high peak power pulses for nonlinear excitation. The swept-source laser is a Fourier-domain mode-locked (FDML) laser operating at 326 kHz sweep rate. For high peak powers, the continuous wave (cw) output is pulse modulated to short picosecond pulses and amplified using erbium-doped fiber amplifiers (EDFAs) to peak powers of several kilowatts. This FDML-master oscillator power amplifier (FDML-MOPA) setup uses reliable, low-cost fiber components. As proof-of-principle measurement, we show third-harmonic generation (THG) using harmonic nanoparticles at the 10 MHz pulse excitation rate. This new, to the best of our knowledge, laser source provides unique performance parameters for applications in nonlinear microscopy, spectroscopy, and ranging.
Collapse
|
14
|
Zhang Z, Liu X, He M, Huang Y, Xu L, Han Y, Zhu D, Hao X, Kuang C, Liu X. High-throughput multiplexed fluorescence lifetime microscopy. OPTICS LETTERS 2023; 48:5547-5550. [PMID: 37910699 DOI: 10.1364/ol.503136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Fluorescence lifetime microscopy has been widely used in quantifying cellular interaction or histopathological identification of different stained tissues. A novel, to the best of our knowledge, approach for high-throughput multiplexed fluorescence lifetime imaging is presented. To establish a high-throughput fluorescence lifetime acquisition system, a uniformed illumination optical focus array was generated by a novel computer-generated hologram algorithm based on matrix triple product. This, in conjunction with an array detector and multichannel time-correlated single-photon counting, enables the full use of the acquisition ability of each detector. By utilizing interval segmentation of photon time detection, a high-throughput multiplexed fluorescence lifetime imaging is achieved. Experimental results demonstrate that this method achieves a fivefold increase in the collection throughput of fluorescence lifetime and is capable of simultaneous dual-target fluorescence lifetime measurement.
Collapse
|
15
|
Qi Y, Jin M, Li Q, Wu Q, Liao Z, Wei M, Fan X, Yang Q, Tian X, Giuseppe B, Luo L. Chitooligosaccharide reconstitutes intestinal mucus layer to improve oral absorption of water-soluble drugs. J Control Release 2023; 360:831-841. [PMID: 37481213 DOI: 10.1016/j.jconrel.2023.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Intestinal mucus is a complex natural hydrogel barrier with unique physical properties that impede the absorption of various oral drugs. Both washout from the upper water layer and the physical resistance of the mucus layer particularly affect bioavailability of, especially, highly water-soluble molecules. One potential strategy for designing pharmaceutical formulations is to add absorption enhancers (AEs). However, there are few reports of AEs that work on mucus and their underlying mechanisms, leading to imprecise application. In this study, we investigated chitooligosaccharide (COS) as a safe, low-cost, and effective oral drug AE. We revealed the hydrodynamic law of interaction between COS and the intestinal mucus layer, which was associated with absorption benefiting mucus structural reconstruction. Based on this, we designed a translational strategy to improve the bioavailability of a group of soluble oral drugs by drinking COS solution before administration. Moreover, this research is expected to expand its application scenario by reducing drug dosage such as avoiding gastro-intestinal irritation and slowing veterinary antibiotic resistance.
Collapse
Affiliation(s)
- Yiming Qi
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ming Jin
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qing Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qinghua Wu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhiqian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Menghao Wei
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinyi Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qianzhan Yang
- Analytical Instruments Department, Analytical Applications Center, Shimadzu (China) Co., Ltd. Chongqing Branch, Chongqing 404100, China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Battaglia Giuseppe
- Department of Chemistry and Institute for the Physics of Living Systems, University College London, London WC1H0AJ, United Kingdom
| | - Lei Luo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Lamminger P, Hakert H, Lotz S, Kolb JP, Kutscher T, Karpf S, Huber R. Four-wave mixing seeded by a rapid wavelength-sweeping FDML laser for nonlinear imaging at 900 nm and 1300 nm. OPTICS LETTERS 2023; 48:3713-3716. [PMID: 37450732 DOI: 10.1364/ol.488181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Four-wave mixing (FWM) enables the generation and amplification of light in spectral regions where suitable fiber gain media are unavailable. The 1300 nm and 900 nm regions are of especially high interest for time-encoded (TICO) stimulated Raman scattering microscopy and spectro-temporal laser imaging by diffracted excitation (SLIDE) two-photon microscopy. We present a new, to the best of our knowledge, FWM setup where we shift the power of a home-built fully fiber-based master oscillator power amplifier (MOPA) at 1064 nm to the 1300-nm region of a rapidly wavelength-sweeping Fourier domain mode-locked (FDML) laser in a photonic crystal fiber (PCF) creating pulses in the 900-nm region. The resulting 900-nm light can be wavelength swept over 54 nm and has up to 2.5 kW (0.2 µJ) peak power and a narrow instantaneous spectral linewidth of 70 pm. The arbitrary pulse patterns of the MOPA and the fast wavelength tuning of the FDML laser (419 kHz) allow it to rapidly tune the FWM light enabling new and faster TICO-Raman microscopy, SLIDE imaging, and other applications.
Collapse
|
17
|
Nguyen TD, Chen YI, Chen LH, Yeh HC. Recent Advances in Single-Molecule Tracking and Imaging Techniques. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:253-284. [PMID: 37314878 PMCID: PMC11729782 DOI: 10.1146/annurev-anchem-091922-073057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the early 1990s, single-molecule detection in solution at room temperature has enabled direct observation of single biomolecules at work in real time and under physiological conditions, providing insights into complex biological systems that the traditional ensemble methods cannot offer. In particular, recent advances in single-molecule tracking techniques allow researchers to follow individual biomolecules in their native environments for a timescale of seconds to minutes, revealing not only the distinct pathways these biomolecules take for downstream signaling but also their roles in supporting life. In this review, we discuss various single-molecule tracking and imaging techniques developed to date, with an emphasis on advanced three-dimensional (3D) tracking systems that not only achieve ultrahigh spatiotemporal resolution but also provide sufficient working depths suitable for tracking single molecules in 3D tissue models. We then summarize the observables that can be extracted from the trajectory data. Methods to perform single-molecule clustering analysis and future directions are also discussed.
Collapse
Affiliation(s)
- Trung Duc Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Limin H Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA;
- Texas Materials Institute, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
18
|
Mai H, Jarman A, Erdogan AT, Treacy C, Finlayson N, Henderson RK, Poland SP. Development of a high-speed line-scanning fluorescence lifetime imaging microscope for biological imaging. OPTICS LETTERS 2023; 48:2042-2045. [PMID: 37058637 DOI: 10.1364/ol.482403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 06/19/2023]
Abstract
We report the development of a novel line-scanning microscope capable of acquiring high-speed time-correlated single-photon counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) imaging. The system consists of a laser-line focus, which is optically conjugated to a 1024 × 8 single-photon avalanche diode (SPAD)-based line-imaging complementary metal-oxide semiconductor (CMOS), with 23.78 µm pixel pitch at 49.31% fill factor. Incorporation of on-chip histogramming on the line-sensor enables acquisition rates 33 times faster than our previously reported bespoke high-speed FLIM platforms. We demonstrate the imaging capability of the high-speed FLIM platform in a number of biological applications.
Collapse
|
19
|
Li R, Wang S, Lyu J, Chen K, Sun X, Huang J, Sun P, Liang S, Li M, Yang M, Liu H, Zeng S, Chen X, Li L, Jia H, Zhou Z. Ten-kilohertz two-photon microscopy imaging of single-cell dendritic activity and hemodynamics in vivo. NEUROPHOTONICS 2023; 10:025006. [PMID: 37152357 PMCID: PMC10156610 DOI: 10.1117/1.nph.10.2.025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Significance The studying of rapid neuronal signaling across large spatial scales in intact, living brains requires both high temporal resolution and versatility of the measurement device. Aim We introduce a high-speed two-photon microscope based on a custom-built acousto-optic deflector (AOD). This microscope has a maximum line scan frequency of 400 kHz and a maximum frame rate of 10,000 frames per second (fps) at 250 × 40 pixels . For stepwise magnification from population view to subcellular view with high spatial and temporal resolution, we combined the AOD with resonance-galvo (RS) scanning. Approach With this combinatorial device that supports both large-view navigation and small-view high-speed imaging, we measured dendritic calcium propagation velocity and the velocity of single red blood cells (RBCs). Results We measured dendritic calcium propagation velocity ( 80 / 62.5 - 116.7 μ m / ms ) in OGB-1-labeled single cortical neurons in mice in vivo. To benchmark the spatial precision and detection sensitivity of measurement in vivo, we also visualized the trajectories of single RBCs and found that their movement speed follows Poiseuille's law of laminar flow. Conclusions This proof-of-concept methodological development shows that the combination of AOD and RS scanning two-photon microscopy provides both versatility and precision for quantitative analysis of single neuronal activities and hemodynamics in vivo.
Collapse
Affiliation(s)
- Ruijie Li
- Guangxi University, Advanced Institute for Brain and Intelligence, School of Physical Science and Technology, Nanning, China
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
| | - Sibo Wang
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Jing Lyu
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Ke Chen
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Medical School, Chengdu, China
| | - Xiaxin Sun
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Medical School, Chengdu, China
| | - Junjie Huang
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Pei Sun
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
| | - Susu Liang
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Min Li
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Mengke Yang
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Hongbang Liu
- Guangxi University, Advanced Institute for Brain and Intelligence, School of Physical Science and Technology, Nanning, China
| | - Shaoqun Zeng
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Xiaowei Chen
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Longhui Li
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Hongbo Jia
- Guangxi University, Advanced Institute for Brain and Intelligence, School of Physical Science and Technology, Nanning, China
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Technical University Munich, Institute of Neuroscience and the SyNergy Cluster, Munich, Germany
| | - Zhenqiao Zhou
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| |
Collapse
|
20
|
Zang Z, Xiao D, Wang Q, Jiao Z, Chen Y, Li DDU. Compact and robust deep learning architecture for fluorescence lifetime imaging and FPGA implementation. Methods Appl Fluoresc 2023; 11. [PMID: 36863024 DOI: 10.1088/2050-6120/acc0d9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
This paper reports a bespoke adder-based deep learning network for time-domain fluorescence lifetime imaging (FLIM). By leveraging thel1-norm extraction method, we propose a 1D Fluorescence Lifetime AdderNet (FLAN) without multiplication-based convolutions to reduce the computational complexity. Further, we compressed fluorescence decays in temporal dimension using a log-scale merging technique to discard redundant temporal information derived as log-scaling FLAN (FLAN+LS). FLAN+LS achieves 0.11 and 0.23 compression ratios compared with FLAN and a conventional 1D convolutional neural network (1D CNN) while maintaining high accuracy in retrieving lifetimes. We extensively evaluated FLAN and FLAN+LS using synthetic and real data. A traditional fitting method and other non-fitting, high-accuracy algorithms were compared with our networks for synthetic data. Our networks attained a minor reconstruction error in different photon-count scenarios. For real data, we used fluorescent beads' data acquired by a confocal microscope to validate the effectiveness of real fluorophores, and our networks can differentiate beads with different lifetimes. Additionally, we implemented the network architecture on a field-programmable gate array (FPGA) with a post-quantization technique to shorten the bit-width, thereby improving computing efficiency. FLAN+LS on hardware achieves the highest computing efficiency compared to 1D CNN and FLAN. We also discussed the applicability of our network and hardware architecture for other time-resolved biomedical applications using photon-efficient, time-resolved sensors.
Collapse
Affiliation(s)
- Zhenya Zang
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Dong Xiao
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Quan Wang
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Ziao Jiao
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Yu Chen
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - David Day Uei Li
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| |
Collapse
|
21
|
Lee H, Kim K, Kang CM, Choo A, Han D, Kim J. In Situ Confocal Fluorescence Lifetime Imaging of Nanopore Electrode Arrays with Redox Active Fluorogenic Amplex Red. Anal Chem 2023; 95:1038-1046. [PMID: 36577440 DOI: 10.1021/acs.analchem.2c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Direct imaging of electrochemical processes on electrode surfaces is a central part of understanding spatially heterogeneous electrochemical processes on the surfaces. Herein, we report a strategy for the spatially resolved imaging of local faradaic processes on nanoscale electrochemical interfaces. This strategy is based on fluorescence lifetime imaging microscopy (FLIM) with the use of Amplex Red as a fluorogenic redox probe. After verifying the capability of Amplex Red for fluorescence lifetime imaging, we demonstrated the turn-on FLIM-based imaging of faradaic processes on the electrochemical interfaces of different dimensions. In particular, we achieved spatially resolved visualization of the local electrochemical processes occurring on even nanopore electrode arrays as well as conventional microelectrodes, including disk-shaped ultramicroelectrodes and interdigitated array microelectrodes.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul02447, Republic of Korea
| | - Kyoungsoo Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon14662, Gyeonggi-do, Republic of Korea
| | - Chung Mu Kang
- Electrochemistry Laboratory, Advanced Institutes of Convergence Technology, Suwon16229, Gyeonggi-do, Republic of Korea
| | - Aeri Choo
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul02447, Republic of Korea
| | - Donghoon Han
- Department of Chemistry, The Catholic University of Korea, Bucheon14662, Gyeonggi-do, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul02447, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul02447, Republic of Korea
| |
Collapse
|
22
|
Lin J, Cheng Z, Yang G, Cui M. Optical gearbox enabled versatile multiscale high-throughput multiphoton functional imaging. Nat Commun 2022; 13:6564. [PMID: 36323707 PMCID: PMC9630539 DOI: 10.1038/s41467-022-34472-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
To understand the function and mechanism of biological systems, it is crucial to observe the cellular dynamics at high spatiotemporal resolutions within live animals. The recent advances in genetically encoded function indicators have significantly improved the response rate to a near millisecond time scale. However, the widely employed in vivo imaging systems often lack the temporal solution to capture the fast biological dynamics. To broadly enable the capability of high-speed in vivo deep-tissue imaging, we developed an optical gearbox. As an add-on module, the optical gearbox can convert the common multiphoton imaging systems for versatile multiscale high-throughput imaging applications. In this work, we demonstrate in vivo 2D and 3D function imaging in mammalian brains at frame rates ranging from 50 to 1000 Hz. The optical gearbox's versatility and compatibility with the widely employed imaging components will be highly valuable to a variety of deep tissue imaging applications.
Collapse
Affiliation(s)
- Jianian Lin
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Zongyue Cheng
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Meng Cui
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
23
|
Huang D, Shi Y, Li F, Wai PKA. Fourier Domain Mode Locked Laser and Its Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:3145. [PMID: 35590839 PMCID: PMC9105910 DOI: 10.3390/s22093145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The sweep rate of conventional short-cavity lasers with an intracavity-swept filter is limited by the buildup time of laser signals from spontaneous emissions. The Fourier domain mode-locked (FDML) laser was proposed to overcome the limitations of buildup time by inserting a long fiber delay in the cavity to store the whole swept signal and has attracted much interest in both theoretical and experimental studies. In this review, the theoretical models to understand the dynamics of the FDML laser and the experimental techniques to realize high speed, wide sweep range, long coherence length, high output power and highly stable swept signals in FDML lasers will be discussed. We will then discuss the applications of FDML lasers in optical coherence tomography (OCT), fiber sensing, precision measurement, microwave generation and nonlinear microscopy.
Collapse
Affiliation(s)
- Dongmei Huang
- Photonics Research Institute, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (D.H.); (Y.S.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
| | - Yihuan Shi
- Photonics Research Institute, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (D.H.); (Y.S.)
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
| | - Feng Li
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
- Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - P. K. A. Wai
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China;
- Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Physics, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
24
|
Rane V. Harnessing Electron Spin Hyperpolarization in Chromophore-Radical Spin Probes for Subcellular Resolution in Electron Paramagnetic Resonance Imaging: Concept and Feasibility. J Phys Chem B 2022; 126:2715-2728. [PMID: 35353514 DOI: 10.1021/acs.jpcb.1c10920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obtaining a subcellular resolution for biological samples doped with stable radicals at room temperature (RT) is a long-sought goal in electron paramagnetic resonance imaging (EPRI). The spatial resolution in current EPRI methods is constrained either because of low electron spin polarization at RT or the experimental limitations associated with the field gradients and the radical linewidth. Inspired by the recent demonstration of a large electron spin hyperpolarization in chromophore-nitroxyl spin probe molecules, the present work proposes a novel optically hyperpolarized EPR imaging (OH-EPRI) method, which combines the optical method of two-photon confocal microscopy for hyperpolarization generation and the rapid scan (RS) EPR method for signal detection. An important aspect of OH-EPRI is that it is not limited by the abovementioned restrictions of conventional EPRI since the large hyperpolarization in the spin probes overcomes the poor thermal spin polarization at RT, and the use of two-photon optical excitation of the chromophore naturally generates the required spatial resolution, without the need for any magnetic field gradient. Simulations based on time-dependent Bloch equations, which took into account both the RS field modulation and the hyperpolarization generation by optical means, were performed to examine the feasibility of OH-EPRI. The simulation results revealed that a spatial resolution of up to 2 fL can be achieved in OH-EPRI at RT under in vitro conditions. Notably, the majority of the requirements for an OH-EPRI experiment can be fulfilled by the currently available technologies, thereby paving the way for its easy implementation. Thus, the proposed method could potentially bridge the sensitivity gap between the optical and magnetic imaging techniques.
Collapse
Affiliation(s)
- Vinayak Rane
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
25
|
Liu Z, Wang L, Meng Y, He T, He S, Yang Y, Wang L, Tian J, Li D, Yan P, Gong M, Liu Q, Xiao Q. All-fiber high-speed image detection enabled by deep learning. Nat Commun 2022; 13:1433. [PMID: 35301332 PMCID: PMC8930987 DOI: 10.1038/s41467-022-29178-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
Ultra-high-speed imaging serves as a foundation for modern science. While in biomedicine, optical-fiber-based endoscopy is often required for in vivo applications, the combination of high speed with the fiber endoscopy, which is vital for exploring transient biomedical phenomena, still confronts some challenges. We propose all-fiber imaging at high speeds, which is achieved based on the transformation of two-dimensional spatial information into one-dimensional temporal pulsed streams by leveraging high intermodal dispersion in a multimode fiber. Neural networks are trained to reconstruct images from the temporal waveforms. It can not only detect content-aware images with high quality, but also detect images of different kinds from the training images with slightly reduced quality. The fiber probe can detect micron-scale objects with a high frame rate (15.4 Mfps) and large frame depth (10,000). This scheme combines high speeds with high mechanical flexibility and integration and may stimulate future research exploring various phenomena in vivo.
Collapse
Affiliation(s)
- Zhoutian Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Lele Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yuan Meng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Sifeng He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yousi Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liuyue Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Jiading Tian
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Dan Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Ping Yan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Qiang Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China. .,Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
Quantification of protein-protein interactions and activation dynamics: A new path to predictive biomarkers. Biophys Chem 2022; 283:106768. [DOI: 10.1016/j.bpc.2022.106768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 12/27/2022]
|
27
|
Xiao S, Davison I, Mertz J. Scan multiplier unit for ultrafast laser scanning beyond the inertia limit. OPTICA 2021; 8:1403-1404. [PMID: 37275678 PMCID: PMC10237152 DOI: 10.1364/optica.445254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 06/07/2023]
Abstract
A passive add-on greatly multiplies the sweep rate of any mechanical scanner while also enhancing throughput, enabling a single linear scanner to produce ultrafast 1D or 2D laser scans for general applications.
Collapse
Affiliation(s)
- Sheng Xiao
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston MA 02215, USA
| | - Ian Davison
- Department of Biology, Boston University, 24 Cummington Mall, Boston MA 02215, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston MA 02215, USA
| |
Collapse
|
28
|
Sorrells JE, Iyer RR, Yang L, Chaney EJ, Marjanovic M, Tu H, Boppart SA. Single-photon peak event detection (SPEED): a computational method for fast photon counting in fluorescence lifetime imaging microscopy. OPTICS EXPRESS 2021; 29:37759-37775. [PMID: 34808842 PMCID: PMC8687103 DOI: 10.1364/oe.439675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 05/05/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) characterizes samples by examining the temporal properties of fluorescence emission, providing useful contrast within samples based on the local physical and biochemical environment of fluorophores. Despite this, FLIM applications have been limited in scope by either poor accuracy or long acquisition times. Here, we present a method for computational single-photon counting of directly sampled time-domain FLIM data that is capable of accurate fluorescence lifetime and intensity measurements while acquiring over 160 Mega-counts-per-second with sub-nanosecond time resolution between consecutive photon counts. We demonstrate that our novel method of Single-photon PEak Event Detection (SPEED) is more accurate than direct pulse sampling and faster than established photon counting FLIM methods. We further show that SPEED can be implemented for imaging and quantifying samples that benefit from higher -throughput and -dynamic range imaging with real-time GPU-accelerated processing and use this capability to examine the NAD(P)H-related metabolic dynamics of apoptosis in human breast cancer cells. Computational methods for photon counting such as SPEED open up more opportunities for fast and accurate FLIM imaging and additionally provide a basis for future innovation into alternative FLIM techniques.
Collapse
Affiliation(s)
- Janet E. Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lingxiao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Yang L, Song Y, Fan G, Zhang X, Wang Y. Effect of tunable π bridge on two-photon absorption property and intramolecular charge transfer process of polycyclic aromatic hydrocarbons. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119830. [PMID: 33971443 DOI: 10.1016/j.saa.2021.119830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
The influences of the conjugation effect on the charge transfer and nonlinear optical (NLO) properties of polycyclic aromatic hydrocarbons (PAHs) are comprehensively investigated at the microscopic molecular level. We found that the conjugation effect of π bridge is negatively correlated with molecular planarity, excitation energy, two-photon absorption (TPA) cross-section, and the second hyperpolarizability. For the first time, the charge transfer matrix (CTM) is applied to the molecular two-photon transition process. Combining the charge difference density (CDD) diagram with CTM heat map to visually quantitative investigate the characteristics of excited states, the charge transfer path and transfer amount between atoms. During the two-photon transition of all molecules, the electronic excited state is locally excited. Compared with the first process, the range of intramolecular charge transfer in the second process of the two-photon transition is expanded. Comprehensive results prove that the π bridge with large conjugation effect distorts the molecular structure, which is not conducive to the intramolecular charge transfer. Therefore, the molecule DBP-1 with a carbon-carbon double bond as the π bridge has the largest transition dipole moments, TPA cross-section, and second static hyperpolarizability. Our research method can provide effective guidance for the design and optimization of nonlinear organic conjugated molecular materials.
Collapse
Affiliation(s)
- Linpo Yang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Yinglin Song
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China; School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Guanghua Fan
- Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Xueru Zhang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Yuxiao Wang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
30
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|
31
|
Lai QTK, Yip GGK, Wu J, Wong JSJ, Lo MCK, Lee KCM, Le TTHD, So HKH, Ji N, Tsia KK. High-speed laser-scanning biological microscopy using FACED. Nat Protoc 2021; 16:4227-4264. [PMID: 34341580 DOI: 10.1038/s41596-021-00576-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/25/2021] [Indexed: 12/28/2022]
Abstract
Laser scanning is used in advanced biological microscopy to deliver superior imaging contrast, resolution and sensitivity. However, it is challenging to scale up the scanning speed required for interrogating a large and heterogeneous population of biological specimens or capturing highly dynamic biological processes at high spatiotemporal resolution. Bypassing the speed limitation of traditional mechanical methods, free-space angular-chirp-enhanced delay (FACED) is an all-optical, passive and reconfigurable laser-scanning approach that has been successfully applied in different microscopy modalities at an ultrafast line-scan rate of 1-80 MHz. Optimal FACED imaging performance requires optimized experimental design and implementation to enable specific high-speed applications. In this protocol, we aim to disseminate information allowing FACED to be applied to a broader range of imaging modalities. We provide (i) a comprehensive guide and design specifications for the FACED hardware; (ii) step-by-step optical implementations of the FACED module including the key custom components; and (iii) the overall image acquisition and reconstruction pipeline. We illustrate two practical imaging configurations: multimodal FACED imaging flow cytometry (bright-field, fluorescence and second-harmonic generation) and kHz 2D two-photon fluorescence microscopy. Users with basic experience in optical microscope operation and software engineering should be able to complete the setup of the FACED imaging hardware and software in ~2-3 months.
Collapse
Affiliation(s)
- Queenie T K Lai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Gwinky G K Yip
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jianglai Wu
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA.,Chinese Institute for Brain Research, Beijing, China
| | - Justin S J Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Michelle C K Lo
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Kelvin C M Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Tony T H D Le
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Hayden K H So
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA. .,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China. .,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin New Town, Hong Kong.
| |
Collapse
|
32
|
Sorrells JE, Iyer RR, Yang L, Bower AJ, Spillman DR, Chaney EJ, Tu H, Boppart SA. Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4003-4019. [PMID: 34457395 PMCID: PMC8367245 DOI: 10.1364/boe.424533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 05/06/2023]
Abstract
Two-photon fluorescence lifetime imaging microscopy (FLIM) is a widely used technique in biomedical optical imaging. Presently, many two-photon time-domain FLIM setups are limited by long acquisition and postprocessing times that decrease data throughput and inhibit the ability to image fast sub-second processes. Here, we present a versatile two-photon FLIM setup capable of video-rate (up to 25 fps) imaging with graphics processing unit (GPU)-accelerated pixelwise phasor analysis displayed and saved simultaneously with acquisition. The system uses an analog output photomultiplier tube in conjunction with 12-bit digitization at 3.2 GHz to overcome the limited maximum acceptable photon rate associated with the photon counting electronics in many FLIM systems. This allows for higher throughput FLIM acquisition and analysis, and additionally enables the user to assess sample fluorescence lifetime in real-time. We further explore the capabilities of the system to examine the kinetics of Rhodamine B uptake by human breast cancer cells and characterize the effect of pixel dwell time on the reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) autofluorescence lifetime estimation accuracy.
Collapse
Affiliation(s)
- Janet E. Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lingxiao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J. Bower
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
33
|
Datta R, Gillette A, Stefely M, Skala MC. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210093-PER. [PMID: 34247457 PMCID: PMC8271181 DOI: 10.1117/1.jbo.26.7.070603] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 05/05/2023]
Abstract
SIGNIFICANCE Fluorescence lifetime imaging microscopy (FLIM) measures the decay rate of fluorophores, thus providing insights into molecular interactions. FLIM is a powerful molecular imaging technique that is widely used in biology and medicine. AIM This perspective highlights some of the major advances in FLIM instrumentation, analysis, and biological and clinical applications that we have found impactful over the last year. APPROACH Innovations in FLIM instrumentation resulted in faster acquisition speeds, rapid imaging over large fields of view, and integration with complementary modalities such as single-molecule microscopy or light-sheet microscopy. There were significant developments in FLIM analysis with machine learning approaches to enhance processing speeds, fit-free techniques to analyze images without a priori knowledge, and open-source analysis resources. The advantages and limitations of these recent instrumentation and analysis techniques are summarized. Finally, applications of FLIM in the last year include label-free imaging in biology, ophthalmology, and intraoperative imaging, FLIM of new fluorescent probes, and lifetime-based Förster resonance energy transfer measurements. CONCLUSIONS A large number of high-quality publications over the last year signifies the growing interest in FLIM and ensures continued technological improvements and expanding applications in biomedical research.
Collapse
Affiliation(s)
- Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Amani Gillette
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Matthew Stefely
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Address all correspondence to Melissa C. Skala,
| |
Collapse
|
34
|
Bitton A, Sambrano J, Valentino S, Houston JP. A Review of New High-Throughput Methods Designed for Fluorescence Lifetime Sensing From Cells and Tissues. FRONTIERS IN PHYSICS 2021; 9:648553. [PMID: 34007839 PMCID: PMC8127321 DOI: 10.3389/fphy.2021.648553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Though much of the interest in fluorescence in the past has been on measuring spectral qualities such as wavelength and intensity, there are two other highly useful intrinsic properties of fluorescence: lifetime (or decay) and anisotropy (or polarization). Each has its own set of unique advantages, limitations, and challenges in detection when it comes to use in biological studies. This review will focus on the property of fluorescence lifetime, providing a brief background on instrumentation and theory, and examine the recent advancements and applications of measuring lifetime in the fields of high-throughput fluorescence lifetime imaging microscopy (HT-FLIM) and time-resolved flow cytometry (TRFC). In addition, the crossover of these two methods and their outlooks will be discussed.
Collapse
Affiliation(s)
- Aric Bitton
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Jesus Sambrano
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Samantha Valentino
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Jessica P. Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
35
|
Yan Z, Xue J, Zhou M, Wang J, Zhang Y, Wang Y, Qiao J, He Y, Li P, Zhang S, Zhang X. Dynamic Monitoring of Phase-Separated Biomolecular Condensates by Photoluminescence Lifetime Imaging. Anal Chem 2021; 93:2988-2995. [PMID: 33512148 DOI: 10.1021/acs.analchem.0c05011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The formation of biomolecular condensates is driven by liquid-liquid phase separation, which is prevalent in cells to govern crucial cellular functions. However, understanding the properties of phase-separated condensates remains very challenging for the lack of suitable techniques. Here, we report a photoluminescence lifetime imaging method for real-time monitoring of phase-separated condensates, both in vitro and in living cells, using a microsecond-scale photoluminescence lifetime probe based on iridium complex. The probe has a large Stokes shift, excellent cell permeability, and minimal cell autofluorescence interference. With this method, the dynamic process of phase separation of fused in sarcoma protein has been well explored, showing high spatiotemporal resolution and high throughput. Beginning with initial formation, the protein droplets get bigger and more viscous, and then a final maturation to solidified aggregates has been characterized. This study paves the path for a deeper understanding of the properties of phase-separated biomolecular condensates.
Collapse
Affiliation(s)
- Zihe Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jianfeng Xue
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Min Zhou
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Jinyu Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yanxin Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuan Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Juan Qiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan He
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Howell J, Hammarton TC, Altmann Y, Jimenez M. High-speed particle detection and tracking in microfluidic devices using event-based sensing. LAB ON A CHIP 2020; 20:3024-3035. [PMID: 32700715 DOI: 10.1039/d0lc00556h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Visualising fluids and particles within channels is a key element of microfluidic work. Current imaging methods for particle image velocimetry often require expensive high-speed cameras with powerful illuminating sources, thus potentially limiting accessibility. This study explores for the first time the potential of an event-based camera for particle and fluid behaviour characterisation in a microfluidic system. Event-based cameras have the unique capacity to detect light intensity changes asynchronously and to record spatial and temporal information with low latency, low power and high dynamic range. Event-based cameras could consequently be relevant for detecting light intensity changes due to moving particles, chemical reactions or intake of fluorescent dyes by cells to mention a few. As a proof-of-principle, event-based sensing was tested in this work to detect 1 μm and 10 μm diameter particles flowing in a microfluidic channel for average fluid velocities of up to 1.54 m s-1. Importantly, experiments were performed by directly connecting the camera to a standard fluorescence microscope, only relying on the microscope arc lamp for illumination. We present a data processing strategy that allows particle detection and tracking in both bright-field and fluorescence imaging. Detection was achieved up to a fluid velocity of 1.54 m s-1 and tracking up to 0.4 m s-1 suggesting that event-based cameras could be a new paradigm shift in microscopic imaging.
Collapse
Affiliation(s)
- Jessie Howell
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | | | | | | |
Collapse
|